Modelling of liquid heating subject to simultaneous microwave and ultrasound irradiation

•Water heating under simultaneous MW and US irradiation was modelled.•Simultaneous MW and US irradiation improves heat uniformity in water.•Hotspots are located in the upper region of water and near the horn tip.•Heat uniformity in water is insensitive to heating time. In this work, a new model that...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 150; pp. 1126 - 1140
Main Authors Lee, G.L., Law, M.C., Lee, V.C.-C.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 05.03.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Water heating under simultaneous MW and US irradiation was modelled.•Simultaneous MW and US irradiation improves heat uniformity in water.•Hotspots are located in the upper region of water and near the horn tip.•Heat uniformity in water is insensitive to heating time. In this work, a new model that describes liquid heating under simultaneous Microwave (MW) and Ultrasound (US) irradiation was developed in COMSOL Multiphysics and validated against experimental data. This model was used to investigate heat transfer phenomena in water under simultaneous irradiation of MW and US, and compared it with that under individual MW irradiation. The simulation results showed that under simultaneous irradiation, the heat uniformity in the water is greatly enhanced compared to that under individual MW irradiation. Besides, the results indicated that hotspots are mainly located in the upper region of the water sample and in the vicinity of the US horn tip. In addition, the simulation results revealed that the local US power absorption in water is much greater compared to the local MW power absorption, which may cause local overheating. It was also discovered that the heat uniformity in the water sample essentially does not deteriorate with heating time during simultaneous irradiation, which is in contrast to that during individual MW irradiation. The new model could be useful to in the design, optimization and scale-up of combined MW and US systems.
AbstractList •Water heating under simultaneous MW and US irradiation was modelled.•Simultaneous MW and US irradiation improves heat uniformity in water.•Hotspots are located in the upper region of water and near the horn tip.•Heat uniformity in water is insensitive to heating time. In this work, a new model that describes liquid heating under simultaneous Microwave (MW) and Ultrasound (US) irradiation was developed in COMSOL Multiphysics and validated against experimental data. This model was used to investigate heat transfer phenomena in water under simultaneous irradiation of MW and US, and compared it with that under individual MW irradiation. The simulation results showed that under simultaneous irradiation, the heat uniformity in the water is greatly enhanced compared to that under individual MW irradiation. Besides, the results indicated that hotspots are mainly located in the upper region of the water sample and in the vicinity of the US horn tip. In addition, the simulation results revealed that the local US power absorption in water is much greater compared to the local MW power absorption, which may cause local overheating. It was also discovered that the heat uniformity in the water sample essentially does not deteriorate with heating time during simultaneous irradiation, which is in contrast to that during individual MW irradiation. The new model could be useful to in the design, optimization and scale-up of combined MW and US systems.
In this work, a new model that describes liquid heating under simultaneous Microwave (MW) and Ultrasound (US) irradiation was developed in COMSOL Multiphysics and validated against experimental data. This model was used to investigate heat transfer phenomena in water under simultaneous irradiation of MW and US, and compared it with that under individual MW irradiation. The simulation results showed that under simultaneous irradiation, the heat uniformity in the water is greatly enhanced compared to that under individual MW irradiation. Besides, the results indicated that hotspots are mainly located in the upper region of the water sample and in the vicinity of the US horn tip. In addition, the simulation results revealed that the local US power absorption in water is much greater compared to the local MW power absorption, which may cause local overheating. It was also discovered that the heat uniformity in the water sample essentially does not deteriorate with heating time during simultaneous irradiation, which is in contrast to that during individual MW irradiation. The new model could be useful to in the design, optimization and scale-up of combined MW and US systems.
Author Law, M.C.
Lee, V.C.-C.
Lee, G.L.
Author_xml – sequence: 1
  givenname: G.L.
  surname: Lee
  fullname: Lee, G.L.
– sequence: 2
  givenname: M.C.
  surname: Law
  fullname: Law, M.C.
  email: m.c.law@curtin.edu.my
– sequence: 3
  givenname: V.C.-C.
  surname: Lee
  fullname: Lee, V.C.-C.
BookMark eNqNkEFPwzAMhSM0JLbBf6gE1xanaZtW4oImBkggLiBxi9LG3VK1yZa0Q_x7Mo0LN062LL_n529BZsYaJOSGQkKBFrddIne7ftyiG2SPZpOkQKsEaAJFdkbmtOQszgsoZqFneRVnjNILsvC-A6BpybM5-Xy1Cvtem01k26jX-0mraItyPE78VHfYjNFoI6-HqR-lQTv5aNCNs1_ygJE0KgpzJ72dQqudk0oHsTWX5LyVvcer37okH-uH99VT_PL2-Ly6f4kblpdj3EKZA7SYYkMVr-qC0zpnvGScyho5Y7KFugxRC9WkFCVUSlZVlWWtAsg5ZUtyffLdObuf0I-is5Mz4aRIUyjSYJhWYevutBWCe--wFTunB-m-BQVxZCk68ZelOLIUQEVgGeTrkxzDJweNTvhGo2lQaRcACWX1_4x-ALPGiTA
CitedBy_id crossref_primary_10_1016_j_ijthermalsci_2020_106538
crossref_primary_10_1080_07373937_2021_1929296
crossref_primary_10_1016_j_applthermaleng_2019_114556
crossref_primary_10_1016_j_coche_2022_100890
crossref_primary_10_1016_j_cej_2021_133051
crossref_primary_10_1016_j_ultsonch_2022_105930
crossref_primary_10_1016_j_ultras_2022_106769
crossref_primary_10_1016_j_ijheatmasstransfer_2019_119096
crossref_primary_10_1016_j_ifset_2022_103012
crossref_primary_10_1016_j_jfoodeng_2020_110409
crossref_primary_10_1016_j_ultsonch_2020_105042
crossref_primary_10_1016_j_ijthermalsci_2019_01_040
crossref_primary_10_3390_pr11030826
Cites_doi 10.1016/j.ultsonch.2007.12.001
10.1039/C7RE00075H
10.1016/j.ultsonch.2013.09.002
10.1016/j.ultrasmedbio.2007.11.004
10.1016/j.foodres.2009.09.015
10.1016/j.ijthermalsci.2013.07.001
10.1016/j.ultsonch.2013.03.012
10.1016/0370-1573(80)90115-5
10.1016/j.ultsonch.2012.04.011
10.1016/j.cherd.2013.07.002
10.1016/j.ultsonch.2011.06.008
10.1007/s41061-016-0082-7
10.1016/j.ultsonch.2017.02.031
10.1016/j.ultsonch.2014.08.007
10.1016/j.ultsonch.2006.01.001
10.1016/j.ces.2016.09.004
10.1016/j.applthermaleng.2017.06.040
10.1016/S1350-4177(98)00035-2
10.1021/ie5025485
10.1016/j.ces.2006.08.038
10.1016/j.tetlet.2005.02.015
10.1016/j.ifset.2015.09.015
10.1016/0022-460X(78)90388-7
10.1007/s11947-009-0187-x
10.1016/j.cej.2012.02.029
10.1016/j.ultsonch.2011.06.007
10.1016/j.ultsonch.2007.10.009
10.3390/app6100293
10.1039/C6GC02200F
10.1016/S0307-904X(01)00046-4
10.1016/S0009-2509(98)00340-6
10.1016/j.ultsonch.2008.11.013
10.1016/S1350-4177(98)00026-1
10.1121/1.384720
10.1103/PhysRevLett.85.3165
10.1016/j.ijheatmasstransfer.2012.02.065
10.1002/fld.2452
10.1016/j.ultsonch.2004.06.009
10.1016/j.applthermaleng.2016.01.009
10.1016/j.ultsonch.2016.05.017
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Mar 5, 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 5, 2019
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.applthermaleng.2019.01.064
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5606
EndPage 1140
ExternalDocumentID 10_1016_j_applthermaleng_2019_01_064
S1359431118362963
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
FGOYB
HZ~
R2-
SEW
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c358t-f08500fe2ec1d79b671b5378371abe733af0b88746dc21ea09da99944fd005713
IEDL.DBID AIKHN
ISSN 1359-4311
IngestDate Fri Sep 13 07:08:08 EDT 2024
Thu Sep 26 16:58:59 EDT 2024
Fri Feb 23 02:33:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Modelling
Liquid heating
Acoustic streaming
Acoustic cavitation
Simultaneous microwave and ultrasound irradiation
Heat transfer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-f08500fe2ec1d79b671b5378371abe733af0b88746dc21ea09da99944fd005713
PQID 2206267129
PQPubID 2045278
PageCount 15
ParticipantIDs proquest_journals_2206267129
crossref_primary_10_1016_j_applthermaleng_2019_01_064
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2019_01_064
PublicationCentury 2000
PublicationDate 2019-03-05
PublicationDateYYYYMMDD 2019-03-05
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-05
  day: 05
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Applied thermal engineering
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Mohsin, Meribout (b0125) 2015; 23
Martina, Tagliapietra, Barge, Cravotto (b0040) 2016; 374
Samani, Khoshtaghaza, Lorigooini, Minaei, Zareiforoush (b0045) 2015; 32
Hui, Sherkat (b0160) 2005
Jordens, Honings, Degrève, Braeken, Van Gerven (b0210) 2013; 20
Lebon, Tzanakis, Djambazov, Pericleous, Eskin (b0080) 2017; 37
Jiao, Tan, Zhu (b0100) 2014; 21
Ascrizzi, González-Rivera, Pomelli, Chiappe, Margari, Costagli, Longo, Tiné, Flamini, Duce (b0030) 2017; 2
Vanhille, Campos-Pozuelo (b0070) 2008; 34
Lebon, Pericleous, Tzanakis, Eskin (b0115) 2015
Komarov, Wang, Tang (b0145) 1999; 47
Kumar, Kumaresan, Pandit, Joshi (b0185) 2006; 61
Dähnke, Keil (b0205) 1999; 54
Cravotto, Beggiato, Penoni, Palmisano, Tollari, Lévêque, Bonrath (b0005) 2005; 46
Toegel, Gompf, Pecha, Lohse (b0090) 2000; 85
Burdin, Tsochatzidis, Guiraud, Wilhelm, Delmas (b0055) 1999; 6
Law, Liew, Chang, Chan, Leo (b0060) 2016; 98
Klima, Frias-Ferrer, González-García, Ludvik, Saez, Iniesta (b0135) 2007; 14
Xu, Yasuda, Koda (b0095) 2013; 20
Zhao, Zhang, Li, He, Yang, Fu, Zhang, Zhao, Zu (b0025) 2016; 6
Samanta, Basak (b0215) 2010; 43
Jiang, Ge, Liu, Chen (b0155) 2017; 34
Gude (b0035) 2015; 1
Shams, Finn, Apte (b0140) 2011; 67
Cha-um, Rattanadecho, Pakdee (b0150) 2011; 4
Dähnke, Swamy, Keil (b0200) 1999; 6
Sturm, Verweij, Van Gerven, Stankiewicz, Stefanidis (b0175) 2012; 55
Jamshidi, Pohl, Peuker, Brenner (b0195) 2012; 189
Keller, Miksis (b0085) 1980; 68
Solovchuk, Thiriet, Sheu (b0105) 2017; 124
Cherbański, Rudniak (b0170) 2013; 74
Niazi, Hashemabadi, Razi (b0130) 2014; 92
Campos-Pozuelo, Granger, Vanhille, Moussatov, Dubus (b0225) 2005; 12
Lighthill (b0110) 1978; 61
Neppiras (b0220) 1980; 61
Wang, Zhao, Wen, Chen, Lei (b0015) 2014; 53
Cravotto, Boffa, Mantegna, Perego, Avogadro, Cintas (b0010) 2008; 15
Lianfu, Zelong (b0050) 2008; 15
Vanhille, Campos-Pozuelo (b0075) 2009; 16
Ratanadecho, Aoki, Akahori (b0120) 2002; 26
Gulati, Zhu, Datta (b0180) 2016; 156
Louisnard (b0065) 2012; 19
Louisnard (b0190) 2012; 19
González-Rivera, Spepi, Ferrari, Duce, Longo, Falconieri, Piras, Tinè (b0020) 2016; 18
Datta (b0165) 2001
Keller (10.1016/j.applthermaleng.2019.01.064_b0085) 1980; 68
Jiao (10.1016/j.applthermaleng.2019.01.064_b0100) 2014; 21
Ascrizzi (10.1016/j.applthermaleng.2019.01.064_b0030) 2017; 2
Gulati (10.1016/j.applthermaleng.2019.01.064_b0180) 2016; 156
Jamshidi (10.1016/j.applthermaleng.2019.01.064_b0195) 2012; 189
Law (10.1016/j.applthermaleng.2019.01.064_b0060) 2016; 98
Cha-um (10.1016/j.applthermaleng.2019.01.064_b0150) 2011; 4
Hui (10.1016/j.applthermaleng.2019.01.064_b0160) 2005
Martina (10.1016/j.applthermaleng.2019.01.064_b0040) 2016; 374
Jiang (10.1016/j.applthermaleng.2019.01.064_b0155) 2017; 34
Dähnke (10.1016/j.applthermaleng.2019.01.064_b0205) 1999; 54
Dähnke (10.1016/j.applthermaleng.2019.01.064_b0200) 1999; 6
Klima (10.1016/j.applthermaleng.2019.01.064_b0135) 2007; 14
Cravotto (10.1016/j.applthermaleng.2019.01.064_b0010) 2008; 15
Komarov (10.1016/j.applthermaleng.2019.01.064_b0145) 1999; 47
Toegel (10.1016/j.applthermaleng.2019.01.064_b0090) 2000; 85
Xu (10.1016/j.applthermaleng.2019.01.064_b0095) 2013; 20
Lianfu (10.1016/j.applthermaleng.2019.01.064_b0050) 2008; 15
Lebon (10.1016/j.applthermaleng.2019.01.064_b0080) 2017; 37
Vanhille (10.1016/j.applthermaleng.2019.01.064_b0070) 2008; 34
Vanhille (10.1016/j.applthermaleng.2019.01.064_b0075) 2009; 16
Lighthill (10.1016/j.applthermaleng.2019.01.064_b0110) 1978; 61
Neppiras (10.1016/j.applthermaleng.2019.01.064_b0220) 1980; 61
González-Rivera (10.1016/j.applthermaleng.2019.01.064_b0020) 2016; 18
Jordens (10.1016/j.applthermaleng.2019.01.064_b0210) 2013; 20
Samanta (10.1016/j.applthermaleng.2019.01.064_b0215) 2010; 43
Niazi (10.1016/j.applthermaleng.2019.01.064_b0130) 2014; 92
Gude (10.1016/j.applthermaleng.2019.01.064_b0035) 2015; 1
Solovchuk (10.1016/j.applthermaleng.2019.01.064_b0105) 2017; 124
Datta (10.1016/j.applthermaleng.2019.01.064_b0165) 2001
Wang (10.1016/j.applthermaleng.2019.01.064_b0015) 2014; 53
Samani (10.1016/j.applthermaleng.2019.01.064_b0045) 2015; 32
Burdin (10.1016/j.applthermaleng.2019.01.064_b0055) 1999; 6
Lebon (10.1016/j.applthermaleng.2019.01.064_b0115) 2015
Cravotto (10.1016/j.applthermaleng.2019.01.064_b0005) 2005; 46
Ratanadecho (10.1016/j.applthermaleng.2019.01.064_b0120) 2002; 26
Shams (10.1016/j.applthermaleng.2019.01.064_b0140) 2011; 67
Kumar (10.1016/j.applthermaleng.2019.01.064_b0185) 2006; 61
Sturm (10.1016/j.applthermaleng.2019.01.064_b0175) 2012; 55
Louisnard (10.1016/j.applthermaleng.2019.01.064_b0190) 2012; 19
Zhao (10.1016/j.applthermaleng.2019.01.064_b0025) 2016; 6
Campos-Pozuelo (10.1016/j.applthermaleng.2019.01.064_b0225) 2005; 12
Louisnard (10.1016/j.applthermaleng.2019.01.064_b0065) 2012; 19
Cherbański (10.1016/j.applthermaleng.2019.01.064_b0170) 2013; 74
Mohsin (10.1016/j.applthermaleng.2019.01.064_b0125) 2015; 23
References_xml – volume: 14
  start-page: 19
  year: 2007
  end-page: 28
  ident: b0135
  article-title: Optimisation of 20kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results
  publication-title: Ultrason. Sonochem.
  contributor:
    fullname: Iniesta
– volume: 189
  start-page: 364
  year: 2012
  end-page: 375
  ident: b0195
  article-title: Numerical investigation of sonochemical reactors considering the effect of inhomogeneous bubble clouds on ultrasonic wave propagation
  publication-title: Chem. Eng. J.
  contributor:
    fullname: Brenner
– volume: 2
  start-page: 577
  year: 2017
  end-page: 589
  ident: b0030
  article-title: Ionic liquids, ultra-sounds and microwaves: an effective combination for a sustainable extraction with higher yields. The cumin essential oil case
  publication-title: React. Chem. Eng.
  contributor:
    fullname: Duce
– volume: 21
  start-page: 535
  year: 2014
  end-page: 541
  ident: b0100
  article-title: Numerical simulation of ultrasonic enhancement on mass transfer in liquid–solid reaction by a new computational model
  publication-title: Ultrason. Sonochem.
  contributor:
    fullname: Zhu
– volume: 18
  start-page: 6482
  year: 2016
  end-page: 6492
  ident: b0020
  article-title: Novel configurations for a citrus waste based biorefinery: from solventless to simultaneous ultrasound and microwave assisted extraction
  publication-title: Green Chem.
  contributor:
    fullname: Tinè
– volume: 15
  start-page: 898
  year: 2008
  end-page: 902
  ident: b0010
  article-title: Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves
  publication-title: Ultrason. Sonochem.
  contributor:
    fullname: Cintas
– volume: 68
  start-page: 628
  year: 1980
  end-page: 633
  ident: b0085
  article-title: Bubble oscillations of large amplitude
  publication-title: J. Acoust. Soc. Am.
  contributor:
    fullname: Miksis
– volume: 67
  start-page: 1865
  year: 2011
  end-page: 1898
  ident: b0140
  article-title: A numerical scheme for Euler-Lagrange simulation of bubbly flows in complex systems
  publication-title: Int. J. Numer. Meth. Fluids
  contributor:
    fullname: Apte
– volume: 34
  start-page: 792
  year: 2008
  end-page: 808
  ident: b0070
  article-title: Nonlinear ultrasonic propagation in bubbly liquids: a numerical model
  publication-title: Ultrasound Med. Biol.
  contributor:
    fullname: Campos-Pozuelo
– volume: 16
  start-page: 669
  year: 2009
  end-page: 685
  ident: b0075
  article-title: Nonlinear ultrasonic waves in bubbly liquids with nonhomogeneous bubble distribution: numerical experiments
  publication-title: Ultrason. Sonochem.
  contributor:
    fullname: Campos-Pozuelo
– volume: 98
  start-page: 702
  year: 2016
  end-page: 726
  ident: b0060
  article-title: Modelling microwave heating of discrete samples of oil palm kernels
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Leo
– volume: 4
  start-page: 544
  year: 2011
  end-page: 558
  ident: b0150
  article-title: Experimental and numerical analysis of microwave heating of water and oil using a rectangular wave guide: influence of sample sizes, positions, and microwave power
  publication-title: Food Bioprocess Technol.
  contributor:
    fullname: Pakdee
– volume: 156
  start-page: 206
  year: 2016
  end-page: 228
  ident: b0180
  article-title: Coupled electromagnetics, multiphase transport and large deformation model for microwave drying
  publication-title: Chem. Eng. Sci.
  contributor:
    fullname: Datta
– volume: 23
  start-page: 413
  year: 2015
  end-page: 423
  ident: b0125
  article-title: An extended model for ultrasonic-based enhanced oil recovery with experimental validation
  publication-title: Ultrason. Sonochem.
  contributor:
    fullname: Meribout
– volume: 74
  start-page: 214
  year: 2013
  end-page: 229
  ident: b0170
  article-title: Modelling of microwave heating of water in a monomode applicator–Influence of operating conditions
  publication-title: Int. J. Therm. Sci.
  contributor:
    fullname: Rudniak
– volume: 37
  start-page: 660
  year: 2017
  end-page: 668
  ident: b0080
  article-title: Numerical modelling of ultrasonic waves in a bubbly Newtonian liquid using a high-order acoustic cavitation model
  publication-title: Ultrason. Sonochem.
  contributor:
    fullname: Eskin
– year: 2015
  ident: b0115
  article-title: Application of the“ Full Cavitation Model” to the fundamental study of cavitation in liquid metal processing.
  publication-title: IOP Conference Series: Materials Science and Engineering
  contributor:
    fullname: Eskin
– volume: 55
  start-page: 3800
  year: 2012
  end-page: 3811
  ident: b0175
  article-title: On the effect of resonant microwave fields on temperature distribution in time and space
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Stefanidis
– volume: 15
  start-page: 731
  year: 2008
  end-page: 737
  ident: b0050
  article-title: Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes
  publication-title: Ultrason. Sonochem.
  contributor:
    fullname: Zelong
– volume: 32
  start-page: 110
  year: 2015
  end-page: 115
  ident: b0045
  article-title: Analysis of the combinative effect of ultrasound and microwave power on Saccharomyces cerevisiae in orange juice processing
  publication-title: Innovative Food Sci. Emerg. Technol.
  contributor:
    fullname: Zareiforoush
– volume: 46
  start-page: 2267
  year: 2005
  end-page: 2271
  ident: b0005
  article-title: High-intensity ultrasound and microwave, alone or combined, promote Pd/C-catalyzed aryl–aryl couplings
  publication-title: Tetrahedron Lett.
  contributor:
    fullname: Bonrath
– volume: 6
  start-page: 293
  year: 2016
  ident: b0025
  article-title: Development of an ionic liquid-based ultrasonic/microwave-assisted simultaneous distillation and extraction method for separation of camptothecin, 10-hydroxycamptothecin, vincoside-lactam, and essential oils from the fruits of camptotheca acuminata decne
  publication-title: Appl. Sci.
  contributor:
    fullname: Zu
– volume: 54
  start-page: 2865
  year: 1999
  end-page: 2872
  ident: b0205
  article-title: Modeling of linear pressure fields in sonochemical reactors considering an inhomogeneous density distribution of cavitation bubbles
  publication-title: Chem. Eng. Sci.
  contributor:
    fullname: Keil
– volume: 61
  start-page: 391
  year: 1978
  end-page: 418
  ident: b0110
  article-title: Acoustic streaming
  publication-title: J. Sound Vib.
  contributor:
    fullname: Lighthill
– volume: 61
  start-page: 159
  year: 1980
  end-page: 251
  ident: b0220
  article-title: Acoustic cavitation
  publication-title: Phys. Rep.
  contributor:
    fullname: Neppiras
– volume: 53
  start-page: 20116
  year: 2014
  end-page: 20123
  ident: b0015
  article-title: Ultrasound–microwave-assisted synthesis of MnO
  publication-title: Ind. Eng. Chem. Res.
  contributor:
    fullname: Lei
– volume: 124
  start-page: 1112
  year: 2017
  end-page: 1122
  ident: b0105
  article-title: Computational study of acoustic streaming and heating during acoustic hemostasis
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Sheu
– volume: 374
  start-page: 79
  year: 2016
  ident: b0040
  article-title: Combined microwaves/ultrasound, a hybrid technology
  publication-title: Top. Curr. Chem.
  contributor:
    fullname: Cravotto
– volume: 20
  start-page: 452
  year: 2013
  end-page: 459
  ident: b0095
  article-title: Numerical simulation of liquid velocity distribution in a sonochemical reactor
  publication-title: Ultrason. Sonochem.
  contributor:
    fullname: Koda
– volume: 1
  start-page: 116
  year: 2015
  end-page: 125
  ident: b0035
  article-title: Synergism of microwaves and ultrasound for advanced biorefineries
  publication-title: Resour.-Effic. Technol.
  contributor:
    fullname: Gude
– volume: 43
  start-page: 148
  year: 2010
  end-page: 166
  ident: b0215
  article-title: Efficient processing of oil–water emulsions confined within 2D cylinders with various microwave irradiations: role of metallic annulus
  publication-title: Food Res. Int.
  contributor:
    fullname: Basak
– volume: 92
  start-page: 166
  year: 2014
  end-page: 173
  ident: b0130
  article-title: CFD simulation of acoustic cavitation in a crude oil upgrading sonoreactor and prediction of collapse temperature and pressure of a cavitation bubble
  publication-title: Chem. Eng. Res. Des.
  contributor:
    fullname: Razi
– volume: 6
  start-page: 31
  year: 1999
  end-page: 41
  ident: b0200
  article-title: Modeling of three-dimensional pressure fields in sonochemical reactors with an inhomogeneous density distribution of cavitation bubbles: comparison of theoretical and experimental results
  publication-title: Ultrason. Sonochem.
  contributor:
    fullname: Keil
– volume: 34
  start-page: 90
  year: 2017
  end-page: 97
  ident: b0155
  article-title: Investigations on dynamics of interacting cavitation bubbles in strong acoustic fields
  publication-title: Ultrason. Sonochem.
  contributor:
    fullname: Chen
– volume: 61
  start-page: 7410
  year: 2006
  end-page: 7420
  ident: b0185
  article-title: Characterization of flow phenomena induced by ultrasonic horn
  publication-title: Chem. Eng. Sci.
  contributor:
    fullname: Joshi
– volume: 19
  start-page: 56
  year: 2012
  end-page: 65
  ident: b0065
  article-title: A simple model of ultrasound propagation in a cavitating liquid. Part I: theory, nonlinear attenuation and traveling wave generation
  publication-title: Ultrason. Sonochem.
  contributor:
    fullname: Louisnard
– volume: 85
  start-page: 3165
  year: 2000
  ident: b0090
  article-title: Does water vapor prevent upscaling sonoluminescence?
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Lohse
– volume: 47
  start-page: 2123
  year: 1999
  end-page: 2130
  ident: b0145
  article-title: Permittivity and measurements
  publication-title: Trans. Microwave Theory Tech. MTT
  contributor:
    fullname: Tang
– volume: 19
  start-page: 66
  year: 2012
  end-page: 76
  ident: b0190
  article-title: A simple model of ultrasound propagation in a cavitating liquid. Part II: primary Bjerknes force and bubble structures
  publication-title: Ultrason. Sonochem.
  contributor:
    fullname: Louisnard
– volume: 12
  start-page: 79
  year: 2005
  end-page: 84
  ident: b0225
  article-title: Experimental and theoretical investigation of the mean acoustic pressure in the cavitation field
  publication-title: Ultrason. Sonochem.
  contributor:
    fullname: Dubus
– volume: 20
  start-page: 1345
  year: 2013
  end-page: 1352
  ident: b0210
  article-title: Investigation of design parameters in ultrasound reactors with confined channels
  publication-title: Ultrason. Sonochem.
  contributor:
    fullname: Van Gerven
– volume: 26
  start-page: 449
  year: 2002
  end-page: 472
  ident: b0120
  article-title: A numerical and experimental investigation of the modeling of microwave heating for liquid layers using a rectangular wave guide (effects of natural convection and dielectric properties)
  publication-title: Appl. Math. Model.
  contributor:
    fullname: Akahori
– year: 2005
  ident: b0160
  article-title: Handbook of Food Science, Technology, and Engineering-4 Volume Set.
  contributor:
    fullname: Sherkat
– year: 2001
  ident: b0165
  article-title: Handbook of Microwave Technology for Food Application
  contributor:
    fullname: Datta
– volume: 6
  start-page: 43
  year: 1999
  end-page: 51
  ident: b0055
  article-title: Characterisation of the acoustic cavitation cloud by two laser techniques
  publication-title: Ultrason. Sonochem.
  contributor:
    fullname: Delmas
– volume: 15
  start-page: 731
  issue: 5
  year: 2008
  ident: 10.1016/j.applthermaleng.2019.01.064_b0050
  article-title: Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2007.12.001
  contributor:
    fullname: Lianfu
– volume: 1
  start-page: 116
  issue: 2
  year: 2015
  ident: 10.1016/j.applthermaleng.2019.01.064_b0035
  article-title: Synergism of microwaves and ultrasound for advanced biorefineries
  publication-title: Resour.-Effic. Technol.
  contributor:
    fullname: Gude
– volume: 2
  start-page: 577
  issue: 4
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.01.064_b0030
  article-title: Ionic liquids, ultra-sounds and microwaves: an effective combination for a sustainable extraction with higher yields. The cumin essential oil case
  publication-title: React. Chem. Eng.
  doi: 10.1039/C7RE00075H
  contributor:
    fullname: Ascrizzi
– volume: 21
  start-page: 535
  issue: 2
  year: 2014
  ident: 10.1016/j.applthermaleng.2019.01.064_b0100
  article-title: Numerical simulation of ultrasonic enhancement on mass transfer in liquid–solid reaction by a new computational model
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2013.09.002
  contributor:
    fullname: Jiao
– volume: 34
  start-page: 792
  issue: 5
  year: 2008
  ident: 10.1016/j.applthermaleng.2019.01.064_b0070
  article-title: Nonlinear ultrasonic propagation in bubbly liquids: a numerical model
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2007.11.004
  contributor:
    fullname: Vanhille
– volume: 43
  start-page: 148
  issue: 1
  year: 2010
  ident: 10.1016/j.applthermaleng.2019.01.064_b0215
  article-title: Efficient processing of oil–water emulsions confined within 2D cylinders with various microwave irradiations: role of metallic annulus
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2009.09.015
  contributor:
    fullname: Samanta
– volume: 74
  start-page: 214
  year: 2013
  ident: 10.1016/j.applthermaleng.2019.01.064_b0170
  article-title: Modelling of microwave heating of water in a monomode applicator–Influence of operating conditions
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2013.07.001
  contributor:
    fullname: Cherbański
– volume: 20
  start-page: 1345
  issue: 6
  year: 2013
  ident: 10.1016/j.applthermaleng.2019.01.064_b0210
  article-title: Investigation of design parameters in ultrasound reactors with confined channels
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2013.03.012
  contributor:
    fullname: Jordens
– volume: 61
  start-page: 159
  issue: 3
  year: 1980
  ident: 10.1016/j.applthermaleng.2019.01.064_b0220
  article-title: Acoustic cavitation
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(80)90115-5
  contributor:
    fullname: Neppiras
– volume: 20
  start-page: 452
  issue: 1
  year: 2013
  ident: 10.1016/j.applthermaleng.2019.01.064_b0095
  article-title: Numerical simulation of liquid velocity distribution in a sonochemical reactor
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2012.04.011
  contributor:
    fullname: Xu
– year: 2001
  ident: 10.1016/j.applthermaleng.2019.01.064_b0165
  contributor:
    fullname: Datta
– volume: 92
  start-page: 166
  issue: 1
  year: 2014
  ident: 10.1016/j.applthermaleng.2019.01.064_b0130
  article-title: CFD simulation of acoustic cavitation in a crude oil upgrading sonoreactor and prediction of collapse temperature and pressure of a cavitation bubble
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2013.07.002
  contributor:
    fullname: Niazi
– volume: 19
  start-page: 66
  issue: 1
  year: 2012
  ident: 10.1016/j.applthermaleng.2019.01.064_b0190
  article-title: A simple model of ultrasound propagation in a cavitating liquid. Part II: primary Bjerknes force and bubble structures
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2011.06.008
  contributor:
    fullname: Louisnard
– volume: 47
  start-page: 2123
  issue: 11
  year: 1999
  ident: 10.1016/j.applthermaleng.2019.01.064_b0145
  article-title: Permittivity and measurements
  publication-title: Trans. Microwave Theory Tech. MTT
  contributor:
    fullname: Komarov
– volume: 374
  start-page: 79
  issue: 6
  year: 2016
  ident: 10.1016/j.applthermaleng.2019.01.064_b0040
  article-title: Combined microwaves/ultrasound, a hybrid technology
  publication-title: Top. Curr. Chem.
  doi: 10.1007/s41061-016-0082-7
  contributor:
    fullname: Martina
– volume: 37
  start-page: 660
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.01.064_b0080
  article-title: Numerical modelling of ultrasonic waves in a bubbly Newtonian liquid using a high-order acoustic cavitation model
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2017.02.031
  contributor:
    fullname: Lebon
– volume: 23
  start-page: 413
  year: 2015
  ident: 10.1016/j.applthermaleng.2019.01.064_b0125
  article-title: An extended model for ultrasonic-based enhanced oil recovery with experimental validation
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2014.08.007
  contributor:
    fullname: Mohsin
– volume: 14
  start-page: 19
  issue: 1
  year: 2007
  ident: 10.1016/j.applthermaleng.2019.01.064_b0135
  article-title: Optimisation of 20kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2006.01.001
  contributor:
    fullname: Klima
– volume: 156
  start-page: 206
  year: 2016
  ident: 10.1016/j.applthermaleng.2019.01.064_b0180
  article-title: Coupled electromagnetics, multiphase transport and large deformation model for microwave drying
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2016.09.004
  contributor:
    fullname: Gulati
– volume: 124
  start-page: 1112
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.01.064_b0105
  article-title: Computational study of acoustic streaming and heating during acoustic hemostasis
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.06.040
  contributor:
    fullname: Solovchuk
– volume: 6
  start-page: 43
  issue: 1–2
  year: 1999
  ident: 10.1016/j.applthermaleng.2019.01.064_b0055
  article-title: Characterisation of the acoustic cavitation cloud by two laser techniques
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/S1350-4177(98)00035-2
  contributor:
    fullname: Burdin
– volume: 53
  start-page: 20116
  issue: 52
  year: 2014
  ident: 10.1016/j.applthermaleng.2019.01.064_b0015
  article-title: Ultrasound–microwave-assisted synthesis of MnO2 supercapacitor electrode materials
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie5025485
  contributor:
    fullname: Wang
– volume: 61
  start-page: 7410
  issue: 22
  year: 2006
  ident: 10.1016/j.applthermaleng.2019.01.064_b0185
  article-title: Characterization of flow phenomena induced by ultrasonic horn
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2006.08.038
  contributor:
    fullname: Kumar
– volume: 46
  start-page: 2267
  issue: 13
  year: 2005
  ident: 10.1016/j.applthermaleng.2019.01.064_b0005
  article-title: High-intensity ultrasound and microwave, alone or combined, promote Pd/C-catalyzed aryl–aryl couplings
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2005.02.015
  contributor:
    fullname: Cravotto
– volume: 32
  start-page: 110
  year: 2015
  ident: 10.1016/j.applthermaleng.2019.01.064_b0045
  article-title: Analysis of the combinative effect of ultrasound and microwave power on Saccharomyces cerevisiae in orange juice processing
  publication-title: Innovative Food Sci. Emerg. Technol.
  doi: 10.1016/j.ifset.2015.09.015
  contributor:
    fullname: Samani
– volume: 61
  start-page: 391
  issue: 3
  year: 1978
  ident: 10.1016/j.applthermaleng.2019.01.064_b0110
  article-title: Acoustic streaming
  publication-title: J. Sound Vib.
  doi: 10.1016/0022-460X(78)90388-7
  contributor:
    fullname: Lighthill
– year: 2015
  ident: 10.1016/j.applthermaleng.2019.01.064_b0115
  article-title: Application of the“ Full Cavitation Model” to the fundamental study of cavitation in liquid metal processing.
  contributor:
    fullname: Lebon
– volume: 4
  start-page: 544
  issue: 4
  year: 2011
  ident: 10.1016/j.applthermaleng.2019.01.064_b0150
  article-title: Experimental and numerical analysis of microwave heating of water and oil using a rectangular wave guide: influence of sample sizes, positions, and microwave power
  publication-title: Food Bioprocess Technol.
  doi: 10.1007/s11947-009-0187-x
  contributor:
    fullname: Cha-um
– volume: 189
  start-page: 364
  year: 2012
  ident: 10.1016/j.applthermaleng.2019.01.064_b0195
  article-title: Numerical investigation of sonochemical reactors considering the effect of inhomogeneous bubble clouds on ultrasonic wave propagation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.02.029
  contributor:
    fullname: Jamshidi
– volume: 19
  start-page: 56
  issue: 1
  year: 2012
  ident: 10.1016/j.applthermaleng.2019.01.064_b0065
  article-title: A simple model of ultrasound propagation in a cavitating liquid. Part I: theory, nonlinear attenuation and traveling wave generation
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2011.06.007
  contributor:
    fullname: Louisnard
– volume: 15
  start-page: 898
  issue: 5
  year: 2008
  ident: 10.1016/j.applthermaleng.2019.01.064_b0010
  article-title: Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2007.10.009
  contributor:
    fullname: Cravotto
– volume: 6
  start-page: 293
  issue: 10
  year: 2016
  ident: 10.1016/j.applthermaleng.2019.01.064_b0025
  article-title: Development of an ionic liquid-based ultrasonic/microwave-assisted simultaneous distillation and extraction method for separation of camptothecin, 10-hydroxycamptothecin, vincoside-lactam, and essential oils from the fruits of camptotheca acuminata decne
  publication-title: Appl. Sci.
  doi: 10.3390/app6100293
  contributor:
    fullname: Zhao
– volume: 18
  start-page: 6482
  issue: 24
  year: 2016
  ident: 10.1016/j.applthermaleng.2019.01.064_b0020
  article-title: Novel configurations for a citrus waste based biorefinery: from solventless to simultaneous ultrasound and microwave assisted extraction
  publication-title: Green Chem.
  doi: 10.1039/C6GC02200F
  contributor:
    fullname: González-Rivera
– volume: 26
  start-page: 449
  issue: 3
  year: 2002
  ident: 10.1016/j.applthermaleng.2019.01.064_b0120
  article-title: A numerical and experimental investigation of the modeling of microwave heating for liquid layers using a rectangular wave guide (effects of natural convection and dielectric properties)
  publication-title: Appl. Math. Model.
  doi: 10.1016/S0307-904X(01)00046-4
  contributor:
    fullname: Ratanadecho
– volume: 54
  start-page: 2865
  issue: 13–14
  year: 1999
  ident: 10.1016/j.applthermaleng.2019.01.064_b0205
  article-title: Modeling of linear pressure fields in sonochemical reactors considering an inhomogeneous density distribution of cavitation bubbles
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(98)00340-6
  contributor:
    fullname: Dähnke
– volume: 16
  start-page: 669
  issue: 5
  year: 2009
  ident: 10.1016/j.applthermaleng.2019.01.064_b0075
  article-title: Nonlinear ultrasonic waves in bubbly liquids with nonhomogeneous bubble distribution: numerical experiments
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2008.11.013
  contributor:
    fullname: Vanhille
– volume: 6
  start-page: 31
  issue: 1
  year: 1999
  ident: 10.1016/j.applthermaleng.2019.01.064_b0200
  article-title: Modeling of three-dimensional pressure fields in sonochemical reactors with an inhomogeneous density distribution of cavitation bubbles: comparison of theoretical and experimental results
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/S1350-4177(98)00026-1
  contributor:
    fullname: Dähnke
– volume: 68
  start-page: 628
  issue: 2
  year: 1980
  ident: 10.1016/j.applthermaleng.2019.01.064_b0085
  article-title: Bubble oscillations of large amplitude
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.384720
  contributor:
    fullname: Keller
– volume: 85
  start-page: 3165
  issue: 15
  year: 2000
  ident: 10.1016/j.applthermaleng.2019.01.064_b0090
  article-title: Does water vapor prevent upscaling sonoluminescence?
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.3165
  contributor:
    fullname: Toegel
– volume: 55
  start-page: 3800
  issue: 13
  year: 2012
  ident: 10.1016/j.applthermaleng.2019.01.064_b0175
  article-title: On the effect of resonant microwave fields on temperature distribution in time and space
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2012.02.065
  contributor:
    fullname: Sturm
– volume: 67
  start-page: 1865
  issue: 12
  year: 2011
  ident: 10.1016/j.applthermaleng.2019.01.064_b0140
  article-title: A numerical scheme for Euler-Lagrange simulation of bubbly flows in complex systems
  publication-title: Int. J. Numer. Meth. Fluids
  doi: 10.1002/fld.2452
  contributor:
    fullname: Shams
– volume: 12
  start-page: 79
  issue: 1–2
  year: 2005
  ident: 10.1016/j.applthermaleng.2019.01.064_b0225
  article-title: Experimental and theoretical investigation of the mean acoustic pressure in the cavitation field
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2004.06.009
  contributor:
    fullname: Campos-Pozuelo
– volume: 98
  start-page: 702
  year: 2016
  ident: 10.1016/j.applthermaleng.2019.01.064_b0060
  article-title: Modelling microwave heating of discrete samples of oil palm kernels
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.01.009
  contributor:
    fullname: Law
– volume: 34
  start-page: 90
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.01.064_b0155
  article-title: Investigations on dynamics of interacting cavitation bubbles in strong acoustic fields
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2016.05.017
  contributor:
    fullname: Jiang
– year: 2005
  ident: 10.1016/j.applthermaleng.2019.01.064_b0160
  contributor:
    fullname: Hui
SSID ssj0012874
Score 2.3663955
Snippet •Water heating under simultaneous MW and US irradiation was modelled.•Simultaneous MW and US irradiation improves heat uniformity in water.•Hotspots are...
In this work, a new model that describes liquid heating under simultaneous Microwave (MW) and Ultrasound (US) irradiation was developed in COMSOL Multiphysics...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 1126
SubjectTerms Absorption
Acoustic cavitation
Acoustic streaming
Acoustics
Computer simulation
Design optimization
Heat transfer
Heating
Irradiation
Liquid heating
Modelling
Overheating
Simulation
Simultaneous microwave and ultrasound irradiation
Water
Title Modelling of liquid heating subject to simultaneous microwave and ultrasound irradiation
URI https://dx.doi.org/10.1016/j.applthermaleng.2019.01.064
https://www.proquest.com/docview/2206267129/abstract/
Volume 150
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB52VxA9iE98k4PXuk2TtpuTiCir4l5U2FtINwlU3K7uQ2_-dme6rS8QBI8NNC0z6TczzZdvAI4GVpLqiQiMVwYLFGECgwVcQNLrkXS4Ysr2bTe9pHsvr_pxvwFn9VkYolVW2D_H9BKtq5F2Zc32U563b7mIFYY_zJARhHEdNWEBw5GULVg4vbzu9j42E0jSvay7YhXQDYtw9Enzon1iSrWGhjqXENdLlTqeifwtUv3A7DIQXazCSpVBstP5S65BwxXrsPxFV3AD-tThrBTbZiPPHvPnWW4ZoS6NTGYZ_Xth0xGb5MQnNIXD8p8NiZr3al4cM4VlOD42E-q5xPLxmAQMyIObcH9xfnfWDaoWCsFAxJ1p4EmRLvQucgNuU5UlKc9ikWJVyk3mUiGMDzPEGZnYQcSdCZU1mDJK6S0dU-ViC1rFqHDbwIx10qpOaiOVSWGFCn2U2I6y3HslebYDcW0u_TRXytA1hexBfzezJjPrkGs08w6c1LbV3zyvEdT_OMN-7RJdfYETHUUh1moppjO7_37AHizRVUk9i_ehNR3P3AHmItPsEJrHb_ywWnHv-KLh0Q
link.rule.ids 315,786,790,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50BR8H8YmPVXPwWrZp0nZzElmU9bUXFfYW0k0CFe3qPvTvO9NtfYEgeJ3StEzSb2aaL98AHA-sJNUTERivDBYowgQGC7iApNcj6XDFlO3bbnpJ915e9uP-HHTqszBEq6ywf4bpJVpXllblzdZznrduuYgVhj_MkBGEcR3Nw4KMUy4bsHB6cdXtfWwmkKR7WXfFKqAbFuH4k-ZF-8SUaj0Z6lxCXC9V6ngm8rdI9QOzy0B0vgarVQbJTmcvuQ5zrtiAlS-6gpvQpw5npdg2G3r2mL9Mc8sIdckynmb074VNhmycE5_QFA7Lf_ZE1Lw38-qYKSxD-8iMqecSy0cjEjCgGdyC-_Ozu043qFooBAMRtyeBJ0W60LvIDbhNVZakPItFilUpN5lLhTA-zBBnZGIHEXcmVNZgyiilt3RMlYttaBTDwu0AM9ZJq9qpjVQmhRUq9FFi28py75Xk2S7Etbv080wpQ9cUsgf93c2a3KxDrtHNu3BS-1Z_m3mNoP7HEZr1lOjqCxzrKAqxVksxndn79wOOYKl7d3Otry96V_uwTFdKGlrchMZkNHUHmJdMssNq3b0Da5_jww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+of+liquid+heating+subject+to+simultaneous+microwave+and+ultrasound+irradiation&rft.jtitle=Applied+thermal+engineering&rft.au=Lee%2C+GL&rft.au=Law%2C+MC&rft.au=Lee%2C+VC-C&rft.date=2019-03-05&rft.pub=Elsevier+BV&rft.issn=1359-4311&rft.eissn=1873-5606&rft.volume=150&rft.spage=1126&rft_id=info:doi/10.1016%2Fj.applthermaleng.2019.01.064&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon