A lattice Boltzmann method for incompressible two-phase flows on partial wetting surface with large density ratio

This paper reports a new numerical scheme of the lattice Boltzmann method for calculating liquid droplet behaviour on particle wetting surfaces typically for the system of liquid–gas of a large density ratio. The method combines the existing models of Inamuro et al. [T. Inamuro, T. Ogata, S. Tajima,...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 227; no. 1; pp. 763 - 775
Main Authors Yan, Y.Y., Zu, Y.Q.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 10.11.2007
Elsevier
Subjects
Online AccessGet full text
ISSN0021-9991
1090-2716
DOI10.1016/j.jcp.2007.08.010

Cover

Loading…
Abstract This paper reports a new numerical scheme of the lattice Boltzmann method for calculating liquid droplet behaviour on particle wetting surfaces typically for the system of liquid–gas of a large density ratio. The method combines the existing models of Inamuro et al. [T. Inamuro, T. Ogata, S. Tajima, N. Konishi, A lattice Boltzmann method for incompressible two-phase flows with large density differences, J. Comput. Phys. 198 (2004) 628–644] and Briant et al. [A.J. Briant, P. Papatzacos, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion in a liquid–gas system, Philos. Trans. Roy. Soc. London A 360 (2002) 485–495; A.J. Briant, A.J. Wagner, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion: I. Liquid–gas systems. Phys. Rev. E 69 (2004) 031602; A.J. Briant, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion: II. Binary fluids, Phys. Rev. E 69 (2004) 031603] and has developed novel treatment for partial wetting boundaries which involve droplets spreading on a hydrophobic surface combined with the surface of relative low contact angles and strips of relative high contact angles. The interaction between the fluid–fluid interface and the partial wetting wall has been typically considered. Applying the current method, the dynamics of liquid drops on uniform and heterogeneous wetting walls are simulated numerically. The results of the simulation agree well with those of theoretical prediction and show that the present LBM can be used as a reliable way to study fluidic control on heterogeneous surfaces and other wetting related subjects.
AbstractList This paper reports a new numerical scheme of the lattice Boltzmann method for calculating liquid droplet behaviour on particle wetting surfaces typically for the system of liquid–gas of a large density ratio. The method combines the existing models of Inamuro et al. [T. Inamuro, T. Ogata, S. Tajima, N. Konishi, A lattice Boltzmann method for incompressible two-phase flows with large density differences, J. Comput. Phys. 198 (2004) 628–644] and Briant et al. [A.J. Briant, P. Papatzacos, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion in a liquid–gas system, Philos. Trans. Roy. Soc. London A 360 (2002) 485–495; A.J. Briant, A.J. Wagner, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion: I. Liquid–gas systems. Phys. Rev. E 69 (2004) 031602; A.J. Briant, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion: II. Binary fluids, Phys. Rev. E 69 (2004) 031603] and has developed novel treatment for partial wetting boundaries which involve droplets spreading on a hydrophobic surface combined with the surface of relative low contact angles and strips of relative high contact angles. The interaction between the fluid–fluid interface and the partial wetting wall has been typically considered. Applying the current method, the dynamics of liquid drops on uniform and heterogeneous wetting walls are simulated numerically. The results of the simulation agree well with those of theoretical prediction and show that the present LBM can be used as a reliable way to study fluidic control on heterogeneous surfaces and other wetting related subjects.
Author Zu, Y.Q.
Yan, Y.Y.
Author_xml – sequence: 1
  givenname: Y.Y.
  surname: Yan
  fullname: Yan, Y.Y.
  email: yuying.yan@nottingham.ac.uk
– sequence: 2
  givenname: Y.Q.
  surname: Zu
  fullname: Zu, Y.Q.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19195758$$DView record in Pascal Francis
BookMark eNp9kT1vFDEQhi0UJC6BH0DnBrpdxvttUYUICFIkGqgt3-w455PX3tg-TuHX49NFKShSzRTv80gz7yW78METY-8F1ALE8Glf73GtG4CxhqkGAa_YRoCEqhnFcME2AI2opJTiDbtMaQ8AU99NG_ZwzZ3O2SLxL8Hlv4v2ni-Ud2HmJkRuPYZljZSS3Tri-RiqdacTcePCMfHg-apjttrxIxWNv-fpEI0uuqPNu-KO98Rn8snmRx51tuEte220S_TuaV6x39--_rq5re5-fv9xc31XYdtPucKpl1qI2UhC2Y4azDRPQzN0g-nKNqJptp3sRuiQhJbQjltE2aMRo-mxn9sr9vHsXWN4OFDKarEJyTntKRySakEOjQAowQ9PQZ1QOxO1R5vUGu2i46MSUsh-7KeSG885jCGlSEahzaeLfI7aOiVAnapQe1WqUKcqFEyqVFFI8R_5LH-B-XxmqPzoj6WoElrySLONhFnNwb5A_wM8o6WV
CitedBy_id crossref_primary_10_1016_j_camwa_2023_06_023
crossref_primary_10_1038_srep19281
crossref_primary_10_1063_5_0244143
crossref_primary_10_1016_j_ijthermalsci_2014_06_006
crossref_primary_10_1063_1_5044268
crossref_primary_10_1016_j_compfluid_2016_01_016
crossref_primary_10_1063_1_4799650
crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_016
crossref_primary_10_1016_j_applthermaleng_2010_08_003
crossref_primary_10_4208_cicp_210613_310314a
crossref_primary_10_1098_rsta_2011_0073
crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_010
crossref_primary_10_1299_jcst_2_318
crossref_primary_10_2139_ssrn_4132318
crossref_primary_10_1016_j_cis_2016_07_004
crossref_primary_10_1007_s10404_010_0658_4
crossref_primary_10_1016_S1672_6529_10_60250_8
crossref_primary_10_1016_j_jcp_2015_08_049
crossref_primary_10_1016_j_compfluid_2010_08_007
crossref_primary_10_1299_jtst_2015jtst0004
crossref_primary_10_1063_5_0043604
crossref_primary_10_1016_j_ijheatmasstransfer_2018_03_032
crossref_primary_10_1016_j_jcp_2015_08_040
crossref_primary_10_1016_j_ijthermalsci_2018_04_012
crossref_primary_10_1016_S1672_6529_07_60021_3
crossref_primary_10_1063_1_5028172
crossref_primary_10_1016_j_ijheatmasstransfer_2019_02_014
crossref_primary_10_1007_s12206_014_0118_2
crossref_primary_10_1039_D0SM00196A
crossref_primary_10_1016_j_egypro_2013_06_372
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123104
crossref_primary_10_1016_j_icheatmasstransfer_2014_04_010
crossref_primary_10_1063_1_4915891
crossref_primary_10_1016_j_camwa_2016_08_033
crossref_primary_10_1134_S0869864324040073
crossref_primary_10_1016_j_icheatmasstransfer_2014_10_004
crossref_primary_10_1016_j_camwa_2019_10_007
crossref_primary_10_1016_j_tsep_2019_02_008
crossref_primary_10_1016_j_jcis_2011_08_019
crossref_primary_10_1016_j_compfluid_2012_04_002
crossref_primary_10_1080_19942060_2024_2363246
crossref_primary_10_1016_S1672_6529_09_60221_3
crossref_primary_10_1260_1757_482X_6_3_283
crossref_primary_10_1007_s12206_014_0316_y
crossref_primary_10_1038_s41598_017_12189_7
crossref_primary_10_1103_PhysRevE_88_013008
crossref_primary_10_1103_PhysRevE_98_013102
crossref_primary_10_1016_S1672_6529_09_60218_3
crossref_primary_10_1103_PhysRevE_97_033312
crossref_primary_10_1016_j_apsusc_2015_06_024
crossref_primary_10_1016_j_colsurfa_2013_05_004
crossref_primary_10_1016_j_compfluid_2018_03_082
crossref_primary_10_3390_e24091202
crossref_primary_10_1016_j_pecs_2010_06_002
crossref_primary_10_1016_j_ijthermalsci_2010_09_004
crossref_primary_10_1016_j_camwa_2021_07_013
crossref_primary_10_1016_j_ijheatfluidflow_2010_09_006
crossref_primary_10_1103_PhysRevFluids_3_034201
crossref_primary_10_1063_1_5091481
crossref_primary_10_1007_s10404_018_2068_y
crossref_primary_10_1063_5_0139638
crossref_primary_10_1186_s40294_017_0051_1
crossref_primary_10_1016_j_applthermaleng_2014_02_056
crossref_primary_10_1016_j_applthermaleng_2010_08_019
crossref_primary_10_1103_PhysRevE_87_043301
crossref_primary_10_1007_s10404_012_0940_8
crossref_primary_10_1007_s12046_013_0192_7
crossref_primary_10_1016_j_ijheatmasstransfer_2019_04_101
crossref_primary_10_1103_PhysRevE_102_053307
crossref_primary_10_1080_01457632_2011_562731
crossref_primary_10_1016_j_ijmultiphaseflow_2012_12_002
crossref_primary_10_1016_j_jcp_2014_09_035
crossref_primary_10_1103_PhysRevE_99_063306
crossref_primary_10_1016_j_ijheatmasstransfer_2016_12_065
crossref_primary_10_1080_10407782_2014_965017
crossref_primary_10_1103_PhysRevE_95_063305
crossref_primary_10_1016_S1672_6529_08_60171_7
crossref_primary_10_1016_j_sna_2018_11_039
crossref_primary_10_1063_5_0014255
crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_031
crossref_primary_10_1016_j_pecs_2015_10_001
crossref_primary_10_1016_S1672_6529_08_60135_3
crossref_primary_10_1016_j_jcis_2011_06_028
crossref_primary_10_1103_PhysRevE_109_025302
crossref_primary_10_1007_s40868_021_00099_3
crossref_primary_10_1080_10407790_2013_849976
crossref_primary_10_1016_j_compfluid_2009_12_005
crossref_primary_10_1016_j_jpowsour_2020_227929
crossref_primary_10_1016_S1672_6529_09_60202_X
crossref_primary_10_1016_j_icheatmasstransfer_2016_08_014
crossref_primary_10_1016_j_compfluid_2017_04_022
crossref_primary_10_1103_PhysRevE_87_013301
crossref_primary_10_1252_jcej_11we177
crossref_primary_10_1103_PhysRevE_89_033311
crossref_primary_10_1016_j_ijthermalsci_2014_05_002
crossref_primary_10_1021_acs_energyfuels_6b01341
crossref_primary_10_1103_PhysRevE_102_013303
crossref_primary_10_1016_j_applthermaleng_2016_05_127
crossref_primary_10_1016_j_ijheatmasstransfer_2012_07_007
crossref_primary_10_5293_KFMA_2011_14_3_010
crossref_primary_10_1016_j_tsep_2022_101586
crossref_primary_10_1002_fld_3995
crossref_primary_10_1016_j_applthermaleng_2010_10_010
crossref_primary_10_1016_j_advengsoft_2017_02_001
crossref_primary_10_1016_j_ijheatmasstransfer_2017_05_115
crossref_primary_10_1016_j_ijheatmasstransfer_2019_01_135
crossref_primary_10_1016_j_euromechflu_2017_11_002
crossref_primary_10_1016_j_camwa_2018_12_044
crossref_primary_10_1063_1_4934703
crossref_primary_10_1007_s11242_012_0087_9
crossref_primary_10_1063_1_4999922
crossref_primary_10_1016_j_camwa_2022_01_023
crossref_primary_10_1016_j_jcp_2010_07_007
crossref_primary_10_1007_s11434_009_0015_8
crossref_primary_10_1016_S1672_6529_16_60414_6
crossref_primary_10_7498_aps_62_120502
crossref_primary_10_1115_1_4004594
crossref_primary_10_1021_acs_langmuir_0c03596
crossref_primary_10_1007_s11242_011_9740_y
crossref_primary_10_1016_j_fuel_2022_126678
crossref_primary_10_1016_j_ijthermalsci_2022_108026
crossref_primary_10_1007_s12206_016_0736_y
crossref_primary_10_1016_j_ijmultiphaseflow_2014_04_005
crossref_primary_10_1016_j_proeng_2015_11_285
crossref_primary_10_1103_PhysRevE_93_043303
crossref_primary_10_1016_j_apor_2021_103023
crossref_primary_10_1016_j_jcp_2017_04_045
crossref_primary_10_1260_1757_482X_7_1_1
crossref_primary_10_1016_S1672_6529_11_60102_9
crossref_primary_10_1007_s10404_013_1284_8
crossref_primary_10_1016_j_compfluid_2014_09_033
crossref_primary_10_1103_PhysRevE_78_017702
crossref_primary_10_1155_2020_8885226
crossref_primary_10_1039_C5SM01175B
crossref_primary_10_3390_atmos14081311
crossref_primary_10_1016_j_ces_2019_01_021
crossref_primary_10_1063_5_0160096
crossref_primary_10_1039_c2nr11736c
crossref_primary_10_1007_s12206_017_0522_5
crossref_primary_10_1007_s12206_018_0521_1
crossref_primary_10_1016_j_jcp_2022_111716
crossref_primary_10_1016_j_camwa_2013_08_005
crossref_primary_10_1016_j_jcp_2014_04_054
crossref_primary_10_1016_j_ijthermalsci_2022_108019
crossref_primary_10_1007_s00231_020_03005_6
crossref_primary_10_1115_1_4030200
crossref_primary_10_1016_j_jngse_2017_12_016
crossref_primary_10_1139_cjp_2018_0474
crossref_primary_10_1103_PhysRevE_109_045307
Cites_doi 10.1103/PhysRevA.43.4320
10.1103/PhysRevE.69.031602
10.1098/rstl.1805.0005
10.1146/annurev.fluid.30.1.329
10.1103/PhysRevE.54.5041
10.1098/rsta.2001.0943
10.1016/j.jcp.2004.01.019
10.1016/S0029-5493(00)00335-6
10.1016/j.jcp.2004.12.001
10.1103/PhysRevE.69.031603
10.1016/j.matcom.2006.05.016
10.1007/s10404-005-0075-2
10.1103/PhysRevLett.75.830
10.1006/jcph.1999.6257
10.1021/la047348i
10.1016/j.future.2003.12.012
10.1063/1.434402
10.1103/PhysRevE.47.1815
ContentType Journal Article
Copyright 2007 Elsevier Inc.
2007 INIST-CNRS
Copyright_xml – notice: 2007 Elsevier Inc.
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jcp.2007.08.010
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1090-2716
EndPage 775
ExternalDocumentID 19195758
10_1016_j_jcp_2007_08_010
S0021999107003580
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6OB
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADIYS
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSQ
SSV
SSZ
T5K
T9H
TN5
UPT
UQL
WUQ
XFK
YQT
ZMT
ZU3
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c358t-c859a11df9ec937a0f8d862646f48d87cf2b494704ce1a9037bcc95cf17f5c5d3
IEDL.DBID AIKHN
ISSN 0021-9991
IngestDate Fri Jul 11 03:41:08 EDT 2025
Mon Jul 21 09:15:34 EDT 2025
Tue Jul 01 04:33:27 EDT 2025
Thu Apr 24 23:08:31 EDT 2025
Fri Feb 23 02:29:11 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Lattice Boltzmann method (LBM)
Large density ratio
Contact angle
Two-phase flow
Fluid droplet
Partial wetting
Incompressible flow
Heterogeneous surface
Dynamics
Partial wetting: Contact angle
Droplets
Models
Calculation
Calculation methods
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-c859a11df9ec937a0f8d862646f48d87cf2b494704ce1a9037bcc95cf17f5c5d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 30962100
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_30962100
pascalfrancis_primary_19195758
crossref_citationtrail_10_1016_j_jcp_2007_08_010
crossref_primary_10_1016_j_jcp_2007_08_010
elsevier_sciencedirect_doi_10_1016_j_jcp_2007_08_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-11-10
PublicationDateYYYYMMDD 2007-11-10
PublicationDate_xml – month: 11
  year: 2007
  text: 2007-11-10
  day: 10
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of computational physics
PublicationYear 2007
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Lee, Lin (bib18) 2005; 206
Chang, Alexander (bib19) 2006; 2
Chen, Doolen (bib5) 1998; 30
He, Chen, Zhang (bib10) 1999; 152
Dupuis, Yeomans (bib12) 2005; 21
Inamuro, Ogata, Tajima, Konishi (bib1) 2004; 198
Young (bib16) 1805; 95
Cahn (bib17) 1977; 66
Briant, Yeomans (bib4) 2004; 69
Kusumaatmaja, Dupuis, Yeomans (bib13) 2006; 72
Swift, Osborn, Yeomans (bib8) 1995; 75
Briant, Papatzacos, Yeomans (bib2) 2002; 360
Gunstensen, Rothman, Zaleski, Zanetti (bib6) 1991; 43
Shan, Chen (bib7) 1993; 47
Rowlinson, Widom (bib15) 1989
Briant, Wagner, Yeomans (bib3) 2004; 69
Jamet, Lebaigue, Coutris, Delhaye (bib14) 2001; 204
Dupuis, Yeomans (bib11) 2004; 20
Swift, Orlandini, Osborn, Yeomans (bib9) 1996; 54
Briant (10.1016/j.jcp.2007.08.010_bib3) 2004; 69
Chang (10.1016/j.jcp.2007.08.010_bib19) 2006; 2
Dupuis (10.1016/j.jcp.2007.08.010_bib11) 2004; 20
Inamuro (10.1016/j.jcp.2007.08.010_bib1) 2004; 198
Cahn (10.1016/j.jcp.2007.08.010_bib17) 1977; 66
Gunstensen (10.1016/j.jcp.2007.08.010_bib6) 1991; 43
Swift (10.1016/j.jcp.2007.08.010_bib8) 1995; 75
Chen (10.1016/j.jcp.2007.08.010_bib5) 1998; 30
Shan (10.1016/j.jcp.2007.08.010_bib7) 1993; 47
He (10.1016/j.jcp.2007.08.010_bib10) 1999; 152
Briant (10.1016/j.jcp.2007.08.010_bib4) 2004; 69
Briant (10.1016/j.jcp.2007.08.010_bib2) 2002; 360
Young (10.1016/j.jcp.2007.08.010_bib16) 1805; 95
Swift (10.1016/j.jcp.2007.08.010_bib9) 1996; 54
Dupuis (10.1016/j.jcp.2007.08.010_bib12) 2005; 21
Kusumaatmaja (10.1016/j.jcp.2007.08.010_bib13) 2006; 72
Rowlinson (10.1016/j.jcp.2007.08.010_bib15) 1989
Lee (10.1016/j.jcp.2007.08.010_bib18) 2005; 206
Jamet (10.1016/j.jcp.2007.08.010_bib14) 2001; 204
References_xml – volume: 54
  start-page: 5041
  year: 1996
  end-page: 5052
  ident: bib9
  article-title: Lattice Boltzmann simulations of liquid–gas and binary fluid systems
  publication-title: Phys. Rev. E
– volume: 198
  start-page: 628
  year: 2004
  end-page: 644
  ident: bib1
  article-title: A lattice Boltzmann method for incompressible two-phase flows with large density differences
  publication-title: J. Comput. Phys.
– volume: 69
  start-page: 031602
  year: 2004
  ident: bib3
  article-title: Lattice Boltzmann simulations of contact line motion: I. Liquid–gas systems
  publication-title: Phys. Rev. E
– volume: 66
  start-page: 3667
  year: 1977
  end-page: 3672
  ident: bib17
  article-title: Critical-point wetting
  publication-title: J. Chem. Phys.
– volume: 43
  start-page: 4320
  year: 1991
  end-page: 4327
  ident: bib6
  article-title: Lattice Boltzmann model of immiscible fluids
  publication-title: Phys. Rev. A
– volume: 2
  start-page: 309
  year: 2006
  end-page: 326
  ident: bib19
  article-title: Analysis of single droplet dynamics on striped surface domains using a lattice Boltzmann method
  publication-title: Microfluid. Nanofluid.
– volume: 72
  start-page: 160
  year: 2006
  end-page: 164
  ident: bib13
  article-title: Lattice Boltzmann simulations of drop dynamics
  publication-title: Math. Comput. Simul.
– volume: 75
  start-page: 830
  year: 1995
  end-page: 833
  ident: bib8
  article-title: Lattice Boltzmann simulation of nonideal fluids
  publication-title: Phys. Rev. Lett.
– volume: 69
  start-page: 031603
  year: 2004
  ident: bib4
  article-title: Lattice Boltzmann simulations of contact line motion: II. Binary fluids
  publication-title: Phys. Rev. E
– volume: 30
  start-page: 329
  year: 1998
  end-page: 364
  ident: bib5
  article-title: Lattice Boltzmann method for fluid flows
  publication-title: Ann. Rev. Fluid Mech.
– volume: 152
  start-page: 642
  year: 1999
  end-page: 663
  ident: bib10
  article-title: A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability
  publication-title: J. Comput. Phys.
– volume: 204
  start-page: 155
  year: 2001
  end-page: 166
  ident: bib14
  article-title: The second gradient theory: a tool for the direct numerical simulation of liquid–vapor flows with phase-change
  publication-title: Nucl. Eng. Des.
– year: 1989
  ident: bib15
  article-title: Molecular Theory of Capillarity
– volume: 206
  start-page: 16
  year: 2005
  end-page: 47
  ident: bib18
  article-title: A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio
  publication-title: J. Comput. Phys.
– volume: 360
  start-page: 485
  year: 2002
  end-page: 495
  ident: bib2
  article-title: Lattice Boltzmann simulations of contact line motion in a liquid–gas system
  publication-title: Philos. Trans. Roy. Soc. London A
– volume: 47
  start-page: 1815
  year: 1993
  end-page: 1819
  ident: bib7
  article-title: Lattice Boltzmann model for simulating flows with multiple phases and components
  publication-title: Phys. Rev. E
– volume: 20
  start-page: 993
  year: 2004
  end-page: 1001
  ident: bib11
  article-title: Lattice Boltzmann modelling of droplets on chemically heterogeneous surfaces
  publication-title: Future Gener. Comput. Syst.
– volume: 21
  start-page: 2624
  year: 2005
  end-page: 2629
  ident: bib12
  article-title: Modeling droplets on superhydrophobic surfaces: equilibrium states and transitions
  publication-title: Langmuir
– volume: 95
  start-page: 65
  year: 1805
  end-page: 87
  ident: bib16
  article-title: An essay on the cohesion of fluids
  publication-title: Philos. Trans. Roy. Soc. London
– volume: 43
  start-page: 4320
  year: 1991
  ident: 10.1016/j.jcp.2007.08.010_bib6
  article-title: Lattice Boltzmann model of immiscible fluids
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.43.4320
– volume: 69
  start-page: 031602
  year: 2004
  ident: 10.1016/j.jcp.2007.08.010_bib3
  article-title: Lattice Boltzmann simulations of contact line motion: I. Liquid–gas systems
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.031602
– volume: 95
  start-page: 65
  year: 1805
  ident: 10.1016/j.jcp.2007.08.010_bib16
  article-title: An essay on the cohesion of fluids
  publication-title: Philos. Trans. Roy. Soc. London
  doi: 10.1098/rstl.1805.0005
– volume: 30
  start-page: 329
  year: 1998
  ident: 10.1016/j.jcp.2007.08.010_bib5
  article-title: Lattice Boltzmann method for fluid flows
  publication-title: Ann. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.30.1.329
– volume: 54
  start-page: 5041
  year: 1996
  ident: 10.1016/j.jcp.2007.08.010_bib9
  article-title: Lattice Boltzmann simulations of liquid–gas and binary fluid systems
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.54.5041
– volume: 360
  start-page: 485
  year: 2002
  ident: 10.1016/j.jcp.2007.08.010_bib2
  article-title: Lattice Boltzmann simulations of contact line motion in a liquid–gas system
  publication-title: Philos. Trans. Roy. Soc. London A
  doi: 10.1098/rsta.2001.0943
– volume: 198
  start-page: 628
  year: 2004
  ident: 10.1016/j.jcp.2007.08.010_bib1
  article-title: A lattice Boltzmann method for incompressible two-phase flows with large density differences
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2004.01.019
– year: 1989
  ident: 10.1016/j.jcp.2007.08.010_bib15
– volume: 204
  start-page: 155
  year: 2001
  ident: 10.1016/j.jcp.2007.08.010_bib14
  article-title: The second gradient theory: a tool for the direct numerical simulation of liquid–vapor flows with phase-change
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/S0029-5493(00)00335-6
– volume: 206
  start-page: 16
  year: 2005
  ident: 10.1016/j.jcp.2007.08.010_bib18
  article-title: A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2004.12.001
– volume: 69
  start-page: 031603
  year: 2004
  ident: 10.1016/j.jcp.2007.08.010_bib4
  article-title: Lattice Boltzmann simulations of contact line motion: II. Binary fluids
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.031603
– volume: 72
  start-page: 160
  year: 2006
  ident: 10.1016/j.jcp.2007.08.010_bib13
  article-title: Lattice Boltzmann simulations of drop dynamics
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2006.05.016
– volume: 2
  start-page: 309
  year: 2006
  ident: 10.1016/j.jcp.2007.08.010_bib19
  article-title: Analysis of single droplet dynamics on striped surface domains using a lattice Boltzmann method
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-005-0075-2
– volume: 75
  start-page: 830
  year: 1995
  ident: 10.1016/j.jcp.2007.08.010_bib8
  article-title: Lattice Boltzmann simulation of nonideal fluids
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.830
– volume: 152
  start-page: 642
  year: 1999
  ident: 10.1016/j.jcp.2007.08.010_bib10
  article-title: A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1999.6257
– volume: 21
  start-page: 2624
  year: 2005
  ident: 10.1016/j.jcp.2007.08.010_bib12
  article-title: Modeling droplets on superhydrophobic surfaces: equilibrium states and transitions
  publication-title: Langmuir
  doi: 10.1021/la047348i
– volume: 20
  start-page: 993
  year: 2004
  ident: 10.1016/j.jcp.2007.08.010_bib11
  article-title: Lattice Boltzmann modelling of droplets on chemically heterogeneous surfaces
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2003.12.012
– volume: 66
  start-page: 3667
  year: 1977
  ident: 10.1016/j.jcp.2007.08.010_bib17
  article-title: Critical-point wetting
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.434402
– volume: 47
  start-page: 1815
  year: 1993
  ident: 10.1016/j.jcp.2007.08.010_bib7
  article-title: Lattice Boltzmann model for simulating flows with multiple phases and components
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.47.1815
SSID ssj0008548
Score 2.3504872
Snippet This paper reports a new numerical scheme of the lattice Boltzmann method for calculating liquid droplet behaviour on particle wetting surfaces typically for...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 763
SubjectTerms Computational techniques
Contact angle
Exact sciences and technology
Fluid droplet
Large density ratio
Lattice Boltzmann method (LBM)
Mathematical methods in physics
Partial wetting
Physics
Two-phase flow
Title A lattice Boltzmann method for incompressible two-phase flows on partial wetting surface with large density ratio
URI https://dx.doi.org/10.1016/j.jcp.2007.08.010
https://www.proquest.com/docview/30962100
Volume 227
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoXCpVhb7E8lh86KlSwI6dh48LAm2pyqlI3CLHsVtQSNJNVis48NuZSRwq1IpDb1GUsaPxeB72NzOEfI5jG-WyYIFyoQqwIlegCiMDzYV0eQgWrs96_34Rzy_l-VV0tUZOxlwYhFV63T_o9F5b-zdHnptHzfU15viGmEMP8Qteh6UQt2-EQsUg2huzr9_mF08KOY3koJARjQAE4-VmD_O6MY0vZJgeMsyj_bd5etPoFpjmhm4Xfynu3hqdbZG33o2ks-FP35E1W70nm96lpH7Dth_I7xktdYcAN3pcl939ra4qOnSNpuCuUqzNcDtgYfPS0m5VB80vMGzUlfWqpXVFG-QGTLWyPUKatsuF0zAcHuDC2IuflhYIgu_uaC9MH8nl2emPk3nguywEBrjWBSaNlOa8cMoa8FU0c2mBYY6MnYSnxLgwl0omTBrLtWIiyY1RkXE8cZGJCvGJrFd1ZbcJjTXPhUqVRXKTMB0KkAXDhMbefyKcEDYyNzO-BDl2wiizEWt2k8F6YGvMJMPumJxNyJcnkmaov_HSx3JcseyZEGVgH14imz5b3T8TKa7AnU0n5GBc7gx2H16p6MrWyzYTEAFC0Mx2_m_mXfK6PyvuYYV7ZL1bLO0-ODldPiWvDh_41IvyIzkf-_g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHKhU0QetWErBh56QAk7iPHwEVLQ8TyBxsxzHbkEhCZusVvTQ386M4xShVhx6i6LYjmbG87C_mSHkW5qapOAlC4SNRIAVuQJRah6oMOa2iMDCuaz3i8t0es1Pb5KbJXI05sIgrNLr_kGnO23t3-x7au63t7eY4xthDj3EL3gdlkPcvsJh--Lu3Pv9jPPIEz6oY8QiwOfj1aYDed3p1pcxzPcYZtH-2zi9bVUHJLNDr4u_1LazRcfvyZp3IunB8J8fyJKpP5J33qGkfrt26-ThgFaqR3gbPWyq_te9qms69Iym4KxSrMxwPyBhi8rQftEE7U8wa9RWzaKjTU1bpAUstTAOH027-cwqmA6Pb2Hu2Q9DS4TA94_UidIncn38_epoGvgeC4EGmvWBzhOhwrC0wmjwVBSzeYlBDk8th6dM26jggmeMaxMqweKs0Fok2oaZTXRSxp_Jct3UZoPQVIVFLHJhcLjOmIpikATNYoWd_-JoQthIXKl9AXLsg1HJEWl2J4Ef2Bgzk9gbM2QTsvtnSDtU33jtYz5yTL4QIQnW4bVh2y-4-7yQCAU4s_mE7IzslrD38EJF1aaZdzKG-A9CZrb5fyvvkNXp1cW5PD-5PPtC3rhTYwcw3CLL_WxuvoK70xfbTpyfAEmc_Lw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+lattice+Boltzmann+method+for+incompressible+two-phase+flows+on+partial+wetting+surface+with+large+density+ratio&rft.jtitle=Journal+of+computational+physics&rft.au=Yan%2C+Y.Y.&rft.au=Zu%2C+Y.Q.&rft.date=2007-11-10&rft.pub=Elsevier+Inc&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=227&rft.issue=1&rft.spage=763&rft.epage=775&rft_id=info:doi/10.1016%2Fj.jcp.2007.08.010&rft.externalDocID=S0021999107003580
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon