A lumped-element magnetic refrigerator model
This work presents a dynamic lumped parameter model to predict the transient and steady-state cabinet temperature, energy consumption and efficiency parameters of a small capacity magnetic refrigerator equipped with a retrofitted thermally insulated wine cooler cabinet. The model is divided into ind...
Saved in:
Published in | Applied thermal engineering Vol. 204; p. 117918 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
05.03.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 1359-4311 1873-5606 |
DOI | 10.1016/j.applthermaleng.2021.117918 |
Cover
Loading…
Abstract | This work presents a dynamic lumped parameter model to predict the transient and steady-state cabinet temperature, energy consumption and efficiency parameters of a small capacity magnetic refrigerator equipped with a retrofitted thermally insulated wine cooler cabinet. The model is divided into independent, experimentally validated sub-models for the active magnetic regenerator (AMR), magnetic and hydraulic circuits, heat exchanger/fan assemblies and refrigerated cabinet. Primary inputs to the model are the geometric features and component dimensions, frequency and speed of power sources (hydraulic pump, axial fans and induction motor), and composition and properties of magnetic materials. Special emphasis is put on the lumped AMR model, which accurately predicts the performance of first- and second-order materials in single- and multi-layer configurations in terms of the cooling capacity, heat rejection rate and magnetic work. The model predicts the experimental steady-state cabinet temperature of a compact magnetic wine cooler prototype to within 1.5 oC, while estimating the coefficient of performance with a mean error of 6.5%. The time response of the magnetic wine cooler during a temperature pull-down test is also correctly reproduced by the model, enabling its use in the design of future magnetic heat pumping systems.
•Lumped model predicts energy consumption and efficiency of magnetic refrigerator.•All sub models are validated against extensive independent databases.•Steady-state temperature of a compact wine cooler is predicted to within 1.5 °C.•Temperature pulldown tests of magnetic wine cooler are accurately reproduced.•The model is computationally inexpensive making it ideal for optimization schemes. |
---|---|
AbstractList | This work presents a dynamic lumped parameter model to predict the transient and steady-state cabinet temperature, energy consumption and efficiency parameters of a small capacity magnetic refrigerator equipped with a retrofitted thermally insulated wine cooler cabinet. The model is divided into independent, experimentally validated sub-models for the active magnetic regenerator (AMR), magnetic and hydraulic circuits, heat exchanger/fan assemblies and refrigerated cabinet. Primary inputs to the model are the geometric features and component dimensions, frequency and speed of power sources (hydraulic pump, axial fans and induction motor), and composition and properties of magnetic materials. Special emphasis is put on the lumped AMR model, which accurately predicts the performance of first- and second-order materials in single- and multi-layer configurations in terms of the cooling capacity, heat rejection rate and magnetic work. The model predicts the experimental steady-state cabinet temperature of a compact magnetic wine cooler prototype to within 1.5 oC, while estimating the coefficient of performance with a mean error of 6.5%. The time response of the magnetic wine cooler during a temperature pull-down test is also correctly reproduced by the model, enabling its use in the design of future magnetic heat pumping systems.
•Lumped model predicts energy consumption and efficiency of magnetic refrigerator.•All sub models are validated against extensive independent databases.•Steady-state temperature of a compact wine cooler is predicted to within 1.5 °C.•Temperature pulldown tests of magnetic wine cooler are accurately reproduced.•The model is computationally inexpensive making it ideal for optimization schemes. This work presents a dynamic lumped parameter model to predict the transient and steady-state cabinet temperature, energy consumption and efficiency parameters of a small capacity magnetic refrigerator equipped with a retrofitted thermally insulated wine cooler cabinet. The model is divided into independent, experimentally validated sub-models for the active magnetic regenerator (AMR), magnetic and hydraulic circuits, heat exchanger/fan assemblies and refrigerated cabinet. Primary inputs to the model are the geometric features and component dimensions, frequency and speed of power sources (hydraulic pump, axial fans and induction motor), and composition and properties of magnetic materials. Special emphasis is put on the lumped AMR model, which accurately predicts the performance of first- and second-order materials in single- and multi-layer configurations in terms of the cooling capacity, heat rejection rate and magnetic work. The model predicts the experimental steady-state cabinet temperature of a compact magnetic wine cooler prototype to within 1.5 ºC, while estimating the coefficient of performance with a mean error of 6.5%. The time response of the magnetic wine cooler during a temperature pull-down test is also correctly reproduced by the model, enabling its use in the design of future magnetic heat pumping systems. |
ArticleNumber | 117918 |
Author | Peixer, G.F. Lozano, J.A. Barbosa, J.R. Nakashima, A.T.D. |
Author_xml | – sequence: 1 givenname: A.T.D. surname: Nakashima fullname: Nakashima, A.T.D. – sequence: 2 givenname: G.F. orcidid: 0000-0002-5238-4910 surname: Peixer fullname: Peixer, G.F. – sequence: 3 givenname: J.A. orcidid: 0000-0003-2682-9952 surname: Lozano fullname: Lozano, J.A. – sequence: 4 givenname: J.R. orcidid: 0000-0002-8753-6670 surname: Barbosa fullname: Barbosa, J.R. email: jrb@polo.ufsc.br |
BookMark | eNqNkLFOwzAQhi1UJNrCO0SCkQQ7jh1HYikVBaRKLN0txz4XV0kcHBeJtydVWGDqdDf8_3enb4Fmne8AoTuCM4IJfzhkqu-b-AGhVQ10-yzHOckIKSsiLtCciJKmjGM-G3fKqrSghFyhxTAcMCa5KIs5ul8lzbHtwaTQQAtdTFq17yA6nQSwwe0hqOhD0noDzTW6tKoZ4OZ3LtFu87xbv6bb95e39WqbaspETI0VQHKLFWU2t5zXtK5xpQgXuBKGUWaYrTRhhcG0rCxoKCgrDeamBmUVXaLbCdsH_3mEIcqDP4ZuvChzTquSCMbomHqcUjr4YRiflX1wrQrfkmB50iMP8q8eedIjJz1j_elfXbuoovNdDMo150I2EwRGG18Oghy0g06DcQF0lMa780A_GwOPSg |
CitedBy_id | crossref_primary_10_1016_j_ijrefrig_2023_06_025 crossref_primary_10_1016_j_ijrefrig_2024_01_022 crossref_primary_10_1016_j_applthermaleng_2023_120368 crossref_primary_10_1016_j_ijrefrig_2023_07_019 crossref_primary_10_1016_j_ijrefrig_2023_03_014 crossref_primary_10_1177_1063293X231209680 crossref_primary_10_1016_j_ijrefrig_2023_09_015 crossref_primary_10_1016_j_applthermaleng_2022_119056 crossref_primary_10_1016_j_applthermaleng_2022_119463 crossref_primary_10_1016_j_enconman_2022_115766 crossref_primary_10_1002_sys_21786 crossref_primary_10_1016_j_applthermaleng_2024_123060 crossref_primary_10_1016_j_ijrefrig_2024_08_011 |
Cites_doi | 10.1016/j.cryogenics.2014.03.013 10.1016/j.jmmm.2015.12.077 10.1016/0009-2509(77)80143-7 10.1016/j.ijrefrig.2016.09.003 10.1016/j.ijrefrig.2012.10.024 10.1016/j.cryogenics.2011.09.005 10.1021/ie4033999 10.1016/j.ijrefrig.2016.07.009 10.1016/j.ijrefrig.2020.09.019 10.1016/j.jmmm.2016.01.076 10.1016/j.ijheatmasstransfer.2005.06.021 10.1016/j.jclepro.2021.126507 10.1002/er.7023 10.1016/j.ijrefrig.2009.12.012 10.1002/aic.690060407 10.1002/aic.690180225 10.1016/j.jmmm.2015.07.023 10.1016/j.applthermaleng.2018.06.007 10.1016/j.applthermaleng.2017.09.082 10.1016/0017-9310(75)90243-4 10.1016/j.applthermaleng.2012.06.024 10.1016/j.applthermaleng.2020.116335 10.1016/S0017-9310(99)00333-6 10.1142/S2010132520500273 10.1016/j.ijrefrig.2016.07.010 10.1016/j.icheatmasstransfer.2010.07.014 10.1016/j.ijrefrig.2011.08.009 10.1016/j.jmmm.2017.07.072 10.1063/5.0003531 10.1063/1.5026862 10.1016/j.ijrefrig.2020.11.015 10.1016/j.renene.2018.12.102 10.1016/0017-9310(86)90186-9 10.1016/j.rser.2021.110933 10.1016/j.ijrefrig.2009.03.003 10.1016/j.applthermaleng.2020.115993 10.1016/j.applthermaleng.2016.06.039 10.1063/1.367113 10.1016/j.jmmm.2009.08.044 10.1016/j.applthermaleng.2015.07.020 10.1016/j.ijrefrig.2017.08.013 10.1016/S0140-7007(01)00060-3 10.1063/1.343481 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Mar 5, 2022 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Mar 5, 2022 |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1016/j.applthermaleng.2021.117918 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-5606 |
ExternalDocumentID | 10_1016_j_applthermaleng_2021_117918 S1359431121013405 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ R2- RIG SEW SSH 7TB 8FD EFKBS FR3 KR7 |
ID | FETCH-LOGICAL-c358t-df8e12f0a35f2f66b3bb09a168098d535d5f9c154d0379fece4357d06dbeafa3 |
IEDL.DBID | .~1 |
ISSN | 1359-4311 |
IngestDate | Mon Jul 14 07:35:01 EDT 2025 Tue Jul 01 02:05:31 EDT 2025 Thu Apr 24 23:11:24 EDT 2025 Fri Feb 23 02:40:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Magnetic refrigeration Active magnetic regenerator Lumped analysis Thermal modelling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-df8e12f0a35f2f66b3bb09a168098d535d5f9c154d0379fece4357d06dbeafa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2682-9952 0000-0002-8753-6670 0000-0002-5238-4910 |
PQID | 2639718553 |
PQPubID | 2045278 |
ParticipantIDs | proquest_journals_2639718553 crossref_primary_10_1016_j_applthermaleng_2021_117918 crossref_citationtrail_10_1016_j_applthermaleng_2021_117918 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2021_117918 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-05 |
PublicationDateYYYYMMDD | 2022-03-05 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Trevizoli, Nakashima, Peixer, Barbosa (b61) 2016; 72 Yagi, Kunii, Wakao (b41) 1960; 6 Hadley (b40) 1986; 29 Çengel, Cimbala (b58) 2006 Nellis, Klein (b36) 2006; 49 Zhang (b3) 2021; 185 Fortkamp, Lozano, Barbosa (b22) 2017; 444 Shah, Sekulic (b33) 2003 Trevizoli, Lozano, Peixer, Barbosa (b21) 2015; 395 Aharoni (b48) 1998; 83 Aprea, Cardillo, Greco, Maiorino, Masselli (b12) 2015; 90 You, Guo, Xiao, Yu, Ji, Luo (b16) 2016; 405 Johra, Filonenko, Heiselberg, Veje, Dall’Olio, Engelbrecht, Bahl (b4) 2019; 136 Ergun (b43) 1952; 48 Renaldi, Miranda, Khosla, McCulloch (b7) 2021; 296 Churchill, Chu (b60) 1975; 18 Zhang, Wu, He, Wang, Yu (b8) 2021; 143 Teyber, Trevizoli, Christiaanse, Govindappa, Rowe (b19) 2018; 123 Gnielinski (b54) 1976; 16 Bjørk, Bahl, Smith, Pryds (b50) 2010; 33 Li, Finlayson (b42) 1977; 32 Burdyny, Arnold, Rowe (b24) 2014; 62 Razelos (b35) 1980 Bell, Wronski, Quoilin, Lemort (b44) 2014; 53 Insinga, Bjørk, Smith, Bahl (b18) 2016; 5 Bez, Nakashima, Lang, de Lima, Machado, Lozano, Barbosa (b45) 2020; 28 Rowe (b26) 2020; 127 Coey (b46) 2010 Jeffreson (b38) 1972; 18 Peixer, Dutra, Calomeno, de Sá, Lang, Lozano, Barbosa (b52) 2020 Silva, Ventura, Araújo (b31) 2021; 45 Lionte, Risser, Muller (b5) 2021; 122 Kaviany (b39) 1995 Mitishita, Barreira, Negrao, Hermes (b2) 2013; 50 (b56) 1998 Pallares, Grau (b37) 2010; 37 Nielsen, Bahl, Smith, Bjørk, Pryds, Hattel (b10) 2009; 32 Browne, Bansal (b1) 2002; 25 Teyber, Trevizoli, Christiaanse, Govindappa, Niknia, Rowe (b25) 2018; 128 Qian, Yuan, Yu, Yan (b29) 2017; 84 Fortkamp (b30) 2019 Mugica, Poncet, Bouchard (b9) 2018; 141 Trevizoli, Nakashima, Barbosa (b14) 2016; 72 Bjørk, Smith, Bahl (b20) 2010; 322 Schmidt (b57) 1945 Insinga, Bahl, Bjørk, Smith (b49) 2016; 407 Engelbrecht (b13) 2008 Héder (b32) 2017; 22 Liang, Nielsen, Engelbrecht, Bahl (b27) 2020; 181 Nakashima, Fortkamp, de Sá, dos Santos, Hoffmann, Peixer, Dutra, Ribeiro, Lozano, Barbosa (b6) 2021; 122 Rowe (b23) 2012; 52 Oliveira, Trevizoli, Barbosa, Prata (b11) 2012; 35 Tagliafico, Scarpa, Tagliafico (b28) 2013; 36 Churchill (b55) 1977; 84 Lorenz, Kevlishvili (b17) 2017; 73 Vieira, Bez, Kuepferling, Rosa, Schafer, Plá Cid, Vieyra, Basso, Lozano, Barbosa (b15) 2021; 183 Calomeno, Dutra, de Sá, Peixer, Lozano, Barbosa Jr. (b59) 2021 Sato, Ishii (b47) 1989; 66 Dragutinovic, Baclic (b34) 1998 Niknia, Campbell, Christiaanse, Govindappa, Teyber, Trevizoli, Rowe (b51) 2016; 106 Wang, Chi, Chang (b53) 2000; 43 Li (10.1016/j.applthermaleng.2021.117918_b42) 1977; 32 Rowe (10.1016/j.applthermaleng.2021.117918_b26) 2020; 127 Pallares (10.1016/j.applthermaleng.2021.117918_b37) 2010; 37 Lionte (10.1016/j.applthermaleng.2021.117918_b5) 2021; 122 Hadley (10.1016/j.applthermaleng.2021.117918_b40) 1986; 29 Trevizoli (10.1016/j.applthermaleng.2021.117918_b14) 2016; 72 Liang (10.1016/j.applthermaleng.2021.117918_b27) 2020; 181 Sato (10.1016/j.applthermaleng.2021.117918_b47) 1989; 66 Razelos (10.1016/j.applthermaleng.2021.117918_b35) 1980 Rowe (10.1016/j.applthermaleng.2021.117918_b23) 2012; 52 Bjørk (10.1016/j.applthermaleng.2021.117918_b50) 2010; 33 Bez (10.1016/j.applthermaleng.2021.117918_b45) 2020; 28 Aprea (10.1016/j.applthermaleng.2021.117918_b12) 2015; 90 Zhang (10.1016/j.applthermaleng.2021.117918_b3) 2021; 185 Fortkamp (10.1016/j.applthermaleng.2021.117918_b22) 2017; 444 Silva (10.1016/j.applthermaleng.2021.117918_b31) 2021; 45 Nielsen (10.1016/j.applthermaleng.2021.117918_b10) 2009; 32 Niknia (10.1016/j.applthermaleng.2021.117918_b51) 2016; 106 Çengel (10.1016/j.applthermaleng.2021.117918_b58) 2006 Mugica (10.1016/j.applthermaleng.2021.117918_b9) 2018; 141 Jeffreson (10.1016/j.applthermaleng.2021.117918_b38) 1972; 18 Ergun (10.1016/j.applthermaleng.2021.117918_b43) 1952; 48 Aharoni (10.1016/j.applthermaleng.2021.117918_b48) 1998; 83 Wang (10.1016/j.applthermaleng.2021.117918_b53) 2000; 43 Bell (10.1016/j.applthermaleng.2021.117918_b44) 2014; 53 Fortkamp (10.1016/j.applthermaleng.2021.117918_b30) 2019 Dragutinovic (10.1016/j.applthermaleng.2021.117918_b34) 1998 Burdyny (10.1016/j.applthermaleng.2021.117918_b24) 2014; 62 Browne (10.1016/j.applthermaleng.2021.117918_b1) 2002; 25 Héder (10.1016/j.applthermaleng.2021.117918_b32) 2017; 22 Yagi (10.1016/j.applthermaleng.2021.117918_b41) 1960; 6 Coey (10.1016/j.applthermaleng.2021.117918_b46) 2010 You (10.1016/j.applthermaleng.2021.117918_b16) 2016; 405 Renaldi (10.1016/j.applthermaleng.2021.117918_b7) 2021; 296 Teyber (10.1016/j.applthermaleng.2021.117918_b25) 2018; 128 Churchill (10.1016/j.applthermaleng.2021.117918_b55) 1977; 84 Trevizoli (10.1016/j.applthermaleng.2021.117918_b61) 2016; 72 Lorenz (10.1016/j.applthermaleng.2021.117918_b17) 2017; 73 Tagliafico (10.1016/j.applthermaleng.2021.117918_b28) 2013; 36 Schmidt (10.1016/j.applthermaleng.2021.117918_b57) 1945 Nellis (10.1016/j.applthermaleng.2021.117918_b36) 2006; 49 Johra (10.1016/j.applthermaleng.2021.117918_b4) 2019; 136 Insinga (10.1016/j.applthermaleng.2021.117918_b49) 2016; 407 Insinga (10.1016/j.applthermaleng.2021.117918_b18) 2016; 5 Oliveira (10.1016/j.applthermaleng.2021.117918_b11) 2012; 35 Qian (10.1016/j.applthermaleng.2021.117918_b29) 2017; 84 Mitishita (10.1016/j.applthermaleng.2021.117918_b2) 2013; 50 Vieira (10.1016/j.applthermaleng.2021.117918_b15) 2021; 183 Calomeno (10.1016/j.applthermaleng.2021.117918_b59) 2021 Churchill (10.1016/j.applthermaleng.2021.117918_b60) 1975; 18 Bjørk (10.1016/j.applthermaleng.2021.117918_b20) 2010; 322 Kaviany (10.1016/j.applthermaleng.2021.117918_b39) 1995 Gnielinski (10.1016/j.applthermaleng.2021.117918_b54) 1976; 16 Engelbrecht (10.1016/j.applthermaleng.2021.117918_b13) 2008 Zhang (10.1016/j.applthermaleng.2021.117918_b8) 2021; 143 Nakashima (10.1016/j.applthermaleng.2021.117918_b6) 2021; 122 Peixer (10.1016/j.applthermaleng.2021.117918_b52) 2020 (10.1016/j.applthermaleng.2021.117918_b56) 1998 Shah (10.1016/j.applthermaleng.2021.117918_b33) 2003 Teyber (10.1016/j.applthermaleng.2021.117918_b19) 2018; 123 Trevizoli (10.1016/j.applthermaleng.2021.117918_b21) 2015; 395 |
References_xml | – volume: 29 start-page: 909 year: 1986 end-page: 920 ident: b40 article-title: Thermal conductivity of packed metal powder publication-title: Int. J. Heat Mass Transfer – volume: 181 year: 2020 ident: b27 article-title: Heat transfer figures of merit for mapping passive regenerator performance to active regenerator cooling power publication-title: Appl. Therm. Eng. – volume: 405 start-page: 231 year: 2016 end-page: 237 ident: b16 article-title: Numerical simulation and performance improvement of a multi-polar concentric halbach cylindrical magnet for magnetic refrigeration publication-title: J. Magn. Magn. Mater. – volume: 49 start-page: 329 year: 2006 end-page: 340 ident: b36 article-title: Regenerative heat exchangers with significant entrained fluid heat capacity publication-title: Int. J. Heat Mass Transfer – year: 1998 ident: b56 article-title: Design and performance evaluation of heat exchangers: The effectiveness-NTU method Parts 1-5 – volume: 141 start-page: 600 year: 2018 end-page: 616 ident: b9 article-title: An open source DNS solver for the simulation of active magnetocaloric regenerative cycles publication-title: Appl. Therm. Eng. – volume: 18 start-page: 409 year: 1972 end-page: 420 ident: b38 article-title: Prediction of breakthrough curves in packed beds publication-title: AIChE J. – volume: 62 start-page: 177 year: 2014 end-page: 184 ident: b24 article-title: AMR thermodynamics: Semi-analytic modeling publication-title: Cryogenics – volume: 72 start-page: 192 year: 2016 end-page: 205 ident: b61 article-title: Performance evaluation of an active magnetic regenerator for cooling applications – part I: Experimental analysis and thermodynamic performance publication-title: Int. J. Refrig. – volume: 127 year: 2020 ident: b26 article-title: Thermal effectiveness of active caloric regenerators publication-title: J. Appl. Phys. – volume: 296 year: 2021 ident: b7 article-title: Patent landscape of not-in-kind active cooling technologies between 1998 and 2017 publication-title: J. Cleaner Prod. – volume: 444 start-page: 87 year: 2017 end-page: 97 ident: b22 article-title: Analytical solution of concentric two-pole halbach cylinders as a preliminary design tool for magnetic refrigeration systems publication-title: J. Magn. Magn. Mater. – year: 1995 ident: b39 article-title: Principles of Heat Transfer in Porous Media – volume: 407 start-page: 369 year: 2016 end-page: 376 ident: b49 article-title: Performance of halbach magnet arrays with finite coercivity publication-title: J. Magn. Magn. Mater. – volume: 5 start-page: 1 year: 2016 end-page: 16 ident: b18 article-title: Globally optimal segmentation of permanent-magnet systems publication-title: Phys. Rev. A – year: 1998 ident: b34 article-title: Operation of counterflow regenerators – volume: 37 start-page: 1187 year: 2010 end-page: 1190 ident: b37 article-title: A modification of a nusselt number correlation for forced convection in porous media publication-title: Int. Commun. Heat Mass Transfer – volume: 48 start-page: 89 year: 1952 end-page: 94 ident: b43 article-title: Fluid flow through packed column publication-title: Chem. Eng. Progr. – year: 2021 ident: b59 article-title: Temperature pull down of a retrofit wine refrigerator cabinet cooled by a caloric cooling system emulator publication-title: Anais Acad. Brasil. Ciências – volume: 35 start-page: 98 year: 2012 end-page: 114 ident: b11 article-title: A 2D hybrid model of the fluid flow and heat transfer in a reciprocating active magnetic regenerator publication-title: Int. J. Refrig. – year: 2008 ident: b13 article-title: A Numerical Model of an Active Magnetic Regenerator Refrigerator with Experimental Validation – volume: 43 start-page: 2693 year: 2000 end-page: 2700 ident: b53 article-title: Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part II: Correlation publication-title: Int. J. Heat Mass Transfer – volume: 32 start-page: 1055 year: 1977 end-page: 1066 ident: b42 article-title: Heat transfer in packed beds - a reevaluation publication-title: Chem. Eng. Sci. – volume: 45 start-page: 18498 year: 2021 end-page: 18539 ident: b31 article-title: Caloric devices: A review on numerical modeling and optimization strategies publication-title: Int. J. Energy Res. – volume: 122 start-page: 110 year: 2021 end-page: 121 ident: b6 article-title: A magnetic wine cooler prototype publication-title: Int. J. Refrig. – volume: 84 start-page: 151 year: 2017 end-page: 164 ident: b29 article-title: Critical parameters in design of active magnetocaloric regenerators for magnetic refrigeration applications publication-title: Int. J. Refrig. – volume: 25 start-page: 597 year: 2002 end-page: 610 ident: b1 article-title: Transient simulation of vapour-compression packaged liquid chillers publication-title: Int. J. Refrig. – volume: 123 year: 2018 ident: b19 article-title: Topology optimization of reduced rare-earth permanent magnet arrays with finite coercivity publication-title: J. Appl. Phys. – volume: 53 start-page: 2498 year: 2014 end-page: 2508 ident: b44 article-title: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop publication-title: Ind. Eng. Chem. Res. – volume: 106 start-page: 601 year: 2016 end-page: 612 ident: b51 article-title: Impacts of configuration losses on active magnetic regenerator device performance publication-title: Appl. Therm. Eng. – volume: 322 start-page: 133 year: 2010 end-page: 141 ident: b20 article-title: Analysis of the magnetic field, force, and torque for two-dimensional halbach cylinders publication-title: J. Magn. Magn. Mater. – volume: 83 start-page: 3432 year: 1998 end-page: 3434 ident: b48 article-title: Demagnetizing factors for rectangular ferromagnetic prisms publication-title: J. Appl. Phys. – volume: 90 start-page: 376 year: 2015 end-page: 383 ident: b12 article-title: A comparison between experimental and 2D numerical results of a packed-bed active magnetic regenerator publication-title: Appl. Therm. Eng. – volume: 395 start-page: 109 year: 2015 end-page: 122 ident: b21 article-title: Design of nested halbach cylinder arrays for magnetic refrigeration applications publication-title: J. Magn. Magn. Mater. – volume: 16 start-page: 359 year: 1976 end-page: 368 ident: b54 article-title: New equations for heat and mass transfer in turbulent pipe and channel flow publication-title: Int. Chem. Eng. – year: 1980 ident: b35 article-title: Personal communication – year: 2020 ident: b52 article-title: Influence of heat exchanger design on the thermal performance of a domestic wine cooler driven by a magnetic refrigeration system publication-title: Anais Acad. Brasil. Ciências – year: 2006 ident: b58 article-title: Fluid Mechanics: Fundamentals and Applications – year: 2019 ident: b30 article-title: Integrated Design of the Magnet-Regenerator Assembly for a Magnetic Refrigerator – volume: 185 year: 2021 ident: b3 article-title: Numerical study of geothermal district heating from a ground heat exchanger coupled with a heat pump system publication-title: Appl. Therm. Eng. – volume: 84 start-page: 91 year: 1977 end-page: 92 ident: b55 article-title: Friction-factor equation spans all fluid-flow regimes publication-title: Chem. Eng. J. – year: 2010 ident: b46 article-title: Magnetism and Magnetic Materials – year: 2003 ident: b33 article-title: Fundamentals of Heat Exchanger Design – volume: 66 start-page: 983 year: 1989 end-page: 985 ident: b47 article-title: Simple and approximate expressions of demagnetizing factors of uniformly magnetized rectangular rod and cylinder publication-title: J. Appl. Phys. – volume: 52 start-page: 111 year: 2012 end-page: 118 ident: b23 article-title: Thermodynamics of active magnetic regenerators: Part i publication-title: Cryogenics – volume: 183 year: 2021 ident: b15 article-title: Magnetocaloric properties of spheroidal la(fe,mn,si)13hy granules and their performance in epoxy-bonded active magnetic regenerators publication-title: Appl. Therm. Eng. – volume: 33 start-page: 437 year: 2010 end-page: 448 ident: b50 article-title: Review and comparison of magnet designs for magnetic refrigeration publication-title: Int. J. Refrig. – volume: 73 start-page: 246 year: 2017 end-page: 256 ident: b17 article-title: Designing of halbach cylinder based magnetic assembly for a rotating magnetic refrigerator. Part 1: Designing procedure publication-title: Int. J. Refrig. – volume: 50 start-page: 1376 year: 2013 end-page: 1385 ident: b2 article-title: Thermoeconomic design and optimization of frost-free refrigerators publication-title: Appl. Therm. Eng. – volume: 143 year: 2021 ident: b8 article-title: Solutions to obstacles in the commercialization of room-temperature magnetic refrigeration publication-title: Renew. Sustain. Energy Rev. – volume: 122 start-page: 256 year: 2021 end-page: 265 ident: b5 article-title: A 15 kW magnetocaloric proof-of-concept unit: Initial development and first experimental results publication-title: Int. J. Refrig. – volume: 72 start-page: 206 year: 2016 end-page: 217 ident: b14 article-title: Performance evaluation of an active magnetic regenerator for cooling applications – part II: Mathematical modeling and thermal losses publication-title: Int. J. Refrig. – volume: 22 start-page: 3 year: 2017 ident: b32 article-title: From NASA to EU: the evolution of the TRL scale in public sector innovation publication-title: The Innovation Journal: The Public Sector Innovation Journal – volume: 32 start-page: 1478 year: 2009 end-page: 1486 ident: b10 article-title: Detailed numerical modeling of a linear parallel-plate active magnetic regenerator publication-title: Int. J. Refrig. – volume: 36 start-page: 941 year: 2013 end-page: 949 ident: b28 article-title: A dimensionless description of active magnetic regenerators to compare their performance and to simplify their optimization publication-title: Int. J. Refrig. – volume: 28 year: 2020 ident: b45 article-title: Performance assessment and layer fraction optimization of gd–y multilayer regenerators for near room-temperature magnetic cooling publication-title: Int. J. Air-Condition. Refriger. – volume: 128 start-page: 1022 year: 2018 end-page: 1029 ident: b25 article-title: Semi-analytic AMR element model publication-title: Appl. Therm. Eng. – volume: 6 start-page: 543 year: 1960 end-page: 546 ident: b41 article-title: Studies on axial effective thermal conductivities in packed beds publication-title: AIChE J. – year: 1945 ident: b57 article-title: La production calorique des surfaces munies dailettes – volume: 18 start-page: 1323 year: 1975 end-page: 1329 ident: b60 article-title: Correlating equations for laminar and turbulent free convection from a vertical plate publication-title: Int. J. Heat Mass Transfer – volume: 136 start-page: 115 year: 2019 end-page: 126 ident: b4 article-title: Integration of a magnetocaloric heat pump in an energy flexible residential building publication-title: Renew. Energy – volume: 62 start-page: 177 year: 2014 ident: 10.1016/j.applthermaleng.2021.117918_b24 article-title: AMR thermodynamics: Semi-analytic modeling publication-title: Cryogenics doi: 10.1016/j.cryogenics.2014.03.013 – volume: 405 start-page: 231 year: 2016 ident: 10.1016/j.applthermaleng.2021.117918_b16 article-title: Numerical simulation and performance improvement of a multi-polar concentric halbach cylindrical magnet for magnetic refrigeration publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2015.12.077 – volume: 32 start-page: 1055 year: 1977 ident: 10.1016/j.applthermaleng.2021.117918_b42 article-title: Heat transfer in packed beds - a reevaluation publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(77)80143-7 – year: 1998 ident: 10.1016/j.applthermaleng.2021.117918_b34 – year: 1945 ident: 10.1016/j.applthermaleng.2021.117918_b57 – volume: 73 start-page: 246 year: 2017 ident: 10.1016/j.applthermaleng.2021.117918_b17 article-title: Designing of halbach cylinder based magnetic assembly for a rotating magnetic refrigerator. Part 1: Designing procedure publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2016.09.003 – year: 1998 ident: 10.1016/j.applthermaleng.2021.117918_b56 – volume: 36 start-page: 941 issue: 3 year: 2013 ident: 10.1016/j.applthermaleng.2021.117918_b28 article-title: A dimensionless description of active magnetic regenerators to compare their performance and to simplify their optimization publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2012.10.024 – volume: 5 start-page: 1 issue: 6 year: 2016 ident: 10.1016/j.applthermaleng.2021.117918_b18 article-title: Globally optimal segmentation of permanent-magnet systems publication-title: Phys. Rev. A – volume: 52 start-page: 111 issue: 2–3 year: 2012 ident: 10.1016/j.applthermaleng.2021.117918_b23 article-title: Thermodynamics of active magnetic regenerators: Part i publication-title: Cryogenics doi: 10.1016/j.cryogenics.2011.09.005 – volume: 53 start-page: 2498 issue: 6 year: 2014 ident: 10.1016/j.applthermaleng.2021.117918_b44 article-title: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie4033999 – year: 2021 ident: 10.1016/j.applthermaleng.2021.117918_b59 article-title: Temperature pull down of a retrofit wine refrigerator cabinet cooled by a caloric cooling system emulator publication-title: Anais Acad. Brasil. Ciências – volume: 72 start-page: 192 year: 2016 ident: 10.1016/j.applthermaleng.2021.117918_b61 article-title: Performance evaluation of an active magnetic regenerator for cooling applications – part I: Experimental analysis and thermodynamic performance publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2016.07.009 – volume: 122 start-page: 256 year: 2021 ident: 10.1016/j.applthermaleng.2021.117918_b5 article-title: A 15 kW magnetocaloric proof-of-concept unit: Initial development and first experimental results publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2020.09.019 – volume: 407 start-page: 369 year: 2016 ident: 10.1016/j.applthermaleng.2021.117918_b49 article-title: Performance of halbach magnet arrays with finite coercivity publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2016.01.076 – volume: 16 start-page: 359 year: 1976 ident: 10.1016/j.applthermaleng.2021.117918_b54 article-title: New equations for heat and mass transfer in turbulent pipe and channel flow publication-title: Int. Chem. Eng. – volume: 49 start-page: 329 issue: 1–2 year: 2006 ident: 10.1016/j.applthermaleng.2021.117918_b36 article-title: Regenerative heat exchangers with significant entrained fluid heat capacity publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2005.06.021 – year: 2019 ident: 10.1016/j.applthermaleng.2021.117918_b30 – volume: 183 issue: P1 year: 2021 ident: 10.1016/j.applthermaleng.2021.117918_b15 article-title: Magnetocaloric properties of spheroidal la(fe,mn,si)13hy granules and their performance in epoxy-bonded active magnetic regenerators publication-title: Appl. Therm. Eng. – volume: 296 year: 2021 ident: 10.1016/j.applthermaleng.2021.117918_b7 article-title: Patent landscape of not-in-kind active cooling technologies between 1998 and 2017 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2021.126507 – volume: 45 start-page: 18498 issue: 13 year: 2021 ident: 10.1016/j.applthermaleng.2021.117918_b31 article-title: Caloric devices: A review on numerical modeling and optimization strategies publication-title: Int. J. Energy Res. doi: 10.1002/er.7023 – volume: 33 start-page: 437 issue: 3 year: 2010 ident: 10.1016/j.applthermaleng.2021.117918_b50 article-title: Review and comparison of magnet designs for magnetic refrigeration publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2009.12.012 – volume: 6 start-page: 543 issue: 4 year: 1960 ident: 10.1016/j.applthermaleng.2021.117918_b41 article-title: Studies on axial effective thermal conductivities in packed beds publication-title: AIChE J. doi: 10.1002/aic.690060407 – volume: 18 start-page: 409 issue: 2 year: 1972 ident: 10.1016/j.applthermaleng.2021.117918_b38 article-title: Prediction of breakthrough curves in packed beds publication-title: AIChE J. doi: 10.1002/aic.690180225 – volume: 395 start-page: 109 year: 2015 ident: 10.1016/j.applthermaleng.2021.117918_b21 article-title: Design of nested halbach cylinder arrays for magnetic refrigeration applications publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2015.07.023 – volume: 141 start-page: 600 issue: February year: 2018 ident: 10.1016/j.applthermaleng.2021.117918_b9 article-title: An open source DNS solver for the simulation of active magnetocaloric regenerative cycles publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.06.007 – volume: 128 start-page: 1022 year: 2018 ident: 10.1016/j.applthermaleng.2021.117918_b25 article-title: Semi-analytic AMR element model publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.09.082 – volume: 18 start-page: 1323 issue: 11 year: 1975 ident: 10.1016/j.applthermaleng.2021.117918_b60 article-title: Correlating equations for laminar and turbulent free convection from a vertical plate publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(75)90243-4 – volume: 50 start-page: 1376 issue: 1 year: 2013 ident: 10.1016/j.applthermaleng.2021.117918_b2 article-title: Thermoeconomic design and optimization of frost-free refrigerators publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.06.024 – volume: 185 year: 2021 ident: 10.1016/j.applthermaleng.2021.117918_b3 article-title: Numerical study of geothermal district heating from a ground heat exchanger coupled with a heat pump system publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.116335 – volume: 43 start-page: 2693 issue: 15 year: 2000 ident: 10.1016/j.applthermaleng.2021.117918_b53 article-title: Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part II: Correlation publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(99)00333-6 – volume: 28 issue: 3 year: 2020 ident: 10.1016/j.applthermaleng.2021.117918_b45 article-title: Performance assessment and layer fraction optimization of gd–y multilayer regenerators for near room-temperature magnetic cooling publication-title: Int. J. Air-Condition. Refriger. doi: 10.1142/S2010132520500273 – volume: 72 start-page: 206 year: 2016 ident: 10.1016/j.applthermaleng.2021.117918_b14 article-title: Performance evaluation of an active magnetic regenerator for cooling applications – part II: Mathematical modeling and thermal losses publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2016.07.010 – volume: 37 start-page: 1187 year: 2010 ident: 10.1016/j.applthermaleng.2021.117918_b37 article-title: A modification of a nusselt number correlation for forced convection in porous media publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2010.07.014 – year: 2008 ident: 10.1016/j.applthermaleng.2021.117918_b13 – volume: 35 start-page: 98 issue: 1 year: 2012 ident: 10.1016/j.applthermaleng.2021.117918_b11 article-title: A 2D hybrid model of the fluid flow and heat transfer in a reciprocating active magnetic regenerator publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2011.08.009 – volume: 444 start-page: 87 year: 2017 ident: 10.1016/j.applthermaleng.2021.117918_b22 article-title: Analytical solution of concentric two-pole halbach cylinders as a preliminary design tool for magnetic refrigeration systems publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2017.07.072 – volume: 127 issue: 20 year: 2020 ident: 10.1016/j.applthermaleng.2021.117918_b26 article-title: Thermal effectiveness of active caloric regenerators publication-title: J. Appl. Phys. doi: 10.1063/5.0003531 – year: 2010 ident: 10.1016/j.applthermaleng.2021.117918_b46 – volume: 123 issue: 19 year: 2018 ident: 10.1016/j.applthermaleng.2021.117918_b19 article-title: Topology optimization of reduced rare-earth permanent magnet arrays with finite coercivity publication-title: J. Appl. Phys. doi: 10.1063/1.5026862 – volume: 84 start-page: 91 year: 1977 ident: 10.1016/j.applthermaleng.2021.117918_b55 article-title: Friction-factor equation spans all fluid-flow regimes publication-title: Chem. Eng. J. – volume: 22 start-page: 3 year: 2017 ident: 10.1016/j.applthermaleng.2021.117918_b32 article-title: From NASA to EU: the evolution of the TRL scale in public sector innovation publication-title: The Innovation Journal: The Public Sector Innovation Journal – volume: 122 start-page: 110 year: 2021 ident: 10.1016/j.applthermaleng.2021.117918_b6 article-title: A magnetic wine cooler prototype publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2020.11.015 – volume: 136 start-page: 115 year: 2019 ident: 10.1016/j.applthermaleng.2021.117918_b4 article-title: Integration of a magnetocaloric heat pump in an energy flexible residential building publication-title: Renew. Energy doi: 10.1016/j.renene.2018.12.102 – volume: 29 start-page: 909 year: 1986 ident: 10.1016/j.applthermaleng.2021.117918_b40 article-title: Thermal conductivity of packed metal powder publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(86)90186-9 – volume: 143 year: 2021 ident: 10.1016/j.applthermaleng.2021.117918_b8 article-title: Solutions to obstacles in the commercialization of room-temperature magnetic refrigeration publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.110933 – volume: 32 start-page: 1478 year: 2009 ident: 10.1016/j.applthermaleng.2021.117918_b10 article-title: Detailed numerical modeling of a linear parallel-plate active magnetic regenerator publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2009.03.003 – volume: 181 year: 2020 ident: 10.1016/j.applthermaleng.2021.117918_b27 article-title: Heat transfer figures of merit for mapping passive regenerator performance to active regenerator cooling power publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115993 – volume: 106 start-page: 601 year: 2016 ident: 10.1016/j.applthermaleng.2021.117918_b51 article-title: Impacts of configuration losses on active magnetic regenerator device performance publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.06.039 – volume: 83 start-page: 3432 issue: 6 year: 1998 ident: 10.1016/j.applthermaleng.2021.117918_b48 article-title: Demagnetizing factors for rectangular ferromagnetic prisms publication-title: J. Appl. Phys. doi: 10.1063/1.367113 – year: 2006 ident: 10.1016/j.applthermaleng.2021.117918_b58 – volume: 322 start-page: 133 issue: 1 year: 2010 ident: 10.1016/j.applthermaleng.2021.117918_b20 article-title: Analysis of the magnetic field, force, and torque for two-dimensional halbach cylinders publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2009.08.044 – year: 1980 ident: 10.1016/j.applthermaleng.2021.117918_b35 – volume: 90 start-page: 376 year: 2015 ident: 10.1016/j.applthermaleng.2021.117918_b12 article-title: A comparison between experimental and 2D numerical results of a packed-bed active magnetic regenerator publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.07.020 – volume: 84 start-page: 151 year: 2017 ident: 10.1016/j.applthermaleng.2021.117918_b29 article-title: Critical parameters in design of active magnetocaloric regenerators for magnetic refrigeration applications publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2017.08.013 – year: 2020 ident: 10.1016/j.applthermaleng.2021.117918_b52 article-title: Influence of heat exchanger design on the thermal performance of a domestic wine cooler driven by a magnetic refrigeration system publication-title: Anais Acad. Brasil. Ciências – year: 2003 ident: 10.1016/j.applthermaleng.2021.117918_b33 – year: 1995 ident: 10.1016/j.applthermaleng.2021.117918_b39 – volume: 25 start-page: 597 issue: 5 year: 2002 ident: 10.1016/j.applthermaleng.2021.117918_b1 article-title: Transient simulation of vapour-compression packaged liquid chillers publication-title: Int. J. Refrig. doi: 10.1016/S0140-7007(01)00060-3 – volume: 48 start-page: 89 year: 1952 ident: 10.1016/j.applthermaleng.2021.117918_b43 article-title: Fluid flow through packed column publication-title: Chem. Eng. Progr. – volume: 66 start-page: 983 issue: 983–985 year: 1989 ident: 10.1016/j.applthermaleng.2021.117918_b47 article-title: Simple and approximate expressions of demagnetizing factors of uniformly magnetized rectangular rod and cylinder publication-title: J. Appl. Phys. doi: 10.1063/1.343481 |
SSID | ssj0012874 |
Score | 2.439645 |
Snippet | This work presents a dynamic lumped parameter model to predict the transient and steady-state cabinet temperature, energy consumption and efficiency parameters... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 117918 |
SubjectTerms | Active magnetic regenerator Axial flow pumps Cabinets Cooling rate Energy consumption Energy efficiency Heat exchangers Hydraulic equipment Induction motors Lumped analysis Magnetic materials Magnetic properties Magnetic refrigeration Mathematical models Multilayers Parameter estimation Parameters Power sources Refrigerators Rejection rate Retrofitting Steady state Thermal modelling Time response |
Title | A lumped-element magnetic refrigerator model |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2021.117918 https://www.proquest.com/docview/2639718553 |
Volume | 204 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lguhBfGK1lj30aGyySXY3eJBSLFWxFyv0FpLdRCq2Fq1Xf7uZfVQrHgpel81mmZ3MfLMz8w1CbSt4DKTPOHJWY06JxFKHGscw4IQwQ4yF_x33w2jwyG_HYlxDvaoXBsoqS9tf2PTcWpdXOqU0O_PJpPNAmZDe_QEDFmU85zHlPAYtv_hclnlQ4HPPgy4hMdy9idrfNV6QJAacNdUwtsRHiyGFLKaEESB_u6lfBjv3Qv1dtFPCx6BbvOEeqtnZPtr-QSp4gM67gTc4c5thW5SGB1P9NINexcBv44Nxm2fWg3wGziEa9a9HvQEuZyLglIlkgTOXWBo6oplwoYsiw4whUtMoITLJBBOZcDL1uCgjLJbOptbjoTgjUWasdpodofrsdWaPUZBw49GUI6ENLU_gHFObMiPTlLJUO9lAl5UEVFryhcPYihdVFYY9q1X5KZCfKuTXQGK5el7wZqy57qoStlrRA-VN_JpPaFbfSJXn8V2FkL_00ESwk39vcIq2QuiBgEI00UT1xduHPfPIZGFaueq10Eb35m4w_ALA3OVL |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLamTeJxQDzFYEAPOxItbZquEQc0IdDGHheGtFuUtAkCQZlg_H_iPgZDHJC4VnITuYn9ubY_A7QND7tI-kwiaxQJfSqIUIEiXRxwQpmm2uD_jvEk6t-HtzM-q8FV1QuDZZWl7S9sem6tyyedUpud-eNj585nXDj3hwxYPguRx7SB7FS8Do3eYNifLJMJSOmex11cEBRYg_ZXmRfmiRFqvSicXOICxsDHRKbAKSC_e6ofNjt3RDfbsFUiSK9XbHIHaibbhc1vvIJ7cN7znM2Zm5SYojrce1EPGbYrem4ZF4-bPLnu5WNw9mF6cz296pNyLAJJGI8XJLWx8QNLFeM2sFGkmdZUKD-KqYhTznjKrUgcNEop6wprEuMgUTelUaqNsoodQD17zcwheHGoHaCyNDCBCWO8yr5JmBZJ4rNEWdGEi0oDMikpw3FyxbOsasOe5Kr-JOpPFvprAl9KzwvqjD_KXVbKlitHQTor_8c3tKpvJMsr-S4DTGE6dMLZ0b8XOIP1_nQ8kqPBZHgMGwG2RGBdGm9BffH2YU4cUFno0_IgfgKdr-f8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+lumped-element+magnetic+refrigerator+model&rft.jtitle=Applied+thermal+engineering&rft.au=Nakashima%2C+A.T.D.&rft.au=Peixer%2C+G.F.&rft.au=Lozano%2C+J.A.&rft.au=Barbosa%2C+J.R.&rft.date=2022-03-05&rft.issn=1359-4311&rft.volume=204&rft.spage=117918&rft_id=info:doi/10.1016%2Fj.applthermaleng.2021.117918&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2021_117918 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |