Effect of temperature on the performance of perovskite solar cells
The poor stability of perovskite solar cells is a crucial obstacle for its commercial applications. Here, we investigate the thermal stability of the mixed cation organic–inorganic lead halide perovskites (FAPbI 3 ) 1− x MAPb(Br 3− y Cl y ) x films and devices in air atmosphere. The results show tha...
Saved in:
Published in | Journal of materials science. Materials in electronics Vol. 32; no. 10; pp. 12784 - 12792 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The poor stability of perovskite solar cells is a crucial obstacle for its commercial applications. Here, we investigate the thermal stability of the mixed cation organic–inorganic lead halide perovskites (FAPbI
3
)
1−
x
MAPb(Br
3−
y
Cl
y
)
x
films and devices in air atmosphere. The results show that with the increase of heat treatment from 25 to 250 °C, the MA-perovskite decomposed into PbI
2
firstly and the efficiency of corresponding solar cells reduced linearly. For the perovskite film, the increased heat treatment temperature can bring the redshift of the absorption edge leading to the decrease of band gap from 1.569 to 1.508 eV and increase of defect density from 3.87 × 10
17
cm
−3
to 9.03 × 10
17
cm
−3
. However, a proper heat treatment time (10 min) at certain temperature (85 °C) can passivate defects effectively and improve the efficiency to 16.50%, realizing a 15% relative improvement of average efficiency. This work reveals a detailed thermal decomposition behavior of perovskite material and solar cells, which may provide insights into the stability of perovskite solar cells. |
---|---|
AbstractList | The poor stability of perovskite solar cells is a crucial obstacle for its commercial applications. Here, we investigate the thermal stability of the mixed cation organic–inorganic lead halide perovskites (FAPbI
3
)
1−
x
MAPb(Br
3−
y
Cl
y
)
x
films and devices in air atmosphere. The results show that with the increase of heat treatment from 25 to 250 °C, the MA-perovskite decomposed into PbI
2
firstly and the efficiency of corresponding solar cells reduced linearly. For the perovskite film, the increased heat treatment temperature can bring the redshift of the absorption edge leading to the decrease of band gap from 1.569 to 1.508 eV and increase of defect density from 3.87 × 10
17
cm
−3
to 9.03 × 10
17
cm
−3
. However, a proper heat treatment time (10 min) at certain temperature (85 °C) can passivate defects effectively and improve the efficiency to 16.50%, realizing a 15% relative improvement of average efficiency. This work reveals a detailed thermal decomposition behavior of perovskite material and solar cells, which may provide insights into the stability of perovskite solar cells. The poor stability of perovskite solar cells is a crucial obstacle for its commercial applications. Here, we investigate the thermal stability of the mixed cation organic–inorganic lead halide perovskites (FAPbI3)1−xMAPb(Br3−yCly)x films and devices in air atmosphere. The results show that with the increase of heat treatment from 25 to 250 °C, the MA-perovskite decomposed into PbI2 firstly and the efficiency of corresponding solar cells reduced linearly. For the perovskite film, the increased heat treatment temperature can bring the redshift of the absorption edge leading to the decrease of band gap from 1.569 to 1.508 eV and increase of defect density from 3.87 × 1017 cm−3 to 9.03 × 1017 cm−3. However, a proper heat treatment time (10 min) at certain temperature (85 °C) can passivate defects effectively and improve the efficiency to 16.50%, realizing a 15% relative improvement of average efficiency. This work reveals a detailed thermal decomposition behavior of perovskite material and solar cells, which may provide insights into the stability of perovskite solar cells. |
Author | Gao, Hongli Sun, Junjie Yan, Hui Chen, Yichuan Zhang, Yongzhe Meng, Qi Zhang, Xiaobo Han, Chang Bao Xiao, Yue Yue |
Author_xml | – sequence: 1 givenname: Qi surname: Meng fullname: Meng, Qi organization: College of Materials Science and Engineering, Beijing University of Technology – sequence: 2 givenname: Yichuan surname: Chen fullname: Chen, Yichuan organization: College of Materials Science and Engineering, Beijing University of Technology – sequence: 3 givenname: Yue Yue surname: Xiao fullname: Xiao, Yue Yue organization: College of Materials Science and Engineering, Beijing University of Technology, College of Materials Science and Engineering, Hebei University of Science and Technology – sequence: 4 givenname: Junjie surname: Sun fullname: Sun, Junjie organization: College of Applied Sciences, Beijing University of Technology – sequence: 5 givenname: Xiaobo surname: Zhang fullname: Zhang, Xiaobo organization: College of Materials Science and Engineering, Beijing University of Technology – sequence: 6 givenname: Chang Bao orcidid: 0000-0003-2521-8033 surname: Han fullname: Han, Chang Bao email: cbhan@bjut.edu.cn organization: College of Materials Science and Engineering, Beijing University of Technology – sequence: 7 givenname: Hongli surname: Gao fullname: Gao, Hongli organization: College of Applied Sciences, Beijing University of Technology – sequence: 8 givenname: Yongzhe surname: Zhang fullname: Zhang, Yongzhe email: cbhan@bjut.edu.cn organization: College of Materials Science and Engineering, Beijing University of Technology – sequence: 9 givenname: Hui surname: Yan fullname: Yan, Hui email: cbhan@bjut.edu.cn organization: College of Materials Science and Engineering, Beijing University of Technology |
BookMark | eNp9kEtLAzEUhYNUsK3-AVcDrqM3r0lmqaU-QHCj4C6kaaJTp5OapEL_vakjCC66uZcD57uPM0GjPvQOoXMClwRAXiUCSnAMFDAwoA3eHaExEZJhrujrCI2hERJzQekJmqS0AoCaMzVGN3Pvnc1V8FV2642LJm-jq0Jf5XdXFe1DXJveur2jyPCVPtrsqhQ6Eyvrui6domNvuuTOfvsUvdzOn2f3-PHp7mF2_YgtEypjK-0CPF9yxY1RCoj0tiYLw4EZ4-XSNaVKIQ1tlGhIXYva00UjDBBuiFdsii6GuZsYPrcuZb0K29iXlZoKVn6FRoriooPLxpBSdF5vYrs2cacJ6H1WeshKl6z0T1Z6VyD1D7JtNrkNfY6m7Q6jbEBT2dO_ufh31QHqGxUEgLE |
CitedBy_id | crossref_primary_10_1016_j_jpowsour_2020_228658 crossref_primary_10_1016_j_mseb_2024_117788 crossref_primary_10_1016_j_jpowsour_2025_236760 crossref_primary_10_1002_aesr_202200189 crossref_primary_10_1007_s10853_022_07335_0 crossref_primary_10_2478_rtuect_2024_0033 crossref_primary_10_1155_2023_8863346 crossref_primary_10_1063_5_0197154 crossref_primary_10_1002_pssr_202200295 crossref_primary_10_1002_cphc_202400587 crossref_primary_10_1016_j_solener_2021_09_046 crossref_primary_10_1007_s00170_024_14408_8 crossref_primary_10_1007_s10854_021_06041_y crossref_primary_10_4028_p_H3gBxE crossref_primary_10_1007_s11664_024_11585_w crossref_primary_10_1016_j_inoche_2024_113473 crossref_primary_10_1016_j_optmat_2022_112894 crossref_primary_10_1038_s41598_024_78165_0 crossref_primary_10_1016_j_mseb_2024_117672 crossref_primary_10_1002_solr_202200252 crossref_primary_10_1021_acsenergylett_2c02272 crossref_primary_10_1021_acs_inorgchem_3c01696 crossref_primary_10_1088_2515_7655_acc3c2 crossref_primary_10_1016_j_nexres_2024_100022 crossref_primary_10_1002_admi_202101343 crossref_primary_10_1016_j_jpowsour_2023_233498 crossref_primary_10_1016_j_apenergy_2024_123827 crossref_primary_10_3390_nano14231975 crossref_primary_10_1002_ente_202100452 crossref_primary_10_1021_acsaem_1c02989 crossref_primary_10_1002_solr_202100971 crossref_primary_10_1016_j_jmrt_2021_06_049 crossref_primary_10_1080_14786451_2022_2092481 crossref_primary_10_1021_acsaem_4c03247 crossref_primary_10_1021_acs_energyfuels_3c02478 crossref_primary_10_1039_D1NA00465D crossref_primary_10_1080_15567036_2020_1820628 crossref_primary_10_1039_D4RA01610F crossref_primary_10_1007_s12274_024_6989_3 crossref_primary_10_3390_en16093706 crossref_primary_10_1016_j_solener_2021_04_040 crossref_primary_10_2139_ssrn_4158392 crossref_primary_10_1002_ente_202100560 crossref_primary_10_1016_j_jpcs_2023_111641 crossref_primary_10_1109_ACCESS_2025_3543244 crossref_primary_10_1063_5_0100183 crossref_primary_10_1002_solr_202100401 crossref_primary_10_1002_adts_202200805 crossref_primary_10_1002_solr_202201123 crossref_primary_10_1039_D1TC02315B crossref_primary_10_1021_acsami_3c11706 crossref_primary_10_3390_mi15020192 crossref_primary_10_1038_s41598_024_81797_x crossref_primary_10_1142_S0217979224503612 crossref_primary_10_1016_j_optmat_2022_112517 crossref_primary_10_1063_5_0078821 |
Cites_doi | 10.1002/aenm.201500477 10.1126/science.aaa5760 10.1038/nphoton.2014.284 10.1002/adma.201806823 10.1103/PhysRev.103.1648 10.1021/ja511132a 10.1016/j.nanoen.2017.04.010 10.1021/nl400349b 10.1039/C6TA00679E 10.1038/nature14133 10.1002/chem.201605668 10.1002/aenm.201500963 10.1038/nenergy.2016.177 10.1063/1.4939269 10.1126/science.1243167 10.1038/nenergy.2015.12 10.1088/0256-307x/35/3/036104 10.1021/acsami.7b15263 10.1021/ph500255t 10.1016/j.matchemphys.2003.09.015 10.1002/adma.201703852 10.1002/adma.201701073 10.1016/S0927-0248(98)00128-7 10.1021/acsenergylett.6b00002 10.1021/ja809598r 10.1021/jacs.6b12432 10.1016/j.nanoen.2018.10.023 10.1002/advs.201801079 10.1039/c7ta03331a 10.1021/ja412583t 10.1038/s41467-018-05760-x 10.1126/science.1243982 10.1039/C6EE00030D |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION 7SP 7SR 8BQ 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU D1I DWQXO F28 FR3 HCIFZ JG9 KB. L7M P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS S0W |
DOI | 10.1007/s10854-020-03029-y |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database SciTech Premium Collection Materials Research Database Materials Science Database Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection METADEX Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-482X |
EndPage | 12792 |
ExternalDocumentID | 10_1007_s10854_020_03029_y |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61464005; 61574009 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P62 P9N PDBOC PKN PT4 PT5 Q2X QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 Z8M Z8N Z8P Z8R Z8T Z8W Z8Z Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SP 7SR 8BQ 8FD ABRTQ DWQXO F28 FR3 JG9 L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c358t-c7cb0f4d484aa88017fc61ba403aaf7de9af7757a2985916656f2b95a014a1f83 |
IEDL.DBID | U2A |
ISSN | 0957-4522 |
IngestDate | Fri Jul 25 12:10:45 EDT 2025 Thu Apr 24 23:08:09 EDT 2025 Tue Jul 01 02:34:43 EDT 2025 Fri Feb 21 02:49:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-c7cb0f4d484aa88017fc61ba403aaf7de9af7757a2985916656f2b95a014a1f83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2521-8033 |
PQID | 2535730975 |
PQPubID | 326250 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2535730975 crossref_primary_10_1007_s10854_020_03029_y crossref_citationtrail_10_1007_s10854_020_03029_y springer_journals_10_1007_s10854_020_03029_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of materials science. Materials in electronics |
PublicationTitleAbbrev | J Mater Sci: Mater Electron |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Xie, Chen, Nan, Lin, Wang, Zhan, Yan, Mao, Tian (CR31) 2017; 139 Feng, Yang, Yang, Ren, Zhu, Jin, Zi, Wei, Liu (CR5) 2017; 36 Maruyama (CR26) 1998; 56 Wang, Hao, Han, Yu, Qin, Zhang, Guo, Ai, Zhang (CR36) 2017; 23 Qin, Matsushima, Klotz, Fujihara, Adachi (CR14) 2019; 6 Stranks, Eperon, Grancini, Menelaou, Alcocer, Leijtens, Herz, Petrozza, Snaith (CR2) 2013; 342 Yang, Yang, Wang, Wu, Zhu, Feng, Ren, Fang, Liu (CR8) 2018; 9 Matsui, Yamamoto, Nishihara, Morisawa, Yokoyama, Sekiguchi, Negami (CR12) 2019 Jiang, Zhang, Wang, Yang, Meng, Liu, Yin, Wu, Zhang, You (CR24) 2016; 2 Kojima, Teshima, Shirai, Miyasaka (CR9) 2009; 131 Bi, El-Zohry, Hagfeldt, Boschloo (CR35) 2015; 2 Jiang, Chu, Wang, Yang, Liu, Wang, Yin, Wu, Zhang, You (CR37) 2017 CR11 Jiang, Zhang, Wang, Yang, Meng, Liu, Yin, Wu, Zhang, You (CR18) 2017; 2 CR10 Noh, Im, Heo, Mandal, Seok (CR7) 2013; 13 Zhang, Chen, Xu, Xiang, Gong, Walsh, Wei (CR13) 2018; 95 Jesper Jacobsson, Correabaena, Pazoki, Saliba, Schenk, Grätzel, Hagfeldt (CR21) 2016; 9 Leijtens, Eperon, Noel, Habisreutinger, Petrozza, Snaith (CR28) 2015; 5 Wu, Xie, Chen, Yang, Su, Cai, Zhou, Noda, Han (CR15) 2017; 29 Tan, Bowring, Meng, McGehee, McIntyre (CR16) 2018; 10 Christians, Miranda Herrera, Kamat (CR29) 2015; 137 Oral, Menşur, Aslan, Başaran (CR25) 2004; 83 Dong, Fang, Shao, Mulligan, Qiu, Cao, Huang (CR3) 2015; 347 Song, Liu, Wang, Chen, Tian, Miyasaka (CR20) 2017; 5 Xing, Mathews, Sun, Lim, Lam, Grätzel, Mhaisalkar, Mhaisalkar (CR1) 2013; 342 CR22 Ponseca, Savenije, Abdellah, Zheng, Yartsev, Pascher, Harlang, Chabera, Pullerits, Stepanov, Wolf, Sundström (CR6) 2014; 136 Zhumekenov, Saidaminov, Haque, Alarousu, Sarmah, Murali, Dursun, Miao, Abdelhady, Wu, Mohammed, Bakr (CR4) 2016; 1 Jeon, Noh, Yang, Kim, Ryu, Seo, Seok (CR27) 2015; 517 Chang, Zhu, Xiao, Isikgor, Lin, Hao, Zeng, Xu, Ouyang (CR23) 2016; 4 Jung, Lee, Oh, Im, Do, Kim, Chae, Lee (CR30) 2018; 54 Conings, Drijkoningen, Gauquelin, Babayigit, D'Haen, D'Olieslaeger, Ethirajan, Verbeeck, Manca, Mosconi, Angelis, Boyen (CR19) 2015; 5 Divitini, Cacovich, Matteocci, Cinà, Di Carlo, Ducati (CR17) 2016; 1 Wang, Sun, Zhang, Lu, Shi (CR32) 2016 Lin, Armin, Nagiri, Burn, Meredith (CR34) 2014; 9 Lampert (CR33) 1956; 103 MA Lampert (3029_CR33) 1956; 103 Q Dong (3029_CR3) 2015; 347 SD Stranks (3029_CR2) 2013; 342 AY Oral (3029_CR25) 2004; 83 NJ Jeon (3029_CR27) 2015; 517 C Qin (3029_CR14) 2019; 6 D Bi (3029_CR35) 2015; 2 L Xie (3029_CR31) 2017; 139 Y-Y Zhang (3029_CR13) 2018; 95 T Jesper Jacobsson (3029_CR21) 2016; 9 J Song (3029_CR20) 2017; 5 HY Wang (3029_CR36) 2017; 23 Q Jiang (3029_CR24) 2016; 2 W Tan (3029_CR16) 2018; 10 T Maruyama (3029_CR26) 1998; 56 Q Jiang (3029_CR37) 2017 Y Wu (3029_CR15) 2017; 29 G Divitini (3029_CR17) 2016; 1 3029_CR22 AA Zhumekenov (3029_CR4) 2016; 1 D Yang (3029_CR8) 2018; 9 J Feng (3029_CR5) 2017; 36 Q Jiang (3029_CR18) 2017; 2 B Conings (3029_CR19) 2015; 5 JH Noh (3029_CR7) 2013; 13 T Leijtens (3029_CR28) 2015; 5 J Chang (3029_CR23) 2016; 4 K Jung (3029_CR30) 2018; 54 A Kojima (3029_CR9) 2009; 131 JA Christians (3029_CR29) 2015; 137 T Matsui (3029_CR12) 2019 Y Wang (3029_CR32) 2016 Q Lin (3029_CR34) 2014; 9 G Xing (3029_CR1) 2013; 342 3029_CR10 CS Ponseca (3029_CR6) 2014; 136 3029_CR11 |
References_xml | – volume: 5 start-page: 1500477 issue: 15 year: 2015 ident: CR19 article-title: Intrinsic thermal instability of methylammonium lead trihalide perovskite publication-title: Adv Energy Mater doi: 10.1002/aenm.201500477 – volume: 347 start-page: 967 issue: 6225 year: 2015 ident: CR3 article-title: Electron-hole diffusion lengths > 175 μm in solution-grown CH NH PbI single crystals publication-title: Science doi: 10.1126/science.aaa5760 – ident: CR22 – volume: 9 start-page: 106 year: 2014 ident: CR34 article-title: Electro-optics of perovskite solar cells publication-title: Nat Photonics doi: 10.1038/nphoton.2014.284 – year: 2019 ident: CR12 article-title: Compositional engineering for thermally stable, highly efficient perovskite solar cells exceeding 20% power conversion efficiency with 85°C/85% 1000 h stability publication-title: Adv Mater doi: 10.1002/adma.201806823 – volume: 103 start-page: 1648 issue: 6 year: 1956 end-page: 1656 ident: CR33 article-title: Simplified theory of space-charge-limited currents in an insulator with traps publication-title: Phys Rev doi: 10.1103/PhysRev.103.1648 – volume: 137 start-page: 1530 issue: 4 year: 2015 end-page: 1538 ident: CR29 article-title: Transformation of the excited state and photovoltaic efficiency of CH NH PbI perovskite upon controlled exposure to humidified air publication-title: J Am Chem Soc doi: 10.1021/ja511132a – volume: 36 start-page: 1 year: 2017 end-page: 8 ident: CR5 article-title: E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.010 – volume: 13 start-page: 1764 issue: 4 year: 2013 end-page: 1769 ident: CR7 article-title: Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells publication-title: Nano Lett doi: 10.1021/nl400349b – volume: 4 start-page: 7943 issue: 20 year: 2016 end-page: 7949 ident: CR23 article-title: Enhancing the planar heterojunction perovskite solar cell performance through tuning the precursor ratio publication-title: Journal of Materials Chemistry A doi: 10.1039/C6TA00679E – volume: 517 start-page: 476 issue: 7535 year: 2015 ident: CR27 article-title: Compositional engineering of perovskite materials for high-performance solar cells publication-title: Nature doi: 10.1038/nature14133 – volume: 23 start-page: 3986 issue: 16 year: 2017 end-page: 3992 ident: CR36 article-title: Adverse effects of excess residual PbI on photovoltaic performance, charge separation, and trap‐state properties in mesoporous structured perovskite solar cells publication-title: Chem.–A Eur. J. doi: 10.1002/chem.201605668 – ident: CR10 – volume: 5 start-page: 1500963 issue: 20 year: 2015 ident: CR28 article-title: Stability of metal halide perovskite solar cells publication-title: Adv Energy Mater doi: 10.1002/aenm.201500963 – volume: 2 start-page: 16177 issue: 1 year: 2017 ident: CR18 article-title: Enhanced electron extraction using SnO for high-efficiency planar-structure HC(NH ) PbI -based perovskite solar cells publication-title: Nature Energy doi: 10.1038/nenergy.2016.177 – year: 2016 ident: CR32 article-title: Band gap engineering of a soft inorganic compound PbI by incommensurate van der Waals epitaxy publication-title: Appl Phys Lett doi: 10.1063/1.4939269 – volume: 342 start-page: 344 issue: 6156 year: 2013 ident: CR1 article-title: Long-range balanced electron- and hole-transport lengths in organic-inorganic CH NH PbI publication-title: Science doi: 10.1126/science.1243167 – volume: 1 start-page: 15012 year: 2016 ident: CR17 article-title: In situ observation of heat-induced degradation of perovskite solar cells publication-title: Nature Energy doi: 10.1038/nenergy.2015.12 – volume: 95 start-page: 036104 issue: 3 year: 2018 ident: CR13 article-title: Intrinsic Instability of the Hybrid Halide Perovskite Semiconductor CH NH PbI publication-title: Chin Phys Lett doi: 10.1088/0256-307x/35/3/036104 – volume: 10 start-page: 5485 issue: 6 year: 2018 end-page: 5491 ident: CR16 article-title: Thermal stability of mixed cation metal halide perovskites in air publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b15263 – volume: 2 start-page: 589 issue: 5 year: 2015 end-page: 594 ident: CR35 article-title: Unraveling the effect of PbI concentration on charge recombination kinetics in perovskite solar cells publication-title: Acs Photonics doi: 10.1021/ph500255t – volume: 83 start-page: 140 issue: 1 year: 2004 end-page: 144 ident: CR25 article-title: The preparation of copper(II) oxide thin films and the study of their microstructures and optical properties publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2003.09.015 – year: 2017 ident: CR37 article-title: Planar-structure perovskite solar cells with efficiency beyond 21% publication-title: Adv. Mater. doi: 10.1002/adma.201703852 – volume: 29 start-page: 1701073 issue: 28 year: 2017 ident: CR15 article-title: Thermally stable MAPbI perovskite solar cells with efficiency of 19.19% and area over 1 cm achieved by additive engineering publication-title: Adv Mater doi: 10.1002/adma.201701073 – volume: 56 start-page: 85 issue: 1 year: 1998 end-page: 92 ident: CR26 article-title: Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate publication-title: Sol Energy Mater Sol Cells doi: 10.1016/S0927-0248(98)00128-7 – volume: 2 start-page: 16177 year: 2016 ident: CR24 article-title: Enhanced electron extraction using SnO for high-efficiency planar-structure HC(NH ) PbI -based perovskite solar cells publication-title: Nat. Energy doi: 10.1038/nenergy.2016.177 – volume: 1 start-page: 32 issue: 1 year: 2016 end-page: 37 ident: CR4 article-title: Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length publication-title: ACS Energy Letters doi: 10.1021/acsenergylett.6b00002 – volume: 131 start-page: 6050 issue: 17 year: 2009 end-page: 6051 ident: CR9 article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells publication-title: J Am Chem Soc doi: 10.1021/ja809598r – volume: 139 start-page: 3320 issue: 9 year: 2017 end-page: 3323 ident: CR31 article-title: Understanding the cubic phase stabilization and crystallization kinetics in mixed cations and halides perovskite single crystals publication-title: J Am Chem Soc doi: 10.1021/jacs.6b12432 – volume: 54 start-page: 251 year: 2018 end-page: 263 ident: CR30 article-title: Efficient composition tuning via cation exchange and improved reproducibility of photovoltaic performance in FA MA PbI planar heterojunction solar cells fabricated by a two-step dynamic spin-coating process publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.10.023 – volume: 6 start-page: 1801079 issue: 1 year: 2019 ident: CR14 article-title: The relation of phase-transition effects and thermal stability of planar perovskite solar cells publication-title: Adv Sci doi: 10.1002/advs.201801079 – ident: CR11 – volume: 5 start-page: 13439 issue: 26 year: 2017 end-page: 13447 ident: CR20 article-title: Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber publication-title: Journal of Materials Chemistry A doi: 10.1039/c7ta03331a – volume: 136 start-page: 5189 issue: 14 year: 2014 end-page: 5192 ident: CR6 article-title: Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination publication-title: J Am Chem Soc doi: 10.1021/ja412583t – volume: 9 start-page: 3239 issue: 1 year: 2018 ident: CR8 article-title: High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO publication-title: Nat Commun doi: 10.1038/s41467-018-05760-x – volume: 342 start-page: 341 issue: 6156 year: 2013 end-page: 344 ident: CR2 article-title: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber publication-title: Science doi: 10.1126/science.1243982 – volume: 9 start-page: 1706 issue: 5 year: 2016 end-page: 1724 ident: CR21 article-title: Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells publication-title: Energy Environ Sci doi: 10.1039/C6EE00030D – volume: 36 start-page: 1 year: 2017 ident: 3029_CR5 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.010 – volume: 131 start-page: 6050 issue: 17 year: 2009 ident: 3029_CR9 publication-title: J Am Chem Soc doi: 10.1021/ja809598r – volume: 5 start-page: 1500477 issue: 15 year: 2015 ident: 3029_CR19 publication-title: Adv Energy Mater doi: 10.1002/aenm.201500477 – volume: 137 start-page: 1530 issue: 4 year: 2015 ident: 3029_CR29 publication-title: J Am Chem Soc doi: 10.1021/ja511132a – volume: 139 start-page: 3320 issue: 9 year: 2017 ident: 3029_CR31 publication-title: J Am Chem Soc doi: 10.1021/jacs.6b12432 – volume: 1 start-page: 15012 year: 2016 ident: 3029_CR17 publication-title: Nature Energy doi: 10.1038/nenergy.2015.12 – volume: 4 start-page: 7943 issue: 20 year: 2016 ident: 3029_CR23 publication-title: Journal of Materials Chemistry A doi: 10.1039/C6TA00679E – year: 2016 ident: 3029_CR32 publication-title: Appl Phys Lett doi: 10.1063/1.4939269 – ident: 3029_CR11 – volume: 342 start-page: 341 issue: 6156 year: 2013 ident: 3029_CR2 publication-title: Science doi: 10.1126/science.1243982 – volume: 5 start-page: 1500963 issue: 20 year: 2015 ident: 3029_CR28 publication-title: Adv Energy Mater doi: 10.1002/aenm.201500963 – volume: 29 start-page: 1701073 issue: 28 year: 2017 ident: 3029_CR15 publication-title: Adv Mater doi: 10.1002/adma.201701073 – volume: 56 start-page: 85 issue: 1 year: 1998 ident: 3029_CR26 publication-title: Sol Energy Mater Sol Cells doi: 10.1016/S0927-0248(98)00128-7 – volume: 5 start-page: 13439 issue: 26 year: 2017 ident: 3029_CR20 publication-title: Journal of Materials Chemistry A doi: 10.1039/c7ta03331a – volume: 95 start-page: 036104 issue: 3 year: 2018 ident: 3029_CR13 publication-title: Chin Phys Lett doi: 10.1088/0256-307x/35/3/036104 – volume: 54 start-page: 251 year: 2018 ident: 3029_CR30 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.10.023 – volume: 517 start-page: 476 issue: 7535 year: 2015 ident: 3029_CR27 publication-title: Nature doi: 10.1038/nature14133 – volume: 103 start-page: 1648 issue: 6 year: 1956 ident: 3029_CR33 publication-title: Phys Rev doi: 10.1103/PhysRev.103.1648 – volume: 2 start-page: 16177 year: 2016 ident: 3029_CR24 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.177 – volume: 136 start-page: 5189 issue: 14 year: 2014 ident: 3029_CR6 publication-title: J Am Chem Soc doi: 10.1021/ja412583t – volume: 2 start-page: 16177 issue: 1 year: 2017 ident: 3029_CR18 publication-title: Nature Energy doi: 10.1038/nenergy.2016.177 – volume: 9 start-page: 106 year: 2014 ident: 3029_CR34 publication-title: Nat Photonics doi: 10.1038/nphoton.2014.284 – ident: 3029_CR10 – volume: 347 start-page: 967 issue: 6225 year: 2015 ident: 3029_CR3 publication-title: Science doi: 10.1126/science.aaa5760 – volume: 9 start-page: 1706 issue: 5 year: 2016 ident: 3029_CR21 publication-title: Energy Environ Sci doi: 10.1039/C6EE00030D – year: 2017 ident: 3029_CR37 publication-title: Adv. Mater. doi: 10.1002/adma.201703852 – volume: 2 start-page: 589 issue: 5 year: 2015 ident: 3029_CR35 publication-title: Acs Photonics doi: 10.1021/ph500255t – volume: 9 start-page: 3239 issue: 1 year: 2018 ident: 3029_CR8 publication-title: Nat Commun doi: 10.1038/s41467-018-05760-x – volume: 6 start-page: 1801079 issue: 1 year: 2019 ident: 3029_CR14 publication-title: Adv Sci doi: 10.1002/advs.201801079 – volume: 10 start-page: 5485 issue: 6 year: 2018 ident: 3029_CR16 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b15263 – volume: 83 start-page: 140 issue: 1 year: 2004 ident: 3029_CR25 publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2003.09.015 – volume: 342 start-page: 344 issue: 6156 year: 2013 ident: 3029_CR1 publication-title: Science doi: 10.1126/science.1243167 – volume: 13 start-page: 1764 issue: 4 year: 2013 ident: 3029_CR7 publication-title: Nano Lett doi: 10.1021/nl400349b – volume: 1 start-page: 32 issue: 1 year: 2016 ident: 3029_CR4 publication-title: ACS Energy Letters doi: 10.1021/acsenergylett.6b00002 – year: 2019 ident: 3029_CR12 publication-title: Adv Mater doi: 10.1002/adma.201806823 – ident: 3029_CR22 – volume: 23 start-page: 3986 issue: 16 year: 2017 ident: 3029_CR36 publication-title: Chem.–A Eur. J. doi: 10.1002/chem.201605668 |
SSID | ssj0006438 |
Score | 2.5454016 |
Snippet | The poor stability of perovskite solar cells is a crucial obstacle for its commercial applications. Here, we investigate the thermal stability of the mixed... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12784 |
SubjectTerms | Characterization and Evaluation of Materials Chemistry and Materials Science Decomposition Efficiency Heat Heat treatment Lead compounds Materials Science Metal halides Optical and Electronic Materials Perovskites Photovoltaic cells Red shift Solar cells Temperature effects Thermal decomposition Thermal stability |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XfQgfuJ0Sg7eNLh8tc1JnGwMwSHiYLeStslJ2mmnsP_elzZdVXCXXpq-wkvy3u-9vPweQldUhqkymQDkZjgBg0eJsjwhjFs9MMKKsEq4PU2DyUw8zuXcJ9xKX1bZ2MTKUGdF6nLkt0xyCatRhfJu8U5c1yh3uupbaGyjLpjgKOqg7nA0fX5Z22Lwt1HNtufYvRnz12b85blICuLCJ1joTJHVb9fU4s0_R6SV5xnvoz0PGfF9PccHaMvkh2j3B5HgERrWJMS4sNhxTXmiZFzkGPAdXrSXA9wIRw3-VbqsLS5dYItd8r48RrPx6PVhQnx3BJJyGS1JGqbJwIpMREJr2IU0tGlAEy0GXGsbZkbBM5ShZspx1AUA3CxLlNQQFGlqI36COnmRm1OEI8aNkTQJAJwJBXLTTFDKLfxHacBLPUQbxcSppw53HSze4pb02CkzBmXGlTLjVQ9dr79Z1MQZG0f3G33HfhOVcTvlPXTTzEH7-n9pZ5ulnaMd5ipTqrLFPuosPz7NBUCLZXLp1883yErIvQ priority: 102 providerName: ProQuest |
Title | Effect of temperature on the performance of perovskite solar cells |
URI | https://link.springer.com/article/10.1007/s10854-020-03029-y https://www.proquest.com/docview/2535730975 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5se9GD-MRqLTl404Xm1d0cW-kDxSJioZ6W7G5ykra4Vei_d7KPbhUVvOweNpmFSTLzTTLzBeCKSj9WJhGI3Az30OBRT1keeYxb3THCCj_bcHuYdMdTcTeTs6IoLC2z3csjycxSbxW7BVJ4LtzBicmUt65BQ2Ls7hK5pqy3sb_oY4OcYc8xejNWlMr8LOOrO6ow5rdj0czbDA9gv4CJpJeP6yHsmPkR7G2RBx5DPyceJgtLHL9UQY5MFnOCmI4sq4IA18LRgX-kbqeWpC6YJW7DPj2B6XDwfDv2ihsRvJjLYOXFfhx1rEhEILTGlUd9G3dppEWHa239xCh8-tLXTDleui6CNcsiJTUGQpragJ9Cfb6YmzMgAePGSBp1EZAJhXLjRFDKLf5HacRITaClYsK4oAt3t1a8hhXRsVNmiMoMM2WG6yZcb_osc7KMP1u3Sn2HxcJJQya5RKOjfNmEm3IMqs-_Szv_X_ML2GUuOyVLXWxBffX2bi4RXqyiNtSC4agNjd7o5X6A7_5g8vjUzubYJxueyMo |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7Bcig9IKAglkfxgZ5ai_VrEx-qCtouS3mcQOIWnMQ-VbsLWUD7p_iNzORBWiS4ccklzkQaj2e-sT3fAOwJE2XW5xqRm1ccHZ7gNqiUSxVcz-ugo3LD7ey8P7zUf67M1Rw8NrUwdK2y8Ymlo87HGe2R70ujDFqjjcyPyQ2nrlF0utq00KjM4sTPHjBlK74f_8L5_SLl4PfFzyGvuwrwTJl4yrMoS3tB5zrWzqH1iihkfZE63VPOhSj3Fp-RiZy0xO3WR8ATZGqNw2TCiRArlDsPC1phJKfK9MHRs-fH6B5X3H7EJS5lXaRTl-rFRnNK1nBZSctn_wfCFt2-OJAt49xgGZZqgMoOKotagTk_WoWP_9AWfoLDivKYjQMjZqualpmNRwzRJJu0pQg0gojI7wvaI2YFpdGMjgqKNbh8F62tQ2c0HvkNYLFU3huR9hEKaotys1wLoQL-xzpEZ10QjWKSrCYqp34Zf5OWYpmUmaAyk1KZyawLX5-_mVQ0HW-O3m70ndRLtkhaA-vCt2YO2tevS9t8W9oufBhenJ0mp8fnJ1uwKOlOTHlhchs609s7v4OgZpp-Li2JwfV7m-4TSZcEJg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggCgPdaFQH8oJrK5f6_hQVZR21QesKkSl3oKT2Ce0u5AFtH-NX8dM4jRQqb31kkuciTQee76xZ74B2BHGli5UGpFbUBw3PMFdVAWXKvpR0FHb5sDt03R8fKFPL83lGvzpamEorbLbE5uNupqXdEa-K40yaI3Omt2Y0iLODyf7i--cOkjRTWvXTqM1kbOw-o3hW713cohz_UbKydGXD8c8dRjgpTLZkpe2LEZRVzrT3qMlCxvLsSi8Hinvo62Cw6c11ktHPG9jBD9RFs54DCy8iJlCufdg3VJUNID1g6Pp-ecrP4C-PmuZ_ohZXMpUspMK9zKjOYVuuMik46v_3WKPda9dzzZeb_IYHiW4yt639rUBa2H2BB7-Q2L4FA5aAmQ2j4x4rhJJM5vPGGJLtugLE2gE0ZL_qunEmNUUVDO6OKifwcWd6O05DGbzWdgElkkVghHFGIGhdii3rLQQKuJ_nEesNgTRKSYvE205dc_4lveEy6TMHJWZN8rMV0N4e_XNoiXtuHX0VqfvPC3gOu_NbQjvujnoX98s7cXt0rbhPppt_vFkevYSHkhKkGmyJ7dgsPzxM7xChLMsXidTYvD1rq33L-TGCbg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+temperature+on+the+performance+of+perovskite+solar+cells&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Meng%2C+Qi&rft.au=Chen%2C+Yichuan&rft.au=Xiao%2C+Yue+Yue&rft.au=Sun%2C+Junjie&rft.date=2021-05-01&rft.pub=Springer+US&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=32&rft.issue=10&rft.spage=12784&rft.epage=12792&rft_id=info:doi/10.1007%2Fs10854-020-03029-y&rft.externalDocID=10_1007_s10854_020_03029_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon |