Thermal design aspects for improving temperature homogeneity of silicon wafer during thermal processing in microlithography

•Thermal aspects in bake station design is studied experimentally and numerically.•Lower guide plate angle, air gap and funnel configuration provided better uniformity.•2.5° guide plate subject to air gap condition provided a non-uniformity of 0.2–0.3 °C.•Non-linear profile guide plate performance i...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 171; p. 115118
Main Authors Muneeshwaran, M., Wang, Chi-Chuan
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 05.05.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN1359-4311
1873-5606
DOI10.1016/j.applthermaleng.2020.115118

Cover

Loading…
Abstract •Thermal aspects in bake station design is studied experimentally and numerically.•Lower guide plate angle, air gap and funnel configuration provided better uniformity.•2.5° guide plate subject to air gap condition provided a non-uniformity of 0.2–0.3 °C.•Non-linear profile guide plate performance is similar to 2.5° linear profile. Stringent temperature control is of great importance in the post-exposure baking of the lithography process, and this is usually maintained through the lamp heating and multizone heating method, which demands a precise control system. There is a vast scope for the wafer temperature homogeneity improvement by considering the thermal aspects in bake station design. In this study, both an experimental and a transient numerical analysis are carried out to examine the factors that could seriously affect the temperature uniformity of the wafer during the baking process. It is found that the guide plate arrangement, guide plate slope, and the air gap between the lid and hot plate play a critical role in controlling the wafer temperature uniformity. On this basis, some further improved bake stations are proposed to attain a better temperature homogeneity across the wafer. The performance of the improved designs is analyzed numerically. Yet, a better design based on the simulation is developed and tested experimentally. The new design features a 2.5° guide plate with the funnel arrangement subject to the air gap condition, offering a temperature homogeneity within 0.2–0.3 °C on a 6″ wafer.
AbstractList Stringent temperature control is of great importance in the post-exposure baking of the lithography process, and this is usually maintained through the lamp heating and multizone heating method, which demands a precise control system. There is a vast scope for the wafer temperature homogeneity improvement by considering the thermal aspects in bake station design. In this study, both an experimental and a transient numerical analysis are carried out to examine the factors that could seriously affect the temperature uniformity of the wafer during the baking process. It is found that the guide plate arrangement, guide plate slope, and the air gap between the lid and hot plate play a critical role in controlling the wafer temperature uniformity. On this basis, some further improved bake stations are proposed to attain a better temperature homogeneity across the wafer. The performance of the improved designs is analyzed numerically. Yet, a better design based on the simulation is developed and tested experimentally. The new design features a 2.5° guide plate with the funnel arrangement subject to the air gap condition, offering a temperature homogeneity within 0.2–0.3 °C on a 6″ wafer.
•Thermal aspects in bake station design is studied experimentally and numerically.•Lower guide plate angle, air gap and funnel configuration provided better uniformity.•2.5° guide plate subject to air gap condition provided a non-uniformity of 0.2–0.3 °C.•Non-linear profile guide plate performance is similar to 2.5° linear profile. Stringent temperature control is of great importance in the post-exposure baking of the lithography process, and this is usually maintained through the lamp heating and multizone heating method, which demands a precise control system. There is a vast scope for the wafer temperature homogeneity improvement by considering the thermal aspects in bake station design. In this study, both an experimental and a transient numerical analysis are carried out to examine the factors that could seriously affect the temperature uniformity of the wafer during the baking process. It is found that the guide plate arrangement, guide plate slope, and the air gap between the lid and hot plate play a critical role in controlling the wafer temperature uniformity. On this basis, some further improved bake stations are proposed to attain a better temperature homogeneity across the wafer. The performance of the improved designs is analyzed numerically. Yet, a better design based on the simulation is developed and tested experimentally. The new design features a 2.5° guide plate with the funnel arrangement subject to the air gap condition, offering a temperature homogeneity within 0.2–0.3 °C on a 6″ wafer.
ArticleNumber 115118
Author Muneeshwaran, M.
Wang, Chi-Chuan
Author_xml – sequence: 1
  givenname: M.
  surname: Muneeshwaran
  fullname: Muneeshwaran, M.
– sequence: 2
  givenname: Chi-Chuan
  surname: Wang
  fullname: Wang, Chi-Chuan
  email: ccwang@nctu.edu.tw
BookMark eNqNkU9vGyEQxVGVSvnTfgek9roOsLDGUi5tVCeRIvXiO8IwrLF2YQM4ldUvH5zNJTnlxAjeezP85hKdhRgAoZ-ULCih3fV-oadpKDtIox4g9AtGWH2iglL5BV1QuWwb0ZHurNatWDW8pfQcXea8J4QyueQX6P9mdmML2fcB6zyBKRm7mLAfpxSffehxgXGCpMshAd7FMfYQwJcjjg5nP3gTA_6nHSRsD-lV_xZa_QZyPl35gEdvUhx82cU-6Wl3_Ia-Oj1k-P52XqHN-s_m9r55_Hv3cPvrsTGtkKWxS7G0nMBKdNsVMOac7JigojX1D9bpbsul2a4YqSJBWwLgLLeOb13LqWXtFfoxx9Zpng6Qi9rHQwq1o2KcEy4llbyqbmZVnTHnBE5NyY86HRUl6kRb7dV72upEW820q_33B7vxRRcfQ0naD58NWc8hUGk8e0gqGw_BgPWpbkXZ6D8X9AJsBq2p
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2022_118932
crossref_primary_10_1016_j_est_2025_115862
crossref_primary_10_1016_j_applthermaleng_2023_122011
crossref_primary_10_1016_j_icheatmasstransfer_2021_105341
crossref_primary_10_3390_s23146371
Cites_doi 10.1016/j.mee.2011.08.012
10.1016/j.ijheatmasstransfer.2006.07.016
10.1007/s00339-003-2343-x
10.1016/0167-9317(94)00125-E
10.1016/j.applthermaleng.2014.12.013
10.1016/j.jprocont.2008.04.021
10.1081/AMP-200042048
10.1016/j.mee.2008.07.012
10.1117/12.350182
10.3182/20080706-5-KR-1001.00162
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV May 5, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV May 5, 2020
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.applthermaleng.2020.115118
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5606
ExternalDocumentID 10_1016_j_applthermaleng_2020_115118
S1359431119357412
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
HZ~
R2-
RIG
SEW
SSH
7TB
8FD
EFKBS
FR3
KR7
ID FETCH-LOGICAL-c358t-d757d40e956b9e22ff8625153c128dfa6b48cb920d405130eefd4df4bf341d23
IEDL.DBID .~1
ISSN 1359-4311
IngestDate Fri Jul 25 07:48:33 EDT 2025
Tue Jul 01 02:05:17 EDT 2025
Thu Apr 24 22:51:51 EDT 2025
Fri Feb 23 02:47:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Temperature uniformity
Lithography
Thermal design
Wafer
Hotplate
Bake unit
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-d757d40e956b9e22ff8625153c128dfa6b48cb920d405130eefd4df4bf341d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2440488184
PQPubID 2045278
ParticipantIDs proquest_journals_2440488184
crossref_primary_10_1016_j_applthermaleng_2020_115118
crossref_citationtrail_10_1016_j_applthermaleng_2020_115118
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2020_115118
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-05
PublicationDateYYYYMMDD 2020-05-05
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-05
  day: 05
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Applied thermal engineering
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Logerais, Riou, Delaleux, Durastanti, Bouteville (b0030) 2015; 77
Wang, Chua, Tay, Fang (b0040) 2008; 41
N. Ramanan, F.F. Liang, J.B. Sims, Conjugate heat-transfer analysis of 300-mm bake station, Microlithography 1999: Advances in Resist Technology and Processing Xvi, Pts 1 and 2, 3678 (1999) 1296-1306.
Wang, Loh, Gong, Chow (b0005) 2008; 18
Schaper, El-Awady, Kailath, Tay, Lee, Ho, Fuller (b0020) 2005; 80
Rogers, Adams (b0060) 1990
Logerais, Chapron, Garnier, Bouteville (b0065) 2008; 85
Nalamasu, Reichmanis, Timko, Tarascon, Novembre, Slater, Holzwarth, Falcigno, Munzel (b0015) 1995; 27
Tay, Chua, Wu (b0050) 2007; 50
Narasimhan (b0070) 2005; 20
Ramanan, Kozman, Sims (b0055) 2000; 3999
S.S. Young, S.S. Dong, K.O. Hye, Effect of temperature variation during post exposure bake on 193 mm chemically amplified resist simulation, Microprocesses and Nano technology 2000, Digest of papers, 100-101.
Schaper, El-Awady, Tay (b0045) 1999; 3882
Lee, Kwon, Shin, Han, Ha, Yoo, Cho (b0035) 2011; 88
Schaper (10.1016/j.applthermaleng.2020.115118_b0045) 1999; 3882
Schaper (10.1016/j.applthermaleng.2020.115118_b0020) 2005; 80
Wang (10.1016/j.applthermaleng.2020.115118_b0040) 2008; 41
Narasimhan (10.1016/j.applthermaleng.2020.115118_b0070) 2005; 20
Lee (10.1016/j.applthermaleng.2020.115118_b0035) 2011; 88
Wang (10.1016/j.applthermaleng.2020.115118_b0005) 2008; 18
Nalamasu (10.1016/j.applthermaleng.2020.115118_b0015) 1995; 27
Rogers (10.1016/j.applthermaleng.2020.115118_b0060) 1990
10.1016/j.applthermaleng.2020.115118_b0010
10.1016/j.applthermaleng.2020.115118_b0025
Logerais (10.1016/j.applthermaleng.2020.115118_b0030) 2015; 77
Ramanan (10.1016/j.applthermaleng.2020.115118_b0055) 2000; 3999
Logerais (10.1016/j.applthermaleng.2020.115118_b0065) 2008; 85
Tay (10.1016/j.applthermaleng.2020.115118_b0050) 2007; 50
References_xml – volume: 77
  start-page: 76
  year: 2015
  end-page: 89
  ident: b0030
  article-title: Improvement of temperature homogeneity of a silicon wafer heated in a rapid thermal system (RTP: Rapid Thermal Process) by a filtering window
  publication-title: Appl. Therm. Eng.
– volume: 18
  start-page: 931
  year: 2008
  end-page: 936
  ident: b0005
  article-title: An air flow based wafer bake system for improved temperature uniformity
  publication-title: J. Process Control
– volume: 20
  start-page: 273
  year: 2005
  end-page: 286
  ident: b0070
  article-title: Thermal analysis of a silicon wafer processing combination bake-chill station used in microlithography
  publication-title: Mater. Manuf. Processes
– reference: N. Ramanan, F.F. Liang, J.B. Sims, Conjugate heat-transfer analysis of 300-mm bake station, Microlithography 1999: Advances in Resist Technology and Processing Xvi, Pts 1 and 2, 3678 (1999) 1296-1306.
– volume: 88
  start-page: 3195
  year: 2011
  end-page: 3198
  ident: b0035
  article-title: Thermal design of hot plate for 300-mm wafer heating in post-exposure bake
  publication-title: Microelectron. Eng.
– volume: 85
  start-page: 2282
  year: 2008
  end-page: 2289
  ident: b0065
  article-title: Validation of a rapid thermal processing model in steady state
  publication-title: Microelectron. Eng.
– volume: 3999
  start-page: 890
  year: 2000
  end-page: 898
  ident: b0055
  article-title: On the differences between wafer and bake plate temperature uniformity in proximity bake: A theoretical and experimental study
  publication-title: Adv. Resist Technol. Process. Xvii, Pts 1 and 2
– reference: S.S. Young, S.S. Dong, K.O. Hye, Effect of temperature variation during post exposure bake on 193 mm chemically amplified resist simulation, Microprocesses and Nano technology 2000, Digest of papers, 100-101.
– volume: 3882
  start-page: 74
  year: 1999
  end-page: 79
  ident: b0045
  article-title: Spatially-programmable temperature control and measurement for chemically amplified photoresist processing, process, equipment, and materials control in integrated circuit manufacturing V
  publication-title: Int. Soc. Opt. Photon.
– year: 1990
  ident: b0060
  article-title: Mathematical elements for computer graphics
– volume: 27
  start-page: 367
  year: 1995
  end-page: 370
  ident: b0015
  article-title: A unified approach to resist materials design for the advanced lithographic technologies
  publication-title: Microelectron. Eng.
– volume: 80
  start-page: 899
  year: 2005
  end-page: 902
  ident: b0020
  article-title: Characterizing photolithographic linewidth sensitivity to process temperature variations for advanced resists using a thermal array
  publication-title: Appl. Phys. –Mater. Sci. Process.
– volume: 50
  start-page: 580
  year: 2007
  end-page: 594
  ident: b0050
  article-title: A lamp thermoelectricity based integrated bake/chill system for photoresist processing
  publication-title: Int. J. Heat Mass Transf.
– volume: 41
  start-page: 946
  year: 2008
  end-page: 951
  ident: b0040
  article-title: Temperature cycling for photoresist processing
  publication-title: IFAC Proc. Volumes
– volume: 88
  start-page: 3195
  year: 2011
  ident: 10.1016/j.applthermaleng.2020.115118_b0035
  article-title: Thermal design of hot plate for 300-mm wafer heating in post-exposure bake
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2011.08.012
– volume: 50
  start-page: 580
  year: 2007
  ident: 10.1016/j.applthermaleng.2020.115118_b0050
  article-title: A lamp thermoelectricity based integrated bake/chill system for photoresist processing
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2006.07.016
– volume: 80
  start-page: 899
  year: 2005
  ident: 10.1016/j.applthermaleng.2020.115118_b0020
  article-title: Characterizing photolithographic linewidth sensitivity to process temperature variations for advanced resists using a thermal array
  publication-title: Appl. Phys. –Mater. Sci. Process.
  doi: 10.1007/s00339-003-2343-x
– volume: 27
  start-page: 367
  year: 1995
  ident: 10.1016/j.applthermaleng.2020.115118_b0015
  article-title: A unified approach to resist materials design for the advanced lithographic technologies
  publication-title: Microelectron. Eng.
  doi: 10.1016/0167-9317(94)00125-E
– volume: 77
  start-page: 76
  year: 2015
  ident: 10.1016/j.applthermaleng.2020.115118_b0030
  article-title: Improvement of temperature homogeneity of a silicon wafer heated in a rapid thermal system (RTP: Rapid Thermal Process) by a filtering window
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.12.013
– volume: 18
  start-page: 931
  year: 2008
  ident: 10.1016/j.applthermaleng.2020.115118_b0005
  article-title: An air flow based wafer bake system for improved temperature uniformity
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2008.04.021
– volume: 3999
  start-page: 890
  year: 2000
  ident: 10.1016/j.applthermaleng.2020.115118_b0055
  article-title: On the differences between wafer and bake plate temperature uniformity in proximity bake: A theoretical and experimental study
  publication-title: Adv. Resist Technol. Process. Xvii, Pts 1 and 2
– volume: 20
  start-page: 273
  issue: 2
  year: 2005
  ident: 10.1016/j.applthermaleng.2020.115118_b0070
  article-title: Thermal analysis of a silicon wafer processing combination bake-chill station used in microlithography
  publication-title: Mater. Manuf. Processes
  doi: 10.1081/AMP-200042048
– year: 1990
  ident: 10.1016/j.applthermaleng.2020.115118_b0060
– volume: 85
  start-page: 2282
  year: 2008
  ident: 10.1016/j.applthermaleng.2020.115118_b0065
  article-title: Validation of a rapid thermal processing model in steady state
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2008.07.012
– ident: 10.1016/j.applthermaleng.2020.115118_b0010
  doi: 10.1117/12.350182
– volume: 3882
  start-page: 74
  year: 1999
  ident: 10.1016/j.applthermaleng.2020.115118_b0045
  article-title: Spatially-programmable temperature control and measurement for chemically amplified photoresist processing, process, equipment, and materials control in integrated circuit manufacturing V
  publication-title: Int. Soc. Opt. Photon.
– ident: 10.1016/j.applthermaleng.2020.115118_b0025
– volume: 41
  start-page: 946
  year: 2008
  ident: 10.1016/j.applthermaleng.2020.115118_b0040
  article-title: Temperature cycling for photoresist processing
  publication-title: IFAC Proc. Volumes
  doi: 10.3182/20080706-5-KR-1001.00162
SSID ssj0012874
Score 2.3428595
Snippet •Thermal aspects in bake station design is studied experimentally and numerically.•Lower guide plate angle, air gap and funnel configuration provided better...
Stringent temperature control is of great importance in the post-exposure baking of the lithography process, and this is usually maintained through the lamp...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115118
SubjectTerms Air gaps
Bake unit
Baking
Computer simulation
Heating
Homogeneity
Hotplate
Lithography
Numerical analysis
Offset printing
Temperature
Temperature control
Temperature uniformity
Thermal design
Thermal energy
Wafer
Title Thermal design aspects for improving temperature homogeneity of silicon wafer during thermal processing in microlithography
URI https://dx.doi.org/10.1016/j.applthermaleng.2020.115118
https://www.proquest.com/docview/2440488184
Volume 171
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lguhBfGJ9kUOva_eRdHfxIKUoVdGLFXoLmxeu2G2xFQ-Cv92Z3axaQSh43JBswszsfF82MxNC2hIgIMZT3Uz5ymNGWi_1M-PpGNCWy0T7Bk90b--6gwd2PeKjBunXuTAYVul8f-XTS2_tWjpOmp1pnnfug4inAH8BUBAOuIh-mLEYrfz04yvMI8B67uWmi6ce9l4l7e8YLzwkRp41zvDaEtgthuhDkHT_BVO_HHaJQpebZMPRR9qrVrhFGqbYJus_igrukPdhNRXVZXAGzcpkyhkFdkrz-hcCxZJUrp4yfZyMJ2BHBgg5nVg6y5_BPAr6llnzQqs8RurWT6dVYgE25QUdYzgfEPlHV_h6lwwvL4b9geeuWPBUxJM5qITHmvkGdkkyNWFoLexwgOJECgSnbdaVLFEyDX3oxAHujLGaacukBfTTYbRHmsWkMPuEqq6yIFUZJFoyw4IsTtJARZFhGcykbYuc1QIVypUfx1swnkUdZ_YkFtUhUB2iUkeL8K_R06oMx5LjzmvdiQWzEoAYS77hqFa5cJ_3TIRYVTEBrsMO_j3BIVnDpzKIkh-R5vzl1RwD0ZnLk9KST8hK7-pmcPcJmTUEFg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5kBR8H8Ylvc_Bato9kt8WDiCjray-u4C00L6y43cVd8eCfd6ZNfYEgeG2bJsxM5_vSTL4AHCqEgC6t6uY61AG3ygVZmNvAdBFthUpNaGlF96bf6d3xy3txPwOnzV4YKqv0ub_O6VW29lfa3prtcVG0b6NEZAh_EVIQgbiIeXiW1KlEC2ZPLq56_Y_FBJJ0r-ZdIguowRwcfpZ50ToxUa1hTieX4IQxpjRCvPs3pPqRsysgOl-GJc8g2Uk9yBWYseUqLH7RFVyDt0HdFTNVfQbLq_2UE4YElRXNXwRGqlReUpk9jIYjDCWLnJyNHJsUTxghJXvNnX1m9VZG5sfPxvXeArpUlGxIFX3I5R-89vU6DM7PBqe9wJ-yEOhEpFP0iugaHlqcKKnMxrFzOMlBlpNoNJxxeUfxVKssDvEhgYhnrTPcOK4cAqCJkw1olaPSbgLTHe3QqipKjeKWR3k3zSKdJJbn2JNxW3DUGFRqr0BOB2E8yabU7FF-d4ckd8jaHVsgPlqPayWOP7Y7bnwnv0WWRND44xt2G5dL_4VPZEzCiinSHb797w4OYL43uLmW1xf9qx1YoDtVTaXYhdb0-cXuIe-Zqn0f1-9r-wbH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+design+aspects+for+improving+temperature+homogeneity+of+silicon+wafer+during+thermal+processing+in+microlithography&rft.jtitle=Applied+thermal+engineering&rft.au=Muneeshwaran%2C+M.&rft.au=Wang%2C+Chi-Chuan&rft.date=2020-05-05&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=171&rft_id=info:doi/10.1016%2Fj.applthermaleng.2020.115118&rft.externalDocID=S1359431119357412
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon