An efficient IoT based smart farming system using machine learning algorithms

This paper suggests an IoT based smart farming system along with an efficient prediction method called WPART based on machine learning techniques to predict crop productivity and drought for proficient decision support making in IoT based smart farming systems. The crop productivity and drought pred...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 80; no. 1; pp. 773 - 797
Main Authors Rezk, Nermeen Gamal, Hemdan, Ezz El-Din, Attia, Abdel-Fattah, El-Sayed, Ayman, El-Rashidy, Mohamed A.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper suggests an IoT based smart farming system along with an efficient prediction method called WPART based on machine learning techniques to predict crop productivity and drought for proficient decision support making in IoT based smart farming systems. The crop productivity and drought predictions is very important to the farmers and agriculture’s executives, which greatly help agriculture-affected countries around the world. Drought prediction plays a significant role in drought early warning to mitigate its impacts on crop productivity, drought prediction research aims to enhance our understanding of the physical mechanism of drought and improve predictability skill by taking full advantage of sources of predictability. In this work, an intelligent method based on the blend of a wrapper feature selection approach, and PART classification technique is proposed for crop productivity and drought predicting. Five datasets are used for estimating the proposed method. The results indicated that the projected method is robust, accurate, and precise to classify and predict crop productivity and drought in comparison with the existing techniques. From the results, the proposed method proved to be most accurate in providing drought prediction as well as the productivity of crops like Bajra, Soybean, Jowar, and Sugarcane. The WPART method attains the maximum accuracy compared to the existing supreme standard algorithms, it is obtained up to 92.51%, 96.77%, 98.04%, 96.12%, and 98.15% for the five datasets for drought classification, and crop productivity respectively. Likewise, the proposed method outperforms existing algorithms with precision, sensitivity, and F Score metrics.
AbstractList This paper suggests an IoT based smart farming system along with an efficient prediction method called WPART based on machine learning techniques to predict crop productivity and drought for proficient decision support making in IoT based smart farming systems. The crop productivity and drought predictions is very important to the farmers and agriculture’s executives, which greatly help agriculture-affected countries around the world. Drought prediction plays a significant role in drought early warning to mitigate its impacts on crop productivity, drought prediction research aims to enhance our understanding of the physical mechanism of drought and improve predictability skill by taking full advantage of sources of predictability. In this work, an intelligent method based on the blend of a wrapper feature selection approach, and PART classification technique is proposed for crop productivity and drought predicting. Five datasets are used for estimating the proposed method. The results indicated that the projected method is robust, accurate, and precise to classify and predict crop productivity and drought in comparison with the existing techniques. From the results, the proposed method proved to be most accurate in providing drought prediction as well as the productivity of crops like Bajra, Soybean, Jowar, and Sugarcane. The WPART method attains the maximum accuracy compared to the existing supreme standard algorithms, it is obtained up to 92.51%, 96.77%, 98.04%, 96.12%, and 98.15% for the five datasets for drought classification, and crop productivity respectively. Likewise, the proposed method outperforms existing algorithms with precision, sensitivity, and F Score metrics.
Author El-Sayed, Ayman
El-Rashidy, Mohamed A.
Attia, Abdel-Fattah
Rezk, Nermeen Gamal
Hemdan, Ezz El-Din
Author_xml – sequence: 1
  givenname: Nermeen Gamal
  surname: Rezk
  fullname: Rezk, Nermeen Gamal
  organization: Department of Computer Science and Engineering, Faculty of Engineering, Kafrelsheikh University
– sequence: 2
  givenname: Ezz El-Din
  surname: Hemdan
  fullname: Hemdan, Ezz El-Din
  email: ezzvip@yahoo.com
  organization: Department of Computer Science and Engineering, Faculty of Electronic Engineering, Menoufia University
– sequence: 3
  givenname: Abdel-Fattah
  surname: Attia
  fullname: Attia, Abdel-Fattah
  organization: Department of Computer Science and Engineering, Faculty of Engineering, Kafrelsheikh University
– sequence: 4
  givenname: Ayman
  surname: El-Sayed
  fullname: El-Sayed, Ayman
  organization: Department of Computer Science and Engineering, Faculty of Electronic Engineering, Menoufia University
– sequence: 5
  givenname: Mohamed A.
  surname: El-Rashidy
  fullname: El-Rashidy, Mohamed A.
  organization: Department of Computer Science and Engineering, Faculty of Electronic Engineering, Menoufia University
BookMark eNp9UMtOwzAQtFCRaAs_wMkSZ8PajuPkWFU8KhVxKWfLTdZtqsYpdnro3-MQJG5oD_vQzOzuzMjEdx4JuefwyAH0U-QcMsFAAINSZ8DyKzLlSkumteCTVMsCmFbAb8gsxgMAz5XIpuR94Sk611QN-p6uug3d2og1ja0NPXU2tI3f0XiJPbb0HIemtdW-8UiPaIMfBva460LT79t4S66dPUa8-81z8vnyvFm-sfXH62q5WLNKqqJn6JTErCo5wlYpl6XIdal1Ol0rWwByLK0taquV5iglqLouZFHUoEQtdCXn5GHUPYXu64yxN4fuHHxaaUSmc5l-zvOEEiOqCl2MAZ05hSb9dTEczGCbGW0zyTbzY5sZSHIkxQT2Owx_0v-wvgHT4XEn
CitedBy_id crossref_primary_10_1007_s12647_022_00617_7
crossref_primary_10_1007_s10586_021_03489_9
crossref_primary_10_12720_jait_15_3_389_396
crossref_primary_10_3390_horticulturae9111229
crossref_primary_10_3390_systems11060304
crossref_primary_10_1016_j_measen_2022_100459
crossref_primary_10_3390_s24041162
crossref_primary_10_3390_s23052427
crossref_primary_10_1155_2022_2648695
crossref_primary_10_1016_j_sna_2023_114605
crossref_primary_10_3390_s22249717
crossref_primary_10_1016_j_compag_2023_108522
crossref_primary_10_1109_JPROC_2021_3119950
crossref_primary_10_1142_S0218213023500252
crossref_primary_10_1007_s11042_023_16929_y
crossref_primary_10_1088_1742_6596_2466_1_012028
crossref_primary_10_1007_s11042_024_19656_0
crossref_primary_10_3390_app12041940
crossref_primary_10_1007_s11760_023_02735_4
crossref_primary_10_1016_j_dajour_2023_100238
crossref_primary_10_1016_j_eswa_2024_124318
crossref_primary_10_1016_j_jterra_2024_100986
crossref_primary_10_1155_2022_4435591
crossref_primary_10_1155_2022_7484088
crossref_primary_10_2174_2666255814666210715161630
crossref_primary_10_1007_s12652_021_03685_w
crossref_primary_10_1007_s41870_022_01021_9
crossref_primary_10_1155_2022_8434966
crossref_primary_10_54392_irjmt24311
crossref_primary_10_1007_s11042_023_14504_z
crossref_primary_10_1007_s11042_024_18230_y
crossref_primary_10_1007_s11277_022_09915_4
crossref_primary_10_3390_s23031358
crossref_primary_10_32604_csse_2023_036810
crossref_primary_10_1108_IJICC_12_2021_0300
crossref_primary_10_1007_s11042_023_15985_8
crossref_primary_10_3390_s23073752
crossref_primary_10_3390_su14159120
Cites_doi 10.1016/S0169-7161(82)02038-0
10.1016/j.future.2019.04.017
10.1007/s00500-018-3282-y
10.1109/TPWRD.2019.2907154
10.1109/ICCONS.2018.8663044
10.1093/ndt/gfg439
10.1007/s10916-019-1250-4
10.3390/s20082334
10.1109/SECON.2017.7925314
10.1016/j.compag.2019.05.028
10.1016/S0004-3702(97)00063-5
10.1016/j.iot.2020.100161
10.1159/000345552
10.1109/ACCESS.2020.2986090
10.3390/s18082674
10.5220/0006794000310041
10.3390/s19173667
10.1109/ICAC.2006.1662394
10.23956/ijarcsse/V7I5/0152
10.1016/j.biosystemseng.2015.10.003
10.4018/978-1-7998-0414-7.ch034
10.1109/CONFLUENCE.2018.8442535
10.1016/j.compag.2018.12.011
10.1007/978-3-319-70688-7_2
10.1007/978-3-319-53472-5_15
10.1109/CEC.2018.8477904
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-020-09740-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI商业信息数据库
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (ProQuest)
Computing Database
Proquest Research Library
Research Library (Corporate)
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
One Business (ProQuest)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Agriculture
EISSN 1573-7721
EndPage 797
ExternalDocumentID 10_1007_s11042_020_09740_6
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWWR
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ADGRI
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYWE
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
PQBZA
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-ef53e4c91e0b55f4f4f6797709775a80e1e9aa8da7571e3305dd8388d052d27c3
IEDL.DBID 8FG
ISSN 1380-7501
IngestDate Thu Oct 10 15:25:51 EDT 2024
Thu Sep 12 19:19:25 EDT 2024
Sat Dec 16 12:03:46 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Internet of things
Feature selection
And
Machine learning
Prediction
Smart farming
Drought
Crop productivity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-ef53e4c91e0b55f4f4f6797709775a80e1e9aa8da7571e3305dd8388d052d27c3
PQID 2476372166
PQPubID 54626
PageCount 25
ParticipantIDs proquest_journals_2476372166
crossref_primary_10_1007_s11042_020_09740_6
springer_journals_10_1007_s11042_020_09740_6
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References DinIUGuizaniMRodriguesJJHassanSKorotaevVVMachine learning in the internet of things: designed techniques for smart citiesFutur Gener Comput Syst201910082684310.1016/j.future.2019.04.017
AmatyaSKarkeeMGongalAZhangQWhitingMDDetection of cherry tree branches with full foliage in planar architecture for automated sweet-cherry harvestingBiosyst Eng201614631510.1016/j.biosystemseng.2015.10.003
BlumALLangleyPSelection of relevant features and examples in machine learningArtif Intell1997971–2245271160590810.1016/S0004-3702(97)00063-5
El-Din, HE and Manjaiah, DH (2017). Internet of things in cloud computing. In Internet of Things: Novel Advances and Envisioned Applications (pp. 299–311). Springer, Cham
Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. CRC press
Khalaf, M, Hussain, AJ, Al-Jumeily, D, Baker, T, Keight, R, Lisboa, P, ... and Al Kafri, AS (2018). A data science methodology based on machine learning algorithms for flood severity prediction. In 2018 IEEE Congress on Evolutionary Computation (CEC) (pp. 1–8). IEEE
BalakrishnanNMuthukumarasamyGCrop production-ensemble machine learning model for predictionInternational Journal of Computer Science and Software Engineering201657148
MafarjaMMMirjaliliSHybrid binary ant lion optimizer with rough set and approximate entropy reducts for feature selectionSoft Comput201923156249626510.1007/s00500-018-3282-y
Agana, NA and Homaifar, A (2017). A deep learning based approach for long-term drought prediction. In SoutheastCon 2017 (pp. 1-8). IEEE
MuangprathubJBoonnamNKajornkasiratSLekbangpongNWanichsombatANillaorPIoT and agriculture data analysis for smart farmComput Electron Agric201915646747410.1016/j.compag.2018.12.011
Varghese, R and Sharma, S (2018). Affordable smart farming using IoT and machine learning. In 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 645-650). IEEE
MahbubMA smart farming concept based on smart embedded electronics, internet of things and wireless sensor networkInternet of Things2020910016110.1016/j.iot.2020.100161
LiakosKGBusatoPMoshouDPearsonSBochtisDMachine learning in agriculture: a reviewSensors2018188267410.3390/s18082674
Ben-BassatMPattern recognition and reduction of dimensionalityHandbook of Statistics19822198277391071669810.1016/S0169-7161(82)02038-0
KishoreKVKKumarBYVenkatramaphanikumarSOptimized water scheduling using IoT sensor data in smart farming2020SingaporeSpringer
Chen, M, Narwal, N and Schultz, M (2019). Predicting price changes in Ethereum. International Journal on Computer Science and Engineering (IJCSE) ISSN, 0975-3397
Kinderis, M, Bezbradica, M and Crane, M (2018). Bitcoin currency fluctuation
IorkyaseETTachtatzisCGloverIALazaridisPUptonDSaeedBAtkinsonRCImproving RF-based partial discharge localization via machine learning ensemble methodIEEE Transactions on Power Delivery20193441478148910.1109/TPWRD.2019.2907154
AshokTVarmaPSCrop prediction based on environmental factors using machine learning ensemble algorithms2020SingaporeSpringer
BrownTSElsterEAStevensKGraybillJCGillernSPhinneySSalifuMOJindalRMBayesian modeling of pretransplant variables accurately predicts kidney graft survivalAm J Nephrol201236656156910.1159/000345552
AshifuddinMondal M, Rehena Z (2018, January) Iot based intelligent agriculture field monitoring system. In 2018 8th International Conference on Cloud Computing, Data Science & Engineering (Confluence) (pp. 625-629). IEEE
MoraisRSilvaNMendesJAdãoTPáduaLLópez-RiquelmeJAPavón-PulidoNSousaJJPeresEMysense: A comprehensive data management environment to improve precision agriculture practicesComput Electron Agric201916288289410.1016/j.compag.2019.05.028
Greaves, A and Au, B (2015). Using the bitcoin transaction graph to predict the price of bitcoin. No Data
Moore, J, Chase, JS and Ranganathan, P (2006). Weatherman: automated, online and predictive thermal mapping and management for data centers. In 2006 IEEE international conference on Autonomic Computing (pp. 155-164). IEEE
KhalafMAlaskarHHussainAJBakerTMaamarZBuyyaRIoT-enabled flood severity prediction via ensemble machine learning modelsIEEE Access20208703757038610.1109/ACCESS.2020.2986090
EssaYMHemdanEEDEl-MahalawyAAttiyaGEl-SayedAIFHDS: intelligent framework for securing healthcare BigDataJ Med Syst201943512410.1007/s10916-019-1250-4
VincentDRDeepaNElavarasanDSrinivasanKChauhdarySHIwendiCSensors driven AI-based agriculture recommendation model for assessing land suitabilitySensors20191917366710.3390/s19173667
Hemdan, EED and Manjaiah, DH (2020). Digital investigation of cybercrimes based on big data analytics using deep learning. In Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications (pp. 615-632). IGI global
PunnMBhallaNClassification of wheat grains using machine algorithmsInternational Journal of Science and Research (IJSR)201328363366
Hemdan, EED and Manjaiah, DH (2018). Cybercrimes investigation and intrusion detection in internet of things based on data science methods. In Cognitive Computing for Big Data Systems Over IoT (pp. 39–62). Springer, Cham
Zikria, YB, Afzal, MK and Kim, SW (2020). Internet of multimedia things (IoMT): opportunities, Challenges and Solutions
BanerjeeGSarkarUGhoshIA radial basis function network based classifier for detection of selected tea pestsInternational Journal of Advanced Research in Computer Science and Software Engineering20177566566910.23956/ijarcsse/V7I5/0152
BrierMERayPCKleinJBPrediction of delayed renal allograft function using an artificial neural networkNephrol Dial Transplant200318122655265910.1093/ndt/gfg439
R Morais (9740_CR28) 2019; 162
ME Brier (9740_CR10) 2003; 18
S Amatya (9740_CR2) 2016; 146
KG Liakos (9740_CR24) 2018; 18
AL Blum (9740_CR8) 1997; 97
ET Iorkyase (9740_CR19) 2019; 34
DR Vincent (9740_CR32) 2019; 19
9740_CR22
M Mahbub (9740_CR26) 2020; 9
9740_CR21
M Punn (9740_CR30) 2013; 2
IU Din (9740_CR13) 2019; 100
9740_CR3
9740_CR1
9740_CR27
TS Brown (9740_CR11) 2012; 36
T Ashok (9740_CR4) 2020
9740_CR9
YM Essa (9740_CR15) 2019; 43
N Balakrishnan (9740_CR5) 2016; 5
M Ben-Bassat (9740_CR7) 1982; 2
9740_CR33
9740_CR12
MM Mafarja (9740_CR25) 2019; 23
9740_CR14
9740_CR31
KVK Kishore (9740_CR23) 2020
G Banerjee (9740_CR6) 2017; 7
9740_CR16
J Muangprathub (9740_CR29) 2019; 156
9740_CR17
M Khalaf (9740_CR20) 2020; 8
9740_CR18
References_xml – volume: 2
  start-page: 773
  issue: 1982
  year: 1982
  ident: 9740_CR7
  publication-title: Handbook of Statistics
  doi: 10.1016/S0169-7161(82)02038-0
  contributor:
    fullname: M Ben-Bassat
– volume: 100
  start-page: 826
  year: 2019
  ident: 9740_CR13
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2019.04.017
  contributor:
    fullname: IU Din
– volume: 23
  start-page: 6249
  issue: 15
  year: 2019
  ident: 9740_CR25
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3282-y
  contributor:
    fullname: MM Mafarja
– ident: 9740_CR16
– volume: 34
  start-page: 1478
  issue: 4
  year: 2019
  ident: 9740_CR19
  publication-title: IEEE Transactions on Power Delivery
  doi: 10.1109/TPWRD.2019.2907154
  contributor:
    fullname: ET Iorkyase
– volume: 5
  start-page: 148
  issue: 7
  year: 2016
  ident: 9740_CR5
  publication-title: International Journal of Computer Science and Software Engineering
  contributor:
    fullname: N Balakrishnan
– ident: 9740_CR31
  doi: 10.1109/ICCONS.2018.8663044
– volume: 18
  start-page: 2655
  issue: 12
  year: 2003
  ident: 9740_CR10
  publication-title: Nephrol Dial Transplant
  doi: 10.1093/ndt/gfg439
  contributor:
    fullname: ME Brier
– volume: 2
  start-page: 363
  issue: 8
  year: 2013
  ident: 9740_CR30
  publication-title: International Journal of Science and Research (IJSR)
  contributor:
    fullname: M Punn
– volume: 43
  start-page: 124
  issue: 5
  year: 2019
  ident: 9740_CR15
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1250-4
  contributor:
    fullname: YM Essa
– ident: 9740_CR33
  doi: 10.3390/s20082334
– ident: 9740_CR1
  doi: 10.1109/SECON.2017.7925314
– volume: 162
  start-page: 882
  year: 2019
  ident: 9740_CR28
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2019.05.028
  contributor:
    fullname: R Morais
– volume: 97
  start-page: 245
  issue: 1–2
  year: 1997
  ident: 9740_CR8
  publication-title: Artif Intell
  doi: 10.1016/S0004-3702(97)00063-5
  contributor:
    fullname: AL Blum
– volume: 9
  start-page: 100161
  year: 2020
  ident: 9740_CR26
  publication-title: Internet of Things
  doi: 10.1016/j.iot.2020.100161
  contributor:
    fullname: M Mahbub
– volume: 36
  start-page: 561
  issue: 6
  year: 2012
  ident: 9740_CR11
  publication-title: Am J Nephrol
  doi: 10.1159/000345552
  contributor:
    fullname: TS Brown
– volume: 8
  start-page: 70375
  year: 2020
  ident: 9740_CR20
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2986090
  contributor:
    fullname: M Khalaf
– volume: 18
  start-page: 2674
  issue: 8
  year: 2018
  ident: 9740_CR24
  publication-title: Sensors
  doi: 10.3390/s18082674
  contributor:
    fullname: KG Liakos
– volume-title: Optimized water scheduling using IoT sensor data in smart farming
  year: 2020
  ident: 9740_CR23
  contributor:
    fullname: KVK Kishore
– ident: 9740_CR22
  doi: 10.5220/0006794000310041
– volume: 19
  start-page: 3667
  issue: 17
  year: 2019
  ident: 9740_CR32
  publication-title: Sensors
  doi: 10.3390/s19173667
  contributor:
    fullname: DR Vincent
– ident: 9740_CR27
  doi: 10.1109/ICAC.2006.1662394
– volume: 7
  start-page: 665
  issue: 5
  year: 2017
  ident: 9740_CR6
  publication-title: International Journal of Advanced Research in Computer Science and Software Engineering
  doi: 10.23956/ijarcsse/V7I5/0152
  contributor:
    fullname: G Banerjee
– volume: 146
  start-page: 3
  year: 2016
  ident: 9740_CR2
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2015.10.003
  contributor:
    fullname: S Amatya
– ident: 9740_CR18
  doi: 10.4018/978-1-7998-0414-7.ch034
– ident: 9740_CR3
  doi: 10.1109/CONFLUENCE.2018.8442535
– volume: 156
  start-page: 467
  year: 2019
  ident: 9740_CR29
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.12.011
  contributor:
    fullname: J Muangprathub
– ident: 9740_CR17
  doi: 10.1007/978-3-319-70688-7_2
– ident: 9740_CR9
– volume-title: Crop prediction based on environmental factors using machine learning ensemble algorithms
  year: 2020
  ident: 9740_CR4
  contributor:
    fullname: T Ashok
– ident: 9740_CR12
– ident: 9740_CR14
  doi: 10.1007/978-3-319-53472-5_15
– ident: 9740_CR21
  doi: 10.1109/CEC.2018.8477904
SSID ssj0016524
Score 2.4703662
Snippet This paper suggests an IoT based smart farming system along with an efficient prediction method called WPART based on machine learning techniques to predict...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 773
SubjectTerms Agriculture
Algorithms
Classification
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Datasets
Drought
Farming
Machine learning
Multimedia Information Systems
Productivity
Soybeans
Special Purpose and Application-Based Systems
Sugarcane
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDI1gXODAxwAxGCgHbhCpTZs0PU6IaSCN0ybtVqWJW5DYhrby_3GylgKCA-oxUaS-2rFd28-EXCttY2FTwwJhchaDTFkuhWU2lgXPrQ1BuX7n8ZMcTePHmZi1fdy-2L3JSPqLuu11C10niYt2AvSBMebZJjvC0aGhEE_54DN1IEU9yVYFDM1hWHfK_H7Gd2vUupg_sqLe2AwPyX7tJdLB5rMekS1YdMlBM4GB1grZJXtf6ASPyXiwoOApIdCS0IflhDobZel6jvJBC-3KXkq64W6mruC9pHNfSwm0Hh5RUv1aLlcv1fN8fUKmw_vJ3YjV4xKYiYSqGBQigtikIQS5EEWMj0zQvcNXTYRWAYSQaq2sTkQSQoSKbq2KlLKB4JYnJjolncVyAWeExsBxkzYpWAzPAqEFhiUcZGKUsUkU9shNA1v2tmHFyFr-YwdyhiBnHuRM9ki_QTarNWSd8RhvNscchMu3Ddrt8t-nnf9v-wXZ5a4Mxf816ZNOtXqHS_QjqvzKy80HZlq9tQ
  priority: 102
  providerName: Springer Nature
Title An efficient IoT based smart farming system using machine learning algorithms
URI https://link.springer.com/article/10.1007/s11042-020-09740-6
https://www.proquest.com/docview/2476372166
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RuLQHKNCK5SUfuIHVxIkfOVVptQsFgRBiJXqKHHs2HNhdYJf_33HWYaFSqxwixZalfH7MwzPfABwZ63PpC8cT6Wqeoyp4raTnPlcjUXufogn5zpdX6myYn9_Ju-hwm8Wwyu5MbA9qP3XBR_5N5LQTAtOM-v74xEPVqHC7GktofIC1VGgdjC8zOH29RVAyFrU1CSfJmMakmUXqXBoSU4LxlJBKTSbUe8G01Db_uiBt5c7gM6xHhZGVixnehBWcbMGnsnmOpBm4BRtdaQYWdyp1eMMzuA2X5YRhyxVBIob9mt6yILw8m41p4bCRDfEwDVuQOrMQCd-wcRtkiSxWlWiYfWgIjvn9ePYFhoP-7c8zHusocJdJM-c4khnmrkgxqaUc5fQoTXof_biW1iSYYmGt8VZLnWJGJ4D3JjPGJ1J4oV32FVYn0wnuAMtRUCfrCvRktyXSSrJXBCrtjPM6S3tw3IFYPS7oMqolMXKAvCLIqxbySvVgv8O5iltnVi0nugcnHfbL5n-Ptvv_0fbgowjxKK37ZB9W588veEAKxbw-bFfNIayVp78v-vT-0b-6vqGvQ1H-ARB9yg8
link.rule.ids 315,783,787,12777,21400,27936,27937,33385,33756,41093,41535,42162,42604,43612,43817,52123,52246,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwEB2xHIADO6KsPnADi2x2nBMqCFSWVggViVvk2NNwoC3Q8v-MU4cCEijHWJb8vMz-BuBIaZsImxkeCFPwBGXGCykst4nsRYW1ISpX79zuyNZjcvMknrzDbeTTKus3sXqo7dA4H_lplNBNcEwz8uz1jbuuUS666ltozMK8o6oi42v-_LJz__AVR5DCt7VVASfZGPqymUnxXOhKU5z5FJBSTUbUT9E01Td_hUgryXO1CsteZWTNyR6vwQwO1mGpWb572gxch5W6OQPzd5UGfGMa3IB2c8CwYosgIcOuh13mxJdloz4dHdbTLiOmZBNaZ-Zy4UvWr9Iskfm-EiXTLyUBMn7ujzbh8eqye9HivpMCN7FQY449EWNishCDQoheQp9MSfOjhadCqwBDzLRWVqciDTGmN8BaFStlAxHZKDXxFswNhgPcBpZgRIO0ydCS5RYILchiiVCmRhmbxmEDjmsQ89cJYUY-pUZ2kOcEeV5BnssG7NU45_7yjPLpVjfgpMZ--vvv2Xb-n-0QFlrd9l1-d9253YXFyGWnVM6UPZgbv3_gPqkX4-LAn6FPvxvKSQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB7RIKH2wKutCE8fuIHFPmyv94TCI-IZIQQSt5XXnt0eSEJJ-v873ngJVCra41qW_PkxM_Y33wDsa-OEdLnlkbQlF6hyXirpuBOqSkrnYtQ-3_l2oC4exdWTfAr8p0mgVbZnYnNQu7H1d-RHiaCd4JVm1FEVaBF3Z_3jl9_cV5DyL62hnMYXWMyESqMOLJ6cD-7u394UlAwlbnXEyU7GIYVmlkgX-zQVH0pF5GBTQPXRTM19z3-eSxsr1F-F5eA-st5svtdgAUfr8K1XvwYJDVyHlbZQAwv7lhq8Ux38Dre9EcNGOYIMDrscPzBvyhybDGkZscp4dkzNZhLPzPPiazZsKJfIQo2JmpnnmgCZ_hpOfsBj__zh9IKHqgrcplJPOVYyRWHzGKNSykrQpzLyAmngmTQ6whhzY7QzmcxiTOk8cE6nWrtIJi7JbPoTOqPxCDeACUyokbE5OoriImkkRS8Jqsxq67I07sJBC2LxMhPPKOYyyR7ygiAvGsgL1YXtFucibKRJMZ_2Lhy22M9__7-3zc9724MlWj7FzeXgegu-Jp6o0tyrbENn-voHd8jTmJa7YQn9BUWOznc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+IoT+based+smart+farming+system+using+machine+learning+algorithms&rft.jtitle=Multimedia+tools+and+applications&rft.au=Rezk%2C+Nermeen+Gamal&rft.au=Hemdan+Ezz+El-Din&rft.au=Abdel-Fattah%2C+Attia&rft.au=El-Sayed%2C+Ayman&rft.date=2021-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=1&rft.spage=773&rft.epage=797&rft_id=info:doi/10.1007%2Fs11042-020-09740-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon