Max-flow segmentation of the left ventricle by recovering subject-specific distributions via a bound of the Bhattacharyya measure
This study investigates fast detection of left ventricle boundaries following the optimization of new distribution-based functions. Based on max-flow iterations and bound relaxation, the proposed algorithm yields a competitive performance in nearly real-time. [Display omitted] ► Novel distribution-b...
Saved in:
Published in | Medical image analysis Vol. 16; no. 1; pp. 87 - 100 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1361-8415 1361-8423 1361-8423 |
DOI | 10.1016/j.media.2011.05.009 |
Cover
Loading…
Abstract | This study investigates fast detection of left ventricle boundaries following the optimization of new distribution-based functions. Based on max-flow iterations and bound relaxation, the proposed algorithm yields a competitive performance in nearly real-time. [Display omitted]
► Novel distribution-based cost functions for left ventricle segmentation. ► Novel optimization based on bound derivation and max-flow iterations. ► Competitive performance in nearly real-time.
This study investigates fast detection of the left ventricle (LV) endo- and epicardium boundaries in a cardiac magnetic resonance (MR) sequence following the optimization of two original discrete cost functions, each containing global intensity and geometry constraints based on the Bhattacharyya similarity. The cost functions and the corresponding max-flow optimization built upon an original bound of the Bhattacharyya measure yield competitive results in nearly real-time. Within each frame, the algorithm seeks the LV cavity and myocardium regions consistent with subject-specific model distributions learned from the first frame in the sequence. Based on global rather than pixel-wise information, the proposed formulation relaxes the need of a large training set and optimization with respect to geometric transformations. Different from related active contour methods, it does not require a large number of iterative updates of the segmentation and the corresponding computationally onerous kernel density estimates (KDEs). The algorithm requires very few iterations and KDEs to converge. Furthermore, the proposed bound can be used for several other applications and, therefore, can lead to segmentation algorithms which share the flexibility of active contours and computational advantages of max-flow optimization. Quantitative evaluations over 2280 images acquired from 20 subjects demonstrated that the results correlate well with independent manual segmentations by an expert. Moreover, comparisons with a related recent active contour method showed that the proposed framework brings significant improvements in regard to accuracy and computational efficiency. |
---|---|
AbstractList | This study investigates fast detection of the left ventricle (LV) endo- and epicardium boundaries in a cardiac magnetic resonance (MR) sequence following the optimization of two original discrete cost functions, each containing global intensity and geometry constraints based on the Bhattacharyya similarity. The cost functions and the corresponding max-flow optimization built upon an original bound of the Bhattacharyya measure yield competitive results in nearly real-time. Within each frame, the algorithm seeks the LV cavity and myocardium regions consistent with subject-specific model distributions learned from the first frame in the sequence. Based on global rather than pixel-wise information, the proposed formulation relaxes the need of a large training set and optimization with respect to geometric transformations. Different from related active contour methods, it does not require a large number of iterative updates of the segmentation and the corresponding computationally onerous kernel density estimates (KDEs). The algorithm requires very few iterations and KDEs to converge. Furthermore, the proposed bound can be used for several other applications and, therefore, can lead to segmentation algorithms which share the flexibility of active contours and computational advantages of max-flow optimization. Quantitative evaluations over 2280 images acquired from 20 subjects demonstrated that the results correlate well with independent manual segmentations by an expert. Moreover, comparisons with a related recent active contour method showed that the proposed framework brings significant improvements in regard to accuracy and computational efficiency. This study investigates fast detection of left ventricle boundaries following the optimization of new distribution-based functions. Based on max-flow iterations and bound relaxation, the proposed algorithm yields a competitive performance in nearly real-time. [Display omitted] ► Novel distribution-based cost functions for left ventricle segmentation. ► Novel optimization based on bound derivation and max-flow iterations. ► Competitive performance in nearly real-time. This study investigates fast detection of the left ventricle (LV) endo- and epicardium boundaries in a cardiac magnetic resonance (MR) sequence following the optimization of two original discrete cost functions, each containing global intensity and geometry constraints based on the Bhattacharyya similarity. The cost functions and the corresponding max-flow optimization built upon an original bound of the Bhattacharyya measure yield competitive results in nearly real-time. Within each frame, the algorithm seeks the LV cavity and myocardium regions consistent with subject-specific model distributions learned from the first frame in the sequence. Based on global rather than pixel-wise information, the proposed formulation relaxes the need of a large training set and optimization with respect to geometric transformations. Different from related active contour methods, it does not require a large number of iterative updates of the segmentation and the corresponding computationally onerous kernel density estimates (KDEs). The algorithm requires very few iterations and KDEs to converge. Furthermore, the proposed bound can be used for several other applications and, therefore, can lead to segmentation algorithms which share the flexibility of active contours and computational advantages of max-flow optimization. Quantitative evaluations over 2280 images acquired from 20 subjects demonstrated that the results correlate well with independent manual segmentations by an expert. Moreover, comparisons with a related recent active contour method showed that the proposed framework brings significant improvements in regard to accuracy and computational efficiency. This study investigates fast detection of the left ventricle (LV) endo- and epicardium boundaries in a cardiac magnetic resonance (MR) sequence following the optimization of two original discrete cost functions, each containing global intensity and geometry constraints based on the Bhattacharyya similarity. The cost functions and the corresponding max-flow optimization built upon an original bound of the Bhattacharyya measure yield competitive results in nearly real-time. Within each frame, the algorithm seeks the LV cavity and myocardium regions consistent with subject-specific model distributions learned from the first frame in the sequence. Based on global rather than pixel-wise information, the proposed formulation relaxes the need of a large training set and optimization with respect to geometric transformations. Different from related active contour methods, it does not require a large number of iterative updates of the segmentation and the corresponding computationally onerous kernel density estimates (KDEs). The algorithm requires very few iterations and KDEs to converge. Furthermore, the proposed bound can be used for several other applications and, therefore, can lead to segmentation algorithms which share the flexibility of active contours and computational advantages of max-flow optimization. Quantitative evaluations over 2280 images acquired from 20 subjects demonstrated that the results correlate well with independent manual segmentations by an expert. Moreover, comparisons with a related recent active contour method showed that the proposed framework brings significant improvements in regard to accuracy and computational efficiency.This study investigates fast detection of the left ventricle (LV) endo- and epicardium boundaries in a cardiac magnetic resonance (MR) sequence following the optimization of two original discrete cost functions, each containing global intensity and geometry constraints based on the Bhattacharyya similarity. The cost functions and the corresponding max-flow optimization built upon an original bound of the Bhattacharyya measure yield competitive results in nearly real-time. Within each frame, the algorithm seeks the LV cavity and myocardium regions consistent with subject-specific model distributions learned from the first frame in the sequence. Based on global rather than pixel-wise information, the proposed formulation relaxes the need of a large training set and optimization with respect to geometric transformations. Different from related active contour methods, it does not require a large number of iterative updates of the segmentation and the corresponding computationally onerous kernel density estimates (KDEs). The algorithm requires very few iterations and KDEs to converge. Furthermore, the proposed bound can be used for several other applications and, therefore, can lead to segmentation algorithms which share the flexibility of active contours and computational advantages of max-flow optimization. Quantitative evaluations over 2280 images acquired from 20 subjects demonstrated that the results correlate well with independent manual segmentations by an expert. Moreover, comparisons with a related recent active contour method showed that the proposed framework brings significant improvements in regard to accuracy and computational efficiency. |
Author | Chen, Hua-mei Punithakumar, Kumaradevan Ross, Ian Ben Ayed, Ismail Li, Shuo |
Author_xml | – sequence: 1 givenname: Ismail surname: Ben Ayed fullname: Ben Ayed, Ismail email: ismail.benayed@ge.com organization: GE Healthcare, London, ON, Canada – sequence: 2 givenname: Hua-mei surname: Chen fullname: Chen, Hua-mei organization: University of Western Ontario, London, ON, Canada – sequence: 3 givenname: Kumaradevan surname: Punithakumar fullname: Punithakumar, Kumaradevan organization: GE Healthcare, London, ON, Canada – sequence: 4 givenname: Ian surname: Ross fullname: Ross, Ian organization: University of Western Ontario, London, ON, Canada – sequence: 5 givenname: Shuo surname: Li fullname: Li, Shuo organization: GE Healthcare, London, ON, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21705264$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkb2O1DAYRS20iP2BJ0BC7qgS7Dh2koICVvxJi2igtj47n3c8SuLBdgam5M3xMLtbUEBlyzr3yrrnkpwtYUFCnnNWc8bVq2094-ihbhjnNZM1Y8MjcsGF4lXfNuLs4c7lOblMacsY69qWPSHnDe-YbFR7QX59hp-Vm8IPmvB2xiVD9mGhwdG8QTqhy3RfXqO3E1JzoBFt2GP0yy1Nq9mizVXaofXOWzr6VECzHhsS3XugQE1Yl_G-7u0Gcga7gXg4AJ0R0hrxKXnsYEr47O68It_ev_t6_bG6-fLh0_Wbm8oK2edq7Dj2YlCD7AbVgmVG9IPrnDUcR-idauRguIFmNGJUrWiFdG0jQTHRMdsbcUVennp3MXxfMWU9-2RxmmDBsCY9MCUVL7MU8sUduZoysd5FP5cv6_vVCiBOgI0hpYjuAeFMH93orf7jRh_daCZ1cVNSw18p609z5wh--k_29SmLZaG9x6iT9bjYAhYjWY_B_zP_G8XQrRw |
CitedBy_id | crossref_primary_10_1007_s11042_018_5661_x crossref_primary_10_1080_2150704X_2017_1327124 crossref_primary_10_1109_TMI_2018_2837502 crossref_primary_10_3390_s18124220 crossref_primary_10_1016_j_media_2014_06_001 crossref_primary_10_1016_j_cviu_2012_11_017 crossref_primary_10_1109_JBHI_2021_3064353 crossref_primary_10_1109_JBHI_2018_2879188 crossref_primary_10_1155_2021_3260259 crossref_primary_10_3390_math10040627 crossref_primary_10_1109_TMI_2017_2709251 crossref_primary_10_3390_bioengineering10111267 crossref_primary_10_1155_2021_4186648 crossref_primary_10_1088_2057_1976_ab9556 crossref_primary_10_1109_TMI_2015_2512711 crossref_primary_10_3934_mbe_2022074 crossref_primary_10_1016_j_jbi_2023_104366 crossref_primary_10_1016_j_media_2017_09_005 crossref_primary_10_1260_2040_2295_4_3_371 crossref_primary_10_1051_itmconf_20160801003 crossref_primary_10_1142_S0217984917400450 crossref_primary_10_1016_j_knosys_2022_110033 crossref_primary_10_1016_j_media_2019_101591 crossref_primary_10_1016_j_neucom_2016_03_106 crossref_primary_10_1118_1_4907993 crossref_primary_10_1109_JBHI_2020_3046449 crossref_primary_10_1142_S0219519423400833 crossref_primary_10_1016_j_cviu_2012_12_008 crossref_primary_10_1038_s41598_023_40841_y crossref_primary_10_1016_j_mri_2015_12_027 crossref_primary_10_1109_TNNLS_2020_2984955 crossref_primary_10_1109_ACCESS_2024_3442080 crossref_primary_10_1049_iet_cvi_2014_0450 crossref_primary_10_1088_1361_6560_ac0bd3 crossref_primary_10_1118_1_4947126 crossref_primary_10_1016_j_cmpb_2019_105288 crossref_primary_10_1016_j_compbiomed_2020_103659 crossref_primary_10_1145_3517190 crossref_primary_10_1016_j_compmedimag_2015_01_004 crossref_primary_10_1049_cit2_12382 crossref_primary_10_1016_j_media_2013_05_002 crossref_primary_10_1016_j_media_2023_102764 crossref_primary_10_1109_TMI_2016_2553153 crossref_primary_10_1016_j_compmedimag_2020_101717 crossref_primary_10_1080_21681163_2014_974290 crossref_primary_10_1007_s10489_020_02130_3 crossref_primary_10_1007_s11548_014_1104_y crossref_primary_10_1007_s10334_015_0521_4 crossref_primary_10_1109_ACCESS_2019_2907564 crossref_primary_10_1109_JBHI_2018_2865450 crossref_primary_10_1016_j_mri_2018_04_011 |
Cites_doi | 10.1109/TITB.2008.926477 10.1109/TIP.2003.821445 10.1109/TBME.2010.2048752 10.1007/11866565_19 10.1016/j.laa.2007.03.009 10.1109/TPAMI.2005.31 10.1109/ICCV.2007.4408970 10.1109/TMI.2009.2031063 10.1109/CVPR.2010.5540045 10.1007/s11263-006-7934-5 10.1109/42.925294 10.1161/hc0402.102975 10.1007/11494621_12 10.1007/s11548-008-0265-y 10.1007/11566489_91 10.1007/978-3-642-04271-3_109 10.1007/978-3-540-85990-1_51 10.1007/978-3-540-24670-1_33 10.1007/978-3-540-85988-8_14 10.1109/TMI.2007.904681 10.1007/s11263-007-0120-6 10.1109/ICASSP.2008.4517661 10.1109/TPAMI.2009.21 10.1145/1015706.1015720 10.1109/ICCV.2003.1238310 10.1109/TPAMI.2004.60 10.1007/978-3-540-85988-8_22 10.1109/CVPR.2006.91 10.1007/11566489_93 10.1137/S0036139902408928 10.1016/j.media.2004.06.005 10.1007/s11263-009-0234-0 10.1109/TMI.2006.882124 10.1109/TPAMI.2003.1195991 10.1109/TIP.2007.908073 10.1109/TMI.2005.843740 10.1007/s11263-009-0249-6 10.1016/j.media.2004.06.015 10.1109/TMI.2009.2022087 10.1016/j.media.2008.06.016 10.1007/11505730_46 10.1016/j.media.2007.12.003 10.1007/978-3-540-72907-5_46 10.1109/TMI.2002.804425 |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. Copyright © 2011 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2011 Elsevier B.V. – notice: Copyright © 2011 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.media.2011.05.009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1361-8423 |
EndPage | 100 |
ExternalDocumentID | 21705264 10_1016_j_media_2011_05_009 S1361841511000612 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c358t-d71e8396957964ac0b389f7fcb1eda8f6259b1ba2db3d643435f425a60370c8b3 |
IEDL.DBID | .~1 |
ISSN | 1361-8415 1361-8423 |
IngestDate | Fri Jul 11 07:06:17 EDT 2025 Thu Apr 03 07:07:48 EDT 2025 Tue Jul 01 02:49:22 EDT 2025 Thu Apr 24 22:53:21 EDT 2025 Fri Feb 23 02:28:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Bhattacharyya measure Left ventricle segmentation Max-flow optimization Cardiac magnetic resonance images (cardiac MRI) |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2011 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-d71e8396957964ac0b389f7fcb1eda8f6259b1ba2db3d643435f425a60370c8b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21705264 |
PQID | 906561052 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_906561052 pubmed_primary_21705264 crossref_primary_10_1016_j_media_2011_05_009 crossref_citationtrail_10_1016_j_media_2011_05_009 elsevier_sciencedirect_doi_10_1016_j_media_2011_05_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2012 2012-01-00 2012-Jan 20120101 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – month: 01 year: 2012 text: January 2012 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Medical image analysis |
PublicationTitleAlternate | Med Image Anal |
PublicationYear | 2012 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Fradkin, M., Ciofolo, C., Mory, B., Hautvast, G., Breeuwer, M., 2008. Comprehensive segmentation of cine cardiac mr images. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2008), vol. 1, New York, NY, USA, pp. 178–185. Punithakumar, Ben Ayed, Islam, Ross, Li (b0190) 2010; 57 Andreopoulos, Tsotsos (b0015) 2008; 12 Liu, H., Chen, Y., Ho, H.P., Shi, P., 2005. Geodesic active contours with adaptive neighboring influence. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2005), vol. 2, Palm Springs, CA, USA, pp. 741–748. Cerqueira, Weissman, D, Jacobs, Kaul, Laskey, Pennell, Rumberger, Ryan, Verani (b0075) 2002; 105 Juan, O., Boykov, Y., 2007. Capacity scaling for graph cuts in vision. In: IEEE International Conference on Computer Vision (ICCV 2007). Lehmann (b0145) 1986 Ben Ayed, Li, Ross (b0035) 2009; 85 Lorenzo-Valdés, Sanchez-Ortiz, Elkington, Mohiaddin, Rueckert (b0155) 2004; 8 Aubert, Barlaud, Faugeras, Jehan-Besson (b0020) 2003; 63 El-Berbari, R., Bloch, I., Redheuil, A., Angelini, E.D., Mousseaux, É., Frouin, F., Herment, A., 2007. Automated segmentation of the left ventricle including papillary muscles in cardiac magnetic resonance images. In: Functional Imaging and Modeling of the Heart (FIMH 2007), Salt Lake City, UT, USA, pp. 453–462. Jolly, M.P., 2008. Automatic recovery of the left ventricular blood pool in cardiac cine mr images. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2008), vol. 1, New York, NY, USA, pp. 110–118. Van Assen, Danilouchkine, Dirksen, Reiber, Lelieveldt (b0220) 2008; 12 Sun, W., Cetin, M., Chan, R., Reddy, V., Holmvang, G., Chandar, V., Willsky, A.S., 2005. Segmenting and tracking the left ventricle by learning the dynamics in cardiac images. In: Information Processing in Medical Imaging (IPMI 2005), Glenwood Springs, CO, USA, pp. 553–565. Flusser, Zitova, Suk (b0090) 2009 Boykov, Kolmogorov (b0070) 2004; 26 Lee, D.D., Seung, H., 2000. Algorithms for nonnegative matrix factorization. In: Neural Information Processing Systems (NIPS 2000), vol. 13, Denver, CO, USA, pp. 556–562. Comaniciu, Ramesh, Meer (b0080) 2003; 25 Michailovich, Rathi, Tannenbaum (b0165) 2007; 16 Fritscher, K.D., Pilgram, R., Schubert, R., 2005. Automatic cardiac 4d segmentation using level sets. In: Functional Imaging and Modeling of the Heart (FIMH 2005), Barcelona, Spain, pp. 113–122. Mitchell, Lelieveldt, van der Geest, Bosch, Reiber, Sonka (b0175) 2001; 20 Ben Ayed, Li, Ross (b0030) 2009; 28 Bishop (b0050) 2007 Ni, Bresson, Chan, Esedoglu (b0180) 2009; 84 Boykov, Funka Lea (b0060) 2006; 70 Ben Ayed, I., Punithakumar, K., Li, S., Islam, A., Chong, J., 2009. Left ventricle segmentation via graph cut distribution matching. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2009), vol. 1, London, UK, pp. 901–909. Spottiswoode, Zhong, Lorenz, Mayosi, Meintjes, Epstein (b0210) 2009; 13 Kaus, von Berg, Weese, Niessen, Pekar (b0130) 2004; 8 Freedman, Zhang (b0100) 2004; 13 Zhu, Papademetris, Sinusas, Duncan (b0235) 2010; 29 Rother, Kolmogorov, Blake (b0195) 2004; 23 Zhu-Jacquot, J., Zabih, R., 2008. Segmentation of the left ventricle in cardiac mr images using graph cuts with parametric shape priors. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2008), Caesars Palace, Las Vegas, Nevada, USA, pp. 521–524. Adam, Kimmel, Rivlin (b0005) 2009; 31 Hautvast, Lobregt, Breeuwer, Gerritsen (b0115) 2006; 25 Zambal, S., Hladuvka, J., Bühler, K., 2006. Improving segmentation of the left ventricle using a two-component statistical model. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2006), vol. 1, Copenhagen, Denmark, pp. 151–158. Aherne, Thacker, Rockett (b0010) 1997; 32 Boykov, Y., Kolmogorov, V., 2003. Computing geodesics and minimal surfaces via graph cuts. In: IEEE International Conference on Computer Vision (ICCV 2003), vol. 1, Nice, France, pp. 26–33. Zhang, Freedman (b0230) 2005; 27 Georgiou, Michailovich, Rathi, Malcolm, Tannenbaum (b0110) 2007; 425 Ben Ayed, Li, Ross, Islam (b0040) 2009; 4 Pluempitiwiriyawej, Moura, Wu, Ho (b0185) 2005; 24 Zhuang, X., Rhode, K.S., Arridge, S.R., Razavi, R., Hill, D.L.G., Hawkes, D.J., Ourselin, S., 2008. An atlas-based segmentation propagation framework using locally affine registration - application to automatic whole heart segmentation. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2008), vol. 2, New York, NY, USA, pp. 425–433. Rother, C., Minka, T.P., Blake, A., Kolmogorov, V., 2006. Cosegmentation of image pairs by histogram matching - incorporating a global constraint into mrfs. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 1, New York, NY, USA, pp. 993–1000. Blake, A., Rother, C., Brown, M., Pérez, P., Torr, P.H.S., 2004. Interactive image segmentation using an adaptive gmmrf model. In: European Conference on Computer Vision (ECCV 2004), vol. 1, Prague, Czech Republic, pp. 428–441. Ben Ayed, I., Chen, H.M., Punithakumar, K., Ross, I., Li, S., 2010. Graph cut segmentation with a global constraint: recovering region distribution via a bound of the Bhattacharyya measure. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2010), San Francisco, CA, USA, pp. 1–7. Kohli, Rihan, Bray, Torr (b0135) 2008; 79 Rousson, M., Cremers, D., 2005. Efficient kernel density estimation of shape and intensity priors for level set segmentation. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2005), vol. 2, Palm Springs, CA, USA, pp. 757–764. Mitchell, Bosch, Lelieveldt, van der Geest, Reiber, Sonka (b0170) 2002; 21 Lynch, Ghita, Whelan (b0160) 2008; 27 Hautvast (10.1016/j.media.2011.05.009_b0115) 2006; 25 Mitchell (10.1016/j.media.2011.05.009_b0175) 2001; 20 10.1016/j.media.2011.05.009_b0200 10.1016/j.media.2011.05.009_b0045 10.1016/j.media.2011.05.009_b0120 Andreopoulos (10.1016/j.media.2011.05.009_b0015) 2008; 12 Bishop (10.1016/j.media.2011.05.009_b0050) 2007 Aubert (10.1016/j.media.2011.05.009_b0020) 2003; 63 10.1016/j.media.2011.05.009_b0125 Van Assen (10.1016/j.media.2011.05.009_b0220) 2008; 12 10.1016/j.media.2011.05.009_b0245 Lorenzo-Valdés (10.1016/j.media.2011.05.009_b0155) 2004; 8 10.1016/j.media.2011.05.009_b0240 Comaniciu (10.1016/j.media.2011.05.009_b0080) 2003; 25 10.1016/j.media.2011.05.009_b0085 Lynch (10.1016/j.media.2011.05.009_b0160) 2008; 27 Zhang (10.1016/j.media.2011.05.009_b0230) 2005; 27 Punithakumar (10.1016/j.media.2011.05.009_b0190) 2010; 57 Ben Ayed (10.1016/j.media.2011.05.009_b0040) 2009; 4 Spottiswoode (10.1016/j.media.2011.05.009_b0210) 2009; 13 Cerqueira (10.1016/j.media.2011.05.009_b0075) 2002; 105 10.1016/j.media.2011.05.009_b0205 Lehmann (10.1016/j.media.2011.05.009_b0145) 1986 10.1016/j.media.2011.05.009_b0055 10.1016/j.media.2011.05.009_b0215 Pluempitiwiriyawej (10.1016/j.media.2011.05.009_b0185) 2005; 24 Boykov (10.1016/j.media.2011.05.009_b0070) 2004; 26 Zhu (10.1016/j.media.2011.05.009_b0235) 2010; 29 10.1016/j.media.2011.05.009_b0095 Adam (10.1016/j.media.2011.05.009_b0005) 2009; 31 Ben Ayed (10.1016/j.media.2011.05.009_b0035) 2009; 85 Ben Ayed (10.1016/j.media.2011.05.009_b0030) 2009; 28 10.1016/j.media.2011.05.009_b0065 10.1016/j.media.2011.05.009_b0105 10.1016/j.media.2011.05.009_b0225 10.1016/j.media.2011.05.009_b0025 Kaus (10.1016/j.media.2011.05.009_b0130) 2004; 8 Freedman (10.1016/j.media.2011.05.009_b0100) 2004; 13 Boykov (10.1016/j.media.2011.05.009_b0060) 2006; 70 Georgiou (10.1016/j.media.2011.05.009_b0110) 2007; 425 10.1016/j.media.2011.05.009_b0140 Mitchell (10.1016/j.media.2011.05.009_b0170) 2002; 21 Michailovich (10.1016/j.media.2011.05.009_b0165) 2007; 16 Ni (10.1016/j.media.2011.05.009_b0180) 2009; 84 Aherne (10.1016/j.media.2011.05.009_b0010) 1997; 32 Rother (10.1016/j.media.2011.05.009_b0195) 2004; 23 Kohli (10.1016/j.media.2011.05.009_b0135) 2008; 79 10.1016/j.media.2011.05.009_b0150 Flusser (10.1016/j.media.2011.05.009_b0090) 2009 |
References_xml | – volume: 8 start-page: 255 year: 2004 end-page: 265 ident: b0155 article-title: Segmentation of 4d cardiac mr images using a probabilistic atlas and the em algorithm publication-title: Medical Image Analysis – volume: 13 start-page: 518 year: 2004 end-page: 526 ident: b0100 article-title: Active contours for tracking distributions publication-title: IEEE Transactions on Image Processing – volume: 27 start-page: 195 year: 2008 end-page: 203 ident: b0160 article-title: Segmentation of the left ventricle of the heart in 3-D+T MRI data using an optimized nonrigid temporal model publication-title: IEEE Transactions on Medical Imaging – reference: Juan, O., Boykov, Y., 2007. Capacity scaling for graph cuts in vision. In: IEEE International Conference on Computer Vision (ICCV 2007). – reference: Ben Ayed, I., Chen, H.M., Punithakumar, K., Ross, I., Li, S., 2010. Graph cut segmentation with a global constraint: recovering region distribution via a bound of the Bhattacharyya measure. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2010), San Francisco, CA, USA, pp. 1–7. – reference: Boykov, Y., Kolmogorov, V., 2003. Computing geodesics and minimal surfaces via graph cuts. In: IEEE International Conference on Computer Vision (ICCV 2003), vol. 1, Nice, France, pp. 26–33. – year: 2009 ident: b0090 article-title: Moments and Moment Invariants in Pattern Recognition – volume: 24 start-page: 593 year: 2005 end-page: 603 ident: b0185 article-title: Stacs: new active contour scheme for cardiac mr image segmentation publication-title: IEEE Transactions on Medical Imaging – volume: 12 start-page: 595 year: 2008 end-page: 605 ident: b0220 article-title: A 3-d active shape model driven by fuzzy inference: application to cardiac ct and mr publication-title: IEEE Transactions on Information Technology in Biomedicine – volume: 85 start-page: 115 year: 2009 end-page: 132 ident: b0035 article-title: A statistical overlap prior for variational image segmentation publication-title: International Journal of Computer Vision – volume: 16 start-page: 2787 year: 2007 end-page: 2801 ident: b0165 article-title: Image segmentation using active contours driven by the Bhattacharyya gradient flow publication-title: IEEE Transactions on Image Processing – reference: Fritscher, K.D., Pilgram, R., Schubert, R., 2005. Automatic cardiac 4d segmentation using level sets. In: Functional Imaging and Modeling of the Heart (FIMH 2005), Barcelona, Spain, pp. 113–122. – volume: 13 start-page: 105 year: 2009 end-page: 115 ident: b0210 article-title: Motion-guided segmentation for cine dense mri publication-title: Medical Image Analysis – volume: 25 start-page: 564 year: 2003 end-page: 575 ident: b0080 article-title: Kernel-based object tracking publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: Rother, C., Minka, T.P., Blake, A., Kolmogorov, V., 2006. Cosegmentation of image pairs by histogram matching - incorporating a global constraint into mrfs. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 1, New York, NY, USA, pp. 993–1000. – reference: Liu, H., Chen, Y., Ho, H.P., Shi, P., 2005. Geodesic active contours with adaptive neighboring influence. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2005), vol. 2, Palm Springs, CA, USA, pp. 741–748. – volume: 57 start-page: 2001 year: 2010 end-page: 2010 ident: b0190 article-title: Tracking endocardial motion via multiple model filtering publication-title: IEEE Transactions on Biomedical Engineering – volume: 425 start-page: 663 year: 2007 end-page: 672 ident: b0110 article-title: Distribution metrics and image segmentation publication-title: Linear Algebra and its Applications – volume: 28 start-page: 1902 year: 2009 end-page: 1913 ident: b0030 article-title: Embedding overlap priors in variational left ventricle tracking publication-title: IEEE Transactions on Medical Imaging – reference: Rousson, M., Cremers, D., 2005. Efficient kernel density estimation of shape and intensity priors for level set segmentation. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2005), vol. 2, Palm Springs, CA, USA, pp. 757–764. – volume: 79 start-page: 285 year: 2008 end-page: 298 ident: b0135 article-title: Simultaneous segmentation and pose estimation of humans using dynamic graph cuts publication-title: International Journal of Computer Vision – volume: 21 start-page: 1167 year: 2002 end-page: 1178 ident: b0170 article-title: 3-D active appearance models: segmentation of cardiac mr and ultrasound images publication-title: IEEE Transactions on Medical Imaging – reference: Sun, W., Cetin, M., Chan, R., Reddy, V., Holmvang, G., Chandar, V., Willsky, A.S., 2005. Segmenting and tracking the left ventricle by learning the dynamics in cardiac images. In: Information Processing in Medical Imaging (IPMI 2005), Glenwood Springs, CO, USA, pp. 553–565. – reference: Zhu-Jacquot, J., Zabih, R., 2008. Segmentation of the left ventricle in cardiac mr images using graph cuts with parametric shape priors. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2008), Caesars Palace, Las Vegas, Nevada, USA, pp. 521–524. – reference: Lee, D.D., Seung, H., 2000. Algorithms for nonnegative matrix factorization. In: Neural Information Processing Systems (NIPS 2000), vol. 13, Denver, CO, USA, pp. 556–562. – reference: Zambal, S., Hladuvka, J., Bühler, K., 2006. Improving segmentation of the left ventricle using a two-component statistical model. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2006), vol. 1, Copenhagen, Denmark, pp. 151–158. – volume: 12 start-page: 335 year: 2008 end-page: 357 ident: b0015 article-title: Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI publication-title: Medical Image Analysis – volume: 70 start-page: 109 year: 2006 end-page: 131 ident: b0060 article-title: Graph cuts and efficient n-d image segmentation publication-title: International Journal of Computer Vision – volume: 23 start-page: 309 year: 2004 end-page: 314 ident: b0195 article-title: Grabcut: interactive foreground extraction using iterated graph cuts publication-title: ACM Transactions on Graphics – reference: Jolly, M.P., 2008. Automatic recovery of the left ventricular blood pool in cardiac cine mr images. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2008), vol. 1, New York, NY, USA, pp. 110–118. – volume: 32 start-page: 1 year: 1997 end-page: 7 ident: b0010 article-title: The Bhattacharyya metric as an absolute similarity measure for frequency coded data publication-title: Kybernetika – reference: Fradkin, M., Ciofolo, C., Mory, B., Hautvast, G., Breeuwer, M., 2008. Comprehensive segmentation of cine cardiac mr images. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2008), vol. 1, New York, NY, USA, pp. 178–185. – year: 2007 ident: b0050 article-title: Pattern Recognition and Machine Learning (Information Science and Statistics) – reference: El-Berbari, R., Bloch, I., Redheuil, A., Angelini, E.D., Mousseaux, É., Frouin, F., Herment, A., 2007. Automated segmentation of the left ventricle including papillary muscles in cardiac magnetic resonance images. In: Functional Imaging and Modeling of the Heart (FIMH 2007), Salt Lake City, UT, USA, pp. 453–462. – reference: Ben Ayed, I., Punithakumar, K., Li, S., Islam, A., Chong, J., 2009. Left ventricle segmentation via graph cut distribution matching. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2009), vol. 1, London, UK, pp. 901–909. – volume: 26 start-page: 1124 year: 2004 end-page: 1137 ident: b0070 article-title: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 63 start-page: 2128 year: 2003 end-page: 2154 ident: b0020 article-title: Image segmentation using active contours: calculus of variations or shape gradients? publication-title: SIAM Journal of Applied Mathematics – volume: 31 start-page: 1708 year: 2009 end-page: 1714 ident: b0005 article-title: On scene segmentation and histograms-based curve evolution publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: Blake, A., Rother, C., Brown, M., Pérez, P., Torr, P.H.S., 2004. Interactive image segmentation using an adaptive gmmrf model. In: European Conference on Computer Vision (ECCV 2004), vol. 1, Prague, Czech Republic, pp. 428–441. – volume: 105 start-page: 539 year: 2002 end-page: 542 ident: b0075 article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from cardiac imaging committee of the council on clinical cardiology of the american heart association publication-title: Circulation – volume: 84 start-page: 97 year: 2009 end-page: 111 ident: b0180 article-title: Local histogram based segmentation using the wasserstein distance publication-title: International Journal of Computer Vision – volume: 8 start-page: 245 year: 2004 end-page: 254 ident: b0130 article-title: Automated segmentation of the left ventricle in cardiac mri publication-title: Medical Image Analysis – volume: 25 start-page: 1472 year: 2006 end-page: 1482 ident: b0115 article-title: Automatic contour propagation in cine cardiac magnetic resonance images publication-title: IEEE Transactions on Medical Imaging – volume: 27 start-page: 282 year: 2005 end-page: 287 ident: b0230 article-title: Improving performance of distribution tracking through background mismatch publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 20 start-page: 415 year: 2001 end-page: 423 ident: b0175 article-title: Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac mr images publication-title: IEEE Transactions on Medical Imaging – volume: 4 start-page: 37 year: 2009 end-page: 44 ident: b0040 article-title: Myocardium tracking via matching distributions publication-title: International Journal of Computer Assisted Radiology and Surgery – volume: 29 start-page: 669 year: 2010 end-page: 687 ident: b0235 article-title: Segmentation of the left ventricle from cardiac mr images using a subject-specific dynamical model publication-title: IEEE Transactions on Medical Imaging – year: 1986 ident: b0145 article-title: Testing Statistical Hypotheses – reference: Zhuang, X., Rhode, K.S., Arridge, S.R., Razavi, R., Hill, D.L.G., Hawkes, D.J., Ourselin, S., 2008. An atlas-based segmentation propagation framework using locally affine registration - application to automatic whole heart segmentation. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2008), vol. 2, New York, NY, USA, pp. 425–433. – volume: 12 start-page: 595 year: 2008 ident: 10.1016/j.media.2011.05.009_b0220 article-title: A 3-d active shape model driven by fuzzy inference: application to cardiac ct and mr publication-title: IEEE Transactions on Information Technology in Biomedicine doi: 10.1109/TITB.2008.926477 – volume: 13 start-page: 518 year: 2004 ident: 10.1016/j.media.2011.05.009_b0100 article-title: Active contours for tracking distributions publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2003.821445 – volume: 57 start-page: 2001 year: 2010 ident: 10.1016/j.media.2011.05.009_b0190 article-title: Tracking endocardial motion via multiple model filtering publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2010.2048752 – year: 2007 ident: 10.1016/j.media.2011.05.009_b0050 – ident: 10.1016/j.media.2011.05.009_b0225 doi: 10.1007/11866565_19 – volume: 425 start-page: 663 year: 2007 ident: 10.1016/j.media.2011.05.009_b0110 article-title: Distribution metrics and image segmentation publication-title: Linear Algebra and its Applications doi: 10.1016/j.laa.2007.03.009 – volume: 27 start-page: 282 year: 2005 ident: 10.1016/j.media.2011.05.009_b0230 article-title: Improving performance of distribution tracking through background mismatch publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2005.31 – ident: 10.1016/j.media.2011.05.009_b0125 doi: 10.1109/ICCV.2007.4408970 – volume: 29 start-page: 669 year: 2010 ident: 10.1016/j.media.2011.05.009_b0235 article-title: Segmentation of the left ventricle from cardiac mr images using a subject-specific dynamical model publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2009.2031063 – ident: 10.1016/j.media.2011.05.009_b0025 doi: 10.1109/CVPR.2010.5540045 – volume: 70 start-page: 109 year: 2006 ident: 10.1016/j.media.2011.05.009_b0060 article-title: Graph cuts and efficient n-d image segmentation publication-title: International Journal of Computer Vision doi: 10.1007/s11263-006-7934-5 – volume: 20 start-page: 415 year: 2001 ident: 10.1016/j.media.2011.05.009_b0175 article-title: Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac mr images publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.925294 – volume: 105 start-page: 539 year: 2002 ident: 10.1016/j.media.2011.05.009_b0075 article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from cardiac imaging committee of the council on clinical cardiology of the american heart association publication-title: Circulation doi: 10.1161/hc0402.102975 – ident: 10.1016/j.media.2011.05.009_b0105 doi: 10.1007/11494621_12 – year: 2009 ident: 10.1016/j.media.2011.05.009_b0090 – volume: 4 start-page: 37 year: 2009 ident: 10.1016/j.media.2011.05.009_b0040 article-title: Myocardium tracking via matching distributions publication-title: International Journal of Computer Assisted Radiology and Surgery doi: 10.1007/s11548-008-0265-y – ident: 10.1016/j.media.2011.05.009_b0150 doi: 10.1007/11566489_91 – ident: 10.1016/j.media.2011.05.009_b0045 doi: 10.1007/978-3-642-04271-3_109 – ident: 10.1016/j.media.2011.05.009_b0245 doi: 10.1007/978-3-540-85990-1_51 – ident: 10.1016/j.media.2011.05.009_b0055 doi: 10.1007/978-3-540-24670-1_33 – ident: 10.1016/j.media.2011.05.009_b0120 doi: 10.1007/978-3-540-85988-8_14 – volume: 27 start-page: 195 year: 2008 ident: 10.1016/j.media.2011.05.009_b0160 article-title: Segmentation of the left ventricle of the heart in 3-D+T MRI data using an optimized nonrigid temporal model publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2007.904681 – volume: 79 start-page: 285 year: 2008 ident: 10.1016/j.media.2011.05.009_b0135 article-title: Simultaneous segmentation and pose estimation of humans using dynamic graph cuts publication-title: International Journal of Computer Vision doi: 10.1007/s11263-007-0120-6 – ident: 10.1016/j.media.2011.05.009_b0240 doi: 10.1109/ICASSP.2008.4517661 – volume: 31 start-page: 1708 year: 2009 ident: 10.1016/j.media.2011.05.009_b0005 article-title: On scene segmentation and histograms-based curve evolution publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2009.21 – volume: 32 start-page: 1 year: 1997 ident: 10.1016/j.media.2011.05.009_b0010 article-title: The Bhattacharyya metric as an absolute similarity measure for frequency coded data publication-title: Kybernetika – volume: 23 start-page: 309 year: 2004 ident: 10.1016/j.media.2011.05.009_b0195 article-title: Grabcut: interactive foreground extraction using iterated graph cuts publication-title: ACM Transactions on Graphics doi: 10.1145/1015706.1015720 – ident: 10.1016/j.media.2011.05.009_b0065 doi: 10.1109/ICCV.2003.1238310 – ident: 10.1016/j.media.2011.05.009_b0140 – volume: 26 start-page: 1124 year: 2004 ident: 10.1016/j.media.2011.05.009_b0070 article-title: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2004.60 – ident: 10.1016/j.media.2011.05.009_b0095 doi: 10.1007/978-3-540-85988-8_22 – ident: 10.1016/j.media.2011.05.009_b0200 doi: 10.1109/CVPR.2006.91 – ident: 10.1016/j.media.2011.05.009_b0205 doi: 10.1007/11566489_93 – volume: 63 start-page: 2128 year: 2003 ident: 10.1016/j.media.2011.05.009_b0020 article-title: Image segmentation using active contours: calculus of variations or shape gradients? publication-title: SIAM Journal of Applied Mathematics doi: 10.1137/S0036139902408928 – volume: 8 start-page: 255 year: 2004 ident: 10.1016/j.media.2011.05.009_b0155 article-title: Segmentation of 4d cardiac mr images using a probabilistic atlas and the em algorithm publication-title: Medical Image Analysis doi: 10.1016/j.media.2004.06.005 – volume: 84 start-page: 97 year: 2009 ident: 10.1016/j.media.2011.05.009_b0180 article-title: Local histogram based segmentation using the wasserstein distance publication-title: International Journal of Computer Vision doi: 10.1007/s11263-009-0234-0 – volume: 25 start-page: 1472 year: 2006 ident: 10.1016/j.media.2011.05.009_b0115 article-title: Automatic contour propagation in cine cardiac magnetic resonance images publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2006.882124 – volume: 25 start-page: 564 year: 2003 ident: 10.1016/j.media.2011.05.009_b0080 article-title: Kernel-based object tracking publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2003.1195991 – volume: 16 start-page: 2787 year: 2007 ident: 10.1016/j.media.2011.05.009_b0165 article-title: Image segmentation using active contours driven by the Bhattacharyya gradient flow publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2007.908073 – volume: 24 start-page: 593 year: 2005 ident: 10.1016/j.media.2011.05.009_b0185 article-title: Stacs: new active contour scheme for cardiac mr image segmentation publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2005.843740 – volume: 85 start-page: 115 year: 2009 ident: 10.1016/j.media.2011.05.009_b0035 article-title: A statistical overlap prior for variational image segmentation publication-title: International Journal of Computer Vision doi: 10.1007/s11263-009-0249-6 – volume: 8 start-page: 245 year: 2004 ident: 10.1016/j.media.2011.05.009_b0130 article-title: Automated segmentation of the left ventricle in cardiac mri publication-title: Medical Image Analysis doi: 10.1016/j.media.2004.06.015 – volume: 28 start-page: 1902 year: 2009 ident: 10.1016/j.media.2011.05.009_b0030 article-title: Embedding overlap priors in variational left ventricle tracking publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2009.2022087 – volume: 13 start-page: 105 year: 2009 ident: 10.1016/j.media.2011.05.009_b0210 article-title: Motion-guided segmentation for cine dense mri publication-title: Medical Image Analysis doi: 10.1016/j.media.2008.06.016 – ident: 10.1016/j.media.2011.05.009_b0215 doi: 10.1007/11505730_46 – volume: 12 start-page: 335 year: 2008 ident: 10.1016/j.media.2011.05.009_b0015 article-title: Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI publication-title: Medical Image Analysis doi: 10.1016/j.media.2007.12.003 – ident: 10.1016/j.media.2011.05.009_b0085 doi: 10.1007/978-3-540-72907-5_46 – volume: 21 start-page: 1167 year: 2002 ident: 10.1016/j.media.2011.05.009_b0170 article-title: 3-D active appearance models: segmentation of cardiac mr and ultrasound images publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2002.804425 – year: 1986 ident: 10.1016/j.media.2011.05.009_b0145 |
SSID | ssj0007440 |
Score | 2.2956984 |
Snippet | This study investigates fast detection of left ventricle boundaries following the optimization of new distribution-based functions. Based on max-flow... This study investigates fast detection of the left ventricle (LV) endo- and epicardium boundaries in a cardiac magnetic resonance (MR) sequence following the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 87 |
SubjectTerms | Algorithms Bhattacharyya measure Cardiac magnetic resonance images (cardiac MRI) Heart Ventricles - pathology Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Left ventricle segmentation Magnetic Resonance Imaging, Cine - methods Max-flow optimization Reproducibility of Results Sensitivity and Specificity Signal Processing, Computer-Assisted Ventricular Dysfunction, Left - pathology |
Title | Max-flow segmentation of the left ventricle by recovering subject-specific distributions via a bound of the Bhattacharyya measure |
URI | https://dx.doi.org/10.1016/j.media.2011.05.009 https://www.ncbi.nlm.nih.gov/pubmed/21705264 https://www.proquest.com/docview/906561052 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hkKr2gFr62j6QDxzrbpyHnRwpKtpSLReKxM0aO3a71ZJFbBa6l0r953gSh7YHOHBMZDuRx_Z8tuf7BmBPWfKLJQYL2IrnXuQcFWZcpDJ1RlpvBJGTp8dycpofnRVnG3AwcGEorDKu_f2a3q3W8c049ub4YjYbn4iMkpUEjyV6R00M9lxRWN_H33_DPEgAr-deCU6lB-WhLsarY2dEHU86W6nu8k53oc_OCx0-he0IH9l-_4fPYMM1O_DkH1HBHXg0jdflz-HPFH9xP19cs6X7fh5ZRg1beBZgH5s73zIKd7yktphZM9odX3XNsOXK0AkNJyYmRROxmhR2Y3KsJbuaIUNmKCfT0NynH9i2SCyu9RrZeX_2-AJODz9_O5jwmHOB26woW14r4QJmklXHUUWbmIBovPLWCFdj6Wm7ZITBtDZZLYmWWvgw7VEmmUpsabKXsNksGvcaGDplCpsnRpU-N5Wt8twriUlmAmaRHkeQDn2tbRQkp7wYcz1Env3UnYE0GUgnhQ4GGsGH20oXvR7H_cXlYET937DSwWPcX5ENJtdhwtEtCjZusVrqKoC2gDmLdASv-qFw-yMpaRMFhPnmoV99C4_DU9of8byDzfZy5d4H0NOa3W5U78LW_pevk-Mbfx4B7w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED6kDtA2Q9CmL_fJoWMJi3pQ0pgGCZwm9tIEyEYcKTJ14chBLKf1mH9enkQZ7ZAMXSWRIngk7yN533cAn3NDfrFAbwFT8tSJlGOOCRexjK2WxmlB5OTJVI7P028X2cUWHPRcGAqrDGt_t6a3q3V4Mgq9ObqezUbfRULJSrzHEp2jfgTbpE6VDmB7__hkPN0syKSB19GvBKcCvfhQG-bVEjSClCcdr5T3Oaj7AGjriI6ewW5AkGy_a-Rz2LL1Huz8pSu4B48n4cb8BdxN8Dd388UvtrSXV4FoVLOFYx75sbl1DaOIxxuqi-k1ow3ybVsNW640HdJwImNSQBGrSGQ35MdastsZMmSa0jL11X39gU2DRORar5FddcePL-H86PDsYMxD2gVukqxoeJUL62GTLFuaKppIe1Djcme0sBUWjnZMWmiMK51UkpipmfMzH2WU5JEpdPIKBvWitm-Aoc11ZtJI54VLdWnKNHW5xCjRHrZIh0OI-75WJmiSU2qMueqDz36q1kCKDKSiTHkDDeHLptB1J8nx8OeyN6L6Z2Qp7zQeLsh6kys_5-giBWu7WC1V6XGbh51ZPITX3VDYNCQmeSIPMt_-718_wZPx2eRUnR5PT97BU_8m7k583sOguVnZDx4DNfpjGON_AE2bBKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Max-flow+segmentation+of+the+left+ventricle+by+recovering+subject-specific+distributions+via+a+bound+of+the+Bhattacharyya+measure&rft.jtitle=Medical+image+analysis&rft.au=Ben+Ayed%2C+Ismail&rft.au=Chen%2C+Hua-Mei&rft.au=Punithakumar%2C+Kumaradevan&rft.au=Ross%2C+Ian&rft.date=2012-01-01&rft.eissn=1361-8423&rft.volume=16&rft.issue=1&rft.spage=87&rft_id=info:doi/10.1016%2Fj.media.2011.05.009&rft_id=info%3Apmid%2F21705264&rft.externalDocID=21705264 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |