Max-flow segmentation of the left ventricle by recovering subject-specific distributions via a bound of the Bhattacharyya measure

This study investigates fast detection of left ventricle boundaries following the optimization of new distribution-based functions. Based on max-flow iterations and bound relaxation, the proposed algorithm yields a competitive performance in nearly real-time. [Display omitted] ► Novel distribution-b...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 16; no. 1; pp. 87 - 100
Main Authors Ben Ayed, Ismail, Chen, Hua-mei, Punithakumar, Kumaradevan, Ross, Ian, Li, Shuo
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2012
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2011.05.009

Cover

Loading…
Abstract This study investigates fast detection of left ventricle boundaries following the optimization of new distribution-based functions. Based on max-flow iterations and bound relaxation, the proposed algorithm yields a competitive performance in nearly real-time. [Display omitted] ► Novel distribution-based cost functions for left ventricle segmentation. ► Novel optimization based on bound derivation and max-flow iterations. ► Competitive performance in nearly real-time. This study investigates fast detection of the left ventricle (LV) endo- and epicardium boundaries in a cardiac magnetic resonance (MR) sequence following the optimization of two original discrete cost functions, each containing global intensity and geometry constraints based on the Bhattacharyya similarity. The cost functions and the corresponding max-flow optimization built upon an original bound of the Bhattacharyya measure yield competitive results in nearly real-time. Within each frame, the algorithm seeks the LV cavity and myocardium regions consistent with subject-specific model distributions learned from the first frame in the sequence. Based on global rather than pixel-wise information, the proposed formulation relaxes the need of a large training set and optimization with respect to geometric transformations. Different from related active contour methods, it does not require a large number of iterative updates of the segmentation and the corresponding computationally onerous kernel density estimates (KDEs). The algorithm requires very few iterations and KDEs to converge. Furthermore, the proposed bound can be used for several other applications and, therefore, can lead to segmentation algorithms which share the flexibility of active contours and computational advantages of max-flow optimization. Quantitative evaluations over 2280 images acquired from 20 subjects demonstrated that the results correlate well with independent manual segmentations by an expert. Moreover, comparisons with a related recent active contour method showed that the proposed framework brings significant improvements in regard to accuracy and computational efficiency.
AbstractList This study investigates fast detection of the left ventricle (LV) endo- and epicardium boundaries in a cardiac magnetic resonance (MR) sequence following the optimization of two original discrete cost functions, each containing global intensity and geometry constraints based on the Bhattacharyya similarity. The cost functions and the corresponding max-flow optimization built upon an original bound of the Bhattacharyya measure yield competitive results in nearly real-time. Within each frame, the algorithm seeks the LV cavity and myocardium regions consistent with subject-specific model distributions learned from the first frame in the sequence. Based on global rather than pixel-wise information, the proposed formulation relaxes the need of a large training set and optimization with respect to geometric transformations. Different from related active contour methods, it does not require a large number of iterative updates of the segmentation and the corresponding computationally onerous kernel density estimates (KDEs). The algorithm requires very few iterations and KDEs to converge. Furthermore, the proposed bound can be used for several other applications and, therefore, can lead to segmentation algorithms which share the flexibility of active contours and computational advantages of max-flow optimization. Quantitative evaluations over 2280 images acquired from 20 subjects demonstrated that the results correlate well with independent manual segmentations by an expert. Moreover, comparisons with a related recent active contour method showed that the proposed framework brings significant improvements in regard to accuracy and computational efficiency.
This study investigates fast detection of left ventricle boundaries following the optimization of new distribution-based functions. Based on max-flow iterations and bound relaxation, the proposed algorithm yields a competitive performance in nearly real-time. [Display omitted] ► Novel distribution-based cost functions for left ventricle segmentation. ► Novel optimization based on bound derivation and max-flow iterations. ► Competitive performance in nearly real-time. This study investigates fast detection of the left ventricle (LV) endo- and epicardium boundaries in a cardiac magnetic resonance (MR) sequence following the optimization of two original discrete cost functions, each containing global intensity and geometry constraints based on the Bhattacharyya similarity. The cost functions and the corresponding max-flow optimization built upon an original bound of the Bhattacharyya measure yield competitive results in nearly real-time. Within each frame, the algorithm seeks the LV cavity and myocardium regions consistent with subject-specific model distributions learned from the first frame in the sequence. Based on global rather than pixel-wise information, the proposed formulation relaxes the need of a large training set and optimization with respect to geometric transformations. Different from related active contour methods, it does not require a large number of iterative updates of the segmentation and the corresponding computationally onerous kernel density estimates (KDEs). The algorithm requires very few iterations and KDEs to converge. Furthermore, the proposed bound can be used for several other applications and, therefore, can lead to segmentation algorithms which share the flexibility of active contours and computational advantages of max-flow optimization. Quantitative evaluations over 2280 images acquired from 20 subjects demonstrated that the results correlate well with independent manual segmentations by an expert. Moreover, comparisons with a related recent active contour method showed that the proposed framework brings significant improvements in regard to accuracy and computational efficiency.
This study investigates fast detection of the left ventricle (LV) endo- and epicardium boundaries in a cardiac magnetic resonance (MR) sequence following the optimization of two original discrete cost functions, each containing global intensity and geometry constraints based on the Bhattacharyya similarity. The cost functions and the corresponding max-flow optimization built upon an original bound of the Bhattacharyya measure yield competitive results in nearly real-time. Within each frame, the algorithm seeks the LV cavity and myocardium regions consistent with subject-specific model distributions learned from the first frame in the sequence. Based on global rather than pixel-wise information, the proposed formulation relaxes the need of a large training set and optimization with respect to geometric transformations. Different from related active contour methods, it does not require a large number of iterative updates of the segmentation and the corresponding computationally onerous kernel density estimates (KDEs). The algorithm requires very few iterations and KDEs to converge. Furthermore, the proposed bound can be used for several other applications and, therefore, can lead to segmentation algorithms which share the flexibility of active contours and computational advantages of max-flow optimization. Quantitative evaluations over 2280 images acquired from 20 subjects demonstrated that the results correlate well with independent manual segmentations by an expert. Moreover, comparisons with a related recent active contour method showed that the proposed framework brings significant improvements in regard to accuracy and computational efficiency.This study investigates fast detection of the left ventricle (LV) endo- and epicardium boundaries in a cardiac magnetic resonance (MR) sequence following the optimization of two original discrete cost functions, each containing global intensity and geometry constraints based on the Bhattacharyya similarity. The cost functions and the corresponding max-flow optimization built upon an original bound of the Bhattacharyya measure yield competitive results in nearly real-time. Within each frame, the algorithm seeks the LV cavity and myocardium regions consistent with subject-specific model distributions learned from the first frame in the sequence. Based on global rather than pixel-wise information, the proposed formulation relaxes the need of a large training set and optimization with respect to geometric transformations. Different from related active contour methods, it does not require a large number of iterative updates of the segmentation and the corresponding computationally onerous kernel density estimates (KDEs). The algorithm requires very few iterations and KDEs to converge. Furthermore, the proposed bound can be used for several other applications and, therefore, can lead to segmentation algorithms which share the flexibility of active contours and computational advantages of max-flow optimization. Quantitative evaluations over 2280 images acquired from 20 subjects demonstrated that the results correlate well with independent manual segmentations by an expert. Moreover, comparisons with a related recent active contour method showed that the proposed framework brings significant improvements in regard to accuracy and computational efficiency.
Author Chen, Hua-mei
Punithakumar, Kumaradevan
Ross, Ian
Ben Ayed, Ismail
Li, Shuo
Author_xml – sequence: 1
  givenname: Ismail
  surname: Ben Ayed
  fullname: Ben Ayed, Ismail
  email: ismail.benayed@ge.com
  organization: GE Healthcare, London, ON, Canada
– sequence: 2
  givenname: Hua-mei
  surname: Chen
  fullname: Chen, Hua-mei
  organization: University of Western Ontario, London, ON, Canada
– sequence: 3
  givenname: Kumaradevan
  surname: Punithakumar
  fullname: Punithakumar, Kumaradevan
  organization: GE Healthcare, London, ON, Canada
– sequence: 4
  givenname: Ian
  surname: Ross
  fullname: Ross, Ian
  organization: University of Western Ontario, London, ON, Canada
– sequence: 5
  givenname: Shuo
  surname: Li
  fullname: Li, Shuo
  organization: GE Healthcare, London, ON, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21705264$$D View this record in MEDLINE/PubMed
BookMark eNqFkb2O1DAYRS20iP2BJ0BC7qgS7Dh2koICVvxJi2igtj47n3c8SuLBdgam5M3xMLtbUEBlyzr3yrrnkpwtYUFCnnNWc8bVq2094-ihbhjnNZM1Y8MjcsGF4lXfNuLs4c7lOblMacsY69qWPSHnDe-YbFR7QX59hp-Vm8IPmvB2xiVD9mGhwdG8QTqhy3RfXqO3E1JzoBFt2GP0yy1Nq9mizVXaofXOWzr6VECzHhsS3XugQE1Yl_G-7u0Gcga7gXg4AJ0R0hrxKXnsYEr47O68It_ev_t6_bG6-fLh0_Wbm8oK2edq7Dj2YlCD7AbVgmVG9IPrnDUcR-idauRguIFmNGJUrWiFdG0jQTHRMdsbcUVennp3MXxfMWU9-2RxmmDBsCY9MCUVL7MU8sUduZoysd5FP5cv6_vVCiBOgI0hpYjuAeFMH93orf7jRh_daCZ1cVNSw18p609z5wh--k_29SmLZaG9x6iT9bjYAhYjWY_B_zP_G8XQrRw
CitedBy_id crossref_primary_10_1007_s11042_018_5661_x
crossref_primary_10_1080_2150704X_2017_1327124
crossref_primary_10_1109_TMI_2018_2837502
crossref_primary_10_3390_s18124220
crossref_primary_10_1016_j_media_2014_06_001
crossref_primary_10_1016_j_cviu_2012_11_017
crossref_primary_10_1109_JBHI_2021_3064353
crossref_primary_10_1109_JBHI_2018_2879188
crossref_primary_10_1155_2021_3260259
crossref_primary_10_3390_math10040627
crossref_primary_10_1109_TMI_2017_2709251
crossref_primary_10_3390_bioengineering10111267
crossref_primary_10_1155_2021_4186648
crossref_primary_10_1088_2057_1976_ab9556
crossref_primary_10_1109_TMI_2015_2512711
crossref_primary_10_3934_mbe_2022074
crossref_primary_10_1016_j_jbi_2023_104366
crossref_primary_10_1016_j_media_2017_09_005
crossref_primary_10_1260_2040_2295_4_3_371
crossref_primary_10_1051_itmconf_20160801003
crossref_primary_10_1142_S0217984917400450
crossref_primary_10_1016_j_knosys_2022_110033
crossref_primary_10_1016_j_media_2019_101591
crossref_primary_10_1016_j_neucom_2016_03_106
crossref_primary_10_1118_1_4907993
crossref_primary_10_1109_JBHI_2020_3046449
crossref_primary_10_1142_S0219519423400833
crossref_primary_10_1016_j_cviu_2012_12_008
crossref_primary_10_1038_s41598_023_40841_y
crossref_primary_10_1016_j_mri_2015_12_027
crossref_primary_10_1109_TNNLS_2020_2984955
crossref_primary_10_1109_ACCESS_2024_3442080
crossref_primary_10_1049_iet_cvi_2014_0450
crossref_primary_10_1088_1361_6560_ac0bd3
crossref_primary_10_1118_1_4947126
crossref_primary_10_1016_j_cmpb_2019_105288
crossref_primary_10_1016_j_compbiomed_2020_103659
crossref_primary_10_1145_3517190
crossref_primary_10_1016_j_compmedimag_2015_01_004
crossref_primary_10_1049_cit2_12382
crossref_primary_10_1016_j_media_2013_05_002
crossref_primary_10_1016_j_media_2023_102764
crossref_primary_10_1109_TMI_2016_2553153
crossref_primary_10_1016_j_compmedimag_2020_101717
crossref_primary_10_1080_21681163_2014_974290
crossref_primary_10_1007_s10489_020_02130_3
crossref_primary_10_1007_s11548_014_1104_y
crossref_primary_10_1007_s10334_015_0521_4
crossref_primary_10_1109_ACCESS_2019_2907564
crossref_primary_10_1109_JBHI_2018_2865450
crossref_primary_10_1016_j_mri_2018_04_011
Cites_doi 10.1109/TITB.2008.926477
10.1109/TIP.2003.821445
10.1109/TBME.2010.2048752
10.1007/11866565_19
10.1016/j.laa.2007.03.009
10.1109/TPAMI.2005.31
10.1109/ICCV.2007.4408970
10.1109/TMI.2009.2031063
10.1109/CVPR.2010.5540045
10.1007/s11263-006-7934-5
10.1109/42.925294
10.1161/hc0402.102975
10.1007/11494621_12
10.1007/s11548-008-0265-y
10.1007/11566489_91
10.1007/978-3-642-04271-3_109
10.1007/978-3-540-85990-1_51
10.1007/978-3-540-24670-1_33
10.1007/978-3-540-85988-8_14
10.1109/TMI.2007.904681
10.1007/s11263-007-0120-6
10.1109/ICASSP.2008.4517661
10.1109/TPAMI.2009.21
10.1145/1015706.1015720
10.1109/ICCV.2003.1238310
10.1109/TPAMI.2004.60
10.1007/978-3-540-85988-8_22
10.1109/CVPR.2006.91
10.1007/11566489_93
10.1137/S0036139902408928
10.1016/j.media.2004.06.005
10.1007/s11263-009-0234-0
10.1109/TMI.2006.882124
10.1109/TPAMI.2003.1195991
10.1109/TIP.2007.908073
10.1109/TMI.2005.843740
10.1007/s11263-009-0249-6
10.1016/j.media.2004.06.015
10.1109/TMI.2009.2022087
10.1016/j.media.2008.06.016
10.1007/11505730_46
10.1016/j.media.2007.12.003
10.1007/978-3-540-72907-5_46
10.1109/TMI.2002.804425
ContentType Journal Article
Copyright 2011 Elsevier B.V.
Copyright © 2011 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: Copyright © 2011 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.media.2011.05.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 100
ExternalDocumentID 21705264
10_1016_j_media_2011_05_009
S1361841511000612
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c358t-d71e8396957964ac0b389f7fcb1eda8f6259b1ba2db3d643435f425a60370c8b3
IEDL.DBID .~1
ISSN 1361-8415
1361-8423
IngestDate Fri Jul 11 07:06:17 EDT 2025
Thu Apr 03 07:07:48 EDT 2025
Tue Jul 01 02:49:22 EDT 2025
Thu Apr 24 22:53:21 EDT 2025
Fri Feb 23 02:28:17 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Bhattacharyya measure
Left ventricle segmentation
Max-flow optimization
Cardiac magnetic resonance images (cardiac MRI)
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2011 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-d71e8396957964ac0b389f7fcb1eda8f6259b1ba2db3d643435f425a60370c8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21705264
PQID 906561052
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_906561052
pubmed_primary_21705264
crossref_primary_10_1016_j_media_2011_05_009
crossref_citationtrail_10_1016_j_media_2011_05_009
elsevier_sciencedirect_doi_10_1016_j_media_2011_05_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2012
2012-01-00
2012-Jan
20120101
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: January 2012
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2012
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Fradkin, M., Ciofolo, C., Mory, B., Hautvast, G., Breeuwer, M., 2008. Comprehensive segmentation of cine cardiac mr images. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2008), vol. 1, New York, NY, USA, pp. 178–185.
Punithakumar, Ben Ayed, Islam, Ross, Li (b0190) 2010; 57
Andreopoulos, Tsotsos (b0015) 2008; 12
Liu, H., Chen, Y., Ho, H.P., Shi, P., 2005. Geodesic active contours with adaptive neighboring influence. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2005), vol. 2, Palm Springs, CA, USA, pp. 741–748.
Cerqueira, Weissman, D, Jacobs, Kaul, Laskey, Pennell, Rumberger, Ryan, Verani (b0075) 2002; 105
Juan, O., Boykov, Y., 2007. Capacity scaling for graph cuts in vision. In: IEEE International Conference on Computer Vision (ICCV 2007).
Lehmann (b0145) 1986
Ben Ayed, Li, Ross (b0035) 2009; 85
Lorenzo-Valdés, Sanchez-Ortiz, Elkington, Mohiaddin, Rueckert (b0155) 2004; 8
Aubert, Barlaud, Faugeras, Jehan-Besson (b0020) 2003; 63
El-Berbari, R., Bloch, I., Redheuil, A., Angelini, E.D., Mousseaux, É., Frouin, F., Herment, A., 2007. Automated segmentation of the left ventricle including papillary muscles in cardiac magnetic resonance images. In: Functional Imaging and Modeling of the Heart (FIMH 2007), Salt Lake City, UT, USA, pp. 453–462.
Jolly, M.P., 2008. Automatic recovery of the left ventricular blood pool in cardiac cine mr images. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2008), vol. 1, New York, NY, USA, pp. 110–118.
Van Assen, Danilouchkine, Dirksen, Reiber, Lelieveldt (b0220) 2008; 12
Sun, W., Cetin, M., Chan, R., Reddy, V., Holmvang, G., Chandar, V., Willsky, A.S., 2005. Segmenting and tracking the left ventricle by learning the dynamics in cardiac images. In: Information Processing in Medical Imaging (IPMI 2005), Glenwood Springs, CO, USA, pp. 553–565.
Flusser, Zitova, Suk (b0090) 2009
Boykov, Kolmogorov (b0070) 2004; 26
Lee, D.D., Seung, H., 2000. Algorithms for nonnegative matrix factorization. In: Neural Information Processing Systems (NIPS 2000), vol. 13, Denver, CO, USA, pp. 556–562.
Comaniciu, Ramesh, Meer (b0080) 2003; 25
Michailovich, Rathi, Tannenbaum (b0165) 2007; 16
Fritscher, K.D., Pilgram, R., Schubert, R., 2005. Automatic cardiac 4d segmentation using level sets. In: Functional Imaging and Modeling of the Heart (FIMH 2005), Barcelona, Spain, pp. 113–122.
Mitchell, Lelieveldt, van der Geest, Bosch, Reiber, Sonka (b0175) 2001; 20
Ben Ayed, Li, Ross (b0030) 2009; 28
Bishop (b0050) 2007
Ni, Bresson, Chan, Esedoglu (b0180) 2009; 84
Boykov, Funka Lea (b0060) 2006; 70
Ben Ayed, I., Punithakumar, K., Li, S., Islam, A., Chong, J., 2009. Left ventricle segmentation via graph cut distribution matching. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2009), vol. 1, London, UK, pp. 901–909.
Spottiswoode, Zhong, Lorenz, Mayosi, Meintjes, Epstein (b0210) 2009; 13
Kaus, von Berg, Weese, Niessen, Pekar (b0130) 2004; 8
Freedman, Zhang (b0100) 2004; 13
Zhu, Papademetris, Sinusas, Duncan (b0235) 2010; 29
Rother, Kolmogorov, Blake (b0195) 2004; 23
Zhu-Jacquot, J., Zabih, R., 2008. Segmentation of the left ventricle in cardiac mr images using graph cuts with parametric shape priors. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2008), Caesars Palace, Las Vegas, Nevada, USA, pp. 521–524.
Adam, Kimmel, Rivlin (b0005) 2009; 31
Hautvast, Lobregt, Breeuwer, Gerritsen (b0115) 2006; 25
Zambal, S., Hladuvka, J., Bühler, K., 2006. Improving segmentation of the left ventricle using a two-component statistical model. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2006), vol. 1, Copenhagen, Denmark, pp. 151–158.
Aherne, Thacker, Rockett (b0010) 1997; 32
Boykov, Y., Kolmogorov, V., 2003. Computing geodesics and minimal surfaces via graph cuts. In: IEEE International Conference on Computer Vision (ICCV 2003), vol. 1, Nice, France, pp. 26–33.
Zhang, Freedman (b0230) 2005; 27
Georgiou, Michailovich, Rathi, Malcolm, Tannenbaum (b0110) 2007; 425
Ben Ayed, Li, Ross, Islam (b0040) 2009; 4
Pluempitiwiriyawej, Moura, Wu, Ho (b0185) 2005; 24
Zhuang, X., Rhode, K.S., Arridge, S.R., Razavi, R., Hill, D.L.G., Hawkes, D.J., Ourselin, S., 2008. An atlas-based segmentation propagation framework using locally affine registration - application to automatic whole heart segmentation. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2008), vol. 2, New York, NY, USA, pp. 425–433.
Rother, C., Minka, T.P., Blake, A., Kolmogorov, V., 2006. Cosegmentation of image pairs by histogram matching - incorporating a global constraint into mrfs. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 1, New York, NY, USA, pp. 993–1000.
Blake, A., Rother, C., Brown, M., Pérez, P., Torr, P.H.S., 2004. Interactive image segmentation using an adaptive gmmrf model. In: European Conference on Computer Vision (ECCV 2004), vol. 1, Prague, Czech Republic, pp. 428–441.
Ben Ayed, I., Chen, H.M., Punithakumar, K., Ross, I., Li, S., 2010. Graph cut segmentation with a global constraint: recovering region distribution via a bound of the Bhattacharyya measure. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2010), San Francisco, CA, USA, pp. 1–7.
Kohli, Rihan, Bray, Torr (b0135) 2008; 79
Rousson, M., Cremers, D., 2005. Efficient kernel density estimation of shape and intensity priors for level set segmentation. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2005), vol. 2, Palm Springs, CA, USA, pp. 757–764.
Mitchell, Bosch, Lelieveldt, van der Geest, Reiber, Sonka (b0170) 2002; 21
Lynch, Ghita, Whelan (b0160) 2008; 27
Hautvast (10.1016/j.media.2011.05.009_b0115) 2006; 25
Mitchell (10.1016/j.media.2011.05.009_b0175) 2001; 20
10.1016/j.media.2011.05.009_b0200
10.1016/j.media.2011.05.009_b0045
10.1016/j.media.2011.05.009_b0120
Andreopoulos (10.1016/j.media.2011.05.009_b0015) 2008; 12
Bishop (10.1016/j.media.2011.05.009_b0050) 2007
Aubert (10.1016/j.media.2011.05.009_b0020) 2003; 63
10.1016/j.media.2011.05.009_b0125
Van Assen (10.1016/j.media.2011.05.009_b0220) 2008; 12
10.1016/j.media.2011.05.009_b0245
Lorenzo-Valdés (10.1016/j.media.2011.05.009_b0155) 2004; 8
10.1016/j.media.2011.05.009_b0240
Comaniciu (10.1016/j.media.2011.05.009_b0080) 2003; 25
10.1016/j.media.2011.05.009_b0085
Lynch (10.1016/j.media.2011.05.009_b0160) 2008; 27
Zhang (10.1016/j.media.2011.05.009_b0230) 2005; 27
Punithakumar (10.1016/j.media.2011.05.009_b0190) 2010; 57
Ben Ayed (10.1016/j.media.2011.05.009_b0040) 2009; 4
Spottiswoode (10.1016/j.media.2011.05.009_b0210) 2009; 13
Cerqueira (10.1016/j.media.2011.05.009_b0075) 2002; 105
10.1016/j.media.2011.05.009_b0205
Lehmann (10.1016/j.media.2011.05.009_b0145) 1986
10.1016/j.media.2011.05.009_b0055
10.1016/j.media.2011.05.009_b0215
Pluempitiwiriyawej (10.1016/j.media.2011.05.009_b0185) 2005; 24
Boykov (10.1016/j.media.2011.05.009_b0070) 2004; 26
Zhu (10.1016/j.media.2011.05.009_b0235) 2010; 29
10.1016/j.media.2011.05.009_b0095
Adam (10.1016/j.media.2011.05.009_b0005) 2009; 31
Ben Ayed (10.1016/j.media.2011.05.009_b0035) 2009; 85
Ben Ayed (10.1016/j.media.2011.05.009_b0030) 2009; 28
10.1016/j.media.2011.05.009_b0065
10.1016/j.media.2011.05.009_b0105
10.1016/j.media.2011.05.009_b0225
10.1016/j.media.2011.05.009_b0025
Kaus (10.1016/j.media.2011.05.009_b0130) 2004; 8
Freedman (10.1016/j.media.2011.05.009_b0100) 2004; 13
Boykov (10.1016/j.media.2011.05.009_b0060) 2006; 70
Georgiou (10.1016/j.media.2011.05.009_b0110) 2007; 425
10.1016/j.media.2011.05.009_b0140
Mitchell (10.1016/j.media.2011.05.009_b0170) 2002; 21
Michailovich (10.1016/j.media.2011.05.009_b0165) 2007; 16
Ni (10.1016/j.media.2011.05.009_b0180) 2009; 84
Aherne (10.1016/j.media.2011.05.009_b0010) 1997; 32
Rother (10.1016/j.media.2011.05.009_b0195) 2004; 23
Kohli (10.1016/j.media.2011.05.009_b0135) 2008; 79
10.1016/j.media.2011.05.009_b0150
Flusser (10.1016/j.media.2011.05.009_b0090) 2009
References_xml – volume: 8
  start-page: 255
  year: 2004
  end-page: 265
  ident: b0155
  article-title: Segmentation of 4d cardiac mr images using a probabilistic atlas and the em algorithm
  publication-title: Medical Image Analysis
– volume: 13
  start-page: 518
  year: 2004
  end-page: 526
  ident: b0100
  article-title: Active contours for tracking distributions
  publication-title: IEEE Transactions on Image Processing
– volume: 27
  start-page: 195
  year: 2008
  end-page: 203
  ident: b0160
  article-title: Segmentation of the left ventricle of the heart in 3-D+T MRI data using an optimized nonrigid temporal model
  publication-title: IEEE Transactions on Medical Imaging
– reference: Juan, O., Boykov, Y., 2007. Capacity scaling for graph cuts in vision. In: IEEE International Conference on Computer Vision (ICCV 2007).
– reference: Ben Ayed, I., Chen, H.M., Punithakumar, K., Ross, I., Li, S., 2010. Graph cut segmentation with a global constraint: recovering region distribution via a bound of the Bhattacharyya measure. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2010), San Francisco, CA, USA, pp. 1–7.
– reference: Boykov, Y., Kolmogorov, V., 2003. Computing geodesics and minimal surfaces via graph cuts. In: IEEE International Conference on Computer Vision (ICCV 2003), vol. 1, Nice, France, pp. 26–33.
– year: 2009
  ident: b0090
  article-title: Moments and Moment Invariants in Pattern Recognition
– volume: 24
  start-page: 593
  year: 2005
  end-page: 603
  ident: b0185
  article-title: Stacs: new active contour scheme for cardiac mr image segmentation
  publication-title: IEEE Transactions on Medical Imaging
– volume: 12
  start-page: 595
  year: 2008
  end-page: 605
  ident: b0220
  article-title: A 3-d active shape model driven by fuzzy inference: application to cardiac ct and mr
  publication-title: IEEE Transactions on Information Technology in Biomedicine
– volume: 85
  start-page: 115
  year: 2009
  end-page: 132
  ident: b0035
  article-title: A statistical overlap prior for variational image segmentation
  publication-title: International Journal of Computer Vision
– volume: 16
  start-page: 2787
  year: 2007
  end-page: 2801
  ident: b0165
  article-title: Image segmentation using active contours driven by the Bhattacharyya gradient flow
  publication-title: IEEE Transactions on Image Processing
– reference: Fritscher, K.D., Pilgram, R., Schubert, R., 2005. Automatic cardiac 4d segmentation using level sets. In: Functional Imaging and Modeling of the Heart (FIMH 2005), Barcelona, Spain, pp. 113–122.
– volume: 13
  start-page: 105
  year: 2009
  end-page: 115
  ident: b0210
  article-title: Motion-guided segmentation for cine dense mri
  publication-title: Medical Image Analysis
– volume: 25
  start-page: 564
  year: 2003
  end-page: 575
  ident: b0080
  article-title: Kernel-based object tracking
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: Rother, C., Minka, T.P., Blake, A., Kolmogorov, V., 2006. Cosegmentation of image pairs by histogram matching - incorporating a global constraint into mrfs. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 1, New York, NY, USA, pp. 993–1000.
– reference: Liu, H., Chen, Y., Ho, H.P., Shi, P., 2005. Geodesic active contours with adaptive neighboring influence. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2005), vol. 2, Palm Springs, CA, USA, pp. 741–748.
– volume: 57
  start-page: 2001
  year: 2010
  end-page: 2010
  ident: b0190
  article-title: Tracking endocardial motion via multiple model filtering
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 425
  start-page: 663
  year: 2007
  end-page: 672
  ident: b0110
  article-title: Distribution metrics and image segmentation
  publication-title: Linear Algebra and its Applications
– volume: 28
  start-page: 1902
  year: 2009
  end-page: 1913
  ident: b0030
  article-title: Embedding overlap priors in variational left ventricle tracking
  publication-title: IEEE Transactions on Medical Imaging
– reference: Rousson, M., Cremers, D., 2005. Efficient kernel density estimation of shape and intensity priors for level set segmentation. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2005), vol. 2, Palm Springs, CA, USA, pp. 757–764.
– volume: 79
  start-page: 285
  year: 2008
  end-page: 298
  ident: b0135
  article-title: Simultaneous segmentation and pose estimation of humans using dynamic graph cuts
  publication-title: International Journal of Computer Vision
– volume: 21
  start-page: 1167
  year: 2002
  end-page: 1178
  ident: b0170
  article-title: 3-D active appearance models: segmentation of cardiac mr and ultrasound images
  publication-title: IEEE Transactions on Medical Imaging
– reference: Sun, W., Cetin, M., Chan, R., Reddy, V., Holmvang, G., Chandar, V., Willsky, A.S., 2005. Segmenting and tracking the left ventricle by learning the dynamics in cardiac images. In: Information Processing in Medical Imaging (IPMI 2005), Glenwood Springs, CO, USA, pp. 553–565.
– reference: Zhu-Jacquot, J., Zabih, R., 2008. Segmentation of the left ventricle in cardiac mr images using graph cuts with parametric shape priors. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2008), Caesars Palace, Las Vegas, Nevada, USA, pp. 521–524.
– reference: Lee, D.D., Seung, H., 2000. Algorithms for nonnegative matrix factorization. In: Neural Information Processing Systems (NIPS 2000), vol. 13, Denver, CO, USA, pp. 556–562.
– reference: Zambal, S., Hladuvka, J., Bühler, K., 2006. Improving segmentation of the left ventricle using a two-component statistical model. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2006), vol. 1, Copenhagen, Denmark, pp. 151–158.
– volume: 12
  start-page: 335
  year: 2008
  end-page: 357
  ident: b0015
  article-title: Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI
  publication-title: Medical Image Analysis
– volume: 70
  start-page: 109
  year: 2006
  end-page: 131
  ident: b0060
  article-title: Graph cuts and efficient n-d image segmentation
  publication-title: International Journal of Computer Vision
– volume: 23
  start-page: 309
  year: 2004
  end-page: 314
  ident: b0195
  article-title: Grabcut: interactive foreground extraction using iterated graph cuts
  publication-title: ACM Transactions on Graphics
– reference: Jolly, M.P., 2008. Automatic recovery of the left ventricular blood pool in cardiac cine mr images. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2008), vol. 1, New York, NY, USA, pp. 110–118.
– volume: 32
  start-page: 1
  year: 1997
  end-page: 7
  ident: b0010
  article-title: The Bhattacharyya metric as an absolute similarity measure for frequency coded data
  publication-title: Kybernetika
– reference: Fradkin, M., Ciofolo, C., Mory, B., Hautvast, G., Breeuwer, M., 2008. Comprehensive segmentation of cine cardiac mr images. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2008), vol. 1, New York, NY, USA, pp. 178–185.
– year: 2007
  ident: b0050
  article-title: Pattern Recognition and Machine Learning (Information Science and Statistics)
– reference: El-Berbari, R., Bloch, I., Redheuil, A., Angelini, E.D., Mousseaux, É., Frouin, F., Herment, A., 2007. Automated segmentation of the left ventricle including papillary muscles in cardiac magnetic resonance images. In: Functional Imaging and Modeling of the Heart (FIMH 2007), Salt Lake City, UT, USA, pp. 453–462.
– reference: Ben Ayed, I., Punithakumar, K., Li, S., Islam, A., Chong, J., 2009. Left ventricle segmentation via graph cut distribution matching. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2009), vol. 1, London, UK, pp. 901–909.
– volume: 26
  start-page: 1124
  year: 2004
  end-page: 1137
  ident: b0070
  article-title: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 63
  start-page: 2128
  year: 2003
  end-page: 2154
  ident: b0020
  article-title: Image segmentation using active contours: calculus of variations or shape gradients?
  publication-title: SIAM Journal of Applied Mathematics
– volume: 31
  start-page: 1708
  year: 2009
  end-page: 1714
  ident: b0005
  article-title: On scene segmentation and histograms-based curve evolution
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: Blake, A., Rother, C., Brown, M., Pérez, P., Torr, P.H.S., 2004. Interactive image segmentation using an adaptive gmmrf model. In: European Conference on Computer Vision (ECCV 2004), vol. 1, Prague, Czech Republic, pp. 428–441.
– volume: 105
  start-page: 539
  year: 2002
  end-page: 542
  ident: b0075
  article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from cardiac imaging committee of the council on clinical cardiology of the american heart association
  publication-title: Circulation
– volume: 84
  start-page: 97
  year: 2009
  end-page: 111
  ident: b0180
  article-title: Local histogram based segmentation using the wasserstein distance
  publication-title: International Journal of Computer Vision
– volume: 8
  start-page: 245
  year: 2004
  end-page: 254
  ident: b0130
  article-title: Automated segmentation of the left ventricle in cardiac mri
  publication-title: Medical Image Analysis
– volume: 25
  start-page: 1472
  year: 2006
  end-page: 1482
  ident: b0115
  article-title: Automatic contour propagation in cine cardiac magnetic resonance images
  publication-title: IEEE Transactions on Medical Imaging
– volume: 27
  start-page: 282
  year: 2005
  end-page: 287
  ident: b0230
  article-title: Improving performance of distribution tracking through background mismatch
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 20
  start-page: 415
  year: 2001
  end-page: 423
  ident: b0175
  article-title: Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac mr images
  publication-title: IEEE Transactions on Medical Imaging
– volume: 4
  start-page: 37
  year: 2009
  end-page: 44
  ident: b0040
  article-title: Myocardium tracking via matching distributions
  publication-title: International Journal of Computer Assisted Radiology and Surgery
– volume: 29
  start-page: 669
  year: 2010
  end-page: 687
  ident: b0235
  article-title: Segmentation of the left ventricle from cardiac mr images using a subject-specific dynamical model
  publication-title: IEEE Transactions on Medical Imaging
– year: 1986
  ident: b0145
  article-title: Testing Statistical Hypotheses
– reference: Zhuang, X., Rhode, K.S., Arridge, S.R., Razavi, R., Hill, D.L.G., Hawkes, D.J., Ourselin, S., 2008. An atlas-based segmentation propagation framework using locally affine registration - application to automatic whole heart segmentation. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2008), vol. 2, New York, NY, USA, pp. 425–433.
– volume: 12
  start-page: 595
  year: 2008
  ident: 10.1016/j.media.2011.05.009_b0220
  article-title: A 3-d active shape model driven by fuzzy inference: application to cardiac ct and mr
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/TITB.2008.926477
– volume: 13
  start-page: 518
  year: 2004
  ident: 10.1016/j.media.2011.05.009_b0100
  article-title: Active contours for tracking distributions
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2003.821445
– volume: 57
  start-page: 2001
  year: 2010
  ident: 10.1016/j.media.2011.05.009_b0190
  article-title: Tracking endocardial motion via multiple model filtering
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2010.2048752
– year: 2007
  ident: 10.1016/j.media.2011.05.009_b0050
– ident: 10.1016/j.media.2011.05.009_b0225
  doi: 10.1007/11866565_19
– volume: 425
  start-page: 663
  year: 2007
  ident: 10.1016/j.media.2011.05.009_b0110
  article-title: Distribution metrics and image segmentation
  publication-title: Linear Algebra and its Applications
  doi: 10.1016/j.laa.2007.03.009
– volume: 27
  start-page: 282
  year: 2005
  ident: 10.1016/j.media.2011.05.009_b0230
  article-title: Improving performance of distribution tracking through background mismatch
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2005.31
– ident: 10.1016/j.media.2011.05.009_b0125
  doi: 10.1109/ICCV.2007.4408970
– volume: 29
  start-page: 669
  year: 2010
  ident: 10.1016/j.media.2011.05.009_b0235
  article-title: Segmentation of the left ventricle from cardiac mr images using a subject-specific dynamical model
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2009.2031063
– ident: 10.1016/j.media.2011.05.009_b0025
  doi: 10.1109/CVPR.2010.5540045
– volume: 70
  start-page: 109
  year: 2006
  ident: 10.1016/j.media.2011.05.009_b0060
  article-title: Graph cuts and efficient n-d image segmentation
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-006-7934-5
– volume: 20
  start-page: 415
  year: 2001
  ident: 10.1016/j.media.2011.05.009_b0175
  article-title: Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac mr images
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.925294
– volume: 105
  start-page: 539
  year: 2002
  ident: 10.1016/j.media.2011.05.009_b0075
  article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from cardiac imaging committee of the council on clinical cardiology of the american heart association
  publication-title: Circulation
  doi: 10.1161/hc0402.102975
– ident: 10.1016/j.media.2011.05.009_b0105
  doi: 10.1007/11494621_12
– year: 2009
  ident: 10.1016/j.media.2011.05.009_b0090
– volume: 4
  start-page: 37
  year: 2009
  ident: 10.1016/j.media.2011.05.009_b0040
  article-title: Myocardium tracking via matching distributions
  publication-title: International Journal of Computer Assisted Radiology and Surgery
  doi: 10.1007/s11548-008-0265-y
– ident: 10.1016/j.media.2011.05.009_b0150
  doi: 10.1007/11566489_91
– ident: 10.1016/j.media.2011.05.009_b0045
  doi: 10.1007/978-3-642-04271-3_109
– ident: 10.1016/j.media.2011.05.009_b0245
  doi: 10.1007/978-3-540-85990-1_51
– ident: 10.1016/j.media.2011.05.009_b0055
  doi: 10.1007/978-3-540-24670-1_33
– ident: 10.1016/j.media.2011.05.009_b0120
  doi: 10.1007/978-3-540-85988-8_14
– volume: 27
  start-page: 195
  year: 2008
  ident: 10.1016/j.media.2011.05.009_b0160
  article-title: Segmentation of the left ventricle of the heart in 3-D+T MRI data using an optimized nonrigid temporal model
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2007.904681
– volume: 79
  start-page: 285
  year: 2008
  ident: 10.1016/j.media.2011.05.009_b0135
  article-title: Simultaneous segmentation and pose estimation of humans using dynamic graph cuts
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-007-0120-6
– ident: 10.1016/j.media.2011.05.009_b0240
  doi: 10.1109/ICASSP.2008.4517661
– volume: 31
  start-page: 1708
  year: 2009
  ident: 10.1016/j.media.2011.05.009_b0005
  article-title: On scene segmentation and histograms-based curve evolution
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2009.21
– volume: 32
  start-page: 1
  year: 1997
  ident: 10.1016/j.media.2011.05.009_b0010
  article-title: The Bhattacharyya metric as an absolute similarity measure for frequency coded data
  publication-title: Kybernetika
– volume: 23
  start-page: 309
  year: 2004
  ident: 10.1016/j.media.2011.05.009_b0195
  article-title: Grabcut: interactive foreground extraction using iterated graph cuts
  publication-title: ACM Transactions on Graphics
  doi: 10.1145/1015706.1015720
– ident: 10.1016/j.media.2011.05.009_b0065
  doi: 10.1109/ICCV.2003.1238310
– ident: 10.1016/j.media.2011.05.009_b0140
– volume: 26
  start-page: 1124
  year: 2004
  ident: 10.1016/j.media.2011.05.009_b0070
  article-title: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2004.60
– ident: 10.1016/j.media.2011.05.009_b0095
  doi: 10.1007/978-3-540-85988-8_22
– ident: 10.1016/j.media.2011.05.009_b0200
  doi: 10.1109/CVPR.2006.91
– ident: 10.1016/j.media.2011.05.009_b0205
  doi: 10.1007/11566489_93
– volume: 63
  start-page: 2128
  year: 2003
  ident: 10.1016/j.media.2011.05.009_b0020
  article-title: Image segmentation using active contours: calculus of variations or shape gradients?
  publication-title: SIAM Journal of Applied Mathematics
  doi: 10.1137/S0036139902408928
– volume: 8
  start-page: 255
  year: 2004
  ident: 10.1016/j.media.2011.05.009_b0155
  article-title: Segmentation of 4d cardiac mr images using a probabilistic atlas and the em algorithm
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2004.06.005
– volume: 84
  start-page: 97
  year: 2009
  ident: 10.1016/j.media.2011.05.009_b0180
  article-title: Local histogram based segmentation using the wasserstein distance
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-009-0234-0
– volume: 25
  start-page: 1472
  year: 2006
  ident: 10.1016/j.media.2011.05.009_b0115
  article-title: Automatic contour propagation in cine cardiac magnetic resonance images
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2006.882124
– volume: 25
  start-page: 564
  year: 2003
  ident: 10.1016/j.media.2011.05.009_b0080
  article-title: Kernel-based object tracking
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2003.1195991
– volume: 16
  start-page: 2787
  year: 2007
  ident: 10.1016/j.media.2011.05.009_b0165
  article-title: Image segmentation using active contours driven by the Bhattacharyya gradient flow
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2007.908073
– volume: 24
  start-page: 593
  year: 2005
  ident: 10.1016/j.media.2011.05.009_b0185
  article-title: Stacs: new active contour scheme for cardiac mr image segmentation
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2005.843740
– volume: 85
  start-page: 115
  year: 2009
  ident: 10.1016/j.media.2011.05.009_b0035
  article-title: A statistical overlap prior for variational image segmentation
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-009-0249-6
– volume: 8
  start-page: 245
  year: 2004
  ident: 10.1016/j.media.2011.05.009_b0130
  article-title: Automated segmentation of the left ventricle in cardiac mri
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2004.06.015
– volume: 28
  start-page: 1902
  year: 2009
  ident: 10.1016/j.media.2011.05.009_b0030
  article-title: Embedding overlap priors in variational left ventricle tracking
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2009.2022087
– volume: 13
  start-page: 105
  year: 2009
  ident: 10.1016/j.media.2011.05.009_b0210
  article-title: Motion-guided segmentation for cine dense mri
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2008.06.016
– ident: 10.1016/j.media.2011.05.009_b0215
  doi: 10.1007/11505730_46
– volume: 12
  start-page: 335
  year: 2008
  ident: 10.1016/j.media.2011.05.009_b0015
  article-title: Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2007.12.003
– ident: 10.1016/j.media.2011.05.009_b0085
  doi: 10.1007/978-3-540-72907-5_46
– volume: 21
  start-page: 1167
  year: 2002
  ident: 10.1016/j.media.2011.05.009_b0170
  article-title: 3-D active appearance models: segmentation of cardiac mr and ultrasound images
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2002.804425
– year: 1986
  ident: 10.1016/j.media.2011.05.009_b0145
SSID ssj0007440
Score 2.2956984
Snippet This study investigates fast detection of left ventricle boundaries following the optimization of new distribution-based functions. Based on max-flow...
This study investigates fast detection of the left ventricle (LV) endo- and epicardium boundaries in a cardiac magnetic resonance (MR) sequence following the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 87
SubjectTerms Algorithms
Bhattacharyya measure
Cardiac magnetic resonance images (cardiac MRI)
Heart Ventricles - pathology
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Left ventricle segmentation
Magnetic Resonance Imaging, Cine - methods
Max-flow optimization
Reproducibility of Results
Sensitivity and Specificity
Signal Processing, Computer-Assisted
Ventricular Dysfunction, Left - pathology
Title Max-flow segmentation of the left ventricle by recovering subject-specific distributions via a bound of the Bhattacharyya measure
URI https://dx.doi.org/10.1016/j.media.2011.05.009
https://www.ncbi.nlm.nih.gov/pubmed/21705264
https://www.proquest.com/docview/906561052
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hkKr2gFr62j6QDxzrbpyHnRwpKtpSLReKxM0aO3a71ZJFbBa6l0r953gSh7YHOHBMZDuRx_Z8tuf7BmBPWfKLJQYL2IrnXuQcFWZcpDJ1RlpvBJGTp8dycpofnRVnG3AwcGEorDKu_f2a3q3W8c049ub4YjYbn4iMkpUEjyV6R00M9lxRWN_H33_DPEgAr-deCU6lB-WhLsarY2dEHU86W6nu8k53oc_OCx0-he0IH9l-_4fPYMM1O_DkH1HBHXg0jdflz-HPFH9xP19cs6X7fh5ZRg1beBZgH5s73zIKd7yktphZM9odX3XNsOXK0AkNJyYmRROxmhR2Y3KsJbuaIUNmKCfT0NynH9i2SCyu9RrZeX_2-AJODz9_O5jwmHOB26woW14r4QJmklXHUUWbmIBovPLWCFdj6Wm7ZITBtDZZLYmWWvgw7VEmmUpsabKXsNksGvcaGDplCpsnRpU-N5Wt8twriUlmAmaRHkeQDn2tbRQkp7wYcz1Env3UnYE0GUgnhQ4GGsGH20oXvR7H_cXlYET937DSwWPcX5ENJtdhwtEtCjZusVrqKoC2gDmLdASv-qFw-yMpaRMFhPnmoV99C4_DU9of8byDzfZy5d4H0NOa3W5U78LW_pevk-Mbfx4B7w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED6kDtA2Q9CmL_fJoWMJi3pQ0pgGCZwm9tIEyEYcKTJ14chBLKf1mH9enkQZ7ZAMXSWRIngk7yN533cAn3NDfrFAbwFT8tSJlGOOCRexjK2WxmlB5OTJVI7P028X2cUWHPRcGAqrDGt_t6a3q3V4Mgq9ObqezUbfRULJSrzHEp2jfgTbpE6VDmB7__hkPN0syKSB19GvBKcCvfhQG-bVEjSClCcdr5T3Oaj7AGjriI6ewW5AkGy_a-Rz2LL1Huz8pSu4B48n4cb8BdxN8Dd388UvtrSXV4FoVLOFYx75sbl1DaOIxxuqi-k1ow3ybVsNW640HdJwImNSQBGrSGQ35MdastsZMmSa0jL11X39gU2DRORar5FddcePL-H86PDsYMxD2gVukqxoeJUL62GTLFuaKppIe1Djcme0sBUWjnZMWmiMK51UkpipmfMzH2WU5JEpdPIKBvWitm-Aoc11ZtJI54VLdWnKNHW5xCjRHrZIh0OI-75WJmiSU2qMueqDz36q1kCKDKSiTHkDDeHLptB1J8nx8OeyN6L6Z2Qp7zQeLsh6kys_5-giBWu7WC1V6XGbh51ZPITX3VDYNCQmeSIPMt_-718_wZPx2eRUnR5PT97BU_8m7k583sOguVnZDx4DNfpjGON_AE2bBKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Max-flow+segmentation+of+the+left+ventricle+by+recovering+subject-specific+distributions+via+a+bound+of+the+Bhattacharyya+measure&rft.jtitle=Medical+image+analysis&rft.au=Ben+Ayed%2C+Ismail&rft.au=Chen%2C+Hua-Mei&rft.au=Punithakumar%2C+Kumaradevan&rft.au=Ross%2C+Ian&rft.date=2012-01-01&rft.eissn=1361-8423&rft.volume=16&rft.issue=1&rft.spage=87&rft_id=info:doi/10.1016%2Fj.media.2011.05.009&rft_id=info%3Apmid%2F21705264&rft.externalDocID=21705264
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon