A lumped-element magnetic refrigerator model

This work presents a dynamic lumped parameter model to predict the transient and steady-state cabinet temperature, energy consumption and efficiency parameters of a small capacity magnetic refrigerator equipped with a retrofitted thermally insulated wine cooler cabinet. The model is divided into ind...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 204; p. 117918
Main Authors Nakashima, A.T.D., Peixer, G.F., Lozano, J.A., Barbosa, J.R.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 05.03.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN1359-4311
1873-5606
DOI10.1016/j.applthermaleng.2021.117918

Cover

Loading…
Abstract This work presents a dynamic lumped parameter model to predict the transient and steady-state cabinet temperature, energy consumption and efficiency parameters of a small capacity magnetic refrigerator equipped with a retrofitted thermally insulated wine cooler cabinet. The model is divided into independent, experimentally validated sub-models for the active magnetic regenerator (AMR), magnetic and hydraulic circuits, heat exchanger/fan assemblies and refrigerated cabinet. Primary inputs to the model are the geometric features and component dimensions, frequency and speed of power sources (hydraulic pump, axial fans and induction motor), and composition and properties of magnetic materials. Special emphasis is put on the lumped AMR model, which accurately predicts the performance of first- and second-order materials in single- and multi-layer configurations in terms of the cooling capacity, heat rejection rate and magnetic work. The model predicts the experimental steady-state cabinet temperature of a compact magnetic wine cooler prototype to within 1.5 oC, while estimating the coefficient of performance with a mean error of 6.5%. The time response of the magnetic wine cooler during a temperature pull-down test is also correctly reproduced by the model, enabling its use in the design of future magnetic heat pumping systems. •Lumped model predicts energy consumption and efficiency of magnetic refrigerator.•All sub models are validated against extensive independent databases.•Steady-state temperature of a compact wine cooler is predicted to within 1.5 °C.•Temperature pulldown tests of magnetic wine cooler are accurately reproduced.•The model is computationally inexpensive making it ideal for optimization schemes.
AbstractList This work presents a dynamic lumped parameter model to predict the transient and steady-state cabinet temperature, energy consumption and efficiency parameters of a small capacity magnetic refrigerator equipped with a retrofitted thermally insulated wine cooler cabinet. The model is divided into independent, experimentally validated sub-models for the active magnetic regenerator (AMR), magnetic and hydraulic circuits, heat exchanger/fan assemblies and refrigerated cabinet. Primary inputs to the model are the geometric features and component dimensions, frequency and speed of power sources (hydraulic pump, axial fans and induction motor), and composition and properties of magnetic materials. Special emphasis is put on the lumped AMR model, which accurately predicts the performance of first- and second-order materials in single- and multi-layer configurations in terms of the cooling capacity, heat rejection rate and magnetic work. The model predicts the experimental steady-state cabinet temperature of a compact magnetic wine cooler prototype to within 1.5 oC, while estimating the coefficient of performance with a mean error of 6.5%. The time response of the magnetic wine cooler during a temperature pull-down test is also correctly reproduced by the model, enabling its use in the design of future magnetic heat pumping systems. •Lumped model predicts energy consumption and efficiency of magnetic refrigerator.•All sub models are validated against extensive independent databases.•Steady-state temperature of a compact wine cooler is predicted to within 1.5 °C.•Temperature pulldown tests of magnetic wine cooler are accurately reproduced.•The model is computationally inexpensive making it ideal for optimization schemes.
This work presents a dynamic lumped parameter model to predict the transient and steady-state cabinet temperature, energy consumption and efficiency parameters of a small capacity magnetic refrigerator equipped with a retrofitted thermally insulated wine cooler cabinet. The model is divided into independent, experimentally validated sub-models for the active magnetic regenerator (AMR), magnetic and hydraulic circuits, heat exchanger/fan assemblies and refrigerated cabinet. Primary inputs to the model are the geometric features and component dimensions, frequency and speed of power sources (hydraulic pump, axial fans and induction motor), and composition and properties of magnetic materials. Special emphasis is put on the lumped AMR model, which accurately predicts the performance of first- and second-order materials in single- and multi-layer configurations in terms of the cooling capacity, heat rejection rate and magnetic work. The model predicts the experimental steady-state cabinet temperature of a compact magnetic wine cooler prototype to within 1.5 ºC, while estimating the coefficient of performance with a mean error of 6.5%. The time response of the magnetic wine cooler during a temperature pull-down test is also correctly reproduced by the model, enabling its use in the design of future magnetic heat pumping systems.
ArticleNumber 117918
Author Peixer, G.F.
Lozano, J.A.
Barbosa, J.R.
Nakashima, A.T.D.
Author_xml – sequence: 1
  givenname: A.T.D.
  surname: Nakashima
  fullname: Nakashima, A.T.D.
– sequence: 2
  givenname: G.F.
  orcidid: 0000-0002-5238-4910
  surname: Peixer
  fullname: Peixer, G.F.
– sequence: 3
  givenname: J.A.
  orcidid: 0000-0003-2682-9952
  surname: Lozano
  fullname: Lozano, J.A.
– sequence: 4
  givenname: J.R.
  orcidid: 0000-0002-8753-6670
  surname: Barbosa
  fullname: Barbosa, J.R.
  email: jrb@polo.ufsc.br
BookMark eNqNkLFOwzAQhi1UJNrCO0SCkQQ7jh1HYikVBaRKLN0txz4XV0kcHBeJtydVWGDqdDf8_3enb4Fmne8AoTuCM4IJfzhkqu-b-AGhVQ10-yzHOckIKSsiLtCciJKmjGM-G3fKqrSghFyhxTAcMCa5KIs5ul8lzbHtwaTQQAtdTFq17yA6nQSwwe0hqOhD0noDzTW6tKoZ4OZ3LtFu87xbv6bb95e39WqbaspETI0VQHKLFWU2t5zXtK5xpQgXuBKGUWaYrTRhhcG0rCxoKCgrDeamBmUVXaLbCdsH_3mEIcqDP4ZuvChzTquSCMbomHqcUjr4YRiflX1wrQrfkmB50iMP8q8eedIjJz1j_elfXbuoovNdDMo150I2EwRGG18Oghy0g06DcQF0lMa780A_GwOPSg
CitedBy_id crossref_primary_10_1016_j_ijrefrig_2023_06_025
crossref_primary_10_1016_j_ijrefrig_2024_01_022
crossref_primary_10_1016_j_applthermaleng_2023_120368
crossref_primary_10_1016_j_ijrefrig_2023_07_019
crossref_primary_10_1016_j_ijrefrig_2023_03_014
crossref_primary_10_1177_1063293X231209680
crossref_primary_10_1016_j_ijrefrig_2023_09_015
crossref_primary_10_1016_j_applthermaleng_2022_119056
crossref_primary_10_1016_j_applthermaleng_2022_119463
crossref_primary_10_1016_j_enconman_2022_115766
crossref_primary_10_1002_sys_21786
crossref_primary_10_1016_j_applthermaleng_2024_123060
crossref_primary_10_1016_j_ijrefrig_2024_08_011
Cites_doi 10.1016/j.cryogenics.2014.03.013
10.1016/j.jmmm.2015.12.077
10.1016/0009-2509(77)80143-7
10.1016/j.ijrefrig.2016.09.003
10.1016/j.ijrefrig.2012.10.024
10.1016/j.cryogenics.2011.09.005
10.1021/ie4033999
10.1016/j.ijrefrig.2016.07.009
10.1016/j.ijrefrig.2020.09.019
10.1016/j.jmmm.2016.01.076
10.1016/j.ijheatmasstransfer.2005.06.021
10.1016/j.jclepro.2021.126507
10.1002/er.7023
10.1016/j.ijrefrig.2009.12.012
10.1002/aic.690060407
10.1002/aic.690180225
10.1016/j.jmmm.2015.07.023
10.1016/j.applthermaleng.2018.06.007
10.1016/j.applthermaleng.2017.09.082
10.1016/0017-9310(75)90243-4
10.1016/j.applthermaleng.2012.06.024
10.1016/j.applthermaleng.2020.116335
10.1016/S0017-9310(99)00333-6
10.1142/S2010132520500273
10.1016/j.ijrefrig.2016.07.010
10.1016/j.icheatmasstransfer.2010.07.014
10.1016/j.ijrefrig.2011.08.009
10.1016/j.jmmm.2017.07.072
10.1063/5.0003531
10.1063/1.5026862
10.1016/j.ijrefrig.2020.11.015
10.1016/j.renene.2018.12.102
10.1016/0017-9310(86)90186-9
10.1016/j.rser.2021.110933
10.1016/j.ijrefrig.2009.03.003
10.1016/j.applthermaleng.2020.115993
10.1016/j.applthermaleng.2016.06.039
10.1063/1.367113
10.1016/j.jmmm.2009.08.044
10.1016/j.applthermaleng.2015.07.020
10.1016/j.ijrefrig.2017.08.013
10.1016/S0140-7007(01)00060-3
10.1063/1.343481
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Mar 5, 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 5, 2022
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.applthermaleng.2021.117918
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5606
ExternalDocumentID 10_1016_j_applthermaleng_2021_117918
S1359431121013405
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
HZ~
R2-
RIG
SEW
SSH
7TB
8FD
EFKBS
FR3
KR7
ID FETCH-LOGICAL-c358t-df8e12f0a35f2f66b3bb09a168098d535d5f9c154d0379fece4357d06dbeafa3
IEDL.DBID .~1
ISSN 1359-4311
IngestDate Mon Jul 14 07:35:01 EDT 2025
Tue Jul 01 02:05:31 EDT 2025
Thu Apr 24 23:11:24 EDT 2025
Fri Feb 23 02:40:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Magnetic refrigeration
Active magnetic regenerator
Lumped analysis
Thermal modelling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-df8e12f0a35f2f66b3bb09a168098d535d5f9c154d0379fece4357d06dbeafa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2682-9952
0000-0002-8753-6670
0000-0002-5238-4910
PQID 2639718553
PQPubID 2045278
ParticipantIDs proquest_journals_2639718553
crossref_primary_10_1016_j_applthermaleng_2021_117918
crossref_citationtrail_10_1016_j_applthermaleng_2021_117918
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2021_117918
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-05
PublicationDateYYYYMMDD 2022-03-05
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-05
  day: 05
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Applied thermal engineering
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Trevizoli, Nakashima, Peixer, Barbosa (b61) 2016; 72
Yagi, Kunii, Wakao (b41) 1960; 6
Hadley (b40) 1986; 29
Çengel, Cimbala (b58) 2006
Nellis, Klein (b36) 2006; 49
Zhang (b3) 2021; 185
Fortkamp, Lozano, Barbosa (b22) 2017; 444
Shah, Sekulic (b33) 2003
Trevizoli, Lozano, Peixer, Barbosa (b21) 2015; 395
Aharoni (b48) 1998; 83
Aprea, Cardillo, Greco, Maiorino, Masselli (b12) 2015; 90
You, Guo, Xiao, Yu, Ji, Luo (b16) 2016; 405
Johra, Filonenko, Heiselberg, Veje, Dall’Olio, Engelbrecht, Bahl (b4) 2019; 136
Ergun (b43) 1952; 48
Renaldi, Miranda, Khosla, McCulloch (b7) 2021; 296
Churchill, Chu (b60) 1975; 18
Zhang, Wu, He, Wang, Yu (b8) 2021; 143
Teyber, Trevizoli, Christiaanse, Govindappa, Rowe (b19) 2018; 123
Gnielinski (b54) 1976; 16
Bjørk, Bahl, Smith, Pryds (b50) 2010; 33
Li, Finlayson (b42) 1977; 32
Burdyny, Arnold, Rowe (b24) 2014; 62
Razelos (b35) 1980
Bell, Wronski, Quoilin, Lemort (b44) 2014; 53
Insinga, Bjørk, Smith, Bahl (b18) 2016; 5
Bez, Nakashima, Lang, de Lima, Machado, Lozano, Barbosa (b45) 2020; 28
Rowe (b26) 2020; 127
Coey (b46) 2010
Jeffreson (b38) 1972; 18
Peixer, Dutra, Calomeno, de Sá, Lang, Lozano, Barbosa (b52) 2020
Silva, Ventura, Araújo (b31) 2021; 45
Lionte, Risser, Muller (b5) 2021; 122
Kaviany (b39) 1995
Mitishita, Barreira, Negrao, Hermes (b2) 2013; 50
(b56) 1998
Pallares, Grau (b37) 2010; 37
Nielsen, Bahl, Smith, Bjørk, Pryds, Hattel (b10) 2009; 32
Browne, Bansal (b1) 2002; 25
Teyber, Trevizoli, Christiaanse, Govindappa, Niknia, Rowe (b25) 2018; 128
Qian, Yuan, Yu, Yan (b29) 2017; 84
Fortkamp (b30) 2019
Mugica, Poncet, Bouchard (b9) 2018; 141
Trevizoli, Nakashima, Barbosa (b14) 2016; 72
Bjørk, Smith, Bahl (b20) 2010; 322
Schmidt (b57) 1945
Insinga, Bahl, Bjørk, Smith (b49) 2016; 407
Engelbrecht (b13) 2008
Héder (b32) 2017; 22
Liang, Nielsen, Engelbrecht, Bahl (b27) 2020; 181
Nakashima, Fortkamp, de Sá, dos Santos, Hoffmann, Peixer, Dutra, Ribeiro, Lozano, Barbosa (b6) 2021; 122
Rowe (b23) 2012; 52
Oliveira, Trevizoli, Barbosa, Prata (b11) 2012; 35
Tagliafico, Scarpa, Tagliafico (b28) 2013; 36
Churchill (b55) 1977; 84
Lorenz, Kevlishvili (b17) 2017; 73
Vieira, Bez, Kuepferling, Rosa, Schafer, Plá Cid, Vieyra, Basso, Lozano, Barbosa (b15) 2021; 183
Calomeno, Dutra, de Sá, Peixer, Lozano, Barbosa Jr. (b59) 2021
Sato, Ishii (b47) 1989; 66
Dragutinovic, Baclic (b34) 1998
Niknia, Campbell, Christiaanse, Govindappa, Teyber, Trevizoli, Rowe (b51) 2016; 106
Wang, Chi, Chang (b53) 2000; 43
Li (10.1016/j.applthermaleng.2021.117918_b42) 1977; 32
Rowe (10.1016/j.applthermaleng.2021.117918_b26) 2020; 127
Pallares (10.1016/j.applthermaleng.2021.117918_b37) 2010; 37
Lionte (10.1016/j.applthermaleng.2021.117918_b5) 2021; 122
Hadley (10.1016/j.applthermaleng.2021.117918_b40) 1986; 29
Trevizoli (10.1016/j.applthermaleng.2021.117918_b14) 2016; 72
Liang (10.1016/j.applthermaleng.2021.117918_b27) 2020; 181
Sato (10.1016/j.applthermaleng.2021.117918_b47) 1989; 66
Razelos (10.1016/j.applthermaleng.2021.117918_b35) 1980
Rowe (10.1016/j.applthermaleng.2021.117918_b23) 2012; 52
Bjørk (10.1016/j.applthermaleng.2021.117918_b50) 2010; 33
Bez (10.1016/j.applthermaleng.2021.117918_b45) 2020; 28
Aprea (10.1016/j.applthermaleng.2021.117918_b12) 2015; 90
Zhang (10.1016/j.applthermaleng.2021.117918_b3) 2021; 185
Fortkamp (10.1016/j.applthermaleng.2021.117918_b22) 2017; 444
Silva (10.1016/j.applthermaleng.2021.117918_b31) 2021; 45
Nielsen (10.1016/j.applthermaleng.2021.117918_b10) 2009; 32
Niknia (10.1016/j.applthermaleng.2021.117918_b51) 2016; 106
Çengel (10.1016/j.applthermaleng.2021.117918_b58) 2006
Mugica (10.1016/j.applthermaleng.2021.117918_b9) 2018; 141
Jeffreson (10.1016/j.applthermaleng.2021.117918_b38) 1972; 18
Ergun (10.1016/j.applthermaleng.2021.117918_b43) 1952; 48
Aharoni (10.1016/j.applthermaleng.2021.117918_b48) 1998; 83
Wang (10.1016/j.applthermaleng.2021.117918_b53) 2000; 43
Bell (10.1016/j.applthermaleng.2021.117918_b44) 2014; 53
Fortkamp (10.1016/j.applthermaleng.2021.117918_b30) 2019
Dragutinovic (10.1016/j.applthermaleng.2021.117918_b34) 1998
Burdyny (10.1016/j.applthermaleng.2021.117918_b24) 2014; 62
Browne (10.1016/j.applthermaleng.2021.117918_b1) 2002; 25
Héder (10.1016/j.applthermaleng.2021.117918_b32) 2017; 22
Yagi (10.1016/j.applthermaleng.2021.117918_b41) 1960; 6
Coey (10.1016/j.applthermaleng.2021.117918_b46) 2010
You (10.1016/j.applthermaleng.2021.117918_b16) 2016; 405
Renaldi (10.1016/j.applthermaleng.2021.117918_b7) 2021; 296
Teyber (10.1016/j.applthermaleng.2021.117918_b25) 2018; 128
Churchill (10.1016/j.applthermaleng.2021.117918_b55) 1977; 84
Trevizoli (10.1016/j.applthermaleng.2021.117918_b61) 2016; 72
Lorenz (10.1016/j.applthermaleng.2021.117918_b17) 2017; 73
Tagliafico (10.1016/j.applthermaleng.2021.117918_b28) 2013; 36
Schmidt (10.1016/j.applthermaleng.2021.117918_b57) 1945
Nellis (10.1016/j.applthermaleng.2021.117918_b36) 2006; 49
Johra (10.1016/j.applthermaleng.2021.117918_b4) 2019; 136
Insinga (10.1016/j.applthermaleng.2021.117918_b49) 2016; 407
Insinga (10.1016/j.applthermaleng.2021.117918_b18) 2016; 5
Oliveira (10.1016/j.applthermaleng.2021.117918_b11) 2012; 35
Qian (10.1016/j.applthermaleng.2021.117918_b29) 2017; 84
Mitishita (10.1016/j.applthermaleng.2021.117918_b2) 2013; 50
Vieira (10.1016/j.applthermaleng.2021.117918_b15) 2021; 183
Calomeno (10.1016/j.applthermaleng.2021.117918_b59) 2021
Churchill (10.1016/j.applthermaleng.2021.117918_b60) 1975; 18
Bjørk (10.1016/j.applthermaleng.2021.117918_b20) 2010; 322
Kaviany (10.1016/j.applthermaleng.2021.117918_b39) 1995
Gnielinski (10.1016/j.applthermaleng.2021.117918_b54) 1976; 16
Engelbrecht (10.1016/j.applthermaleng.2021.117918_b13) 2008
Zhang (10.1016/j.applthermaleng.2021.117918_b8) 2021; 143
Nakashima (10.1016/j.applthermaleng.2021.117918_b6) 2021; 122
Peixer (10.1016/j.applthermaleng.2021.117918_b52) 2020
(10.1016/j.applthermaleng.2021.117918_b56) 1998
Shah (10.1016/j.applthermaleng.2021.117918_b33) 2003
Teyber (10.1016/j.applthermaleng.2021.117918_b19) 2018; 123
Trevizoli (10.1016/j.applthermaleng.2021.117918_b21) 2015; 395
References_xml – volume: 29
  start-page: 909
  year: 1986
  end-page: 920
  ident: b40
  article-title: Thermal conductivity of packed metal powder
  publication-title: Int. J. Heat Mass Transfer
– volume: 181
  year: 2020
  ident: b27
  article-title: Heat transfer figures of merit for mapping passive regenerator performance to active regenerator cooling power
  publication-title: Appl. Therm. Eng.
– volume: 405
  start-page: 231
  year: 2016
  end-page: 237
  ident: b16
  article-title: Numerical simulation and performance improvement of a multi-polar concentric halbach cylindrical magnet for magnetic refrigeration
  publication-title: J. Magn. Magn. Mater.
– volume: 49
  start-page: 329
  year: 2006
  end-page: 340
  ident: b36
  article-title: Regenerative heat exchangers with significant entrained fluid heat capacity
  publication-title: Int. J. Heat Mass Transfer
– year: 1998
  ident: b56
  article-title: Design and performance evaluation of heat exchangers: The effectiveness-NTU method Parts 1-5
– volume: 141
  start-page: 600
  year: 2018
  end-page: 616
  ident: b9
  article-title: An open source DNS solver for the simulation of active magnetocaloric regenerative cycles
  publication-title: Appl. Therm. Eng.
– volume: 18
  start-page: 409
  year: 1972
  end-page: 420
  ident: b38
  article-title: Prediction of breakthrough curves in packed beds
  publication-title: AIChE J.
– volume: 62
  start-page: 177
  year: 2014
  end-page: 184
  ident: b24
  article-title: AMR thermodynamics: Semi-analytic modeling
  publication-title: Cryogenics
– volume: 72
  start-page: 192
  year: 2016
  end-page: 205
  ident: b61
  article-title: Performance evaluation of an active magnetic regenerator for cooling applications – part I: Experimental analysis and thermodynamic performance
  publication-title: Int. J. Refrig.
– volume: 127
  year: 2020
  ident: b26
  article-title: Thermal effectiveness of active caloric regenerators
  publication-title: J. Appl. Phys.
– volume: 296
  year: 2021
  ident: b7
  article-title: Patent landscape of not-in-kind active cooling technologies between 1998 and 2017
  publication-title: J. Cleaner Prod.
– volume: 444
  start-page: 87
  year: 2017
  end-page: 97
  ident: b22
  article-title: Analytical solution of concentric two-pole halbach cylinders as a preliminary design tool for magnetic refrigeration systems
  publication-title: J. Magn. Magn. Mater.
– year: 1995
  ident: b39
  article-title: Principles of Heat Transfer in Porous Media
– volume: 407
  start-page: 369
  year: 2016
  end-page: 376
  ident: b49
  article-title: Performance of halbach magnet arrays with finite coercivity
  publication-title: J. Magn. Magn. Mater.
– volume: 5
  start-page: 1
  year: 2016
  end-page: 16
  ident: b18
  article-title: Globally optimal segmentation of permanent-magnet systems
  publication-title: Phys. Rev. A
– year: 1998
  ident: b34
  article-title: Operation of counterflow regenerators
– volume: 37
  start-page: 1187
  year: 2010
  end-page: 1190
  ident: b37
  article-title: A modification of a nusselt number correlation for forced convection in porous media
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 48
  start-page: 89
  year: 1952
  end-page: 94
  ident: b43
  article-title: Fluid flow through packed column
  publication-title: Chem. Eng. Progr.
– year: 2021
  ident: b59
  article-title: Temperature pull down of a retrofit wine refrigerator cabinet cooled by a caloric cooling system emulator
  publication-title: Anais Acad. Brasil. Ciências
– volume: 35
  start-page: 98
  year: 2012
  end-page: 114
  ident: b11
  article-title: A 2D hybrid model of the fluid flow and heat transfer in a reciprocating active magnetic regenerator
  publication-title: Int. J. Refrig.
– year: 2008
  ident: b13
  article-title: A Numerical Model of an Active Magnetic Regenerator Refrigerator with Experimental Validation
– volume: 43
  start-page: 2693
  year: 2000
  end-page: 2700
  ident: b53
  article-title: Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part II: Correlation
  publication-title: Int. J. Heat Mass Transfer
– volume: 32
  start-page: 1055
  year: 1977
  end-page: 1066
  ident: b42
  article-title: Heat transfer in packed beds - a reevaluation
  publication-title: Chem. Eng. Sci.
– volume: 45
  start-page: 18498
  year: 2021
  end-page: 18539
  ident: b31
  article-title: Caloric devices: A review on numerical modeling and optimization strategies
  publication-title: Int. J. Energy Res.
– volume: 122
  start-page: 110
  year: 2021
  end-page: 121
  ident: b6
  article-title: A magnetic wine cooler prototype
  publication-title: Int. J. Refrig.
– volume: 84
  start-page: 151
  year: 2017
  end-page: 164
  ident: b29
  article-title: Critical parameters in design of active magnetocaloric regenerators for magnetic refrigeration applications
  publication-title: Int. J. Refrig.
– volume: 25
  start-page: 597
  year: 2002
  end-page: 610
  ident: b1
  article-title: Transient simulation of vapour-compression packaged liquid chillers
  publication-title: Int. J. Refrig.
– volume: 123
  year: 2018
  ident: b19
  article-title: Topology optimization of reduced rare-earth permanent magnet arrays with finite coercivity
  publication-title: J. Appl. Phys.
– volume: 53
  start-page: 2498
  year: 2014
  end-page: 2508
  ident: b44
  article-title: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop
  publication-title: Ind. Eng. Chem. Res.
– volume: 106
  start-page: 601
  year: 2016
  end-page: 612
  ident: b51
  article-title: Impacts of configuration losses on active magnetic regenerator device performance
  publication-title: Appl. Therm. Eng.
– volume: 322
  start-page: 133
  year: 2010
  end-page: 141
  ident: b20
  article-title: Analysis of the magnetic field, force, and torque for two-dimensional halbach cylinders
  publication-title: J. Magn. Magn. Mater.
– volume: 83
  start-page: 3432
  year: 1998
  end-page: 3434
  ident: b48
  article-title: Demagnetizing factors for rectangular ferromagnetic prisms
  publication-title: J. Appl. Phys.
– volume: 90
  start-page: 376
  year: 2015
  end-page: 383
  ident: b12
  article-title: A comparison between experimental and 2D numerical results of a packed-bed active magnetic regenerator
  publication-title: Appl. Therm. Eng.
– volume: 395
  start-page: 109
  year: 2015
  end-page: 122
  ident: b21
  article-title: Design of nested halbach cylinder arrays for magnetic refrigeration applications
  publication-title: J. Magn. Magn. Mater.
– volume: 16
  start-page: 359
  year: 1976
  end-page: 368
  ident: b54
  article-title: New equations for heat and mass transfer in turbulent pipe and channel flow
  publication-title: Int. Chem. Eng.
– year: 1980
  ident: b35
  article-title: Personal communication
– year: 2020
  ident: b52
  article-title: Influence of heat exchanger design on the thermal performance of a domestic wine cooler driven by a magnetic refrigeration system
  publication-title: Anais Acad. Brasil. Ciências
– year: 2006
  ident: b58
  article-title: Fluid Mechanics: Fundamentals and Applications
– year: 2019
  ident: b30
  article-title: Integrated Design of the Magnet-Regenerator Assembly for a Magnetic Refrigerator
– volume: 185
  year: 2021
  ident: b3
  article-title: Numerical study of geothermal district heating from a ground heat exchanger coupled with a heat pump system
  publication-title: Appl. Therm. Eng.
– volume: 84
  start-page: 91
  year: 1977
  end-page: 92
  ident: b55
  article-title: Friction-factor equation spans all fluid-flow regimes
  publication-title: Chem. Eng. J.
– year: 2010
  ident: b46
  article-title: Magnetism and Magnetic Materials
– year: 2003
  ident: b33
  article-title: Fundamentals of Heat Exchanger Design
– volume: 66
  start-page: 983
  year: 1989
  end-page: 985
  ident: b47
  article-title: Simple and approximate expressions of demagnetizing factors of uniformly magnetized rectangular rod and cylinder
  publication-title: J. Appl. Phys.
– volume: 52
  start-page: 111
  year: 2012
  end-page: 118
  ident: b23
  article-title: Thermodynamics of active magnetic regenerators: Part i
  publication-title: Cryogenics
– volume: 183
  year: 2021
  ident: b15
  article-title: Magnetocaloric properties of spheroidal la(fe,mn,si)13hy granules and their performance in epoxy-bonded active magnetic regenerators
  publication-title: Appl. Therm. Eng.
– volume: 33
  start-page: 437
  year: 2010
  end-page: 448
  ident: b50
  article-title: Review and comparison of magnet designs for magnetic refrigeration
  publication-title: Int. J. Refrig.
– volume: 73
  start-page: 246
  year: 2017
  end-page: 256
  ident: b17
  article-title: Designing of halbach cylinder based magnetic assembly for a rotating magnetic refrigerator. Part 1: Designing procedure
  publication-title: Int. J. Refrig.
– volume: 50
  start-page: 1376
  year: 2013
  end-page: 1385
  ident: b2
  article-title: Thermoeconomic design and optimization of frost-free refrigerators
  publication-title: Appl. Therm. Eng.
– volume: 143
  year: 2021
  ident: b8
  article-title: Solutions to obstacles in the commercialization of room-temperature magnetic refrigeration
  publication-title: Renew. Sustain. Energy Rev.
– volume: 122
  start-page: 256
  year: 2021
  end-page: 265
  ident: b5
  article-title: A 15 kW magnetocaloric proof-of-concept unit: Initial development and first experimental results
  publication-title: Int. J. Refrig.
– volume: 72
  start-page: 206
  year: 2016
  end-page: 217
  ident: b14
  article-title: Performance evaluation of an active magnetic regenerator for cooling applications – part II: Mathematical modeling and thermal losses
  publication-title: Int. J. Refrig.
– volume: 22
  start-page: 3
  year: 2017
  ident: b32
  article-title: From NASA to EU: the evolution of the TRL scale in public sector innovation
  publication-title: The Innovation Journal: The Public Sector Innovation Journal
– volume: 32
  start-page: 1478
  year: 2009
  end-page: 1486
  ident: b10
  article-title: Detailed numerical modeling of a linear parallel-plate active magnetic regenerator
  publication-title: Int. J. Refrig.
– volume: 36
  start-page: 941
  year: 2013
  end-page: 949
  ident: b28
  article-title: A dimensionless description of active magnetic regenerators to compare their performance and to simplify their optimization
  publication-title: Int. J. Refrig.
– volume: 28
  year: 2020
  ident: b45
  article-title: Performance assessment and layer fraction optimization of gd–y multilayer regenerators for near room-temperature magnetic cooling
  publication-title: Int. J. Air-Condition. Refriger.
– volume: 128
  start-page: 1022
  year: 2018
  end-page: 1029
  ident: b25
  article-title: Semi-analytic AMR element model
  publication-title: Appl. Therm. Eng.
– volume: 6
  start-page: 543
  year: 1960
  end-page: 546
  ident: b41
  article-title: Studies on axial effective thermal conductivities in packed beds
  publication-title: AIChE J.
– year: 1945
  ident: b57
  article-title: La production calorique des surfaces munies dailettes
– volume: 18
  start-page: 1323
  year: 1975
  end-page: 1329
  ident: b60
  article-title: Correlating equations for laminar and turbulent free convection from a vertical plate
  publication-title: Int. J. Heat Mass Transfer
– volume: 136
  start-page: 115
  year: 2019
  end-page: 126
  ident: b4
  article-title: Integration of a magnetocaloric heat pump in an energy flexible residential building
  publication-title: Renew. Energy
– volume: 62
  start-page: 177
  year: 2014
  ident: 10.1016/j.applthermaleng.2021.117918_b24
  article-title: AMR thermodynamics: Semi-analytic modeling
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2014.03.013
– volume: 405
  start-page: 231
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.117918_b16
  article-title: Numerical simulation and performance improvement of a multi-polar concentric halbach cylindrical magnet for magnetic refrigeration
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2015.12.077
– volume: 32
  start-page: 1055
  year: 1977
  ident: 10.1016/j.applthermaleng.2021.117918_b42
  article-title: Heat transfer in packed beds - a reevaluation
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(77)80143-7
– year: 1998
  ident: 10.1016/j.applthermaleng.2021.117918_b34
– year: 1945
  ident: 10.1016/j.applthermaleng.2021.117918_b57
– volume: 73
  start-page: 246
  year: 2017
  ident: 10.1016/j.applthermaleng.2021.117918_b17
  article-title: Designing of halbach cylinder based magnetic assembly for a rotating magnetic refrigerator. Part 1: Designing procedure
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2016.09.003
– year: 1998
  ident: 10.1016/j.applthermaleng.2021.117918_b56
– volume: 36
  start-page: 941
  issue: 3
  year: 2013
  ident: 10.1016/j.applthermaleng.2021.117918_b28
  article-title: A dimensionless description of active magnetic regenerators to compare their performance and to simplify their optimization
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2012.10.024
– volume: 5
  start-page: 1
  issue: 6
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.117918_b18
  article-title: Globally optimal segmentation of permanent-magnet systems
  publication-title: Phys. Rev. A
– volume: 52
  start-page: 111
  issue: 2–3
  year: 2012
  ident: 10.1016/j.applthermaleng.2021.117918_b23
  article-title: Thermodynamics of active magnetic regenerators: Part i
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2011.09.005
– volume: 53
  start-page: 2498
  issue: 6
  year: 2014
  ident: 10.1016/j.applthermaleng.2021.117918_b44
  article-title: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie4033999
– year: 2021
  ident: 10.1016/j.applthermaleng.2021.117918_b59
  article-title: Temperature pull down of a retrofit wine refrigerator cabinet cooled by a caloric cooling system emulator
  publication-title: Anais Acad. Brasil. Ciências
– volume: 72
  start-page: 192
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.117918_b61
  article-title: Performance evaluation of an active magnetic regenerator for cooling applications – part I: Experimental analysis and thermodynamic performance
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2016.07.009
– volume: 122
  start-page: 256
  year: 2021
  ident: 10.1016/j.applthermaleng.2021.117918_b5
  article-title: A 15 kW magnetocaloric proof-of-concept unit: Initial development and first experimental results
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2020.09.019
– volume: 407
  start-page: 369
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.117918_b49
  article-title: Performance of halbach magnet arrays with finite coercivity
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2016.01.076
– volume: 16
  start-page: 359
  year: 1976
  ident: 10.1016/j.applthermaleng.2021.117918_b54
  article-title: New equations for heat and mass transfer in turbulent pipe and channel flow
  publication-title: Int. Chem. Eng.
– volume: 49
  start-page: 329
  issue: 1–2
  year: 2006
  ident: 10.1016/j.applthermaleng.2021.117918_b36
  article-title: Regenerative heat exchangers with significant entrained fluid heat capacity
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2005.06.021
– year: 2019
  ident: 10.1016/j.applthermaleng.2021.117918_b30
– volume: 183
  issue: P1
  year: 2021
  ident: 10.1016/j.applthermaleng.2021.117918_b15
  article-title: Magnetocaloric properties of spheroidal la(fe,mn,si)13hy granules and their performance in epoxy-bonded active magnetic regenerators
  publication-title: Appl. Therm. Eng.
– volume: 296
  year: 2021
  ident: 10.1016/j.applthermaleng.2021.117918_b7
  article-title: Patent landscape of not-in-kind active cooling technologies between 1998 and 2017
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2021.126507
– volume: 45
  start-page: 18498
  issue: 13
  year: 2021
  ident: 10.1016/j.applthermaleng.2021.117918_b31
  article-title: Caloric devices: A review on numerical modeling and optimization strategies
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.7023
– volume: 33
  start-page: 437
  issue: 3
  year: 2010
  ident: 10.1016/j.applthermaleng.2021.117918_b50
  article-title: Review and comparison of magnet designs for magnetic refrigeration
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2009.12.012
– volume: 6
  start-page: 543
  issue: 4
  year: 1960
  ident: 10.1016/j.applthermaleng.2021.117918_b41
  article-title: Studies on axial effective thermal conductivities in packed beds
  publication-title: AIChE J.
  doi: 10.1002/aic.690060407
– volume: 18
  start-page: 409
  issue: 2
  year: 1972
  ident: 10.1016/j.applthermaleng.2021.117918_b38
  article-title: Prediction of breakthrough curves in packed beds
  publication-title: AIChE J.
  doi: 10.1002/aic.690180225
– volume: 395
  start-page: 109
  year: 2015
  ident: 10.1016/j.applthermaleng.2021.117918_b21
  article-title: Design of nested halbach cylinder arrays for magnetic refrigeration applications
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2015.07.023
– volume: 141
  start-page: 600
  issue: February
  year: 2018
  ident: 10.1016/j.applthermaleng.2021.117918_b9
  article-title: An open source DNS solver for the simulation of active magnetocaloric regenerative cycles
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.06.007
– volume: 128
  start-page: 1022
  year: 2018
  ident: 10.1016/j.applthermaleng.2021.117918_b25
  article-title: Semi-analytic AMR element model
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.09.082
– volume: 18
  start-page: 1323
  issue: 11
  year: 1975
  ident: 10.1016/j.applthermaleng.2021.117918_b60
  article-title: Correlating equations for laminar and turbulent free convection from a vertical plate
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(75)90243-4
– volume: 50
  start-page: 1376
  issue: 1
  year: 2013
  ident: 10.1016/j.applthermaleng.2021.117918_b2
  article-title: Thermoeconomic design and optimization of frost-free refrigerators
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.06.024
– volume: 185
  year: 2021
  ident: 10.1016/j.applthermaleng.2021.117918_b3
  article-title: Numerical study of geothermal district heating from a ground heat exchanger coupled with a heat pump system
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.116335
– volume: 43
  start-page: 2693
  issue: 15
  year: 2000
  ident: 10.1016/j.applthermaleng.2021.117918_b53
  article-title: Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part II: Correlation
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(99)00333-6
– volume: 28
  issue: 3
  year: 2020
  ident: 10.1016/j.applthermaleng.2021.117918_b45
  article-title: Performance assessment and layer fraction optimization of gd–y multilayer regenerators for near room-temperature magnetic cooling
  publication-title: Int. J. Air-Condition. Refriger.
  doi: 10.1142/S2010132520500273
– volume: 72
  start-page: 206
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.117918_b14
  article-title: Performance evaluation of an active magnetic regenerator for cooling applications – part II: Mathematical modeling and thermal losses
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2016.07.010
– volume: 37
  start-page: 1187
  year: 2010
  ident: 10.1016/j.applthermaleng.2021.117918_b37
  article-title: A modification of a nusselt number correlation for forced convection in porous media
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2010.07.014
– year: 2008
  ident: 10.1016/j.applthermaleng.2021.117918_b13
– volume: 35
  start-page: 98
  issue: 1
  year: 2012
  ident: 10.1016/j.applthermaleng.2021.117918_b11
  article-title: A 2D hybrid model of the fluid flow and heat transfer in a reciprocating active magnetic regenerator
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2011.08.009
– volume: 444
  start-page: 87
  year: 2017
  ident: 10.1016/j.applthermaleng.2021.117918_b22
  article-title: Analytical solution of concentric two-pole halbach cylinders as a preliminary design tool for magnetic refrigeration systems
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2017.07.072
– volume: 127
  issue: 20
  year: 2020
  ident: 10.1016/j.applthermaleng.2021.117918_b26
  article-title: Thermal effectiveness of active caloric regenerators
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0003531
– year: 2010
  ident: 10.1016/j.applthermaleng.2021.117918_b46
– volume: 123
  issue: 19
  year: 2018
  ident: 10.1016/j.applthermaleng.2021.117918_b19
  article-title: Topology optimization of reduced rare-earth permanent magnet arrays with finite coercivity
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5026862
– volume: 84
  start-page: 91
  year: 1977
  ident: 10.1016/j.applthermaleng.2021.117918_b55
  article-title: Friction-factor equation spans all fluid-flow regimes
  publication-title: Chem. Eng. J.
– volume: 22
  start-page: 3
  year: 2017
  ident: 10.1016/j.applthermaleng.2021.117918_b32
  article-title: From NASA to EU: the evolution of the TRL scale in public sector innovation
  publication-title: The Innovation Journal: The Public Sector Innovation Journal
– volume: 122
  start-page: 110
  year: 2021
  ident: 10.1016/j.applthermaleng.2021.117918_b6
  article-title: A magnetic wine cooler prototype
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2020.11.015
– volume: 136
  start-page: 115
  year: 2019
  ident: 10.1016/j.applthermaleng.2021.117918_b4
  article-title: Integration of a magnetocaloric heat pump in an energy flexible residential building
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.12.102
– volume: 29
  start-page: 909
  year: 1986
  ident: 10.1016/j.applthermaleng.2021.117918_b40
  article-title: Thermal conductivity of packed metal powder
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(86)90186-9
– volume: 143
  year: 2021
  ident: 10.1016/j.applthermaleng.2021.117918_b8
  article-title: Solutions to obstacles in the commercialization of room-temperature magnetic refrigeration
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.110933
– volume: 32
  start-page: 1478
  year: 2009
  ident: 10.1016/j.applthermaleng.2021.117918_b10
  article-title: Detailed numerical modeling of a linear parallel-plate active magnetic regenerator
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2009.03.003
– volume: 181
  year: 2020
  ident: 10.1016/j.applthermaleng.2021.117918_b27
  article-title: Heat transfer figures of merit for mapping passive regenerator performance to active regenerator cooling power
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115993
– volume: 106
  start-page: 601
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.117918_b51
  article-title: Impacts of configuration losses on active magnetic regenerator device performance
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.06.039
– volume: 83
  start-page: 3432
  issue: 6
  year: 1998
  ident: 10.1016/j.applthermaleng.2021.117918_b48
  article-title: Demagnetizing factors for rectangular ferromagnetic prisms
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.367113
– year: 2006
  ident: 10.1016/j.applthermaleng.2021.117918_b58
– volume: 322
  start-page: 133
  issue: 1
  year: 2010
  ident: 10.1016/j.applthermaleng.2021.117918_b20
  article-title: Analysis of the magnetic field, force, and torque for two-dimensional halbach cylinders
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2009.08.044
– year: 1980
  ident: 10.1016/j.applthermaleng.2021.117918_b35
– volume: 90
  start-page: 376
  year: 2015
  ident: 10.1016/j.applthermaleng.2021.117918_b12
  article-title: A comparison between experimental and 2D numerical results of a packed-bed active magnetic regenerator
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.07.020
– volume: 84
  start-page: 151
  year: 2017
  ident: 10.1016/j.applthermaleng.2021.117918_b29
  article-title: Critical parameters in design of active magnetocaloric regenerators for magnetic refrigeration applications
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2017.08.013
– year: 2020
  ident: 10.1016/j.applthermaleng.2021.117918_b52
  article-title: Influence of heat exchanger design on the thermal performance of a domestic wine cooler driven by a magnetic refrigeration system
  publication-title: Anais Acad. Brasil. Ciências
– year: 2003
  ident: 10.1016/j.applthermaleng.2021.117918_b33
– year: 1995
  ident: 10.1016/j.applthermaleng.2021.117918_b39
– volume: 25
  start-page: 597
  issue: 5
  year: 2002
  ident: 10.1016/j.applthermaleng.2021.117918_b1
  article-title: Transient simulation of vapour-compression packaged liquid chillers
  publication-title: Int. J. Refrig.
  doi: 10.1016/S0140-7007(01)00060-3
– volume: 48
  start-page: 89
  year: 1952
  ident: 10.1016/j.applthermaleng.2021.117918_b43
  article-title: Fluid flow through packed column
  publication-title: Chem. Eng. Progr.
– volume: 66
  start-page: 983
  issue: 983–985
  year: 1989
  ident: 10.1016/j.applthermaleng.2021.117918_b47
  article-title: Simple and approximate expressions of demagnetizing factors of uniformly magnetized rectangular rod and cylinder
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.343481
SSID ssj0012874
Score 2.439645
Snippet This work presents a dynamic lumped parameter model to predict the transient and steady-state cabinet temperature, energy consumption and efficiency parameters...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117918
SubjectTerms Active magnetic regenerator
Axial flow pumps
Cabinets
Cooling rate
Energy consumption
Energy efficiency
Heat exchangers
Hydraulic equipment
Induction motors
Lumped analysis
Magnetic materials
Magnetic properties
Magnetic refrigeration
Mathematical models
Multilayers
Parameter estimation
Parameters
Power sources
Refrigerators
Rejection rate
Retrofitting
Steady state
Thermal modelling
Time response
Title A lumped-element magnetic refrigerator model
URI https://dx.doi.org/10.1016/j.applthermaleng.2021.117918
https://www.proquest.com/docview/2639718553
Volume 204
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lguhBfGK1lj30aGyySXY3eJBSLFWxFyv0FpLdRCq2Fq1Xf7uZfVQrHgpel81mmZ3MfLMz8w1CbSt4DKTPOHJWY06JxFKHGscw4IQwQ4yF_x33w2jwyG_HYlxDvaoXBsoqS9tf2PTcWpdXOqU0O_PJpPNAmZDe_QEDFmU85zHlPAYtv_hclnlQ4HPPgy4hMdy9idrfNV6QJAacNdUwtsRHiyGFLKaEESB_u6lfBjv3Qv1dtFPCx6BbvOEeqtnZPtr-QSp4gM67gTc4c5thW5SGB1P9NINexcBv44Nxm2fWg3wGziEa9a9HvQEuZyLglIlkgTOXWBo6oplwoYsiw4whUtMoITLJBBOZcDL1uCgjLJbOptbjoTgjUWasdpodofrsdWaPUZBw49GUI6ENLU_gHFObMiPTlLJUO9lAl5UEVFryhcPYihdVFYY9q1X5KZCfKuTXQGK5el7wZqy57qoStlrRA-VN_JpPaFbfSJXn8V2FkL_00ESwk39vcIq2QuiBgEI00UT1xduHPfPIZGFaueq10Eb35m4w_ALA3OVL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLamTeJxQDzFYEAPOxItbZquEQc0IdDGHheGtFuUtAkCQZlg_H_iPgZDHJC4VnITuYn9ubY_A7QND7tI-kwiaxQJfSqIUIEiXRxwQpmm2uD_jvEk6t-HtzM-q8FV1QuDZZWl7S9sem6tyyedUpud-eNj585nXDj3hwxYPguRx7SB7FS8Do3eYNifLJMJSOmex11cEBRYg_ZXmRfmiRFqvSicXOICxsDHRKbAKSC_e6ofNjt3RDfbsFUiSK9XbHIHaibbhc1vvIJ7cN7znM2Zm5SYojrce1EPGbYrem4ZF4-bPLnu5WNw9mF6cz296pNyLAJJGI8XJLWx8QNLFeM2sFGkmdZUKD-KqYhTznjKrUgcNEop6wprEuMgUTelUaqNsoodQD17zcwheHGoHaCyNDCBCWO8yr5JmBZJ4rNEWdGEi0oDMikpw3FyxbOsasOe5Kr-JOpPFvprAl9KzwvqjD_KXVbKlitHQTor_8c3tKpvJMsr-S4DTGE6dMLZ0b8XOIP1_nQ8kqPBZHgMGwG2RGBdGm9BffH2YU4cUFno0_IgfgKdr-f8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+lumped-element+magnetic+refrigerator+model&rft.jtitle=Applied+thermal+engineering&rft.au=Nakashima%2C+A.T.D.&rft.au=Peixer%2C+G.F.&rft.au=Lozano%2C+J.A.&rft.au=Barbosa%2C+J.R.&rft.date=2022-03-05&rft.issn=1359-4311&rft.volume=204&rft.spage=117918&rft_id=info:doi/10.1016%2Fj.applthermaleng.2021.117918&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2021_117918
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon