An efficient IoT based smart farming system using machine learning algorithms
This paper suggests an IoT based smart farming system along with an efficient prediction method called WPART based on machine learning techniques to predict crop productivity and drought for proficient decision support making in IoT based smart farming systems. The crop productivity and drought pred...
Saved in:
Published in | Multimedia tools and applications Vol. 80; no. 1; pp. 773 - 797 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper suggests an IoT based smart farming system along with an efficient prediction method called WPART based on machine learning techniques to predict crop productivity and drought for proficient decision support making in IoT based smart farming systems. The crop productivity and drought predictions is very important to the farmers and agriculture’s executives, which greatly help agriculture-affected countries around the world. Drought prediction plays a significant role in drought early warning to mitigate its impacts on crop productivity, drought prediction research aims to enhance our understanding of the physical mechanism of drought and improve predictability skill by taking full advantage of sources of predictability. In this work, an intelligent method based on the blend of a wrapper feature selection approach, and PART classification technique is proposed for crop productivity and drought predicting. Five datasets are used for estimating the proposed method. The results indicated that the projected method is robust, accurate, and precise to classify and predict crop productivity and drought in comparison with the existing techniques. From the results, the proposed method proved to be most accurate in providing drought prediction as well as the productivity of crops like Bajra, Soybean, Jowar, and Sugarcane. The WPART method attains the maximum accuracy compared to the existing supreme standard algorithms, it is obtained up to 92.51%, 96.77%, 98.04%, 96.12%, and 98.15% for the five datasets for drought classification, and crop productivity respectively. Likewise, the proposed method outperforms existing algorithms with precision, sensitivity, and F Score metrics. |
---|---|
AbstractList | This paper suggests an IoT based smart farming system along with an efficient prediction method called WPART based on machine learning techniques to predict crop productivity and drought for proficient decision support making in IoT based smart farming systems. The crop productivity and drought predictions is very important to the farmers and agriculture’s executives, which greatly help agriculture-affected countries around the world. Drought prediction plays a significant role in drought early warning to mitigate its impacts on crop productivity, drought prediction research aims to enhance our understanding of the physical mechanism of drought and improve predictability skill by taking full advantage of sources of predictability. In this work, an intelligent method based on the blend of a wrapper feature selection approach, and PART classification technique is proposed for crop productivity and drought predicting. Five datasets are used for estimating the proposed method. The results indicated that the projected method is robust, accurate, and precise to classify and predict crop productivity and drought in comparison with the existing techniques. From the results, the proposed method proved to be most accurate in providing drought prediction as well as the productivity of crops like Bajra, Soybean, Jowar, and Sugarcane. The WPART method attains the maximum accuracy compared to the existing supreme standard algorithms, it is obtained up to 92.51%, 96.77%, 98.04%, 96.12%, and 98.15% for the five datasets for drought classification, and crop productivity respectively. Likewise, the proposed method outperforms existing algorithms with precision, sensitivity, and F Score metrics. |
Author | El-Sayed, Ayman El-Rashidy, Mohamed A. Attia, Abdel-Fattah Rezk, Nermeen Gamal Hemdan, Ezz El-Din |
Author_xml | – sequence: 1 givenname: Nermeen Gamal surname: Rezk fullname: Rezk, Nermeen Gamal organization: Department of Computer Science and Engineering, Faculty of Engineering, Kafrelsheikh University – sequence: 2 givenname: Ezz El-Din surname: Hemdan fullname: Hemdan, Ezz El-Din email: ezzvip@yahoo.com organization: Department of Computer Science and Engineering, Faculty of Electronic Engineering, Menoufia University – sequence: 3 givenname: Abdel-Fattah surname: Attia fullname: Attia, Abdel-Fattah organization: Department of Computer Science and Engineering, Faculty of Engineering, Kafrelsheikh University – sequence: 4 givenname: Ayman surname: El-Sayed fullname: El-Sayed, Ayman organization: Department of Computer Science and Engineering, Faculty of Electronic Engineering, Menoufia University – sequence: 5 givenname: Mohamed A. surname: El-Rashidy fullname: El-Rashidy, Mohamed A. organization: Department of Computer Science and Engineering, Faculty of Electronic Engineering, Menoufia University |
BookMark | eNp9UMtOwzAQtFCRaAs_wMkSZ8PajuPkWFU8KhVxKWfLTdZtqsYpdnro3-MQJG5oD_vQzOzuzMjEdx4JuefwyAH0U-QcMsFAAINSZ8DyKzLlSkumteCTVMsCmFbAb8gsxgMAz5XIpuR94Sk611QN-p6uug3d2og1ja0NPXU2tI3f0XiJPbb0HIemtdW-8UiPaIMfBva460LT79t4S66dPUa8-81z8vnyvFm-sfXH62q5WLNKqqJn6JTErCo5wlYpl6XIdal1Ol0rWwByLK0taquV5iglqLouZFHUoEQtdCXn5GHUPYXu64yxN4fuHHxaaUSmc5l-zvOEEiOqCl2MAZ05hSb9dTEczGCbGW0zyTbzY5sZSHIkxQT2Owx_0v-wvgHT4XEn |
CitedBy_id | crossref_primary_10_1007_s12647_022_00617_7 crossref_primary_10_1007_s10586_021_03489_9 crossref_primary_10_12720_jait_15_3_389_396 crossref_primary_10_3390_horticulturae9111229 crossref_primary_10_3390_systems11060304 crossref_primary_10_1016_j_measen_2022_100459 crossref_primary_10_3390_s24041162 crossref_primary_10_3390_s23052427 crossref_primary_10_1155_2022_2648695 crossref_primary_10_1016_j_sna_2023_114605 crossref_primary_10_3390_s22249717 crossref_primary_10_1016_j_compag_2023_108522 crossref_primary_10_1109_JPROC_2021_3119950 crossref_primary_10_1142_S0218213023500252 crossref_primary_10_1007_s11042_023_16929_y crossref_primary_10_1088_1742_6596_2466_1_012028 crossref_primary_10_1007_s11042_024_19656_0 crossref_primary_10_3390_app12041940 crossref_primary_10_1007_s11760_023_02735_4 crossref_primary_10_1016_j_dajour_2023_100238 crossref_primary_10_1016_j_eswa_2024_124318 crossref_primary_10_1016_j_jterra_2024_100986 crossref_primary_10_1155_2022_4435591 crossref_primary_10_1155_2022_7484088 crossref_primary_10_2174_2666255814666210715161630 crossref_primary_10_1007_s12652_021_03685_w crossref_primary_10_1007_s41870_022_01021_9 crossref_primary_10_1155_2022_8434966 crossref_primary_10_54392_irjmt24311 crossref_primary_10_1007_s11042_023_14504_z crossref_primary_10_1007_s11042_024_18230_y crossref_primary_10_1007_s11277_022_09915_4 crossref_primary_10_3390_s23031358 crossref_primary_10_32604_csse_2023_036810 crossref_primary_10_1108_IJICC_12_2021_0300 crossref_primary_10_1007_s11042_023_15985_8 crossref_primary_10_3390_s23073752 crossref_primary_10_3390_su14159120 |
Cites_doi | 10.1016/S0169-7161(82)02038-0 10.1016/j.future.2019.04.017 10.1007/s00500-018-3282-y 10.1109/TPWRD.2019.2907154 10.1109/ICCONS.2018.8663044 10.1093/ndt/gfg439 10.1007/s10916-019-1250-4 10.3390/s20082334 10.1109/SECON.2017.7925314 10.1016/j.compag.2019.05.028 10.1016/S0004-3702(97)00063-5 10.1016/j.iot.2020.100161 10.1159/000345552 10.1109/ACCESS.2020.2986090 10.3390/s18082674 10.5220/0006794000310041 10.3390/s19173667 10.1109/ICAC.2006.1662394 10.23956/ijarcsse/V7I5/0152 10.1016/j.biosystemseng.2015.10.003 10.4018/978-1-7998-0414-7.ch034 10.1109/CONFLUENCE.2018.8442535 10.1016/j.compag.2018.12.011 10.1007/978-3-319-70688-7_2 10.1007/978-3-319-53472-5_15 10.1109/CEC.2018.8477904 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s11042-020-09740-6 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI商业信息数据库 ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (ProQuest) Computing Database Proquest Research Library Research Library (Corporate) ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection One Business (ProQuest) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Agriculture |
EISSN | 1573-7721 |
EndPage | 797 |
ExternalDocumentID | 10_1007_s11042_020_09740_6 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAOBN AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAWWR AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ADGRI ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYWE AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 PQBZA 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c358t-ef53e4c91e0b55f4f4f6797709775a80e1e9aa8da7571e3305dd8388d052d27c3 |
IEDL.DBID | 8FG |
ISSN | 1380-7501 |
IngestDate | Thu Oct 10 15:25:51 EDT 2024 Thu Sep 12 19:19:25 EDT 2024 Sat Dec 16 12:03:46 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Internet of things Feature selection And Machine learning Prediction Smart farming Drought Crop productivity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-ef53e4c91e0b55f4f4f6797709775a80e1e9aa8da7571e3305dd8388d052d27c3 |
PQID | 2476372166 |
PQPubID | 54626 |
PageCount | 25 |
ParticipantIDs | proquest_journals_2476372166 crossref_primary_10_1007_s11042_020_09740_6 springer_journals_10_1007_s11042_020_09740_6 |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | DinIUGuizaniMRodriguesJJHassanSKorotaevVVMachine learning in the internet of things: designed techniques for smart citiesFutur Gener Comput Syst201910082684310.1016/j.future.2019.04.017 AmatyaSKarkeeMGongalAZhangQWhitingMDDetection of cherry tree branches with full foliage in planar architecture for automated sweet-cherry harvestingBiosyst Eng201614631510.1016/j.biosystemseng.2015.10.003 BlumALLangleyPSelection of relevant features and examples in machine learningArtif Intell1997971–2245271160590810.1016/S0004-3702(97)00063-5 El-Din, HE and Manjaiah, DH (2017). Internet of things in cloud computing. In Internet of Things: Novel Advances and Envisioned Applications (pp. 299–311). Springer, Cham Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. CRC press Khalaf, M, Hussain, AJ, Al-Jumeily, D, Baker, T, Keight, R, Lisboa, P, ... and Al Kafri, AS (2018). A data science methodology based on machine learning algorithms for flood severity prediction. In 2018 IEEE Congress on Evolutionary Computation (CEC) (pp. 1–8). IEEE BalakrishnanNMuthukumarasamyGCrop production-ensemble machine learning model for predictionInternational Journal of Computer Science and Software Engineering201657148 MafarjaMMMirjaliliSHybrid binary ant lion optimizer with rough set and approximate entropy reducts for feature selectionSoft Comput201923156249626510.1007/s00500-018-3282-y Agana, NA and Homaifar, A (2017). A deep learning based approach for long-term drought prediction. In SoutheastCon 2017 (pp. 1-8). IEEE MuangprathubJBoonnamNKajornkasiratSLekbangpongNWanichsombatANillaorPIoT and agriculture data analysis for smart farmComput Electron Agric201915646747410.1016/j.compag.2018.12.011 Varghese, R and Sharma, S (2018). Affordable smart farming using IoT and machine learning. In 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 645-650). IEEE MahbubMA smart farming concept based on smart embedded electronics, internet of things and wireless sensor networkInternet of Things2020910016110.1016/j.iot.2020.100161 LiakosKGBusatoPMoshouDPearsonSBochtisDMachine learning in agriculture: a reviewSensors2018188267410.3390/s18082674 Ben-BassatMPattern recognition and reduction of dimensionalityHandbook of Statistics19822198277391071669810.1016/S0169-7161(82)02038-0 KishoreKVKKumarBYVenkatramaphanikumarSOptimized water scheduling using IoT sensor data in smart farming2020SingaporeSpringer Chen, M, Narwal, N and Schultz, M (2019). Predicting price changes in Ethereum. International Journal on Computer Science and Engineering (IJCSE) ISSN, 0975-3397 Kinderis, M, Bezbradica, M and Crane, M (2018). Bitcoin currency fluctuation IorkyaseETTachtatzisCGloverIALazaridisPUptonDSaeedBAtkinsonRCImproving RF-based partial discharge localization via machine learning ensemble methodIEEE Transactions on Power Delivery20193441478148910.1109/TPWRD.2019.2907154 AshokTVarmaPSCrop prediction based on environmental factors using machine learning ensemble algorithms2020SingaporeSpringer BrownTSElsterEAStevensKGraybillJCGillernSPhinneySSalifuMOJindalRMBayesian modeling of pretransplant variables accurately predicts kidney graft survivalAm J Nephrol201236656156910.1159/000345552 AshifuddinMondal M, Rehena Z (2018, January) Iot based intelligent agriculture field monitoring system. In 2018 8th International Conference on Cloud Computing, Data Science & Engineering (Confluence) (pp. 625-629). IEEE MoraisRSilvaNMendesJAdãoTPáduaLLópez-RiquelmeJAPavón-PulidoNSousaJJPeresEMysense: A comprehensive data management environment to improve precision agriculture practicesComput Electron Agric201916288289410.1016/j.compag.2019.05.028 Greaves, A and Au, B (2015). Using the bitcoin transaction graph to predict the price of bitcoin. No Data Moore, J, Chase, JS and Ranganathan, P (2006). Weatherman: automated, online and predictive thermal mapping and management for data centers. In 2006 IEEE international conference on Autonomic Computing (pp. 155-164). IEEE KhalafMAlaskarHHussainAJBakerTMaamarZBuyyaRIoT-enabled flood severity prediction via ensemble machine learning modelsIEEE Access20208703757038610.1109/ACCESS.2020.2986090 EssaYMHemdanEEDEl-MahalawyAAttiyaGEl-SayedAIFHDS: intelligent framework for securing healthcare BigDataJ Med Syst201943512410.1007/s10916-019-1250-4 VincentDRDeepaNElavarasanDSrinivasanKChauhdarySHIwendiCSensors driven AI-based agriculture recommendation model for assessing land suitabilitySensors20191917366710.3390/s19173667 Hemdan, EED and Manjaiah, DH (2020). Digital investigation of cybercrimes based on big data analytics using deep learning. In Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications (pp. 615-632). IGI global PunnMBhallaNClassification of wheat grains using machine algorithmsInternational Journal of Science and Research (IJSR)201328363366 Hemdan, EED and Manjaiah, DH (2018). Cybercrimes investigation and intrusion detection in internet of things based on data science methods. In Cognitive Computing for Big Data Systems Over IoT (pp. 39–62). Springer, Cham Zikria, YB, Afzal, MK and Kim, SW (2020). Internet of multimedia things (IoMT): opportunities, Challenges and Solutions BanerjeeGSarkarUGhoshIA radial basis function network based classifier for detection of selected tea pestsInternational Journal of Advanced Research in Computer Science and Software Engineering20177566566910.23956/ijarcsse/V7I5/0152 BrierMERayPCKleinJBPrediction of delayed renal allograft function using an artificial neural networkNephrol Dial Transplant200318122655265910.1093/ndt/gfg439 R Morais (9740_CR28) 2019; 162 ME Brier (9740_CR10) 2003; 18 S Amatya (9740_CR2) 2016; 146 KG Liakos (9740_CR24) 2018; 18 AL Blum (9740_CR8) 1997; 97 ET Iorkyase (9740_CR19) 2019; 34 DR Vincent (9740_CR32) 2019; 19 9740_CR22 M Mahbub (9740_CR26) 2020; 9 9740_CR21 M Punn (9740_CR30) 2013; 2 IU Din (9740_CR13) 2019; 100 9740_CR3 9740_CR1 9740_CR27 TS Brown (9740_CR11) 2012; 36 T Ashok (9740_CR4) 2020 9740_CR9 YM Essa (9740_CR15) 2019; 43 N Balakrishnan (9740_CR5) 2016; 5 M Ben-Bassat (9740_CR7) 1982; 2 9740_CR33 9740_CR12 MM Mafarja (9740_CR25) 2019; 23 9740_CR14 9740_CR31 KVK Kishore (9740_CR23) 2020 G Banerjee (9740_CR6) 2017; 7 9740_CR16 J Muangprathub (9740_CR29) 2019; 156 9740_CR17 M Khalaf (9740_CR20) 2020; 8 9740_CR18 |
References_xml | – volume: 2 start-page: 773 issue: 1982 year: 1982 ident: 9740_CR7 publication-title: Handbook of Statistics doi: 10.1016/S0169-7161(82)02038-0 contributor: fullname: M Ben-Bassat – volume: 100 start-page: 826 year: 2019 ident: 9740_CR13 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2019.04.017 contributor: fullname: IU Din – volume: 23 start-page: 6249 issue: 15 year: 2019 ident: 9740_CR25 publication-title: Soft Comput doi: 10.1007/s00500-018-3282-y contributor: fullname: MM Mafarja – ident: 9740_CR16 – volume: 34 start-page: 1478 issue: 4 year: 2019 ident: 9740_CR19 publication-title: IEEE Transactions on Power Delivery doi: 10.1109/TPWRD.2019.2907154 contributor: fullname: ET Iorkyase – volume: 5 start-page: 148 issue: 7 year: 2016 ident: 9740_CR5 publication-title: International Journal of Computer Science and Software Engineering contributor: fullname: N Balakrishnan – ident: 9740_CR31 doi: 10.1109/ICCONS.2018.8663044 – volume: 18 start-page: 2655 issue: 12 year: 2003 ident: 9740_CR10 publication-title: Nephrol Dial Transplant doi: 10.1093/ndt/gfg439 contributor: fullname: ME Brier – volume: 2 start-page: 363 issue: 8 year: 2013 ident: 9740_CR30 publication-title: International Journal of Science and Research (IJSR) contributor: fullname: M Punn – volume: 43 start-page: 124 issue: 5 year: 2019 ident: 9740_CR15 publication-title: J Med Syst doi: 10.1007/s10916-019-1250-4 contributor: fullname: YM Essa – ident: 9740_CR33 doi: 10.3390/s20082334 – ident: 9740_CR1 doi: 10.1109/SECON.2017.7925314 – volume: 162 start-page: 882 year: 2019 ident: 9740_CR28 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2019.05.028 contributor: fullname: R Morais – volume: 97 start-page: 245 issue: 1–2 year: 1997 ident: 9740_CR8 publication-title: Artif Intell doi: 10.1016/S0004-3702(97)00063-5 contributor: fullname: AL Blum – volume: 9 start-page: 100161 year: 2020 ident: 9740_CR26 publication-title: Internet of Things doi: 10.1016/j.iot.2020.100161 contributor: fullname: M Mahbub – volume: 36 start-page: 561 issue: 6 year: 2012 ident: 9740_CR11 publication-title: Am J Nephrol doi: 10.1159/000345552 contributor: fullname: TS Brown – volume: 8 start-page: 70375 year: 2020 ident: 9740_CR20 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2986090 contributor: fullname: M Khalaf – volume: 18 start-page: 2674 issue: 8 year: 2018 ident: 9740_CR24 publication-title: Sensors doi: 10.3390/s18082674 contributor: fullname: KG Liakos – volume-title: Optimized water scheduling using IoT sensor data in smart farming year: 2020 ident: 9740_CR23 contributor: fullname: KVK Kishore – ident: 9740_CR22 doi: 10.5220/0006794000310041 – volume: 19 start-page: 3667 issue: 17 year: 2019 ident: 9740_CR32 publication-title: Sensors doi: 10.3390/s19173667 contributor: fullname: DR Vincent – ident: 9740_CR27 doi: 10.1109/ICAC.2006.1662394 – volume: 7 start-page: 665 issue: 5 year: 2017 ident: 9740_CR6 publication-title: International Journal of Advanced Research in Computer Science and Software Engineering doi: 10.23956/ijarcsse/V7I5/0152 contributor: fullname: G Banerjee – volume: 146 start-page: 3 year: 2016 ident: 9740_CR2 publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2015.10.003 contributor: fullname: S Amatya – ident: 9740_CR18 doi: 10.4018/978-1-7998-0414-7.ch034 – ident: 9740_CR3 doi: 10.1109/CONFLUENCE.2018.8442535 – volume: 156 start-page: 467 year: 2019 ident: 9740_CR29 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.12.011 contributor: fullname: J Muangprathub – ident: 9740_CR17 doi: 10.1007/978-3-319-70688-7_2 – ident: 9740_CR9 – volume-title: Crop prediction based on environmental factors using machine learning ensemble algorithms year: 2020 ident: 9740_CR4 contributor: fullname: T Ashok – ident: 9740_CR12 – ident: 9740_CR14 doi: 10.1007/978-3-319-53472-5_15 – ident: 9740_CR21 doi: 10.1109/CEC.2018.8477904 |
SSID | ssj0016524 |
Score | 2.4703662 |
Snippet | This paper suggests an IoT based smart farming system along with an efficient prediction method called WPART based on machine learning techniques to predict... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 773 |
SubjectTerms | Agriculture Algorithms Classification Computer Communication Networks Computer Science Data Structures and Information Theory Datasets Drought Farming Machine learning Multimedia Information Systems Productivity Soybeans Special Purpose and Application-Based Systems Sugarcane |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDI1gXODAxwAxGCgHbhCpTZs0PU6IaSCN0ybtVqWJW5DYhrby_3GylgKCA-oxUaS-2rFd28-EXCttY2FTwwJhchaDTFkuhWU2lgXPrQ1BuX7n8ZMcTePHmZi1fdy-2L3JSPqLuu11C10niYt2AvSBMebZJjvC0aGhEE_54DN1IEU9yVYFDM1hWHfK_H7Gd2vUupg_sqLe2AwPyX7tJdLB5rMekS1YdMlBM4GB1grZJXtf6ASPyXiwoOApIdCS0IflhDobZel6jvJBC-3KXkq64W6mruC9pHNfSwm0Hh5RUv1aLlcv1fN8fUKmw_vJ3YjV4xKYiYSqGBQigtikIQS5EEWMj0zQvcNXTYRWAYSQaq2sTkQSQoSKbq2KlLKB4JYnJjolncVyAWeExsBxkzYpWAzPAqEFhiUcZGKUsUkU9shNA1v2tmHFyFr-YwdyhiBnHuRM9ki_QTarNWSd8RhvNscchMu3Ddrt8t-nnf9v-wXZ5a4Mxf816ZNOtXqHS_QjqvzKy80HZlq9tQ priority: 102 providerName: Springer Nature |
Title | An efficient IoT based smart farming system using machine learning algorithms |
URI | https://link.springer.com/article/10.1007/s11042-020-09740-6 https://www.proquest.com/docview/2476372166 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RuLQHKNCK5SUfuIHVxIkfOVVptQsFgRBiJXqKHHs2HNhdYJf_33HWYaFSqxwixZalfH7MwzPfABwZ63PpC8cT6Wqeoyp4raTnPlcjUXufogn5zpdX6myYn9_Ju-hwm8Wwyu5MbA9qP3XBR_5N5LQTAtOM-v74xEPVqHC7GktofIC1VGgdjC8zOH29RVAyFrU1CSfJmMakmUXqXBoSU4LxlJBKTSbUe8G01Db_uiBt5c7gM6xHhZGVixnehBWcbMGnsnmOpBm4BRtdaQYWdyp1eMMzuA2X5YRhyxVBIob9mt6yILw8m41p4bCRDfEwDVuQOrMQCd-wcRtkiSxWlWiYfWgIjvn9ePYFhoP-7c8zHusocJdJM-c4khnmrkgxqaUc5fQoTXof_biW1iSYYmGt8VZLnWJGJ4D3JjPGJ1J4oV32FVYn0wnuAMtRUCfrCvRktyXSSrJXBCrtjPM6S3tw3IFYPS7oMqolMXKAvCLIqxbySvVgv8O5iltnVi0nugcnHfbL5n-Ptvv_0fbgowjxKK37ZB9W588veEAKxbw-bFfNIayVp78v-vT-0b-6vqGvQ1H-ARB9yg8 |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33756,41093,41535,42162,42604,43612,43817,52123,52246,74363,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwEB2xHIADO6KsPnADi2x2nBMqCFSWVggViVvk2NNwoC3Q8v-MU4cCEijHWJb8vMz-BuBIaZsImxkeCFPwBGXGCykst4nsRYW1ISpX79zuyNZjcvMknrzDbeTTKus3sXqo7dA4H_lplNBNcEwz8uz1jbuuUS666ltozMK8o6oi42v-_LJz__AVR5DCt7VVASfZGPqymUnxXOhKU5z5FJBSTUbUT9E01Td_hUgryXO1CsteZWTNyR6vwQwO1mGpWb572gxch5W6OQPzd5UGfGMa3IB2c8CwYosgIcOuh13mxJdloz4dHdbTLiOmZBNaZ-Zy4UvWr9Iskfm-EiXTLyUBMn7ujzbh8eqye9HivpMCN7FQY449EWNishCDQoheQp9MSfOjhadCqwBDzLRWVqciDTGmN8BaFStlAxHZKDXxFswNhgPcBpZgRIO0ydCS5RYILchiiVCmRhmbxmEDjmsQ89cJYUY-pUZ2kOcEeV5BnssG7NU45_7yjPLpVjfgpMZ--vvv2Xb-n-0QFlrd9l1-d9253YXFyGWnVM6UPZgbv3_gPqkX4-LAn6FPvxvKSQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB7RIKH2wKutCE8fuIHFPmyv94TCI-IZIQQSt5XXnt0eSEJJ-v873ngJVCra41qW_PkxM_Y33wDsa-OEdLnlkbQlF6hyXirpuBOqSkrnYtQ-3_l2oC4exdWTfAr8p0mgVbZnYnNQu7H1d-RHiaCd4JVm1FEVaBF3Z_3jl9_cV5DyL62hnMYXWMyESqMOLJ6cD-7u394UlAwlbnXEyU7GIYVmlkgX-zQVH0pF5GBTQPXRTM19z3-eSxsr1F-F5eA-st5svtdgAUfr8K1XvwYJDVyHlbZQAwv7lhq8Ux38Dre9EcNGOYIMDrscPzBvyhybDGkZscp4dkzNZhLPzPPiazZsKJfIQo2JmpnnmgCZ_hpOfsBj__zh9IKHqgrcplJPOVYyRWHzGKNSykrQpzLyAmngmTQ6whhzY7QzmcxiTOk8cE6nWrtIJi7JbPoTOqPxCDeACUyokbE5OoriImkkRS8Jqsxq67I07sJBC2LxMhPPKOYyyR7ygiAvGsgL1YXtFucibKRJMZ_2Lhy22M9__7-3zc9724MlWj7FzeXgegu-Jp6o0tyrbENn-voHd8jTmJa7YQn9BUWOznc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+IoT+based+smart+farming+system+using+machine+learning+algorithms&rft.jtitle=Multimedia+tools+and+applications&rft.au=Rezk%2C+Nermeen+Gamal&rft.au=Hemdan+Ezz+El-Din&rft.au=Abdel-Fattah%2C+Attia&rft.au=El-Sayed%2C+Ayman&rft.date=2021-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=1&rft.spage=773&rft.epage=797&rft_id=info:doi/10.1007%2Fs11042-020-09740-6&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |