Phase-field models for fluid mixtures

The paper investigates the modelling of phase transitions in multiphase fluid mixtures. The order parameter is identified with the set of concentrations and is a phase field in that it varies smoothly in the space region. This in turn requires that the continuity equations be regarded as constraints...

Full description

Saved in:
Bibliographic Details
Published inMathematical and computer modelling Vol. 45; no. 9; pp. 1042 - 1052
Main Author Morro, A.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.05.2007
Elsevier Science
Subjects
Online AccessGet full text
ISSN0895-7177
1872-9479
DOI10.1016/j.mcm.2006.08.011

Cover

Loading…
Abstract The paper investigates the modelling of phase transitions in multiphase fluid mixtures. The order parameter is identified with the set of concentrations and is a phase field in that it varies smoothly in the space region. This in turn requires that the continuity equations be regarded as constraints on the pertinent fields. The phase field is viewed as an internal variable whose evolution is subject to thermodynamic requirements. The second law allows for an extra entropy flux which proves to be proportional to the time derivative of the order parameter. Previous papers on the subject are revisited. It follows that their recourse to external mass supplies or to ad-hoc entropy fluxes can be avoided. The analogy of the phase-field model, with that of mixtures with mass–density gradients and extra entropy flux, is emphasized.
AbstractList The paper investigates the modelling of phase transitions in multiphase fluid mixtures. The order parameter is identified with the set of concentrations and is a phase field in that it varies smoothly in the space region. This in turn requires that the continuity equations be regarded as constraints on the pertinent fields. The phase field is viewed as an internal variable whose evolution is subject to thermodynamic requirements. The second law allows for an extra entropy flux which proves to be proportional to the time derivative of the order parameter. Previous papers on the subject are revisited. It follows that their recourse to external mass supplies or to ad-hoc entropy fluxes can be avoided. The analogy of the phase-field model, with that of mixtures with mass–density gradients and extra entropy flux, is emphasized.
Author Morro, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Morro
  fullname: Morro, A.
  email: morro@dibe.unige.it
  organization: University of Genoa, DIBE, Via Opera Pia 11a, 16145 Genoa, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18593566$$DView record in Pascal Francis
BookMark eNp9kE9LwzAYh4MouE0_gLdd5q01SZsmwZMM_8FAD7uHt-kbzEjbmXSi396ODQQPO73w8jy_wzMl513fISE3jOaMsupuk7e2zTmlVU5VThk7IxOmJM90KfU5mVClRSaZlJdkmtKGUio0VROyeP-AhJnzGJp52zcY0tz1ce7Czo8P_z3sIqYrcuEgJLw-3hlZPz2uly_Z6u35dfmwymwh1JA1teCalbyApmwKDZY3laNMA9jauQKERCnLSjDkdSEZ1ABYlchLoVCpspiR28PsNvafO0yDaX2yGAJ02O-S4XpcZ1yM4OIIQrIQXITO-mS20bcQfwxTQheiqkaOHTgb-5Qiuj-Emn03szFjN7PvZqgyY7fRkf8c6wcYfN8NEXw4ad4fzDEifnmMJlmPncXGR7SDaXp_wv4Ft5uIhA
CitedBy_id crossref_primary_10_1007_s00161_014_0355_8
crossref_primary_10_1007_s00707_016_1625_2
crossref_primary_10_1007_s00332_014_9211_z
crossref_primary_10_1515_jnet_2016_0004
crossref_primary_10_1109_TCPMT_2023_3242235
crossref_primary_10_1007_s10659_015_9547_0
crossref_primary_10_1016_j_physd_2010_11_014
crossref_primary_10_1515_jnet_2017_0052
crossref_primary_10_1007_s00161_023_01203_1
crossref_primary_10_1016_j_euromechflu_2013_12_002
crossref_primary_10_3233_ASY_151309
crossref_primary_10_1007_s11401_010_0603_6
crossref_primary_10_1017_S0022112009992497
crossref_primary_10_1515_JNETDY_2009_012
crossref_primary_10_1007_s10092_017_0233_4
crossref_primary_10_1007_s11012_021_01338_y
crossref_primary_10_1007_s00033_013_0395_0
crossref_primary_10_1007_s00033_011_0139_y
crossref_primary_10_1016_j_mcm_2007_11_001
crossref_primary_10_20948_prepr_2020_96
Cites_doi 10.1016/0167-2789(92)90078-2
10.1023/B:MECC.0000029388.33873.bd
10.1016/j.physd.2006.01.002
10.1142/S0218202596000341
10.1016/0167-2789(95)00173-5
10.1016/0167-2789(93)90128-N
ContentType Journal Article
Copyright 2006 Elsevier Ltd
2007 INIST-CNRS
Copyright_xml – notice: 2006 Elsevier Ltd
– notice: 2007 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.mcm.2006.08.011
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1872-9479
EndPage 1052
ExternalDocumentID 18593566
10_1016_j_mcm_2006_08_011
S0895717706003372
GroupedDBID --K
--M
-DZ
-~X
.DC
.~1
0R~
0SF
186
1B1
1RT
1~.
1~5
29M
4.4
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABFNM
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
HAMUX
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SSB
SSD
SST
SSW
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
XSW
YNT
YQT
ZMT
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
SSH
AFXIZ
EFKBS
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c358t-db5291423ad4d39ac2d6f019aacbff3a57e774651e2b371abaae64e2458e8843
IEDL.DBID AIKHN
ISSN 0895-7177
IngestDate Fri Jul 11 01:33:27 EDT 2025
Mon Jul 21 09:14:25 EDT 2025
Thu Apr 24 22:57:51 EDT 2025
Tue Jul 01 04:23:12 EDT 2025
Fri Feb 23 02:25:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Fluid mixtures
Phase transitions
Phase fields
Scientific computation
Multiphase flow
Continuity equation
Applied mathematics
Entropy
Mathematical model
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-db5291423ad4d39ac2d6f019aacbff3a57e774651e2b371abaae64e2458e8843
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0895717706003372
PQID 29914125
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_29914125
pascalfrancis_primary_18593566
crossref_primary_10_1016_j_mcm_2006_08_011
crossref_citationtrail_10_1016_j_mcm_2006_08_011
elsevier_sciencedirect_doi_10_1016_j_mcm_2006_08_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-05-01
PublicationDateYYYYMMDD 2007-05-01
PublicationDate_xml – month: 05
  year: 2007
  text: 2007-05-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Mathematical and computer modelling
PublicationYear 2007
Publisher Elsevier Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
References Alt, Pawlow (b6) 1992; 59
Gurtin, Polignone, Viñals (b1) 1996; 6
Frémond (b10) 2001
Müller (b11) 1985
Fried, Gurtin (b2) 1993; 68
Mariano (b4) 2004; 39
Truesdell (b12) 1984
Fabrizio, Giorgi, Morro (b5) 2006; 214
Morro (b8) 2006; 58
Brokate, Sprekels (b7) 1996
Gurtin (b3) 1996; 92
Gurtin (b9) 1996; 92
Fried (10.1016/j.mcm.2006.08.011_b2) 1993; 68
Gurtin (10.1016/j.mcm.2006.08.011_b9) 1996; 92
Alt (10.1016/j.mcm.2006.08.011_b6) 1992; 59
Truesdell (10.1016/j.mcm.2006.08.011_b12) 1984
Gurtin (10.1016/j.mcm.2006.08.011_b1) 1996; 6
Mariano (10.1016/j.mcm.2006.08.011_b4) 2004; 39
Brokate (10.1016/j.mcm.2006.08.011_b7) 1996
Morro (10.1016/j.mcm.2006.08.011_b8) 2006; 58
Gurtin (10.1016/j.mcm.2006.08.011_b3) 1996; 92
Frémond (10.1016/j.mcm.2006.08.011_b10) 2001
Fabrizio (10.1016/j.mcm.2006.08.011_b5) 2006; 214
Müller (10.1016/j.mcm.2006.08.011_b11) 1985
References_xml – volume: 59
  start-page: 319
  year: 1992
  end-page: 409
  ident: b6
  article-title: A mathematical model of dynamics of non-isothermal phase separation
  publication-title: Physica D
– volume: 68
  start-page: 326
  year: 1993
  end-page: 343
  ident: b2
  article-title: Continuum theory of thermally induced phase transitions based on an order parameter
  publication-title: Physica D
– volume: 39
  start-page: 369
  year: 2004
  end-page: 382
  ident: b4
  article-title: Some thermodynamical aspects of the solidification of two-phase flows
  publication-title: Meccanica
– volume: 6
  start-page: 815
  year: 1996
  end-page: 831
  ident: b1
  article-title: Two-phase binary fluids and immiscible fluids described by an order parameter
  publication-title: Math. Models Methods Appl. Sci.
– volume: 92
  start-page: 178
  year: 1996
  end-page: 192
  ident: b3
  article-title: Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance
  publication-title: Physica D
– volume: 92
  start-page: 178
  year: 1996
  end-page: 192
  ident: b9
  article-title: Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance
  publication-title: Physica D
– year: 1984
  ident: b12
  article-title: Rational Thermodynamics
– year: 1996
  ident: b7
  article-title: Hysteresis and Phase Transitions
– volume: 58
  start-page: 207
  year: 2006
  end-page: 221
  ident: b8
  article-title: Non-isothermal phase-field models and evolution equation
  publication-title: Arch. Mech.
– year: 2001
  ident: b10
  article-title: Non-smooth Thermomechanics
– volume: 214
  start-page: 144
  year: 2006
  end-page: 156
  ident: b5
  article-title: A thermodynamic approach to non-isothermal phase-field evolution in continuum physics
  publication-title: Physica D
– year: 1985
  ident: b11
  article-title: Thermodynamics
– year: 1985
  ident: 10.1016/j.mcm.2006.08.011_b11
– volume: 59
  start-page: 319
  year: 1992
  ident: 10.1016/j.mcm.2006.08.011_b6
  article-title: A mathematical model of dynamics of non-isothermal phase separation
  publication-title: Physica D
  doi: 10.1016/0167-2789(92)90078-2
– year: 1996
  ident: 10.1016/j.mcm.2006.08.011_b7
– volume: 39
  start-page: 369
  year: 2004
  ident: 10.1016/j.mcm.2006.08.011_b4
  article-title: Some thermodynamical aspects of the solidification of two-phase flows
  publication-title: Meccanica
  doi: 10.1023/B:MECC.0000029388.33873.bd
– year: 1984
  ident: 10.1016/j.mcm.2006.08.011_b12
– volume: 58
  start-page: 207
  year: 2006
  ident: 10.1016/j.mcm.2006.08.011_b8
  article-title: Non-isothermal phase-field models and evolution equation
  publication-title: Arch. Mech.
– volume: 214
  start-page: 144
  year: 2006
  ident: 10.1016/j.mcm.2006.08.011_b5
  article-title: A thermodynamic approach to non-isothermal phase-field evolution in continuum physics
  publication-title: Physica D
  doi: 10.1016/j.physd.2006.01.002
– year: 2001
  ident: 10.1016/j.mcm.2006.08.011_b10
– volume: 6
  start-page: 815
  year: 1996
  ident: 10.1016/j.mcm.2006.08.011_b1
  article-title: Two-phase binary fluids and immiscible fluids described by an order parameter
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202596000341
– volume: 92
  start-page: 178
  year: 1996
  ident: 10.1016/j.mcm.2006.08.011_b3
  article-title: Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance
  publication-title: Physica D
  doi: 10.1016/0167-2789(95)00173-5
– volume: 68
  start-page: 326
  year: 1993
  ident: 10.1016/j.mcm.2006.08.011_b2
  article-title: Continuum theory of thermally induced phase transitions based on an order parameter
  publication-title: Physica D
  doi: 10.1016/0167-2789(93)90128-N
– volume: 92
  start-page: 178
  year: 1996
  ident: 10.1016/j.mcm.2006.08.011_b9
  article-title: Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance
  publication-title: Physica D
  doi: 10.1016/0167-2789(95)00173-5
SSID ssj0005908
Score 1.8961174
Snippet The paper investigates the modelling of phase transitions in multiphase fluid mixtures. The order parameter is identified with the set of concentrations and is...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1042
SubjectTerms Exact sciences and technology
Fluid mixtures
Mathematical analysis
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
Numerical analysis. Scientific computation
Partial differential equations
Phase fields
Phase transitions
Sciences and techniques of general use
Title Phase-field models for fluid mixtures
URI https://dx.doi.org/10.1016/j.mcm.2006.08.011
https://www.proquest.com/docview/29914125
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61vSgiPrE-6h70Imy72U12s8daLK3SIlihtyWbB1b6wm3Bk7_dyT6sRezBY0JClpnszJfMZD6Ert3YITzAytwBEDigCGnHTCpbylgZhWOqzePkXt_vvJCHIR2WUKt4C2PSKnPbn9n01FrnPY1cmo35aNR4dlhI4TBiyr84nheAHa64XujD1q40u4-d_irTI0yJ6cx420wogptpmtdETPKQBKs7GP_lnnbnPAGh6Yzt4pfhTr1Rex_t5TDSamZfeoBKanqIdn4UF4RW77sia3KEbp5ewV_ZacKaldLfJBbgVUuPlyPoGH2YSEJyjAbt-0GrY-cUCbbwKFvYMqZuiAEScUmkF3LhSl8DauNcxFp7nAYK8J1PsXJjL8A85lz5RLmEMsUY8U5QeTqbqlNkCcK4gBOrLwJNuBShotJ3ZKhDybVSrIqcQjCRyMuHGxaLcVTkib1FIEtDa-lHhtkS4yq6_Z4yz2pnbBpMCmlHaxsgAtu-aVptTTOrhUwhN8CqVXRVqCqCP8eEQ_hUzZZJBI4YE8B3Z_9b-RxtZ_e8JvnxApUX70t1CQBlEdfQVv0T1_JtCK3u8O4LSMTlcw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iBxURn1gf7R70Iqzd7Ca72aMUS9W2CFbwFrJ5YKUv3BY8-dud7KO2iD143JCQZSaZ-ZKZzIfQpZ94RERY2zsAAgcUqdyEKe0qlWircEyNfZzc6YatF_LwSl_XUKN8C2PTKgvbn9v0zFoXLfVCmvVJv19_9lhM4TBiy794QRCBHd4gsH3t7rz5WsjziDNaOtvbtd3L0GaW5DWUwyIgwW48jP9yTjsTkYLITM518ctsZ76ouYd2CxDp3Ob_uY_W9OgAbS-UFoSvzrwea3qIrp7ewFu5Wbqak5HfpA6gVccMZn1o6H_aOEJ6hHrNu16j5RYECa4MKJu6KqF-jAEQCUVUEAvpq9AAZhNCJsYEgkYa0F1IsfaTIMIiEUKHRPuEMs0YCY7R-mg80ifIkYQJCefVUEaGCCVjTVXoqdjEShitWQV5pWC4LIqHWw6LAS-zxN45yNKSWobc8lpiXEHX8yGTvHLGqs6klDZfUj8Hy75qWHVJMz8T2TJugFQrqFaqisO-scEQMdLjWcrBDWMC6O70fzPX0Gar12nz9n338Qxt5Te-Ng3yHK1PP2b6AqDKNKlmS_EbxBjlMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase-field+models+for+fluid+mixtures&rft.jtitle=Mathematical+and+computer+modelling&rft.au=Morro%2C+A.&rft.date=2007-05-01&rft.issn=0895-7177&rft.volume=45&rft.issue=9-10&rft.spage=1042&rft.epage=1052&rft_id=info:doi/10.1016%2Fj.mcm.2006.08.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mcm_2006_08_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-7177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-7177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-7177&client=summon