Thermal design aspects for improving temperature homogeneity of silicon wafer during thermal processing in microlithography
•Thermal aspects in bake station design is studied experimentally and numerically.•Lower guide plate angle, air gap and funnel configuration provided better uniformity.•2.5° guide plate subject to air gap condition provided a non-uniformity of 0.2–0.3 °C.•Non-linear profile guide plate performance i...
Saved in:
Published in | Applied thermal engineering Vol. 171; p. 115118 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
05.05.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 1359-4311 1873-5606 |
DOI | 10.1016/j.applthermaleng.2020.115118 |
Cover
Loading…
Abstract | •Thermal aspects in bake station design is studied experimentally and numerically.•Lower guide plate angle, air gap and funnel configuration provided better uniformity.•2.5° guide plate subject to air gap condition provided a non-uniformity of 0.2–0.3 °C.•Non-linear profile guide plate performance is similar to 2.5° linear profile.
Stringent temperature control is of great importance in the post-exposure baking of the lithography process, and this is usually maintained through the lamp heating and multizone heating method, which demands a precise control system. There is a vast scope for the wafer temperature homogeneity improvement by considering the thermal aspects in bake station design. In this study, both an experimental and a transient numerical analysis are carried out to examine the factors that could seriously affect the temperature uniformity of the wafer during the baking process. It is found that the guide plate arrangement, guide plate slope, and the air gap between the lid and hot plate play a critical role in controlling the wafer temperature uniformity. On this basis, some further improved bake stations are proposed to attain a better temperature homogeneity across the wafer. The performance of the improved designs is analyzed numerically. Yet, a better design based on the simulation is developed and tested experimentally. The new design features a 2.5° guide plate with the funnel arrangement subject to the air gap condition, offering a temperature homogeneity within 0.2–0.3 °C on a 6″ wafer. |
---|---|
AbstractList | Stringent temperature control is of great importance in the post-exposure baking of the lithography process, and this is usually maintained through the lamp heating and multizone heating method, which demands a precise control system. There is a vast scope for the wafer temperature homogeneity improvement by considering the thermal aspects in bake station design. In this study, both an experimental and a transient numerical analysis are carried out to examine the factors that could seriously affect the temperature uniformity of the wafer during the baking process. It is found that the guide plate arrangement, guide plate slope, and the air gap between the lid and hot plate play a critical role in controlling the wafer temperature uniformity. On this basis, some further improved bake stations are proposed to attain a better temperature homogeneity across the wafer. The performance of the improved designs is analyzed numerically. Yet, a better design based on the simulation is developed and tested experimentally. The new design features a 2.5° guide plate with the funnel arrangement subject to the air gap condition, offering a temperature homogeneity within 0.2–0.3 °C on a 6″ wafer. •Thermal aspects in bake station design is studied experimentally and numerically.•Lower guide plate angle, air gap and funnel configuration provided better uniformity.•2.5° guide plate subject to air gap condition provided a non-uniformity of 0.2–0.3 °C.•Non-linear profile guide plate performance is similar to 2.5° linear profile. Stringent temperature control is of great importance in the post-exposure baking of the lithography process, and this is usually maintained through the lamp heating and multizone heating method, which demands a precise control system. There is a vast scope for the wafer temperature homogeneity improvement by considering the thermal aspects in bake station design. In this study, both an experimental and a transient numerical analysis are carried out to examine the factors that could seriously affect the temperature uniformity of the wafer during the baking process. It is found that the guide plate arrangement, guide plate slope, and the air gap between the lid and hot plate play a critical role in controlling the wafer temperature uniformity. On this basis, some further improved bake stations are proposed to attain a better temperature homogeneity across the wafer. The performance of the improved designs is analyzed numerically. Yet, a better design based on the simulation is developed and tested experimentally. The new design features a 2.5° guide plate with the funnel arrangement subject to the air gap condition, offering a temperature homogeneity within 0.2–0.3 °C on a 6″ wafer. |
ArticleNumber | 115118 |
Author | Muneeshwaran, M. Wang, Chi-Chuan |
Author_xml | – sequence: 1 givenname: M. surname: Muneeshwaran fullname: Muneeshwaran, M. – sequence: 2 givenname: Chi-Chuan surname: Wang fullname: Wang, Chi-Chuan email: ccwang@nctu.edu.tw |
BookMark | eNqNkU9vGyEQxVGVSvnTfgek9roOsLDGUi5tVCeRIvXiO8IwrLF2YQM4ldUvH5zNJTnlxAjeezP85hKdhRgAoZ-ULCih3fV-oadpKDtIox4g9AtGWH2iglL5BV1QuWwb0ZHurNatWDW8pfQcXea8J4QyueQX6P9mdmML2fcB6zyBKRm7mLAfpxSffehxgXGCpMshAd7FMfYQwJcjjg5nP3gTA_6nHSRsD-lV_xZa_QZyPl35gEdvUhx82cU-6Wl3_Ia-Oj1k-P52XqHN-s_m9r55_Hv3cPvrsTGtkKWxS7G0nMBKdNsVMOac7JigojX1D9bpbsul2a4YqSJBWwLgLLeOb13LqWXtFfoxx9Zpng6Qi9rHQwq1o2KcEy4llbyqbmZVnTHnBE5NyY86HRUl6kRb7dV72upEW820q_33B7vxRRcfQ0naD58NWc8hUGk8e0gqGw_BgPWpbkXZ6D8X9AJsBq2p |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2022_118932 crossref_primary_10_1016_j_est_2025_115862 crossref_primary_10_1016_j_applthermaleng_2023_122011 crossref_primary_10_1016_j_icheatmasstransfer_2021_105341 crossref_primary_10_3390_s23146371 |
Cites_doi | 10.1016/j.mee.2011.08.012 10.1016/j.ijheatmasstransfer.2006.07.016 10.1007/s00339-003-2343-x 10.1016/0167-9317(94)00125-E 10.1016/j.applthermaleng.2014.12.013 10.1016/j.jprocont.2008.04.021 10.1081/AMP-200042048 10.1016/j.mee.2008.07.012 10.1117/12.350182 10.3182/20080706-5-KR-1001.00162 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV May 5, 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV May 5, 2020 |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1016/j.applthermaleng.2020.115118 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-5606 |
ExternalDocumentID | 10_1016_j_applthermaleng_2020_115118 S1359431119357412 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ R2- RIG SEW SSH 7TB 8FD EFKBS FR3 KR7 |
ID | FETCH-LOGICAL-c358t-d757d40e956b9e22ff8625153c128dfa6b48cb920d405130eefd4df4bf341d23 |
IEDL.DBID | .~1 |
ISSN | 1359-4311 |
IngestDate | Fri Jul 25 07:48:33 EDT 2025 Tue Jul 01 02:05:17 EDT 2025 Thu Apr 24 22:51:51 EDT 2025 Fri Feb 23 02:47:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Temperature uniformity Lithography Thermal design Wafer Hotplate Bake unit |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-d757d40e956b9e22ff8625153c128dfa6b48cb920d405130eefd4df4bf341d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2440488184 |
PQPubID | 2045278 |
ParticipantIDs | proquest_journals_2440488184 crossref_primary_10_1016_j_applthermaleng_2020_115118 crossref_citationtrail_10_1016_j_applthermaleng_2020_115118 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2020_115118 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-05 |
PublicationDateYYYYMMDD | 2020-05-05 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Logerais, Riou, Delaleux, Durastanti, Bouteville (b0030) 2015; 77 Wang, Chua, Tay, Fang (b0040) 2008; 41 N. Ramanan, F.F. Liang, J.B. Sims, Conjugate heat-transfer analysis of 300-mm bake station, Microlithography 1999: Advances in Resist Technology and Processing Xvi, Pts 1 and 2, 3678 (1999) 1296-1306. Wang, Loh, Gong, Chow (b0005) 2008; 18 Schaper, El-Awady, Kailath, Tay, Lee, Ho, Fuller (b0020) 2005; 80 Rogers, Adams (b0060) 1990 Logerais, Chapron, Garnier, Bouteville (b0065) 2008; 85 Nalamasu, Reichmanis, Timko, Tarascon, Novembre, Slater, Holzwarth, Falcigno, Munzel (b0015) 1995; 27 Tay, Chua, Wu (b0050) 2007; 50 Narasimhan (b0070) 2005; 20 Ramanan, Kozman, Sims (b0055) 2000; 3999 S.S. Young, S.S. Dong, K.O. Hye, Effect of temperature variation during post exposure bake on 193 mm chemically amplified resist simulation, Microprocesses and Nano technology 2000, Digest of papers, 100-101. Schaper, El-Awady, Tay (b0045) 1999; 3882 Lee, Kwon, Shin, Han, Ha, Yoo, Cho (b0035) 2011; 88 Schaper (10.1016/j.applthermaleng.2020.115118_b0045) 1999; 3882 Schaper (10.1016/j.applthermaleng.2020.115118_b0020) 2005; 80 Wang (10.1016/j.applthermaleng.2020.115118_b0040) 2008; 41 Narasimhan (10.1016/j.applthermaleng.2020.115118_b0070) 2005; 20 Lee (10.1016/j.applthermaleng.2020.115118_b0035) 2011; 88 Wang (10.1016/j.applthermaleng.2020.115118_b0005) 2008; 18 Nalamasu (10.1016/j.applthermaleng.2020.115118_b0015) 1995; 27 Rogers (10.1016/j.applthermaleng.2020.115118_b0060) 1990 10.1016/j.applthermaleng.2020.115118_b0010 10.1016/j.applthermaleng.2020.115118_b0025 Logerais (10.1016/j.applthermaleng.2020.115118_b0030) 2015; 77 Ramanan (10.1016/j.applthermaleng.2020.115118_b0055) 2000; 3999 Logerais (10.1016/j.applthermaleng.2020.115118_b0065) 2008; 85 Tay (10.1016/j.applthermaleng.2020.115118_b0050) 2007; 50 |
References_xml | – volume: 77 start-page: 76 year: 2015 end-page: 89 ident: b0030 article-title: Improvement of temperature homogeneity of a silicon wafer heated in a rapid thermal system (RTP: Rapid Thermal Process) by a filtering window publication-title: Appl. Therm. Eng. – volume: 18 start-page: 931 year: 2008 end-page: 936 ident: b0005 article-title: An air flow based wafer bake system for improved temperature uniformity publication-title: J. Process Control – volume: 20 start-page: 273 year: 2005 end-page: 286 ident: b0070 article-title: Thermal analysis of a silicon wafer processing combination bake-chill station used in microlithography publication-title: Mater. Manuf. Processes – reference: N. Ramanan, F.F. Liang, J.B. Sims, Conjugate heat-transfer analysis of 300-mm bake station, Microlithography 1999: Advances in Resist Technology and Processing Xvi, Pts 1 and 2, 3678 (1999) 1296-1306. – volume: 88 start-page: 3195 year: 2011 end-page: 3198 ident: b0035 article-title: Thermal design of hot plate for 300-mm wafer heating in post-exposure bake publication-title: Microelectron. Eng. – volume: 85 start-page: 2282 year: 2008 end-page: 2289 ident: b0065 article-title: Validation of a rapid thermal processing model in steady state publication-title: Microelectron. Eng. – volume: 3999 start-page: 890 year: 2000 end-page: 898 ident: b0055 article-title: On the differences between wafer and bake plate temperature uniformity in proximity bake: A theoretical and experimental study publication-title: Adv. Resist Technol. Process. Xvii, Pts 1 and 2 – reference: S.S. Young, S.S. Dong, K.O. Hye, Effect of temperature variation during post exposure bake on 193 mm chemically amplified resist simulation, Microprocesses and Nano technology 2000, Digest of papers, 100-101. – volume: 3882 start-page: 74 year: 1999 end-page: 79 ident: b0045 article-title: Spatially-programmable temperature control and measurement for chemically amplified photoresist processing, process, equipment, and materials control in integrated circuit manufacturing V publication-title: Int. Soc. Opt. Photon. – year: 1990 ident: b0060 article-title: Mathematical elements for computer graphics – volume: 27 start-page: 367 year: 1995 end-page: 370 ident: b0015 article-title: A unified approach to resist materials design for the advanced lithographic technologies publication-title: Microelectron. Eng. – volume: 80 start-page: 899 year: 2005 end-page: 902 ident: b0020 article-title: Characterizing photolithographic linewidth sensitivity to process temperature variations for advanced resists using a thermal array publication-title: Appl. Phys. –Mater. Sci. Process. – volume: 50 start-page: 580 year: 2007 end-page: 594 ident: b0050 article-title: A lamp thermoelectricity based integrated bake/chill system for photoresist processing publication-title: Int. J. Heat Mass Transf. – volume: 41 start-page: 946 year: 2008 end-page: 951 ident: b0040 article-title: Temperature cycling for photoresist processing publication-title: IFAC Proc. Volumes – volume: 88 start-page: 3195 year: 2011 ident: 10.1016/j.applthermaleng.2020.115118_b0035 article-title: Thermal design of hot plate for 300-mm wafer heating in post-exposure bake publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2011.08.012 – volume: 50 start-page: 580 year: 2007 ident: 10.1016/j.applthermaleng.2020.115118_b0050 article-title: A lamp thermoelectricity based integrated bake/chill system for photoresist processing publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2006.07.016 – volume: 80 start-page: 899 year: 2005 ident: 10.1016/j.applthermaleng.2020.115118_b0020 article-title: Characterizing photolithographic linewidth sensitivity to process temperature variations for advanced resists using a thermal array publication-title: Appl. Phys. –Mater. Sci. Process. doi: 10.1007/s00339-003-2343-x – volume: 27 start-page: 367 year: 1995 ident: 10.1016/j.applthermaleng.2020.115118_b0015 article-title: A unified approach to resist materials design for the advanced lithographic technologies publication-title: Microelectron. Eng. doi: 10.1016/0167-9317(94)00125-E – volume: 77 start-page: 76 year: 2015 ident: 10.1016/j.applthermaleng.2020.115118_b0030 article-title: Improvement of temperature homogeneity of a silicon wafer heated in a rapid thermal system (RTP: Rapid Thermal Process) by a filtering window publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.12.013 – volume: 18 start-page: 931 year: 2008 ident: 10.1016/j.applthermaleng.2020.115118_b0005 article-title: An air flow based wafer bake system for improved temperature uniformity publication-title: J. Process Control doi: 10.1016/j.jprocont.2008.04.021 – volume: 3999 start-page: 890 year: 2000 ident: 10.1016/j.applthermaleng.2020.115118_b0055 article-title: On the differences between wafer and bake plate temperature uniformity in proximity bake: A theoretical and experimental study publication-title: Adv. Resist Technol. Process. Xvii, Pts 1 and 2 – volume: 20 start-page: 273 issue: 2 year: 2005 ident: 10.1016/j.applthermaleng.2020.115118_b0070 article-title: Thermal analysis of a silicon wafer processing combination bake-chill station used in microlithography publication-title: Mater. Manuf. Processes doi: 10.1081/AMP-200042048 – year: 1990 ident: 10.1016/j.applthermaleng.2020.115118_b0060 – volume: 85 start-page: 2282 year: 2008 ident: 10.1016/j.applthermaleng.2020.115118_b0065 article-title: Validation of a rapid thermal processing model in steady state publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2008.07.012 – ident: 10.1016/j.applthermaleng.2020.115118_b0010 doi: 10.1117/12.350182 – volume: 3882 start-page: 74 year: 1999 ident: 10.1016/j.applthermaleng.2020.115118_b0045 article-title: Spatially-programmable temperature control and measurement for chemically amplified photoresist processing, process, equipment, and materials control in integrated circuit manufacturing V publication-title: Int. Soc. Opt. Photon. – ident: 10.1016/j.applthermaleng.2020.115118_b0025 – volume: 41 start-page: 946 year: 2008 ident: 10.1016/j.applthermaleng.2020.115118_b0040 article-title: Temperature cycling for photoresist processing publication-title: IFAC Proc. Volumes doi: 10.3182/20080706-5-KR-1001.00162 |
SSID | ssj0012874 |
Score | 2.3428595 |
Snippet | •Thermal aspects in bake station design is studied experimentally and numerically.•Lower guide plate angle, air gap and funnel configuration provided better... Stringent temperature control is of great importance in the post-exposure baking of the lithography process, and this is usually maintained through the lamp... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115118 |
SubjectTerms | Air gaps Bake unit Baking Computer simulation Heating Homogeneity Hotplate Lithography Numerical analysis Offset printing Temperature Temperature control Temperature uniformity Thermal design Thermal energy Wafer |
Title | Thermal design aspects for improving temperature homogeneity of silicon wafer during thermal processing in microlithography |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2020.115118 https://www.proquest.com/docview/2440488184 |
Volume | 171 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lguhBfGJ9kUOva_eRdHfxIKUoVdGLFXoLmxeu2G2xFQ-Cv92Z3axaQSh43JBswszsfF82MxNC2hIgIMZT3Uz5ymNGWi_1M-PpGNCWy0T7Bk90b--6gwd2PeKjBunXuTAYVul8f-XTS2_tWjpOmp1pnnfug4inAH8BUBAOuIh-mLEYrfz04yvMI8B67uWmi6ce9l4l7e8YLzwkRp41zvDaEtgthuhDkHT_BVO_HHaJQpebZMPRR9qrVrhFGqbYJus_igrukPdhNRXVZXAGzcpkyhkFdkrz-hcCxZJUrp4yfZyMJ2BHBgg5nVg6y5_BPAr6llnzQqs8RurWT6dVYgE25QUdYzgfEPlHV_h6lwwvL4b9geeuWPBUxJM5qITHmvkGdkkyNWFoLexwgOJECgSnbdaVLFEyDX3oxAHujLGaacukBfTTYbRHmsWkMPuEqq6yIFUZJFoyw4IsTtJARZFhGcykbYuc1QIVypUfx1swnkUdZ_YkFtUhUB2iUkeL8K_R06oMx5LjzmvdiQWzEoAYS77hqFa5cJ_3TIRYVTEBrsMO_j3BIVnDpzKIkh-R5vzl1RwD0ZnLk9KST8hK7-pmcPcJmTUEFg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5kBR8H8Ylvc_Bato9kt8WDiCjray-u4C00L6y43cVd8eCfd6ZNfYEgeG2bJsxM5_vSTL4AHCqEgC6t6uY61AG3ygVZmNvAdBFthUpNaGlF96bf6d3xy3txPwOnzV4YKqv0ub_O6VW29lfa3prtcVG0b6NEZAh_EVIQgbiIeXiW1KlEC2ZPLq56_Y_FBJJ0r-ZdIguowRwcfpZ50ToxUa1hTieX4IQxpjRCvPs3pPqRsysgOl-GJc8g2Uk9yBWYseUqLH7RFVyDt0HdFTNVfQbLq_2UE4YElRXNXwRGqlReUpk9jIYjDCWLnJyNHJsUTxghJXvNnX1m9VZG5sfPxvXeArpUlGxIFX3I5R-89vU6DM7PBqe9wJ-yEOhEpFP0iugaHlqcKKnMxrFzOMlBlpNoNJxxeUfxVKssDvEhgYhnrTPcOK4cAqCJkw1olaPSbgLTHe3QqipKjeKWR3k3zSKdJJbn2JNxW3DUGFRqr0BOB2E8yabU7FF-d4ckd8jaHVsgPlqPayWOP7Y7bnwnv0WWRND44xt2G5dL_4VPZEzCiinSHb797w4OYL43uLmW1xf9qx1YoDtVTaXYhdb0-cXuIe-Zqn0f1-9r-wbH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+design+aspects+for+improving+temperature+homogeneity+of+silicon+wafer+during+thermal+processing+in+microlithography&rft.jtitle=Applied+thermal+engineering&rft.au=Muneeshwaran%2C+M.&rft.au=Wang%2C+Chi-Chuan&rft.date=2020-05-05&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=171&rft_id=info:doi/10.1016%2Fj.applthermaleng.2020.115118&rft.externalDocID=S1359431119357412 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |