Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis
RUNX1/AML1/CBFA2 is essential for definitive hematopoiesis, and chromosomal translocations affecting RUNX1 are frequently involved in human leukemias. Consequently, the normal function of RUNX1 and its involvement in leukemogenesis remain subject to intensive research. To further elucidate the role...
Saved in:
Published in | Development (Cambridge) Vol. 129; no. 8; pp. 2015 - 2030 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
The Company of Biologists Limited
15.04.2002
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | RUNX1/AML1/CBFA2 is essential for definitive hematopoiesis, and chromosomal translocations affecting RUNX1 are frequently involved in human leukemias. Consequently, the normal function of RUNX1 and its involvement in leukemogenesis remain subject to intensive research. To further elucidate the role of RUNX1 in hematopoiesis, we cloned the zebrafish ortholog ( runx1 ) and analyzed its function using this model system. Zebrafish runx1 is expressed in hematopoietic and neuronal cells during early embryogenesis. runx1 expression in the lateral plate mesoderm co-localizes with the hematopoietic transcription factor scl , and expression of runx1 is markedly reduced in the zebrafish mutants spadetail and cloche . Transient expression of runx1 in cloche embryos resulted in partial rescue of the hematopoietic defect. Depletion of Runx1 with antisense morpholino oligonucleotides abrogated the development of both blood and vessels, as demonstrated by loss of circulation, incomplete development of vasculature and the accumulation of immature hematopoietic precursors. The block in definitive hematopoiesis is similar to that observed in Runx1 knockout mice, implying that zebrafish Runx1 has a function equivalent to that in mammals. Our data suggest that zebrafish Runx1 functions in both blood and vessel development at the hemangioblast level, and contributes to both primitive and definitive hematopoiesis. Depletion of Runx1 also caused aberrant axonogenesis and abnormal distribution of Rohon-Beard cells, providing the first functional evidence of a role for vertebrate Runx1 in neuropoiesis. To provide a base for examining the role of Runx1 in leukemogenesis, we investigated the effects of transient expression of a human RUNX1-CBF2T1 transgene [product of the t(8;21) translocation in acute myeloid leukemia] in zebrafish embryos. Expression of RUNX1-CBF2T1 caused disruption of normal hematopoiesis, aberrant circulation, internal hemorrhages and cellular dysplasia. These defects reproduce those observed in Runx1-depleted zebrafish embryos and RUNX1-CBF2T1 knock-in mice. The phenotype obtained with transient expression of RUNX1-CBF2T1 validates the zebrafish as a model system to study t(8;21)-mediated leukemogenesis. |
---|---|
AbstractList | RUNX1/AML1/CBFA2 is essential for definitive hematopoiesis, and chromosomal translocations affecting RUNX1 are frequently involved in human leukemias. Consequently, the normal function of RUNX1 and its involvement in leukemogenesis remain subject to intensive research. To further elucidate the role of RUNX1 in hematopoiesis, we cloned the zebrafish ortholog (runx1) and analyzed its function using this model system. Zebrafish runx1 is expressed in hematopoietic and neuronal cells during early embryogenesis. runx1 expression in the lateral plate mesoderm co-localizes with the hematopoietic transcription factor scl, and expression of runx1 is markedly reduced in the zebrafish mutants spadetail and cloche. Transient expression of runx1 in cloche embryos resulted in partial rescue of the hematopoietic defect. Depletion of Runx1 with antisense morpholino oligonucleotides abrogated the development of both blood and vessels, as demonstrated by loss of circulation, incomplete development of vasculature and the accumulation of immature hematopoietic precursors. The block in definitive hematopoiesis is similar to that observed in Runx1 knockout mice, implying that zebrafish Runx1 has a function equivalent to that in mammals. Our data suggest that zebrafish Runx1 functions in both blood and vessel development at the hemangioblast level, and contributes to both primitive and definitive hematopoiesis. Depletion of Runx1 also caused aberrant axonogenesis and abnormal distribution of Rohon-Beard cells, providing the first functional evidence of a role for vertebrate Runx1 in neuropoiesis. To provide a base for examining the role of Runx1 in leukemogenesis, we investigated the effects of transient expression of a human RUNX1-CBF2T1 transgene [product of the t(8;21) translocation in acute myeloid leukemia] in zebrafish embryos. Expression of RUNX1-CBF2T1 caused disruption of normal hematopoiesis, aberrant circulation, internal hemorrhages and cellular dysplasia. These defects reproduce those observed in Runx1-depleted zebrafish embryos and RUNX1-CBF2T1 knock-in mice. The phenotype obtained with transient expression of RUNX1-CBF2T1 validates the zebrafish as a model system to study t(8;21)-mediated leukemogenesis. RUNX1/AML1/CBFA2 is essential for definitive hematopoiesis, and chromosomal translocations affecting RUNX1 are frequently involved in human leukemias. Consequently, the normal function of RUNX1 and its involvement in leukemogenesis remain subject to intensive research. To further elucidate the role of RUNX1 in hematopoiesis, we cloned the zebrafish ortholog (runx1) and analyzed its function using this model system. Zebrafish runx1 is expressed in hematopoietic and neuronal cells during early embryogenesis. runx1 expression in the lateral plate mesoderm co-localizes with the hematopoietic transcription factor scl, and expression of runx1 is markedly reduced in the zebrafish mutants spadetail and cloche. Transient expression of runx1 in cloche embryos resulted in partial rescue of the hematopoietic defect. Depletion of Runx1 with antisense morpholino oligonucleotides abrogated the development of both blood and vessels, as demonstrated by loss of circulation, incomplete development of vasculature and the accumulation of immature hematopoietic precursors. The block in definitive hematopoiesis is similar to that observed in Runx1 knockout mice, implying that zebrafish Runx1 has a function equivalent to that in mammals. Our data suggest that zebrafish Runx1 functions in both blood and vessel development at the hemangioblast level, and contributes to both primitive and definitive hematopoiesis. Depletion of Runx1 also caused aberrant axonogenesis and abnormal distribution of Rohon-Beard cells, providing the first functional evidence of a role for vertebrate Runx1 in neuropoiesis. To provide a base for examining the role of Runx1 in leukemogenesis, we investigated the effects of transient expression of a human RUNX1-CBF2T1 transgene [product of the t(8;21) translocation in acute myeloid leukemia] in zebrafish embryos. Expression of RUNX1-CBF2T1 caused disruption of normal hematopoiesis, aberrant circulation, internal hemorrhages and cellular dysplasia. These defects reproduce those observed in Runx1-depleted zebrafish embryos and RUNX1-CBF2T1 knock-in mice. The phenotype obtained with transient expression of RUNX1-CBF2T1 validates the zebrafish as a model system to study t(8;21)-mediated leukemogenesis.RUNX1/AML1/CBFA2 is essential for definitive hematopoiesis, and chromosomal translocations affecting RUNX1 are frequently involved in human leukemias. Consequently, the normal function of RUNX1 and its involvement in leukemogenesis remain subject to intensive research. To further elucidate the role of RUNX1 in hematopoiesis, we cloned the zebrafish ortholog (runx1) and analyzed its function using this model system. Zebrafish runx1 is expressed in hematopoietic and neuronal cells during early embryogenesis. runx1 expression in the lateral plate mesoderm co-localizes with the hematopoietic transcription factor scl, and expression of runx1 is markedly reduced in the zebrafish mutants spadetail and cloche. Transient expression of runx1 in cloche embryos resulted in partial rescue of the hematopoietic defect. Depletion of Runx1 with antisense morpholino oligonucleotides abrogated the development of both blood and vessels, as demonstrated by loss of circulation, incomplete development of vasculature and the accumulation of immature hematopoietic precursors. The block in definitive hematopoiesis is similar to that observed in Runx1 knockout mice, implying that zebrafish Runx1 has a function equivalent to that in mammals. Our data suggest that zebrafish Runx1 functions in both blood and vessel development at the hemangioblast level, and contributes to both primitive and definitive hematopoiesis. Depletion of Runx1 also caused aberrant axonogenesis and abnormal distribution of Rohon-Beard cells, providing the first functional evidence of a role for vertebrate Runx1 in neuropoiesis. To provide a base for examining the role of Runx1 in leukemogenesis, we investigated the effects of transient expression of a human RUNX1-CBF2T1 transgene [product of the t(8;21) translocation in acute myeloid leukemia] in zebrafish embryos. Expression of RUNX1-CBF2T1 caused disruption of normal hematopoiesis, aberrant circulation, internal hemorrhages and cellular dysplasia. These defects reproduce those observed in Runx1-depleted zebrafish embryos and RUNX1-CBF2T1 knock-in mice. The phenotype obtained with transient expression of RUNX1-CBF2T1 validates the zebrafish as a model system to study t(8;21)-mediated leukemogenesis. RUNX1/AML1/CBFA2 is essential for definitive hematopoiesis, and chromosomal translocations affecting RUNX1 are frequently involved in human leukemias. Consequently, the normal function of RUNX1 and its involvement in leukemogenesis remain subject to intensive research. To further elucidate the role of RUNX1 in hematopoiesis, we cloned the zebrafish ortholog (runx1) and analyzed its function using this model system. Zebrafish runx1 is expressed in hematopoietic and neuronal cells during early embryogenesis. runx1 expression in the lateral plate mesoderm co-localizes with the hematopoietic transcription factor scl, and expression of runx1 is markedly reduced in the zebrafish mutants spadetail and cloche. Transient expression of runx1 in cloche embryos resulted in partial rescue of the hematopoietic defect. Depletion of Runx1 with antisense morpholino oligonucleotides abrogated the development of both blood and vessels, as demonstrated by loss of circulation, incomplete development of vasculature and the accumulation of immature hematopoietic precursors. The block in definitive hematopoiesis is similar to that observed in Runx1 knockout mice, implying that zebrafish Runx1 has a function equivalent to that in mammals. Our data suggest that zebrafish Runx1 functions in both blood and vessel development at the hemangioblast level, and contributes to both primitive and definitive hematopoiesis. Depletion of Runx1 also caused aberrant axonogenesis and abnormal distribution of Rohon-Beard cells, providing the first functional evidence of a role for vertebrate Runx1 in neuropoiesis. To provide a base for examining the role of Runx1 in leukemogenesis, we investigated the effects of transient expression of a human RUNX1-CBF2T1 transgene [product of the t(8;21) translocation in acute myeloid leukemia] in zebrafish embryos. Expression of RUNX1-CBF2T1 caused disruption of normal hematopoiesis, aberrant circulation, internal hemorrhages and cellular dysplasia. These defects reproduce those observed in Runx1-depleted zebrafish embryos and RUNX1-CBF2T1 knock-in mice. The phenotype obtained with transient expression of RUNX1-CBF2T1 validates the zebrafish as a model system to study t(8;21)-mediated leukemogenesis. |
Author | Andrea M. Baas Julia A. Horsfield Kathryn E. Crosier Maria R. Vitas Maggie L. Kalev-Zylinska Maria Vega C. Flores John H. Postlethwait Philip S. Crosier |
Author_xml | – sequence: 1 givenname: Maggie L. surname: Kalev-Zylinska fullname: Kalev-Zylinska, Maggie L. organization: Division of Molecular Medicine, The University of Auckland, Auckland, New Zealand – sequence: 2 givenname: Julia A. surname: Horsfield fullname: Horsfield, Julia A. organization: Division of Molecular Medicine, The University of Auckland, Auckland, New Zealand – sequence: 3 givenname: Maria Vega C. surname: Flores fullname: Flores, Maria Vega C. organization: Division of Molecular Medicine, The University of Auckland, Auckland, New Zealand – sequence: 4 givenname: John H. surname: Postlethwait fullname: Postlethwait, John H. organization: Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA – sequence: 5 givenname: Maria R. surname: Vitas fullname: Vitas, Maria R. organization: Division of Molecular Medicine, The University of Auckland, Auckland, New Zealand – sequence: 6 givenname: Andrea M. surname: Baas fullname: Baas, Andrea M. organization: Division of Molecular Medicine, The University of Auckland, Auckland, New Zealand – sequence: 7 givenname: Philip S. surname: Crosier fullname: Crosier, Philip S. organization: Division of Molecular Medicine, The University of Auckland, Auckland, New Zealand – sequence: 8 givenname: Kathryn E. surname: Crosier fullname: Crosier, Kathryn E. organization: Division of Molecular Medicine, The University of Auckland, Auckland, New Zealand |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11934867$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkVFrFDEUhYNU7Lb66qPkybdZk0kySR51sSoUhdKCbyEzubMbnUm2ycxa-1v6Y826K4ogPuVy8p174ZwzdBJiAISeU7KkNa9fOdiVQS_VsiZUPEILyqWsdJFO0IJoQSqqNT1FZzl_IYSwRson6JRSzbhq5AI9XM3hjmKfcYLb2SdwuI8J30ObbO_zBrdDjA7b4PAOcoYBl4swxO0IYfopw902lR8fA449tngzjzbgq5uPn2m1enNRX1M8JRvyGgJg63Y2dJALN0ZXtu2P5Wl2vmjFPsD8Fca4Z7PPT9Hj3g4Znh3fc3Rz8fZ69b66_PTuw-r1ZdUxoabKMSFBk4ZxzohSpJWKatrwrmXUSWCCWdF3vCNNy0VbW2q5dK1wSnDGemDsHL087N2meDtDnszocwfDYAPEORtJhRK1EP8FqWK6VrIu4IsjOLcjOLNNfrTpu_kVfAGWB6BLMecE_W-EmH2zpuRcBm2U2TdbDPwvQ-cnO5XYS7p--LetOtg2fr35Vvo1rY9DXPs8ZXOs8k_-B3JSuHQ |
CitedBy_id | crossref_primary_10_1046_j_1462_5822_2003_00303_x crossref_primary_10_1073_pnas_0902449106 crossref_primary_10_1182_blood_2009_02_207225 crossref_primary_10_1242_dev_202593 crossref_primary_10_1002_jcp_20210 crossref_primary_10_1242_dev_202476 crossref_primary_10_1007_s00429_006_0120_2 crossref_primary_10_1016_j_ydbio_2010_05_493 crossref_primary_10_1242_dev_012385 crossref_primary_10_1016_j_gene_2007_05_014 crossref_primary_10_1182_blood_2004_09_3547 crossref_primary_10_1182_blood_2010_01_264382 crossref_primary_10_1182_bloodadvances_2020002992 crossref_primary_10_1016_j_vetimm_2014_05_002 crossref_primary_10_1371_journal_pone_0141611 crossref_primary_10_1002_dvdy_24164 crossref_primary_10_1016_j_ajhg_2012_04_019 crossref_primary_10_1038_s41598_017_01519_4 crossref_primary_10_1038_nature05883 crossref_primary_10_1111_ejn_12932 crossref_primary_10_1080_01926230390174959 crossref_primary_10_1016_j_gep_2009_08_004 crossref_primary_10_1186_scrt146 crossref_primary_10_3390_ijms221910475 crossref_primary_10_1002_jcb_22221 crossref_primary_10_1002_jez_b_21220 crossref_primary_10_1089_scd_2010_0290 crossref_primary_10_1016_j_cub_2006_01_047 crossref_primary_10_1080_10428194_2017_1410882 crossref_primary_10_3389_fcell_2020_606642 crossref_primary_10_1002_dvdy_21441 crossref_primary_10_1242_dev_200500 crossref_primary_10_1038_srep05791 crossref_primary_10_1038_s41467_023_43349_1 crossref_primary_10_1016_S1065_6995_03_00018_0 crossref_primary_10_1111_j_1365_2141_2009_07705_x crossref_primary_10_1155_2012_851674 crossref_primary_10_1007_s00441_010_1011_7 crossref_primary_10_1089_scd_2012_0074 crossref_primary_10_1182_blood_2009_11_252635 crossref_primary_10_1242_bio_031096 crossref_primary_10_1016_S0301_472X_02_00955_4 crossref_primary_10_1016_j_leukres_2012_06_001 crossref_primary_10_1182_blood_2007_10_052761 crossref_primary_10_1182_blood_2008_12_193607 crossref_primary_10_1242_dev_040998 crossref_primary_10_1038_ni1007 crossref_primary_10_1111_j_1095_8649_2008_01980_x crossref_primary_10_3389_fcvm_2022_1058308 crossref_primary_10_7554_eLife_34870 crossref_primary_10_1016_j_gep_2008_07_002 crossref_primary_10_1080_1042819031000139611 crossref_primary_10_1016_j_molimm_2015_10_011 crossref_primary_10_1007_s11427_020_1878_8 crossref_primary_10_1089_zeb_2015_1203 crossref_primary_10_1182_blood_2008_06_162495 crossref_primary_10_1038_nn925 crossref_primary_10_1016_S1074_7613_04_00084_6 crossref_primary_10_1146_annurev_pathol_011110_130330 crossref_primary_10_1242_dev_202903 crossref_primary_10_1182_blood_2017_07_797795 crossref_primary_10_3389_fcell_2021_708113 crossref_primary_10_1371_journal_pone_0003364 crossref_primary_10_1242_dev_054536 crossref_primary_10_1146_annurev_cellbio_22_010605_093317 crossref_primary_10_1016_j_leukres_2006_08_016 crossref_primary_10_3390_biology6040040 crossref_primary_10_1242_dev_01824 crossref_primary_10_1002_jcp_27841 crossref_primary_10_1038_sj_onc_1207763 crossref_primary_10_1371_journal_pone_0265618 crossref_primary_10_1016_j_ydbio_2006_01_003 crossref_primary_10_1186_1471_2202_5_19 crossref_primary_10_1089_scd_2016_0294 crossref_primary_10_1002_wdev_37 crossref_primary_10_1016_j_bcmd_2013_09_006 crossref_primary_10_1016_j_ydbio_2007_04_002 crossref_primary_10_1016_j_fsi_2016_02_023 crossref_primary_10_1038_nrm3184 crossref_primary_10_1182_blood_2004_11_4541 crossref_primary_10_1007_s00427_005_0490_0 crossref_primary_10_1101_gad_1337005 crossref_primary_10_1016_j_bbagen_2012_06_008 crossref_primary_10_1111_bjh_15048 crossref_primary_10_1242_bio_058890 crossref_primary_10_1242_dev_00875 crossref_primary_10_1111_raq_12960 crossref_primary_10_7554_eLife_91429_3 crossref_primary_10_1038_srep27050 crossref_primary_10_1016_j_devcel_2004_11_014 crossref_primary_10_4049_jimmunol_1301376 crossref_primary_10_1182_blood_2003_05_1742 crossref_primary_10_1016_j_ydbio_2014_01_005 crossref_primary_10_1242_dev_008904 crossref_primary_10_1016_j_modgep_2005_05_003 crossref_primary_10_1242_dev_002485 crossref_primary_10_1007_s11684_011_0123_0 crossref_primary_10_1242_dev_139956 crossref_primary_10_1111_jcmm_15269 crossref_primary_10_1016_j_yjmcc_2007_05_008 crossref_primary_10_1182_blood_2002_09_2708 crossref_primary_10_1155_2015_641475 crossref_primary_10_1038_sj_onc_1207673 crossref_primary_10_1038_sj_onc_1207670 crossref_primary_10_3390_life11101027 crossref_primary_10_1128_mBio_00933_18 crossref_primary_10_1155_2012_282318 crossref_primary_10_1016_j_mod_2011_08_004 crossref_primary_10_1016_j_ydbio_2004_09_004 crossref_primary_10_1126_sciadv_adf9904 crossref_primary_10_1016_j_devcel_2009_04_014 crossref_primary_10_1182_blood_2022017561 crossref_primary_10_2144_05392RV02 crossref_primary_10_1002_dvdy_21056 crossref_primary_10_1242_dev_059634 crossref_primary_10_1038_nature13678 crossref_primary_10_1530_ERC_11_0099 crossref_primary_10_1016_j_modgep_2006_05_005 crossref_primary_10_1182_blood_2009_09_244640 crossref_primary_10_1002_bdrc_20129 crossref_primary_10_1038_sj_clpt_6100223 crossref_primary_10_1146_annurev_cancerbio_051320_014135 crossref_primary_10_1146_annurev_physiol_021119_034352 crossref_primary_10_1016_j_drudis_2012_08_002 crossref_primary_10_1016_j_modgep_2004_01_016 crossref_primary_10_1242_dev_029637 crossref_primary_10_1242_jcs_145367 crossref_primary_10_1016_j_blre_2018_06_001 crossref_primary_10_1182_blood_2022018193 crossref_primary_10_1146_annurev_genet_39_073003_095931 crossref_primary_10_1016_j_aquatox_2017_05_013 crossref_primary_10_1002_dvdy_10388 crossref_primary_10_1016_j_bbagrm_2013_11_007 crossref_primary_10_1158_1541_7786_MCR_07_2167 crossref_primary_10_1016_j_ydbio_2011_09_008 crossref_primary_10_1038_nrd1606 crossref_primary_10_1002_dvdy_10393 crossref_primary_10_1371_journal_pgen_0030140 crossref_primary_10_1242_jcs_132613 crossref_primary_10_1016_j_exphem_2005_06_013 crossref_primary_10_1111_j_1365_2141_2010_08396_x crossref_primary_10_1016_S2221_1691_12_60351_7 crossref_primary_10_1182_blood_2010_03_276998 crossref_primary_10_1016_S0925_4773_02_00094_1 crossref_primary_10_1158_0008_5472_CAN_04_0931 crossref_primary_10_1002_stem_2044 crossref_primary_10_3389_fphys_2020_00552 crossref_primary_10_1182_blood_2008_04_149898 crossref_primary_10_1016_j_ydbio_2009_12_018 crossref_primary_10_1016_j_diff_2011_02_001 crossref_primary_10_1128_IAI_00793_18 crossref_primary_10_1182_blood_2011_10_383729 crossref_primary_10_1371_journal_pone_0166040 crossref_primary_10_1016_j_mod_2007_06_005 crossref_primary_10_1016_j_exphem_2014_05_002 crossref_primary_10_1073_pnas_1214361110 crossref_primary_10_1016_j_bbadis_2018_12_015 crossref_primary_10_1016_j_devcel_2005_01_010 crossref_primary_10_1016_j_ydbio_2023_06_012 crossref_primary_10_1016_j_mod_2009_02_007 crossref_primary_10_1002_jcp_21905 crossref_primary_10_1242_dev_015297 crossref_primary_10_1111_j_1460_9568_2006_04712_x crossref_primary_10_1242_dev_083147 crossref_primary_10_1371_journal_pone_0039327 crossref_primary_10_1016_j_exphem_2004_10_019 crossref_primary_10_1038_nchembio_147 crossref_primary_10_1182_blood_2004_03_1089 crossref_primary_10_1002_stem_507 crossref_primary_10_1182_blood_2007_07_103291 crossref_primary_10_1016_j_cbpa_2009_06_024 crossref_primary_10_1155_2012_830703 crossref_primary_10_1242_bio_060523 crossref_primary_10_3892_ijo_2019_4713 crossref_primary_10_1016_j_celrep_2023_112571 crossref_primary_10_1002_dvdy_20957 crossref_primary_10_1111_j_1651_2227_2012_02835_x crossref_primary_10_1016_j_exphem_2004_04_012 crossref_primary_10_1016_j_blre_2015_09_001 crossref_primary_10_4155_fmc_15_73 crossref_primary_10_1073_pnas_0603349103 crossref_primary_10_1371_journal_pgen_1000025 crossref_primary_10_1002_jcp_30287 crossref_primary_10_1182_blood_2010_11_316752 crossref_primary_10_1038_sj_onc_1207943 crossref_primary_10_1155_2012_857058 crossref_primary_10_1242_dev_02540 crossref_primary_10_1186_s13045_015_0126_4 crossref_primary_10_1016_j_fsi_2022_108478 crossref_primary_10_1007_s40778_017_0088_2 crossref_primary_10_1038_nri3443 crossref_primary_10_1242_dev_190421 crossref_primary_10_3389_fonc_2017_00186 crossref_primary_10_1038_s41467_019_11423_2 crossref_primary_10_1242_dev_02656 crossref_primary_10_1002_dvdy_23774 crossref_primary_10_1016_j_scitotenv_2023_162197 crossref_primary_10_1101_gad_1602607 crossref_primary_10_1007_s40139_014_0041_3 crossref_primary_10_1186_s40246_023_00531_2 crossref_primary_10_1038_s42003_020_0798_3 crossref_primary_10_1097_MOH_0b013e32832c05e4 crossref_primary_10_1182_blood_2007_05_091637 crossref_primary_10_1182_blood_2013_07_514612 crossref_primary_10_1016_j_mrfmmm_2008_11_017 crossref_primary_10_1155_2012_478164 crossref_primary_10_1016_j_bcmd_2007_06_012 crossref_primary_10_1128_MCB_05938_11 crossref_primary_10_1016_j_ydbio_2016_07_010 crossref_primary_10_1038_sj_embor_embor868 crossref_primary_10_1242_dmm_004747 crossref_primary_10_1016_j_gep_2010_04_004 crossref_primary_10_7554_eLife_91429 |
Cites_doi | 10.1038/348728a0 10.1182/blood.V96.9.3154 10.1128/MCB.20.6.2075-2086.2000 10.1242/dev.124.2.381 10.1038/311153a0 10.1016/S0378-1119(00)00532-1 10.1242/dev.110.2.491 10.1182/blood.V86.2.607.bloodjournal862607 10.1002/(SICI)1097-4644(1999)75:32+<51::AID-JCB7>3.0.CO;2-S 10.1242/dev.125.22.4575 10.1038/sj.onc.1203257 10.1182/blood.V87.10.4025.bloodjournal87104025 10.1385/1-59259-678-9:77 10.1073/pnas.90.14.6859 10.1242/dev.118.2.489 10.1006/geno.1999.5824 10.1038/35049577 10.1038/nm1195-1143 10.1155/2000/769836 10.1016/0092-8674(91)90099-K 10.1242/dev.126.11.2563 10.1242/dev.125.17.3379 10.1038/86264 10.1006/scdb.2000.0186 10.1242/dev.127.23.5123 10.1006/viro.1993.1262 10.1038/ng0397-303 10.1016/S0952-7915(00)00200-4 10.1016/S0960-9822(06)00008-X 10.1073/pnas.93.8.3444 10.1038/3041 10.1016/S1074-7613(00)00042-X 10.1038/13793 10.1182/blood.V96.6.2108 10.1006/dbio.1998.8887 10.1385/1-59259-678-9:57 10.1074/jbc.271.42.26251 10.1016/S0070-2153(00)50003-9 10.1038/79951 10.1101/gad.8.11.1311 10.1016/S0168-9525(00)89107-6 10.1046/j.1365-2141.1999.01377.x 10.1038/3049 10.1242/dev.121.10.3141 10.1016/S0092-8674(00)81388-4 10.1182/blood.V91.9.3134 10.1006/scdb.2000.0185 10.1182/blood.V93.6.1817.406k36_1817_1824 10.1016/S0378-1119(00)00014-7 10.1242/dev.127.11.2447 10.1016/S0092-8674(00)80986-1 10.1038/ng0498-345 10.1242/dev.123.1.311 10.1002/j.1460-2075.1993.tb05933.x 10.1128/MCB.13.10.6336 10.1128/MCB.18.1.322 10.1073/pnas.171321298 10.1242/dev.126.18.3969 10.1006/dbio.2000.9617 10.1016/S0092-8674(00)00025-8 10.1242/dev.125.18.3681 10.1006/jmbi.2001.4596 10.1101/gr.10.12.1903 10.1242/dev.125.4.725 10.1074/jbc.M010582200 10.1182/blood.V96.13.4178 10.1126/science.288.5463.146 10.1182/blood.V96.2.655.014k10_655_663 10.1016/S0046-8177(87)80002-3 10.1002/aja.1002030302 10.1155/2000/819504 10.1182/blood.V93.9.2760 10.1016/S0925-4773(00)00445-7 10.1242/dev.126.4.617 10.1016/S0092-8674(00)81389-6 10.1016/S0960-9822(00)00653-9 10.1111/j.1440-169X.1977.00171.x 10.1128/MCB.13.6.3324 10.1182/blood.V86.8.2876.2876 10.1097/00062752-200003000-00002 10.1006/dbio.1998.9064 10.1073/pnas.88.23.10431 10.1038/86515 10.1128/MCB.14.5.3242 10.1002/aja.1002030107 10.1007/s003350010098 10.1006/dbio.1999.9462 10.1182/blood.V80.7.1825.1825 10.1093/emboj/17.14.4029 10.1093/embo-reports/kvd027 10.1006/dbio.2000.9995 10.1182/blood.V96.8.2862.h8002862_2862_2869 10.1242/dev.125.8.1371 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD F1W FR3 H95 L.G P64 RC3 7X8 |
DOI | 10.1242/dev.129.8.2015 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Zoology Biology |
EISSN | 1477-9129 |
EndPage | 2030 |
ExternalDocumentID | 11934867 10_1242_dev_129_8_2015 develop_129_8_2015 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: RR10715 |
GroupedDBID | - 0R 186 2WC 34G 39C 3O- 4.4 53G 55 5GY 5RE 5VS 85S 9M8 AAIKC ABFLS ABSGY ABZEH ACGFS ACPRK ADACO ADBBV ADBIT AENEX AETEA AFDAS AFFNX AGCDD AHERT ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DU5 DZ E3Z EBS EJD ET F20 F5P GJ GX1 H13 HZ H~9 INIJC KQ8 O0- O9- OK1 P2P R.V RCB RHF RHI SJN TWZ UPT UQL VH1 WH7 WOQ X X7M XJT ZA5 ZCG ZGI ZHY ZXP ZY4 --- -DZ -ET -~X .55 .GJ 0R~ 18M AAFWJ AAYXX ACMFV ACREN ADFRT ADVGF ADXHL AGGIJ AI. AMTXH BTFSW CITATION F9R HZ~ TR2 W8F XSW ABJNI ABTAH CGR CUY CVF ECM EIF MVM NPM OHT XOL 8FD F1W FR3 H95 L.G P64 RC3 7X8 |
ID | FETCH-LOGICAL-c358t-d357e90634430880b7819164cb31d7e353a5fc4c06b45b2a1a47db5d85433fe33 |
ISSN | 0950-1991 |
IngestDate | Fri Jul 11 06:42:19 EDT 2025 Fri Jul 11 16:03:11 EDT 2025 Thu Apr 03 07:04:27 EDT 2025 Tue Jul 01 00:45:24 EDT 2025 Thu Apr 24 23:05:25 EDT 2025 Fri Jan 15 20:24:47 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c358t-d357e90634430880b7819164cb31d7e353a5fc4c06b45b2a1a47db5d85433fe33 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 11934867 |
PQID | 18392872 |
PQPubID | 23462 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_71585255 proquest_miscellaneous_18392872 pubmed_primary_11934867 crossref_primary_10_1242_dev_129_8_2015 crossref_citationtrail_10_1242_dev_129_8_2015 highwire_biologists_develop_129_8_2015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20020415 |
PublicationDateYYYYMMDD | 2002-04-15 |
PublicationDate_xml | – month: 04 year: 2002 text: 20020415 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Development (Cambridge) |
PublicationTitleAlternate | Development |
PublicationYear | 2002 |
Publisher | The Company of Biologists Limited |
Publisher_xml | – name: The Company of Biologists Limited |
References | 2021042512512653400_CANON-AND-BANERJEE-2000 2021042512512653400_ARTINGER-ETAL-1999 2021042512512653400_POSTLETHWAIT-ETAL-1998 2021042512512653400_ZON-1995 2021042512512653400_FLORES-ETAL-1998 2021042512512653400_MUKOUYAMA-ETAL-2000 2021042512512653400_PREUDHOMME-ETAL-2000 2021042512512653400_TAKAHASHI-ETAL-1995 2021042512512653400_WEINSTEIN-ETAL-1995 2021042512512653400_WESTERFIELD-1995 2021042512512653400_BUCHHOLZ-ETAL-2000 2021042512512653400_DAVIDSON-AND-ZON-2000 2021042512512653400_ROBERTSON-ETAL-2000 2021042512512653400_AL-ADHAMI-AND-KUNZ-1977 2021042512512653400_PABST-ETAL-2001 2021042512512653400_RHOADES-ETAL-2000 2021042512512653400_BROADBENT-AND-READ-1999 2021042512512653400_DZIERZAK-AND-MEDVINSKY-1995 2021042512512653400_EKKER-2000 2021042512512653400_TAKAKURA-ETAL-2000 2021042512512653400_SONG-ETAL-1999 2021042512512653400_WESTENDORF-ETAL-1998 2021042512512653400_BLAKE-ETAL-2000 2021042512512653400_ERICKSON-ETAL-1992 2021042512512653400_OGAWA-ETAL-1993A 2021042512512653400_JAFFREDO-ETAL-1998 2021042512512653400_METCALFE-ETAL-1990 2021042512512653400_OGAWA-ETAL-1993B 2021042512512653400_OKUDA-ETAL-1996 2021042512512653400_LIAO-ETAL-1997 2021042512512653400_CUMANO-AND-GODIN-2001 2021042512512653400_HILDEBRAND-ETAL-2001 2021042512512653400_PARDANAUD-AND-DIETERLEN-LIEVRE-1999 2021042512512653400_OKUDA-ETAL-1998 2021042512512653400_THOMPSON-ETAL-1998 2021042512512653400_GERING-ETAL-1998 2021042512512653400_IMAI-ETAL-2000 2021042512512653400_MIYOSHI-ETAL-1991 2021042512512653400_WESTENDORF-AND-HIEBERT-1999 2021042512512653400_MIYOSHI-ETAL-1993 2021042512512653400_CHOI-ETAL-1998 2021042512512653400_HO-AND-KANE-1990 2021042512512653400_RANSOM-ETAL-1996 2021042512512653400_KRUSE-ETAL-1984 2021042512512653400_BROWNLIE-ETAL-1998 2021042512512653400_CASTILLA-ETAL-1996 2021042512512653400_GRIFFIN-ETAL-1998 2021042512512653400_STAINIER-ETAL-1995 2021042512512653400_BRAVO-ETAL-2001 2021042512512653400_WOODS-ETAL-2000 2021042512512653400_NORTH-ETAL-1999 2021042512512653400_DOWNING-1999 2021042512512653400_ORKIN-2000 2021042512512653400_SHIMODA-ETAL-1999 2021042512512653400_WANG-ETAL-1996B 2021042512512653400_WANG-ETAL-1996A 2021042512512653400_NAMBA-ETAL-2000 2021042512512653400_NASEVICIUS-AND-EKKER-2000 2021042512512653400_MEYERS-ETAL-1993 2021042512512653400_GUPTA-ETAL-1998 2021042512512653400_TRACEY-ETAL-1998 2021042512512653400_KIMMEL-ETAL-1995 2021042512512653400_MELNICK-ETAL-2000 2021042512512653400_SIMEONE-ETAL-1995 2021042512512653400_LEVANON-ETAL-2001 2021042512512653400_SHIMADA-ETAL-2000 2021042512512653400_RUPP-ETAL-1994 2021042512512653400_LEBESTKY-ETAL-2000 2021042512512653400_MACDONALD-1999 2021042512512653400_FELSENSTEIN-1993 2021042512512653400_AMATRUDA-AND-ZON-1999 2021042512512653400_BAE-ETAL-1994 2021042512512653400_OSATO-ETAL-1999 2021042512512653400_LIAO-ETAL-2000 2021042512512653400_MUCENSKI-ETAL-1991 2021042512512653400_SHIVDASANI-AND-ORKIN-1996 2021042512512653400_KNAPIK-2000 2021042512512653400_TRACEY-AND-SPECK-2000 2021042512512653400_ISOGAI-ETAL-2001 2021042512512653400_NAGATA-AND-WERNER-2001 2021042512512653400_ROBB-1997 2021042512512653400_CRUTE-ETAL-1996 2021042512512653400_PAW-AND-ZON-2000 2021042512512653400_BEGLEY-AND-GREEN-1999 2021042512512653400_WANG-ETAL-1998 2021042512512653400_YERGEAU-ETAL-1997 2021042512512653400_KATAOKA-ETAL-2000 2021042512512653400_NASEVICIUS-ETAL-2000 2021042512512653400_CHILDS-ETAL-2000 2021042512512653400_CAI-ETAL-2000 2021042512512653400_WANG-ETAL-1993 2021042512512653400_YAMAGUCHI-ETAL-1993 2021042512512653400_BITTER-ETAL-1987 2021042512512653400_LUTTERBACH-AND-HIEBERT-2000 2021042512512653400_YUAN-ETAL-2001 |
References_xml | – ident: 2021042512512653400_HO-AND-KANE-1990 doi: 10.1038/348728a0 – ident: 2021042512512653400_IMAI-ETAL-2000 doi: 10.1182/blood.V96.9.3154 – ident: 2021042512512653400_MELNICK-ETAL-2000 doi: 10.1128/MCB.20.6.2075-2086.2000 – ident: 2021042512512653400_LIAO-ETAL-1997 doi: 10.1242/dev.124.2.381 – ident: 2021042512512653400_KRUSE-ETAL-1984 doi: 10.1038/311153a0 – ident: 2021042512512653400_LEVANON-ETAL-2001 doi: 10.1016/S0378-1119(00)00532-1 – ident: 2021042512512653400_METCALFE-ETAL-1990 doi: 10.1242/dev.110.2.491 – ident: 2021042512512653400_TAKAHASHI-ETAL-1995 doi: 10.1182/blood.V86.2.607.bloodjournal862607 – ident: 2021042512512653400_WESTENDORF-AND-HIEBERT-1999 doi: 10.1002/(SICI)1097-4644(1999)75:32+<51::AID-JCB7>3.0.CO;2-S – ident: 2021042512512653400_JAFFREDO-ETAL-1998 doi: 10.1242/dev.125.22.4575 – ident: 2021042512512653400_NAMBA-ETAL-2000 doi: 10.1038/sj.onc.1203257 – ident: 2021042512512653400_SHIVDASANI-AND-ORKIN-1996 doi: 10.1182/blood.V87.10.4025.bloodjournal87104025 – ident: 2021042512512653400_MACDONALD-1999 doi: 10.1385/1-59259-678-9:77 – ident: 2021042512512653400_OGAWA-ETAL-1993B doi: 10.1073/pnas.90.14.6859 – ident: 2021042512512653400_YAMAGUCHI-ETAL-1993 doi: 10.1242/dev.118.2.489 – ident: 2021042512512653400_SHIMODA-ETAL-1999 doi: 10.1006/geno.1999.5824 – ident: 2021042512512653400_ORKIN-2000 doi: 10.1038/35049577 – ident: 2021042512512653400_WEINSTEIN-ETAL-1995 doi: 10.1038/nm1195-1143 – ident: 2021042512512653400_EKKER-2000 doi: 10.1155/2000/769836 – ident: 2021042512512653400_MUCENSKI-ETAL-1991 doi: 10.1016/0092-8674(91)90099-K – ident: 2021042512512653400_NORTH-ETAL-1999 doi: 10.1242/dev.126.11.2563 – ident: 2021042512512653400_GRIFFIN-ETAL-1998 doi: 10.1242/dev.125.17.3379 – ident: 2021042512512653400_BRAVO-ETAL-2001 doi: 10.1038/86264 – ident: 2021042512512653400_TRACEY-AND-SPECK-2000 doi: 10.1006/scdb.2000.0186 – ident: 2021042512512653400_LIAO-ETAL-2000 doi: 10.1242/dev.127.23.5123 – ident: 2021042512512653400_OGAWA-ETAL-1993A doi: 10.1006/viro.1993.1262 – ident: 2021042512512653400_YERGEAU-ETAL-1997 doi: 10.1038/ng0397-303 – ident: 2021042512512653400_CUMANO-AND-GODIN-2001 doi: 10.1016/S0952-7915(00)00200-4 – ident: 2021042512512653400_ROBB-1997 doi: 10.1016/S0960-9822(06)00008-X – ident: 2021042512512653400_WANG-ETAL-1996A doi: 10.1073/pnas.93.8.3444 – ident: 2021042512512653400_WANG-ETAL-1998 doi: 10.1038/3041 – ident: 2021042512512653400_CAI-ETAL-2000 doi: 10.1016/S1074-7613(00)00042-X – ident: 2021042512512653400_SONG-ETAL-1999 doi: 10.1038/13793 – ident: 2021042512512653400_RHOADES-ETAL-2000 doi: 10.1182/blood.V96.6.2108 – ident: 2021042512512653400_THOMPSON-ETAL-1998 doi: 10.1006/dbio.1998.8887 – ident: 2021042512512653400_BROADBENT-AND-READ-1999 doi: 10.1385/1-59259-678-9:57 – ident: 2021042512512653400_CRUTE-ETAL-1996 doi: 10.1074/jbc.271.42.26251 – ident: 2021042512512653400_DAVIDSON-AND-ZON-2000 doi: 10.1016/S0070-2153(00)50003-9 – ident: 2021042512512653400_NASEVICIUS-AND-EKKER-2000 doi: 10.1038/79951 – ident: 2021042512512653400_RUPP-ETAL-1994 doi: 10.1101/gad.8.11.1311 – ident: 2021042512512653400_DZIERZAK-AND-MEDVINSKY-1995 doi: 10.1016/S0168-9525(00)89107-6 – ident: 2021042512512653400_DOWNING-1999 doi: 10.1046/j.1365-2141.1999.01377.x – ident: 2021042512512653400_BROWNLIE-ETAL-1998 doi: 10.1038/3049 – ident: 2021042512512653400_STAINIER-ETAL-1995 doi: 10.1242/dev.121.10.3141 – ident: 2021042512512653400_CASTILLA-ETAL-1996 doi: 10.1016/S0092-8674(00)81388-4 – ident: 2021042512512653400_OKUDA-ETAL-1998 doi: 10.1182/blood.V91.9.3134 – ident: 2021042512512653400_CANON-AND-BANERJEE-2000 doi: 10.1006/scdb.2000.0185 – ident: 2021042512512653400_OSATO-ETAL-1999 doi: 10.1182/blood.V93.6.1817.406k36_1817_1824 – ident: 2021042512512653400_LUTTERBACH-AND-HIEBERT-2000 doi: 10.1016/S0378-1119(00)00014-7 – ident: 2021042512512653400_ROBERTSON-ETAL-2000 doi: 10.1242/dev.127.11.2447 – ident: 2021042512512653400_OKUDA-ETAL-1996 doi: 10.1016/S0092-8674(00)80986-1 – ident: 2021042512512653400_POSTLETHWAIT-ETAL-1998 doi: 10.1038/ng0498-345 – ident: 2021042512512653400_RANSOM-ETAL-1996 doi: 10.1242/dev.123.1.311 – ident: 2021042512512653400_MIYOSHI-ETAL-1993 doi: 10.1002/j.1460-2075.1993.tb05933.x – ident: 2021042512512653400_MEYERS-ETAL-1993 doi: 10.1128/MCB.13.10.6336 – ident: 2021042512512653400_WESTENDORF-ETAL-1998 doi: 10.1128/MCB.18.1.322 – ident: 2021042512512653400_YUAN-ETAL-2001 doi: 10.1073/pnas.171321298 – ident: 2021042512512653400_ARTINGER-ETAL-1999 doi: 10.1242/dev.126.18.3969 – ident: 2021042512512653400_MUKOUYAMA-ETAL-2000 doi: 10.1006/dbio.2000.9617 – ident: 2021042512512653400_TAKAKURA-ETAL-2000 doi: 10.1016/S0092-8674(00)00025-8 – ident: 2021042512512653400_FLORES-ETAL-1998 doi: 10.1242/dev.125.18.3681 – ident: 2021042512512653400_NAGATA-AND-WERNER-2001 doi: 10.1006/jmbi.2001.4596 – ident: 2021042512512653400_WOODS-ETAL-2000 doi: 10.1101/gr.10.12.1903 – ident: 2021042512512653400_CHOI-ETAL-1998 doi: 10.1242/dev.125.4.725 – ident: 2021042512512653400_HILDEBRAND-ETAL-2001 doi: 10.1074/jbc.M010582200 – ident: 2021042512512653400_BLAKE-ETAL-2000 doi: 10.1182/blood.V96.13.4178 – ident: 2021042512512653400_LEBESTKY-ETAL-2000 doi: 10.1126/science.288.5463.146 – ident: 2021042512512653400_SHIMADA-ETAL-2000 doi: 10.1182/blood.V96.2.655.014k10_655_663 – ident: 2021042512512653400_BITTER-ETAL-1987 doi: 10.1016/S0046-8177(87)80002-3 – ident: 2021042512512653400_KIMMEL-ETAL-1995 doi: 10.1002/aja.1002030302 – ident: 2021042512512653400_NASEVICIUS-ETAL-2000 doi: 10.1155/2000/819504 – ident: 2021042512512653400_BEGLEY-AND-GREEN-1999 doi: 10.1182/blood.V93.9.2760 – ident: 2021042512512653400_KATAOKA-ETAL-2000 doi: 10.1016/S0925-4773(00)00445-7 – ident: 2021042512512653400_PARDANAUD-AND-DIETERLEN-LIEVRE-1999 doi: 10.1242/dev.126.4.617 – ident: 2021042512512653400_WANG-ETAL-1996B doi: 10.1016/S0092-8674(00)81389-6 – ident: 2021042512512653400_CHILDS-ETAL-2000 doi: 10.1016/S0960-9822(00)00653-9 – ident: 2021042512512653400_AL-ADHAMI-AND-KUNZ-1977 doi: 10.1111/j.1440-169X.1977.00171.x – ident: 2021042512512653400_WANG-ETAL-1993 doi: 10.1128/MCB.13.6.3324 – ident: 2021042512512653400_ZON-1995 doi: 10.1182/blood.V86.8.2876.2876 – ident: 2021042512512653400_PAW-AND-ZON-2000 doi: 10.1097/00062752-200003000-00002 – ident: 2021042512512653400_GUPTA-ETAL-1998 doi: 10.1006/dbio.1998.9064 – ident: 2021042512512653400_MIYOSHI-ETAL-1991 doi: 10.1073/pnas.88.23.10431 – ident: 2021042512512653400_PABST-ETAL-2001 doi: 10.1038/86515 – ident: 2021042512512653400_BAE-ETAL-1994 doi: 10.1128/MCB.14.5.3242 – ident: 2021042512512653400_WESTERFIELD-1995 – ident: 2021042512512653400_SIMEONE-ETAL-1995 doi: 10.1002/aja.1002030107 – ident: 2021042512512653400_KNAPIK-2000 doi: 10.1007/s003350010098 – ident: 2021042512512653400_AMATRUDA-AND-ZON-1999 doi: 10.1006/dbio.1999.9462 – ident: 2021042512512653400_ERICKSON-ETAL-1992 doi: 10.1182/blood.V80.7.1825.1825 – ident: 2021042512512653400_GERING-ETAL-1998 doi: 10.1093/emboj/17.14.4029 – ident: 2021042512512653400_BUCHHOLZ-ETAL-2000 doi: 10.1093/embo-reports/kvd027 – ident: 2021042512512653400_FELSENSTEIN-1993 – ident: 2021042512512653400_ISOGAI-ETAL-2001 doi: 10.1006/dbio.2000.9995 – ident: 2021042512512653400_PREUDHOMME-ETAL-2000 doi: 10.1182/blood.V96.8.2862.h8002862_2862_2869 – ident: 2021042512512653400_TRACEY-ETAL-1998 doi: 10.1242/dev.125.8.1371 |
SSID | ssj0003677 |
Score | 2.2030504 |
Snippet | RUNX1/AML1/CBFA2 is essential for definitive hematopoiesis, and chromosomal translocations affecting RUNX1 are frequently involved in human leukemias.... |
SourceID | proquest pubmed crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2015 |
SubjectTerms | Acute Disease Amino Acid Sequence Animals Base Sequence Cell Differentiation Core Binding Factor Alpha 2 Subunit Disease Models, Animal DNA, Complementary DNA-Binding Proteins - classification DNA-Binding Proteins - genetics DNA-Binding Proteins - physiology Gene Expression Hematopoiesis - physiology Hematopoietic Stem Cells - metabolism Humans Leukemia, Myeloid - genetics Leukemia, Myeloid - metabolism Leukemia, Myeloid - physiopathology Mice Microinjections Molecular Sequence Data Neovascularization, Pathologic Neurons - metabolism Neurons - physiology Oncogene Proteins, Fusion - genetics Oncogene Proteins, Fusion - physiology Proto-Oncogene Proteins RUNX1 Translocation Partner 1 Protein T-Box Domain Proteins - genetics Transcription Factors - classification Transcription Factors - genetics Transcription Factors - physiology Transgenes Zebrafish - embryology Zebrafish - genetics Zebrafish - metabolism Zebrafish Proteins - genetics |
Title | Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis |
URI | http://dev.biologists.org/content/129/8/2015.abstract https://www.ncbi.nlm.nih.gov/pubmed/11934867 https://www.proquest.com/docview/18392872 https://www.proquest.com/docview/71585255 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKEIgXBOPf-OsHBA9VtjiOk_QRJqbB1D1MLar2EjmJUyq6ZGrase2z8F34atzZcZIClYCXKnIusZX71b6zf3dHyOscvI4sQc6TLzPcrcqcJAlzh0mXR3kmU6bTLg6Pg8Ox_2kiJr3ejw5rabVMdtPrP8aV_I9WoQ30ilGy_6DZ5qXQANegX_gFDcPvX-n4ZFVcMixJvlBI6AXbEUmD13gWnGOmIs1K18cDF5gifG5DpBpiubqsebCFiZM0FftOxscT5uy_P_BGDGtIFBWMQFm6QAVyun6O7qwyPER8fK5WX9VZibLVrOpavR1mkj41tnFinW2II1ioLpzTqzlW0pYmimg6nal-uzleLqqmoDaGdct-B33lwsx3Q_D9Zf-zmsp2_xcLEgM8v3yTs6WlH9dBGXa_w8OjGxPx2WxcukiPYWtzeD1eA9aoOyO75uHflgqwTUC_8N3hEpC1-6sgqPr8TAOHgZGLiQnbJbMhMtpbN8hND_wU7dN_PGpMAR7o0p_NkOusodD13nrHmLu2ftW6gWSTVm92gLQhNLpH7tYeDH1n4Hif9FSxTW6ZmqZX2-T2sGZrQONpqRsfkO8aqXRWUYtUCuChDVKpRioFSFKDVNpBqm5ukUrLnEqqkUq7SKUNUqlFKshppOrOaqTi4-tIfUjGBx9G-4dOXRfESbmIlk7GRagGYFv7PodF0k1C3HUI_DThLAsVF1yKPPVTN0h8kXiSST_MEpFFwuc8V5w_IltFWagnhHpgYTOWuUHKM1-4LAm4SgfZIMrdRLiS7RDHKiNO66T5WLtlHqPzDHqM4XPAxSCOYtTjDnnbyJ-bdDEbJd9Y3cYm3xpM61Vcf901wVdW8zFM_XieJwtVrqpYOzdR6G2WCJmIhCfgHY8NZNpB1Wh7uvHOM3Kn_fs9J1vLxUq9AAN8mbzUIP8J3Jzbvg |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Runx1+is+required+for+zebrafish+blood+and+vessel+development+and+expression+of+a+human+RUNX1-CBF2T1+transgene+advances+a+model+for+studies+of+leukemogenesis&rft.jtitle=Development+%28Cambridge%29&rft.au=Kalev-Zylinska%2C+Maggie+L&rft.au=Horsfield%2C+Julia+A&rft.au=Flores%2C+Maria+Vega+C&rft.au=Postlethwait%2C+John+H&rft.date=2002-04-15&rft.issn=0950-1991&rft.volume=129&rft.issue=8&rft.spage=2015&rft_id=info:doi/10.1242%2Fdev.129.8.2015&rft_id=info%3Apmid%2F11934867&rft.externalDocID=11934867 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon |