Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis

RUNX1/AML1/CBFA2 is essential for definitive hematopoiesis, and chromosomal translocations affecting RUNX1 are frequently involved in human leukemias. Consequently, the normal function of RUNX1 and its involvement in leukemogenesis remain subject to intensive research. To further elucidate the role...

Full description

Saved in:
Bibliographic Details
Published inDevelopment (Cambridge) Vol. 129; no. 8; pp. 2015 - 2030
Main Authors Kalev-Zylinska, Maggie L., Horsfield, Julia A., Flores, Maria Vega C., Postlethwait, John H., Vitas, Maria R., Baas, Andrea M., Crosier, Philip S., Crosier, Kathryn E.
Format Journal Article
LanguageEnglish
Published England The Company of Biologists Limited 15.04.2002
Subjects
Online AccessGet full text

Cover

Loading…
Abstract RUNX1/AML1/CBFA2 is essential for definitive hematopoiesis, and chromosomal translocations affecting RUNX1 are frequently involved in human leukemias. Consequently, the normal function of RUNX1 and its involvement in leukemogenesis remain subject to intensive research. To further elucidate the role of RUNX1 in hematopoiesis, we cloned the zebrafish ortholog ( runx1 ) and analyzed its function using this model system. Zebrafish runx1 is expressed in hematopoietic and neuronal cells during early embryogenesis. runx1 expression in the lateral plate mesoderm co-localizes with the hematopoietic transcription factor scl , and expression of runx1 is markedly reduced in the zebrafish mutants spadetail and cloche . Transient expression of runx1 in cloche embryos resulted in partial rescue of the hematopoietic defect. Depletion of Runx1 with antisense morpholino oligonucleotides abrogated the development of both blood and vessels, as demonstrated by loss of circulation, incomplete development of vasculature and the accumulation of immature hematopoietic precursors. The block in definitive hematopoiesis is similar to that observed in Runx1 knockout mice, implying that zebrafish Runx1 has a function equivalent to that in mammals. Our data suggest that zebrafish Runx1 functions in both blood and vessel development at the hemangioblast level, and contributes to both primitive and definitive hematopoiesis. Depletion of Runx1 also caused aberrant axonogenesis and abnormal distribution of Rohon-Beard cells, providing the first functional evidence of a role for vertebrate Runx1 in neuropoiesis. To provide a base for examining the role of Runx1 in leukemogenesis, we investigated the effects of transient expression of a human RUNX1-CBF2T1 transgene [product of the t(8;21) translocation in acute myeloid leukemia] in zebrafish embryos. Expression of RUNX1-CBF2T1 caused disruption of normal hematopoiesis, aberrant circulation, internal hemorrhages and cellular dysplasia. These defects reproduce those observed in Runx1-depleted zebrafish embryos and RUNX1-CBF2T1 knock-in mice. The phenotype obtained with transient expression of RUNX1-CBF2T1 validates the zebrafish as a model system to study t(8;21)-mediated leukemogenesis.
AbstractList RUNX1/AML1/CBFA2 is essential for definitive hematopoiesis, and chromosomal translocations affecting RUNX1 are frequently involved in human leukemias. Consequently, the normal function of RUNX1 and its involvement in leukemogenesis remain subject to intensive research. To further elucidate the role of RUNX1 in hematopoiesis, we cloned the zebrafish ortholog (runx1) and analyzed its function using this model system. Zebrafish runx1 is expressed in hematopoietic and neuronal cells during early embryogenesis. runx1 expression in the lateral plate mesoderm co-localizes with the hematopoietic transcription factor scl, and expression of runx1 is markedly reduced in the zebrafish mutants spadetail and cloche. Transient expression of runx1 in cloche embryos resulted in partial rescue of the hematopoietic defect. Depletion of Runx1 with antisense morpholino oligonucleotides abrogated the development of both blood and vessels, as demonstrated by loss of circulation, incomplete development of vasculature and the accumulation of immature hematopoietic precursors. The block in definitive hematopoiesis is similar to that observed in Runx1 knockout mice, implying that zebrafish Runx1 has a function equivalent to that in mammals. Our data suggest that zebrafish Runx1 functions in both blood and vessel development at the hemangioblast level, and contributes to both primitive and definitive hematopoiesis. Depletion of Runx1 also caused aberrant axonogenesis and abnormal distribution of Rohon-Beard cells, providing the first functional evidence of a role for vertebrate Runx1 in neuropoiesis. To provide a base for examining the role of Runx1 in leukemogenesis, we investigated the effects of transient expression of a human RUNX1-CBF2T1 transgene [product of the t(8;21) translocation in acute myeloid leukemia] in zebrafish embryos. Expression of RUNX1-CBF2T1 caused disruption of normal hematopoiesis, aberrant circulation, internal hemorrhages and cellular dysplasia. These defects reproduce those observed in Runx1-depleted zebrafish embryos and RUNX1-CBF2T1 knock-in mice. The phenotype obtained with transient expression of RUNX1-CBF2T1 validates the zebrafish as a model system to study t(8;21)-mediated leukemogenesis.
RUNX1/AML1/CBFA2 is essential for definitive hematopoiesis, and chromosomal translocations affecting RUNX1 are frequently involved in human leukemias. Consequently, the normal function of RUNX1 and its involvement in leukemogenesis remain subject to intensive research. To further elucidate the role of RUNX1 in hematopoiesis, we cloned the zebrafish ortholog (runx1) and analyzed its function using this model system. Zebrafish runx1 is expressed in hematopoietic and neuronal cells during early embryogenesis. runx1 expression in the lateral plate mesoderm co-localizes with the hematopoietic transcription factor scl, and expression of runx1 is markedly reduced in the zebrafish mutants spadetail and cloche. Transient expression of runx1 in cloche embryos resulted in partial rescue of the hematopoietic defect. Depletion of Runx1 with antisense morpholino oligonucleotides abrogated the development of both blood and vessels, as demonstrated by loss of circulation, incomplete development of vasculature and the accumulation of immature hematopoietic precursors. The block in definitive hematopoiesis is similar to that observed in Runx1 knockout mice, implying that zebrafish Runx1 has a function equivalent to that in mammals. Our data suggest that zebrafish Runx1 functions in both blood and vessel development at the hemangioblast level, and contributes to both primitive and definitive hematopoiesis. Depletion of Runx1 also caused aberrant axonogenesis and abnormal distribution of Rohon-Beard cells, providing the first functional evidence of a role for vertebrate Runx1 in neuropoiesis. To provide a base for examining the role of Runx1 in leukemogenesis, we investigated the effects of transient expression of a human RUNX1-CBF2T1 transgene [product of the t(8;21) translocation in acute myeloid leukemia] in zebrafish embryos. Expression of RUNX1-CBF2T1 caused disruption of normal hematopoiesis, aberrant circulation, internal hemorrhages and cellular dysplasia. These defects reproduce those observed in Runx1-depleted zebrafish embryos and RUNX1-CBF2T1 knock-in mice. The phenotype obtained with transient expression of RUNX1-CBF2T1 validates the zebrafish as a model system to study t(8;21)-mediated leukemogenesis.RUNX1/AML1/CBFA2 is essential for definitive hematopoiesis, and chromosomal translocations affecting RUNX1 are frequently involved in human leukemias. Consequently, the normal function of RUNX1 and its involvement in leukemogenesis remain subject to intensive research. To further elucidate the role of RUNX1 in hematopoiesis, we cloned the zebrafish ortholog (runx1) and analyzed its function using this model system. Zebrafish runx1 is expressed in hematopoietic and neuronal cells during early embryogenesis. runx1 expression in the lateral plate mesoderm co-localizes with the hematopoietic transcription factor scl, and expression of runx1 is markedly reduced in the zebrafish mutants spadetail and cloche. Transient expression of runx1 in cloche embryos resulted in partial rescue of the hematopoietic defect. Depletion of Runx1 with antisense morpholino oligonucleotides abrogated the development of both blood and vessels, as demonstrated by loss of circulation, incomplete development of vasculature and the accumulation of immature hematopoietic precursors. The block in definitive hematopoiesis is similar to that observed in Runx1 knockout mice, implying that zebrafish Runx1 has a function equivalent to that in mammals. Our data suggest that zebrafish Runx1 functions in both blood and vessel development at the hemangioblast level, and contributes to both primitive and definitive hematopoiesis. Depletion of Runx1 also caused aberrant axonogenesis and abnormal distribution of Rohon-Beard cells, providing the first functional evidence of a role for vertebrate Runx1 in neuropoiesis. To provide a base for examining the role of Runx1 in leukemogenesis, we investigated the effects of transient expression of a human RUNX1-CBF2T1 transgene [product of the t(8;21) translocation in acute myeloid leukemia] in zebrafish embryos. Expression of RUNX1-CBF2T1 caused disruption of normal hematopoiesis, aberrant circulation, internal hemorrhages and cellular dysplasia. These defects reproduce those observed in Runx1-depleted zebrafish embryos and RUNX1-CBF2T1 knock-in mice. The phenotype obtained with transient expression of RUNX1-CBF2T1 validates the zebrafish as a model system to study t(8;21)-mediated leukemogenesis.
RUNX1/AML1/CBFA2 is essential for definitive hematopoiesis, and chromosomal translocations affecting RUNX1 are frequently involved in human leukemias. Consequently, the normal function of RUNX1 and its involvement in leukemogenesis remain subject to intensive research. To further elucidate the role of RUNX1 in hematopoiesis, we cloned the zebrafish ortholog (runx1) and analyzed its function using this model system. Zebrafish runx1 is expressed in hematopoietic and neuronal cells during early embryogenesis. runx1 expression in the lateral plate mesoderm co-localizes with the hematopoietic transcription factor scl, and expression of runx1 is markedly reduced in the zebrafish mutants spadetail and cloche. Transient expression of runx1 in cloche embryos resulted in partial rescue of the hematopoietic defect. Depletion of Runx1 with antisense morpholino oligonucleotides abrogated the development of both blood and vessels, as demonstrated by loss of circulation, incomplete development of vasculature and the accumulation of immature hematopoietic precursors. The block in definitive hematopoiesis is similar to that observed in Runx1 knockout mice, implying that zebrafish Runx1 has a function equivalent to that in mammals. Our data suggest that zebrafish Runx1 functions in both blood and vessel development at the hemangioblast level, and contributes to both primitive and definitive hematopoiesis. Depletion of Runx1 also caused aberrant axonogenesis and abnormal distribution of Rohon-Beard cells, providing the first functional evidence of a role for vertebrate Runx1 in neuropoiesis. To provide a base for examining the role of Runx1 in leukemogenesis, we investigated the effects of transient expression of a human RUNX1-CBF2T1 transgene [product of the t(8;21) translocation in acute myeloid leukemia] in zebrafish embryos. Expression of RUNX1-CBF2T1 caused disruption of normal hematopoiesis, aberrant circulation, internal hemorrhages and cellular dysplasia. These defects reproduce those observed in Runx1-depleted zebrafish embryos and RUNX1-CBF2T1 knock-in mice. The phenotype obtained with transient expression of RUNX1-CBF2T1 validates the zebrafish as a model system to study t(8;21)-mediated leukemogenesis.
Author Andrea M. Baas
Julia A. Horsfield
Kathryn E. Crosier
Maria R. Vitas
Maggie L. Kalev-Zylinska
Maria Vega C. Flores
John H. Postlethwait
Philip S. Crosier
Author_xml – sequence: 1
  givenname: Maggie L.
  surname: Kalev-Zylinska
  fullname: Kalev-Zylinska, Maggie L.
  organization: Division of Molecular Medicine, The University of Auckland, Auckland, New Zealand
– sequence: 2
  givenname: Julia A.
  surname: Horsfield
  fullname: Horsfield, Julia A.
  organization: Division of Molecular Medicine, The University of Auckland, Auckland, New Zealand
– sequence: 3
  givenname: Maria Vega C.
  surname: Flores
  fullname: Flores, Maria Vega C.
  organization: Division of Molecular Medicine, The University of Auckland, Auckland, New Zealand
– sequence: 4
  givenname: John H.
  surname: Postlethwait
  fullname: Postlethwait, John H.
  organization: Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
– sequence: 5
  givenname: Maria R.
  surname: Vitas
  fullname: Vitas, Maria R.
  organization: Division of Molecular Medicine, The University of Auckland, Auckland, New Zealand
– sequence: 6
  givenname: Andrea M.
  surname: Baas
  fullname: Baas, Andrea M.
  organization: Division of Molecular Medicine, The University of Auckland, Auckland, New Zealand
– sequence: 7
  givenname: Philip S.
  surname: Crosier
  fullname: Crosier, Philip S.
  organization: Division of Molecular Medicine, The University of Auckland, Auckland, New Zealand
– sequence: 8
  givenname: Kathryn E.
  surname: Crosier
  fullname: Crosier, Kathryn E.
  organization: Division of Molecular Medicine, The University of Auckland, Auckland, New Zealand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11934867$$D View this record in MEDLINE/PubMed
BookMark eNqFkVFrFDEUhYNU7Lb66qPkybdZk0kySR51sSoUhdKCbyEzubMbnUm2ycxa-1v6Y826K4ogPuVy8p174ZwzdBJiAISeU7KkNa9fOdiVQS_VsiZUPEILyqWsdJFO0IJoQSqqNT1FZzl_IYSwRson6JRSzbhq5AI9XM3hjmKfcYLb2SdwuI8J30ObbO_zBrdDjA7b4PAOcoYBl4swxO0IYfopw902lR8fA449tngzjzbgq5uPn2m1enNRX1M8JRvyGgJg63Y2dJALN0ZXtu2P5Wl2vmjFPsD8Fca4Z7PPT9Hj3g4Znh3fc3Rz8fZ69b66_PTuw-r1ZdUxoabKMSFBk4ZxzohSpJWKatrwrmXUSWCCWdF3vCNNy0VbW2q5dK1wSnDGemDsHL087N2meDtDnszocwfDYAPEORtJhRK1EP8FqWK6VrIu4IsjOLcjOLNNfrTpu_kVfAGWB6BLMecE_W-EmH2zpuRcBm2U2TdbDPwvQ-cnO5XYS7p--LetOtg2fr35Vvo1rY9DXPs8ZXOs8k_-B3JSuHQ
CitedBy_id crossref_primary_10_1046_j_1462_5822_2003_00303_x
crossref_primary_10_1073_pnas_0902449106
crossref_primary_10_1182_blood_2009_02_207225
crossref_primary_10_1242_dev_202593
crossref_primary_10_1002_jcp_20210
crossref_primary_10_1242_dev_202476
crossref_primary_10_1007_s00429_006_0120_2
crossref_primary_10_1016_j_ydbio_2010_05_493
crossref_primary_10_1242_dev_012385
crossref_primary_10_1016_j_gene_2007_05_014
crossref_primary_10_1182_blood_2004_09_3547
crossref_primary_10_1182_blood_2010_01_264382
crossref_primary_10_1182_bloodadvances_2020002992
crossref_primary_10_1016_j_vetimm_2014_05_002
crossref_primary_10_1371_journal_pone_0141611
crossref_primary_10_1002_dvdy_24164
crossref_primary_10_1016_j_ajhg_2012_04_019
crossref_primary_10_1038_s41598_017_01519_4
crossref_primary_10_1038_nature05883
crossref_primary_10_1111_ejn_12932
crossref_primary_10_1080_01926230390174959
crossref_primary_10_1016_j_gep_2009_08_004
crossref_primary_10_1186_scrt146
crossref_primary_10_3390_ijms221910475
crossref_primary_10_1002_jcb_22221
crossref_primary_10_1002_jez_b_21220
crossref_primary_10_1089_scd_2010_0290
crossref_primary_10_1016_j_cub_2006_01_047
crossref_primary_10_1080_10428194_2017_1410882
crossref_primary_10_3389_fcell_2020_606642
crossref_primary_10_1002_dvdy_21441
crossref_primary_10_1242_dev_200500
crossref_primary_10_1038_srep05791
crossref_primary_10_1038_s41467_023_43349_1
crossref_primary_10_1016_S1065_6995_03_00018_0
crossref_primary_10_1111_j_1365_2141_2009_07705_x
crossref_primary_10_1155_2012_851674
crossref_primary_10_1007_s00441_010_1011_7
crossref_primary_10_1089_scd_2012_0074
crossref_primary_10_1182_blood_2009_11_252635
crossref_primary_10_1242_bio_031096
crossref_primary_10_1016_S0301_472X_02_00955_4
crossref_primary_10_1016_j_leukres_2012_06_001
crossref_primary_10_1182_blood_2007_10_052761
crossref_primary_10_1182_blood_2008_12_193607
crossref_primary_10_1242_dev_040998
crossref_primary_10_1038_ni1007
crossref_primary_10_1111_j_1095_8649_2008_01980_x
crossref_primary_10_3389_fcvm_2022_1058308
crossref_primary_10_7554_eLife_34870
crossref_primary_10_1016_j_gep_2008_07_002
crossref_primary_10_1080_1042819031000139611
crossref_primary_10_1016_j_molimm_2015_10_011
crossref_primary_10_1007_s11427_020_1878_8
crossref_primary_10_1089_zeb_2015_1203
crossref_primary_10_1182_blood_2008_06_162495
crossref_primary_10_1038_nn925
crossref_primary_10_1016_S1074_7613_04_00084_6
crossref_primary_10_1146_annurev_pathol_011110_130330
crossref_primary_10_1242_dev_202903
crossref_primary_10_1182_blood_2017_07_797795
crossref_primary_10_3389_fcell_2021_708113
crossref_primary_10_1371_journal_pone_0003364
crossref_primary_10_1242_dev_054536
crossref_primary_10_1146_annurev_cellbio_22_010605_093317
crossref_primary_10_1016_j_leukres_2006_08_016
crossref_primary_10_3390_biology6040040
crossref_primary_10_1242_dev_01824
crossref_primary_10_1002_jcp_27841
crossref_primary_10_1038_sj_onc_1207763
crossref_primary_10_1371_journal_pone_0265618
crossref_primary_10_1016_j_ydbio_2006_01_003
crossref_primary_10_1186_1471_2202_5_19
crossref_primary_10_1089_scd_2016_0294
crossref_primary_10_1002_wdev_37
crossref_primary_10_1016_j_bcmd_2013_09_006
crossref_primary_10_1016_j_ydbio_2007_04_002
crossref_primary_10_1016_j_fsi_2016_02_023
crossref_primary_10_1038_nrm3184
crossref_primary_10_1182_blood_2004_11_4541
crossref_primary_10_1007_s00427_005_0490_0
crossref_primary_10_1101_gad_1337005
crossref_primary_10_1016_j_bbagen_2012_06_008
crossref_primary_10_1111_bjh_15048
crossref_primary_10_1242_bio_058890
crossref_primary_10_1242_dev_00875
crossref_primary_10_1111_raq_12960
crossref_primary_10_7554_eLife_91429_3
crossref_primary_10_1038_srep27050
crossref_primary_10_1016_j_devcel_2004_11_014
crossref_primary_10_4049_jimmunol_1301376
crossref_primary_10_1182_blood_2003_05_1742
crossref_primary_10_1016_j_ydbio_2014_01_005
crossref_primary_10_1242_dev_008904
crossref_primary_10_1016_j_modgep_2005_05_003
crossref_primary_10_1242_dev_002485
crossref_primary_10_1007_s11684_011_0123_0
crossref_primary_10_1242_dev_139956
crossref_primary_10_1111_jcmm_15269
crossref_primary_10_1016_j_yjmcc_2007_05_008
crossref_primary_10_1182_blood_2002_09_2708
crossref_primary_10_1155_2015_641475
crossref_primary_10_1038_sj_onc_1207673
crossref_primary_10_1038_sj_onc_1207670
crossref_primary_10_3390_life11101027
crossref_primary_10_1128_mBio_00933_18
crossref_primary_10_1155_2012_282318
crossref_primary_10_1016_j_mod_2011_08_004
crossref_primary_10_1016_j_ydbio_2004_09_004
crossref_primary_10_1126_sciadv_adf9904
crossref_primary_10_1016_j_devcel_2009_04_014
crossref_primary_10_1182_blood_2022017561
crossref_primary_10_2144_05392RV02
crossref_primary_10_1002_dvdy_21056
crossref_primary_10_1242_dev_059634
crossref_primary_10_1038_nature13678
crossref_primary_10_1530_ERC_11_0099
crossref_primary_10_1016_j_modgep_2006_05_005
crossref_primary_10_1182_blood_2009_09_244640
crossref_primary_10_1002_bdrc_20129
crossref_primary_10_1038_sj_clpt_6100223
crossref_primary_10_1146_annurev_cancerbio_051320_014135
crossref_primary_10_1146_annurev_physiol_021119_034352
crossref_primary_10_1016_j_drudis_2012_08_002
crossref_primary_10_1016_j_modgep_2004_01_016
crossref_primary_10_1242_dev_029637
crossref_primary_10_1242_jcs_145367
crossref_primary_10_1016_j_blre_2018_06_001
crossref_primary_10_1182_blood_2022018193
crossref_primary_10_1146_annurev_genet_39_073003_095931
crossref_primary_10_1016_j_aquatox_2017_05_013
crossref_primary_10_1002_dvdy_10388
crossref_primary_10_1016_j_bbagrm_2013_11_007
crossref_primary_10_1158_1541_7786_MCR_07_2167
crossref_primary_10_1016_j_ydbio_2011_09_008
crossref_primary_10_1038_nrd1606
crossref_primary_10_1002_dvdy_10393
crossref_primary_10_1371_journal_pgen_0030140
crossref_primary_10_1242_jcs_132613
crossref_primary_10_1016_j_exphem_2005_06_013
crossref_primary_10_1111_j_1365_2141_2010_08396_x
crossref_primary_10_1016_S2221_1691_12_60351_7
crossref_primary_10_1182_blood_2010_03_276998
crossref_primary_10_1016_S0925_4773_02_00094_1
crossref_primary_10_1158_0008_5472_CAN_04_0931
crossref_primary_10_1002_stem_2044
crossref_primary_10_3389_fphys_2020_00552
crossref_primary_10_1182_blood_2008_04_149898
crossref_primary_10_1016_j_ydbio_2009_12_018
crossref_primary_10_1016_j_diff_2011_02_001
crossref_primary_10_1128_IAI_00793_18
crossref_primary_10_1182_blood_2011_10_383729
crossref_primary_10_1371_journal_pone_0166040
crossref_primary_10_1016_j_mod_2007_06_005
crossref_primary_10_1016_j_exphem_2014_05_002
crossref_primary_10_1073_pnas_1214361110
crossref_primary_10_1016_j_bbadis_2018_12_015
crossref_primary_10_1016_j_devcel_2005_01_010
crossref_primary_10_1016_j_ydbio_2023_06_012
crossref_primary_10_1016_j_mod_2009_02_007
crossref_primary_10_1002_jcp_21905
crossref_primary_10_1242_dev_015297
crossref_primary_10_1111_j_1460_9568_2006_04712_x
crossref_primary_10_1242_dev_083147
crossref_primary_10_1371_journal_pone_0039327
crossref_primary_10_1016_j_exphem_2004_10_019
crossref_primary_10_1038_nchembio_147
crossref_primary_10_1182_blood_2004_03_1089
crossref_primary_10_1002_stem_507
crossref_primary_10_1182_blood_2007_07_103291
crossref_primary_10_1016_j_cbpa_2009_06_024
crossref_primary_10_1155_2012_830703
crossref_primary_10_1242_bio_060523
crossref_primary_10_3892_ijo_2019_4713
crossref_primary_10_1016_j_celrep_2023_112571
crossref_primary_10_1002_dvdy_20957
crossref_primary_10_1111_j_1651_2227_2012_02835_x
crossref_primary_10_1016_j_exphem_2004_04_012
crossref_primary_10_1016_j_blre_2015_09_001
crossref_primary_10_4155_fmc_15_73
crossref_primary_10_1073_pnas_0603349103
crossref_primary_10_1371_journal_pgen_1000025
crossref_primary_10_1002_jcp_30287
crossref_primary_10_1182_blood_2010_11_316752
crossref_primary_10_1038_sj_onc_1207943
crossref_primary_10_1155_2012_857058
crossref_primary_10_1242_dev_02540
crossref_primary_10_1186_s13045_015_0126_4
crossref_primary_10_1016_j_fsi_2022_108478
crossref_primary_10_1007_s40778_017_0088_2
crossref_primary_10_1038_nri3443
crossref_primary_10_1242_dev_190421
crossref_primary_10_3389_fonc_2017_00186
crossref_primary_10_1038_s41467_019_11423_2
crossref_primary_10_1242_dev_02656
crossref_primary_10_1002_dvdy_23774
crossref_primary_10_1016_j_scitotenv_2023_162197
crossref_primary_10_1101_gad_1602607
crossref_primary_10_1007_s40139_014_0041_3
crossref_primary_10_1186_s40246_023_00531_2
crossref_primary_10_1038_s42003_020_0798_3
crossref_primary_10_1097_MOH_0b013e32832c05e4
crossref_primary_10_1182_blood_2007_05_091637
crossref_primary_10_1182_blood_2013_07_514612
crossref_primary_10_1016_j_mrfmmm_2008_11_017
crossref_primary_10_1155_2012_478164
crossref_primary_10_1016_j_bcmd_2007_06_012
crossref_primary_10_1128_MCB_05938_11
crossref_primary_10_1016_j_ydbio_2016_07_010
crossref_primary_10_1038_sj_embor_embor868
crossref_primary_10_1242_dmm_004747
crossref_primary_10_1016_j_gep_2010_04_004
crossref_primary_10_7554_eLife_91429
Cites_doi 10.1038/348728a0
10.1182/blood.V96.9.3154
10.1128/MCB.20.6.2075-2086.2000
10.1242/dev.124.2.381
10.1038/311153a0
10.1016/S0378-1119(00)00532-1
10.1242/dev.110.2.491
10.1182/blood.V86.2.607.bloodjournal862607
10.1002/(SICI)1097-4644(1999)75:32+<51::AID-JCB7>3.0.CO;2-S
10.1242/dev.125.22.4575
10.1038/sj.onc.1203257
10.1182/blood.V87.10.4025.bloodjournal87104025
10.1385/1-59259-678-9:77
10.1073/pnas.90.14.6859
10.1242/dev.118.2.489
10.1006/geno.1999.5824
10.1038/35049577
10.1038/nm1195-1143
10.1155/2000/769836
10.1016/0092-8674(91)90099-K
10.1242/dev.126.11.2563
10.1242/dev.125.17.3379
10.1038/86264
10.1006/scdb.2000.0186
10.1242/dev.127.23.5123
10.1006/viro.1993.1262
10.1038/ng0397-303
10.1016/S0952-7915(00)00200-4
10.1016/S0960-9822(06)00008-X
10.1073/pnas.93.8.3444
10.1038/3041
10.1016/S1074-7613(00)00042-X
10.1038/13793
10.1182/blood.V96.6.2108
10.1006/dbio.1998.8887
10.1385/1-59259-678-9:57
10.1074/jbc.271.42.26251
10.1016/S0070-2153(00)50003-9
10.1038/79951
10.1101/gad.8.11.1311
10.1016/S0168-9525(00)89107-6
10.1046/j.1365-2141.1999.01377.x
10.1038/3049
10.1242/dev.121.10.3141
10.1016/S0092-8674(00)81388-4
10.1182/blood.V91.9.3134
10.1006/scdb.2000.0185
10.1182/blood.V93.6.1817.406k36_1817_1824
10.1016/S0378-1119(00)00014-7
10.1242/dev.127.11.2447
10.1016/S0092-8674(00)80986-1
10.1038/ng0498-345
10.1242/dev.123.1.311
10.1002/j.1460-2075.1993.tb05933.x
10.1128/MCB.13.10.6336
10.1128/MCB.18.1.322
10.1073/pnas.171321298
10.1242/dev.126.18.3969
10.1006/dbio.2000.9617
10.1016/S0092-8674(00)00025-8
10.1242/dev.125.18.3681
10.1006/jmbi.2001.4596
10.1101/gr.10.12.1903
10.1242/dev.125.4.725
10.1074/jbc.M010582200
10.1182/blood.V96.13.4178
10.1126/science.288.5463.146
10.1182/blood.V96.2.655.014k10_655_663
10.1016/S0046-8177(87)80002-3
10.1002/aja.1002030302
10.1155/2000/819504
10.1182/blood.V93.9.2760
10.1016/S0925-4773(00)00445-7
10.1242/dev.126.4.617
10.1016/S0092-8674(00)81389-6
10.1016/S0960-9822(00)00653-9
10.1111/j.1440-169X.1977.00171.x
10.1128/MCB.13.6.3324
10.1182/blood.V86.8.2876.2876
10.1097/00062752-200003000-00002
10.1006/dbio.1998.9064
10.1073/pnas.88.23.10431
10.1038/86515
10.1128/MCB.14.5.3242
10.1002/aja.1002030107
10.1007/s003350010098
10.1006/dbio.1999.9462
10.1182/blood.V80.7.1825.1825
10.1093/emboj/17.14.4029
10.1093/embo-reports/kvd027
10.1006/dbio.2000.9995
10.1182/blood.V96.8.2862.h8002862_2862_2869
10.1242/dev.125.8.1371
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
F1W
FR3
H95
L.G
P64
RC3
7X8
DOI 10.1242/dev.129.8.2015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Zoology
Biology
EISSN 1477-9129
EndPage 2030
ExternalDocumentID 11934867
10_1242_dev_129_8_2015
develop_129_8_2015
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: RR10715
GroupedDBID -
0R
186
2WC
34G
39C
3O-
4.4
53G
55
5GY
5RE
5VS
85S
9M8
AAIKC
ABFLS
ABSGY
ABZEH
ACGFS
ACPRK
ADACO
ADBBV
ADBIT
AENEX
AETEA
AFDAS
AFFNX
AGCDD
AHERT
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DU5
DZ
E3Z
EBS
EJD
ET
F20
F5P
GJ
GX1
H13
HZ
H~9
INIJC
KQ8
O0-
O9-
OK1
P2P
R.V
RCB
RHF
RHI
SJN
TWZ
UPT
UQL
VH1
WH7
WOQ
X
X7M
XJT
ZA5
ZCG
ZGI
ZHY
ZXP
ZY4
---
-DZ
-ET
-~X
.55
.GJ
0R~
18M
AAFWJ
AAYXX
ACMFV
ACREN
ADFRT
ADVGF
ADXHL
AGGIJ
AI.
AMTXH
BTFSW
CITATION
F9R
HZ~
TR2
W8F
XSW
ABJNI
ABTAH
CGR
CUY
CVF
ECM
EIF
MVM
NPM
OHT
XOL
8FD
F1W
FR3
H95
L.G
P64
RC3
7X8
ID FETCH-LOGICAL-c358t-d357e90634430880b7819164cb31d7e353a5fc4c06b45b2a1a47db5d85433fe33
ISSN 0950-1991
IngestDate Fri Jul 11 06:42:19 EDT 2025
Fri Jul 11 16:03:11 EDT 2025
Thu Apr 03 07:04:27 EDT 2025
Tue Jul 01 00:45:24 EDT 2025
Thu Apr 24 23:05:25 EDT 2025
Fri Jan 15 20:24:47 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c358t-d357e90634430880b7819164cb31d7e353a5fc4c06b45b2a1a47db5d85433fe33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 11934867
PQID 18392872
PQPubID 23462
PageCount 16
ParticipantIDs proquest_miscellaneous_71585255
proquest_miscellaneous_18392872
pubmed_primary_11934867
crossref_primary_10_1242_dev_129_8_2015
crossref_citationtrail_10_1242_dev_129_8_2015
highwire_biologists_develop_129_8_2015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20020415
PublicationDateYYYYMMDD 2002-04-15
PublicationDate_xml – month: 04
  year: 2002
  text: 20020415
  day: 15
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Development (Cambridge)
PublicationTitleAlternate Development
PublicationYear 2002
Publisher The Company of Biologists Limited
Publisher_xml – name: The Company of Biologists Limited
References 2021042512512653400_CANON-AND-BANERJEE-2000
2021042512512653400_ARTINGER-ETAL-1999
2021042512512653400_POSTLETHWAIT-ETAL-1998
2021042512512653400_ZON-1995
2021042512512653400_FLORES-ETAL-1998
2021042512512653400_MUKOUYAMA-ETAL-2000
2021042512512653400_PREUDHOMME-ETAL-2000
2021042512512653400_TAKAHASHI-ETAL-1995
2021042512512653400_WEINSTEIN-ETAL-1995
2021042512512653400_WESTERFIELD-1995
2021042512512653400_BUCHHOLZ-ETAL-2000
2021042512512653400_DAVIDSON-AND-ZON-2000
2021042512512653400_ROBERTSON-ETAL-2000
2021042512512653400_AL-ADHAMI-AND-KUNZ-1977
2021042512512653400_PABST-ETAL-2001
2021042512512653400_RHOADES-ETAL-2000
2021042512512653400_BROADBENT-AND-READ-1999
2021042512512653400_DZIERZAK-AND-MEDVINSKY-1995
2021042512512653400_EKKER-2000
2021042512512653400_TAKAKURA-ETAL-2000
2021042512512653400_SONG-ETAL-1999
2021042512512653400_WESTENDORF-ETAL-1998
2021042512512653400_BLAKE-ETAL-2000
2021042512512653400_ERICKSON-ETAL-1992
2021042512512653400_OGAWA-ETAL-1993A
2021042512512653400_JAFFREDO-ETAL-1998
2021042512512653400_METCALFE-ETAL-1990
2021042512512653400_OGAWA-ETAL-1993B
2021042512512653400_OKUDA-ETAL-1996
2021042512512653400_LIAO-ETAL-1997
2021042512512653400_CUMANO-AND-GODIN-2001
2021042512512653400_HILDEBRAND-ETAL-2001
2021042512512653400_PARDANAUD-AND-DIETERLEN-LIEVRE-1999
2021042512512653400_OKUDA-ETAL-1998
2021042512512653400_THOMPSON-ETAL-1998
2021042512512653400_GERING-ETAL-1998
2021042512512653400_IMAI-ETAL-2000
2021042512512653400_MIYOSHI-ETAL-1991
2021042512512653400_WESTENDORF-AND-HIEBERT-1999
2021042512512653400_MIYOSHI-ETAL-1993
2021042512512653400_CHOI-ETAL-1998
2021042512512653400_HO-AND-KANE-1990
2021042512512653400_RANSOM-ETAL-1996
2021042512512653400_KRUSE-ETAL-1984
2021042512512653400_BROWNLIE-ETAL-1998
2021042512512653400_CASTILLA-ETAL-1996
2021042512512653400_GRIFFIN-ETAL-1998
2021042512512653400_STAINIER-ETAL-1995
2021042512512653400_BRAVO-ETAL-2001
2021042512512653400_WOODS-ETAL-2000
2021042512512653400_NORTH-ETAL-1999
2021042512512653400_DOWNING-1999
2021042512512653400_ORKIN-2000
2021042512512653400_SHIMODA-ETAL-1999
2021042512512653400_WANG-ETAL-1996B
2021042512512653400_WANG-ETAL-1996A
2021042512512653400_NAMBA-ETAL-2000
2021042512512653400_NASEVICIUS-AND-EKKER-2000
2021042512512653400_MEYERS-ETAL-1993
2021042512512653400_GUPTA-ETAL-1998
2021042512512653400_TRACEY-ETAL-1998
2021042512512653400_KIMMEL-ETAL-1995
2021042512512653400_MELNICK-ETAL-2000
2021042512512653400_SIMEONE-ETAL-1995
2021042512512653400_LEVANON-ETAL-2001
2021042512512653400_SHIMADA-ETAL-2000
2021042512512653400_RUPP-ETAL-1994
2021042512512653400_LEBESTKY-ETAL-2000
2021042512512653400_MACDONALD-1999
2021042512512653400_FELSENSTEIN-1993
2021042512512653400_AMATRUDA-AND-ZON-1999
2021042512512653400_BAE-ETAL-1994
2021042512512653400_OSATO-ETAL-1999
2021042512512653400_LIAO-ETAL-2000
2021042512512653400_MUCENSKI-ETAL-1991
2021042512512653400_SHIVDASANI-AND-ORKIN-1996
2021042512512653400_KNAPIK-2000
2021042512512653400_TRACEY-AND-SPECK-2000
2021042512512653400_ISOGAI-ETAL-2001
2021042512512653400_NAGATA-AND-WERNER-2001
2021042512512653400_ROBB-1997
2021042512512653400_CRUTE-ETAL-1996
2021042512512653400_PAW-AND-ZON-2000
2021042512512653400_BEGLEY-AND-GREEN-1999
2021042512512653400_WANG-ETAL-1998
2021042512512653400_YERGEAU-ETAL-1997
2021042512512653400_KATAOKA-ETAL-2000
2021042512512653400_NASEVICIUS-ETAL-2000
2021042512512653400_CHILDS-ETAL-2000
2021042512512653400_CAI-ETAL-2000
2021042512512653400_WANG-ETAL-1993
2021042512512653400_YAMAGUCHI-ETAL-1993
2021042512512653400_BITTER-ETAL-1987
2021042512512653400_LUTTERBACH-AND-HIEBERT-2000
2021042512512653400_YUAN-ETAL-2001
References_xml – ident: 2021042512512653400_HO-AND-KANE-1990
  doi: 10.1038/348728a0
– ident: 2021042512512653400_IMAI-ETAL-2000
  doi: 10.1182/blood.V96.9.3154
– ident: 2021042512512653400_MELNICK-ETAL-2000
  doi: 10.1128/MCB.20.6.2075-2086.2000
– ident: 2021042512512653400_LIAO-ETAL-1997
  doi: 10.1242/dev.124.2.381
– ident: 2021042512512653400_KRUSE-ETAL-1984
  doi: 10.1038/311153a0
– ident: 2021042512512653400_LEVANON-ETAL-2001
  doi: 10.1016/S0378-1119(00)00532-1
– ident: 2021042512512653400_METCALFE-ETAL-1990
  doi: 10.1242/dev.110.2.491
– ident: 2021042512512653400_TAKAHASHI-ETAL-1995
  doi: 10.1182/blood.V86.2.607.bloodjournal862607
– ident: 2021042512512653400_WESTENDORF-AND-HIEBERT-1999
  doi: 10.1002/(SICI)1097-4644(1999)75:32+<51::AID-JCB7>3.0.CO;2-S
– ident: 2021042512512653400_JAFFREDO-ETAL-1998
  doi: 10.1242/dev.125.22.4575
– ident: 2021042512512653400_NAMBA-ETAL-2000
  doi: 10.1038/sj.onc.1203257
– ident: 2021042512512653400_SHIVDASANI-AND-ORKIN-1996
  doi: 10.1182/blood.V87.10.4025.bloodjournal87104025
– ident: 2021042512512653400_MACDONALD-1999
  doi: 10.1385/1-59259-678-9:77
– ident: 2021042512512653400_OGAWA-ETAL-1993B
  doi: 10.1073/pnas.90.14.6859
– ident: 2021042512512653400_YAMAGUCHI-ETAL-1993
  doi: 10.1242/dev.118.2.489
– ident: 2021042512512653400_SHIMODA-ETAL-1999
  doi: 10.1006/geno.1999.5824
– ident: 2021042512512653400_ORKIN-2000
  doi: 10.1038/35049577
– ident: 2021042512512653400_WEINSTEIN-ETAL-1995
  doi: 10.1038/nm1195-1143
– ident: 2021042512512653400_EKKER-2000
  doi: 10.1155/2000/769836
– ident: 2021042512512653400_MUCENSKI-ETAL-1991
  doi: 10.1016/0092-8674(91)90099-K
– ident: 2021042512512653400_NORTH-ETAL-1999
  doi: 10.1242/dev.126.11.2563
– ident: 2021042512512653400_GRIFFIN-ETAL-1998
  doi: 10.1242/dev.125.17.3379
– ident: 2021042512512653400_BRAVO-ETAL-2001
  doi: 10.1038/86264
– ident: 2021042512512653400_TRACEY-AND-SPECK-2000
  doi: 10.1006/scdb.2000.0186
– ident: 2021042512512653400_LIAO-ETAL-2000
  doi: 10.1242/dev.127.23.5123
– ident: 2021042512512653400_OGAWA-ETAL-1993A
  doi: 10.1006/viro.1993.1262
– ident: 2021042512512653400_YERGEAU-ETAL-1997
  doi: 10.1038/ng0397-303
– ident: 2021042512512653400_CUMANO-AND-GODIN-2001
  doi: 10.1016/S0952-7915(00)00200-4
– ident: 2021042512512653400_ROBB-1997
  doi: 10.1016/S0960-9822(06)00008-X
– ident: 2021042512512653400_WANG-ETAL-1996A
  doi: 10.1073/pnas.93.8.3444
– ident: 2021042512512653400_WANG-ETAL-1998
  doi: 10.1038/3041
– ident: 2021042512512653400_CAI-ETAL-2000
  doi: 10.1016/S1074-7613(00)00042-X
– ident: 2021042512512653400_SONG-ETAL-1999
  doi: 10.1038/13793
– ident: 2021042512512653400_RHOADES-ETAL-2000
  doi: 10.1182/blood.V96.6.2108
– ident: 2021042512512653400_THOMPSON-ETAL-1998
  doi: 10.1006/dbio.1998.8887
– ident: 2021042512512653400_BROADBENT-AND-READ-1999
  doi: 10.1385/1-59259-678-9:57
– ident: 2021042512512653400_CRUTE-ETAL-1996
  doi: 10.1074/jbc.271.42.26251
– ident: 2021042512512653400_DAVIDSON-AND-ZON-2000
  doi: 10.1016/S0070-2153(00)50003-9
– ident: 2021042512512653400_NASEVICIUS-AND-EKKER-2000
  doi: 10.1038/79951
– ident: 2021042512512653400_RUPP-ETAL-1994
  doi: 10.1101/gad.8.11.1311
– ident: 2021042512512653400_DZIERZAK-AND-MEDVINSKY-1995
  doi: 10.1016/S0168-9525(00)89107-6
– ident: 2021042512512653400_DOWNING-1999
  doi: 10.1046/j.1365-2141.1999.01377.x
– ident: 2021042512512653400_BROWNLIE-ETAL-1998
  doi: 10.1038/3049
– ident: 2021042512512653400_STAINIER-ETAL-1995
  doi: 10.1242/dev.121.10.3141
– ident: 2021042512512653400_CASTILLA-ETAL-1996
  doi: 10.1016/S0092-8674(00)81388-4
– ident: 2021042512512653400_OKUDA-ETAL-1998
  doi: 10.1182/blood.V91.9.3134
– ident: 2021042512512653400_CANON-AND-BANERJEE-2000
  doi: 10.1006/scdb.2000.0185
– ident: 2021042512512653400_OSATO-ETAL-1999
  doi: 10.1182/blood.V93.6.1817.406k36_1817_1824
– ident: 2021042512512653400_LUTTERBACH-AND-HIEBERT-2000
  doi: 10.1016/S0378-1119(00)00014-7
– ident: 2021042512512653400_ROBERTSON-ETAL-2000
  doi: 10.1242/dev.127.11.2447
– ident: 2021042512512653400_OKUDA-ETAL-1996
  doi: 10.1016/S0092-8674(00)80986-1
– ident: 2021042512512653400_POSTLETHWAIT-ETAL-1998
  doi: 10.1038/ng0498-345
– ident: 2021042512512653400_RANSOM-ETAL-1996
  doi: 10.1242/dev.123.1.311
– ident: 2021042512512653400_MIYOSHI-ETAL-1993
  doi: 10.1002/j.1460-2075.1993.tb05933.x
– ident: 2021042512512653400_MEYERS-ETAL-1993
  doi: 10.1128/MCB.13.10.6336
– ident: 2021042512512653400_WESTENDORF-ETAL-1998
  doi: 10.1128/MCB.18.1.322
– ident: 2021042512512653400_YUAN-ETAL-2001
  doi: 10.1073/pnas.171321298
– ident: 2021042512512653400_ARTINGER-ETAL-1999
  doi: 10.1242/dev.126.18.3969
– ident: 2021042512512653400_MUKOUYAMA-ETAL-2000
  doi: 10.1006/dbio.2000.9617
– ident: 2021042512512653400_TAKAKURA-ETAL-2000
  doi: 10.1016/S0092-8674(00)00025-8
– ident: 2021042512512653400_FLORES-ETAL-1998
  doi: 10.1242/dev.125.18.3681
– ident: 2021042512512653400_NAGATA-AND-WERNER-2001
  doi: 10.1006/jmbi.2001.4596
– ident: 2021042512512653400_WOODS-ETAL-2000
  doi: 10.1101/gr.10.12.1903
– ident: 2021042512512653400_CHOI-ETAL-1998
  doi: 10.1242/dev.125.4.725
– ident: 2021042512512653400_HILDEBRAND-ETAL-2001
  doi: 10.1074/jbc.M010582200
– ident: 2021042512512653400_BLAKE-ETAL-2000
  doi: 10.1182/blood.V96.13.4178
– ident: 2021042512512653400_LEBESTKY-ETAL-2000
  doi: 10.1126/science.288.5463.146
– ident: 2021042512512653400_SHIMADA-ETAL-2000
  doi: 10.1182/blood.V96.2.655.014k10_655_663
– ident: 2021042512512653400_BITTER-ETAL-1987
  doi: 10.1016/S0046-8177(87)80002-3
– ident: 2021042512512653400_KIMMEL-ETAL-1995
  doi: 10.1002/aja.1002030302
– ident: 2021042512512653400_NASEVICIUS-ETAL-2000
  doi: 10.1155/2000/819504
– ident: 2021042512512653400_BEGLEY-AND-GREEN-1999
  doi: 10.1182/blood.V93.9.2760
– ident: 2021042512512653400_KATAOKA-ETAL-2000
  doi: 10.1016/S0925-4773(00)00445-7
– ident: 2021042512512653400_PARDANAUD-AND-DIETERLEN-LIEVRE-1999
  doi: 10.1242/dev.126.4.617
– ident: 2021042512512653400_WANG-ETAL-1996B
  doi: 10.1016/S0092-8674(00)81389-6
– ident: 2021042512512653400_CHILDS-ETAL-2000
  doi: 10.1016/S0960-9822(00)00653-9
– ident: 2021042512512653400_AL-ADHAMI-AND-KUNZ-1977
  doi: 10.1111/j.1440-169X.1977.00171.x
– ident: 2021042512512653400_WANG-ETAL-1993
  doi: 10.1128/MCB.13.6.3324
– ident: 2021042512512653400_ZON-1995
  doi: 10.1182/blood.V86.8.2876.2876
– ident: 2021042512512653400_PAW-AND-ZON-2000
  doi: 10.1097/00062752-200003000-00002
– ident: 2021042512512653400_GUPTA-ETAL-1998
  doi: 10.1006/dbio.1998.9064
– ident: 2021042512512653400_MIYOSHI-ETAL-1991
  doi: 10.1073/pnas.88.23.10431
– ident: 2021042512512653400_PABST-ETAL-2001
  doi: 10.1038/86515
– ident: 2021042512512653400_BAE-ETAL-1994
  doi: 10.1128/MCB.14.5.3242
– ident: 2021042512512653400_WESTERFIELD-1995
– ident: 2021042512512653400_SIMEONE-ETAL-1995
  doi: 10.1002/aja.1002030107
– ident: 2021042512512653400_KNAPIK-2000
  doi: 10.1007/s003350010098
– ident: 2021042512512653400_AMATRUDA-AND-ZON-1999
  doi: 10.1006/dbio.1999.9462
– ident: 2021042512512653400_ERICKSON-ETAL-1992
  doi: 10.1182/blood.V80.7.1825.1825
– ident: 2021042512512653400_GERING-ETAL-1998
  doi: 10.1093/emboj/17.14.4029
– ident: 2021042512512653400_BUCHHOLZ-ETAL-2000
  doi: 10.1093/embo-reports/kvd027
– ident: 2021042512512653400_FELSENSTEIN-1993
– ident: 2021042512512653400_ISOGAI-ETAL-2001
  doi: 10.1006/dbio.2000.9995
– ident: 2021042512512653400_PREUDHOMME-ETAL-2000
  doi: 10.1182/blood.V96.8.2862.h8002862_2862_2869
– ident: 2021042512512653400_TRACEY-ETAL-1998
  doi: 10.1242/dev.125.8.1371
SSID ssj0003677
Score 2.2030504
Snippet RUNX1/AML1/CBFA2 is essential for definitive hematopoiesis, and chromosomal translocations affecting RUNX1 are frequently involved in human leukemias....
SourceID proquest
pubmed
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2015
SubjectTerms Acute Disease
Amino Acid Sequence
Animals
Base Sequence
Cell Differentiation
Core Binding Factor Alpha 2 Subunit
Disease Models, Animal
DNA, Complementary
DNA-Binding Proteins - classification
DNA-Binding Proteins - genetics
DNA-Binding Proteins - physiology
Gene Expression
Hematopoiesis - physiology
Hematopoietic Stem Cells - metabolism
Humans
Leukemia, Myeloid - genetics
Leukemia, Myeloid - metabolism
Leukemia, Myeloid - physiopathology
Mice
Microinjections
Molecular Sequence Data
Neovascularization, Pathologic
Neurons - metabolism
Neurons - physiology
Oncogene Proteins, Fusion - genetics
Oncogene Proteins, Fusion - physiology
Proto-Oncogene Proteins
RUNX1 Translocation Partner 1 Protein
T-Box Domain Proteins - genetics
Transcription Factors - classification
Transcription Factors - genetics
Transcription Factors - physiology
Transgenes
Zebrafish - embryology
Zebrafish - genetics
Zebrafish - metabolism
Zebrafish Proteins - genetics
Title Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis
URI http://dev.biologists.org/content/129/8/2015.abstract
https://www.ncbi.nlm.nih.gov/pubmed/11934867
https://www.proquest.com/docview/18392872
https://www.proquest.com/docview/71585255
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKEIgXBOPf-OsHBA9VtjiOk_QRJqbB1D1MLar2EjmJUyq6ZGrase2z8F34atzZcZIClYCXKnIusZX71b6zf3dHyOscvI4sQc6TLzPcrcqcJAlzh0mXR3kmU6bTLg6Pg8Ox_2kiJr3ejw5rabVMdtPrP8aV_I9WoQ30ilGy_6DZ5qXQANegX_gFDcPvX-n4ZFVcMixJvlBI6AXbEUmD13gWnGOmIs1K18cDF5gifG5DpBpiubqsebCFiZM0FftOxscT5uy_P_BGDGtIFBWMQFm6QAVyun6O7qwyPER8fK5WX9VZibLVrOpavR1mkj41tnFinW2II1ioLpzTqzlW0pYmimg6nal-uzleLqqmoDaGdct-B33lwsx3Q_D9Zf-zmsp2_xcLEgM8v3yTs6WlH9dBGXa_w8OjGxPx2WxcukiPYWtzeD1eA9aoOyO75uHflgqwTUC_8N3hEpC1-6sgqPr8TAOHgZGLiQnbJbMhMtpbN8hND_wU7dN_PGpMAR7o0p_NkOusodD13nrHmLu2ftW6gWSTVm92gLQhNLpH7tYeDH1n4Hif9FSxTW6ZmqZX2-T2sGZrQONpqRsfkO8aqXRWUYtUCuChDVKpRioFSFKDVNpBqm5ukUrLnEqqkUq7SKUNUqlFKshppOrOaqTi4-tIfUjGBx9G-4dOXRfESbmIlk7GRagGYFv7PodF0k1C3HUI_DThLAsVF1yKPPVTN0h8kXiSST_MEpFFwuc8V5w_IltFWagnhHpgYTOWuUHKM1-4LAm4SgfZIMrdRLiS7RDHKiNO66T5WLtlHqPzDHqM4XPAxSCOYtTjDnnbyJ-bdDEbJd9Y3cYm3xpM61Vcf901wVdW8zFM_XieJwtVrqpYOzdR6G2WCJmIhCfgHY8NZNpB1Wh7uvHOM3Kn_fs9J1vLxUq9AAN8mbzUIP8J3Jzbvg
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Runx1+is+required+for+zebrafish+blood+and+vessel+development+and+expression+of+a+human+RUNX1-CBF2T1+transgene+advances+a+model+for+studies+of+leukemogenesis&rft.jtitle=Development+%28Cambridge%29&rft.au=Kalev-Zylinska%2C+Maggie+L&rft.au=Horsfield%2C+Julia+A&rft.au=Flores%2C+Maria+Vega+C&rft.au=Postlethwait%2C+John+H&rft.date=2002-04-15&rft.issn=0950-1991&rft.volume=129&rft.issue=8&rft.spage=2015&rft_id=info:doi/10.1242%2Fdev.129.8.2015&rft_id=info%3Apmid%2F11934867&rft.externalDocID=11934867
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon