Effect of temperature on the performance of perovskite solar cells

The poor stability of perovskite solar cells is a crucial obstacle for its commercial applications. Here, we investigate the thermal stability of the mixed cation organic–inorganic lead halide perovskites (FAPbI 3 ) 1− x MAPb(Br 3− y Cl y ) x films and devices in air atmosphere. The results show tha...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science. Materials in electronics Vol. 32; no. 10; pp. 12784 - 12792
Main Authors Meng, Qi, Chen, Yichuan, Xiao, Yue Yue, Sun, Junjie, Zhang, Xiaobo, Han, Chang Bao, Gao, Hongli, Zhang, Yongzhe, Yan, Hui
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The poor stability of perovskite solar cells is a crucial obstacle for its commercial applications. Here, we investigate the thermal stability of the mixed cation organic–inorganic lead halide perovskites (FAPbI 3 ) 1− x MAPb(Br 3− y Cl y ) x films and devices in air atmosphere. The results show that with the increase of heat treatment from 25 to 250 °C, the MA-perovskite decomposed into PbI 2 firstly and the efficiency of corresponding solar cells reduced linearly. For the perovskite film, the increased heat treatment temperature can bring the redshift of the absorption edge leading to the decrease of band gap from 1.569 to 1.508 eV and increase of defect density from 3.87 × 10 17  cm −3 to 9.03 × 10 17  cm −3 . However, a proper heat treatment time (10 min) at certain temperature (85 °C) can passivate defects effectively and improve the efficiency to 16.50%, realizing a 15% relative improvement of average efficiency. This work reveals a detailed thermal decomposition behavior of perovskite material and solar cells, which may provide insights into the stability of perovskite solar cells.
AbstractList The poor stability of perovskite solar cells is a crucial obstacle for its commercial applications. Here, we investigate the thermal stability of the mixed cation organic–inorganic lead halide perovskites (FAPbI 3 ) 1− x MAPb(Br 3− y Cl y ) x films and devices in air atmosphere. The results show that with the increase of heat treatment from 25 to 250 °C, the MA-perovskite decomposed into PbI 2 firstly and the efficiency of corresponding solar cells reduced linearly. For the perovskite film, the increased heat treatment temperature can bring the redshift of the absorption edge leading to the decrease of band gap from 1.569 to 1.508 eV and increase of defect density from 3.87 × 10 17  cm −3 to 9.03 × 10 17  cm −3 . However, a proper heat treatment time (10 min) at certain temperature (85 °C) can passivate defects effectively and improve the efficiency to 16.50%, realizing a 15% relative improvement of average efficiency. This work reveals a detailed thermal decomposition behavior of perovskite material and solar cells, which may provide insights into the stability of perovskite solar cells.
The poor stability of perovskite solar cells is a crucial obstacle for its commercial applications. Here, we investigate the thermal stability of the mixed cation organic–inorganic lead halide perovskites (FAPbI3)1−xMAPb(Br3−yCly)x films and devices in air atmosphere. The results show that with the increase of heat treatment from 25 to 250 °C, the MA-perovskite decomposed into PbI2 firstly and the efficiency of corresponding solar cells reduced linearly. For the perovskite film, the increased heat treatment temperature can bring the redshift of the absorption edge leading to the decrease of band gap from 1.569 to 1.508 eV and increase of defect density from 3.87 × 1017 cm−3 to 9.03 × 1017 cm−3. However, a proper heat treatment time (10 min) at certain temperature (85 °C) can passivate defects effectively and improve the efficiency to 16.50%, realizing a 15% relative improvement of average efficiency. This work reveals a detailed thermal decomposition behavior of perovskite material and solar cells, which may provide insights into the stability of perovskite solar cells.
Author Gao, Hongli
Sun, Junjie
Yan, Hui
Chen, Yichuan
Zhang, Yongzhe
Meng, Qi
Zhang, Xiaobo
Han, Chang Bao
Xiao, Yue Yue
Author_xml – sequence: 1
  givenname: Qi
  surname: Meng
  fullname: Meng, Qi
  organization: College of Materials Science and Engineering, Beijing University of Technology
– sequence: 2
  givenname: Yichuan
  surname: Chen
  fullname: Chen, Yichuan
  organization: College of Materials Science and Engineering, Beijing University of Technology
– sequence: 3
  givenname: Yue Yue
  surname: Xiao
  fullname: Xiao, Yue Yue
  organization: College of Materials Science and Engineering, Beijing University of Technology, College of Materials Science and Engineering, Hebei University of Science and Technology
– sequence: 4
  givenname: Junjie
  surname: Sun
  fullname: Sun, Junjie
  organization: College of Applied Sciences, Beijing University of Technology
– sequence: 5
  givenname: Xiaobo
  surname: Zhang
  fullname: Zhang, Xiaobo
  organization: College of Materials Science and Engineering, Beijing University of Technology
– sequence: 6
  givenname: Chang Bao
  orcidid: 0000-0003-2521-8033
  surname: Han
  fullname: Han, Chang Bao
  email: cbhan@bjut.edu.cn
  organization: College of Materials Science and Engineering, Beijing University of Technology
– sequence: 7
  givenname: Hongli
  surname: Gao
  fullname: Gao, Hongli
  organization: College of Applied Sciences, Beijing University of Technology
– sequence: 8
  givenname: Yongzhe
  surname: Zhang
  fullname: Zhang, Yongzhe
  email: cbhan@bjut.edu.cn
  organization: College of Materials Science and Engineering, Beijing University of Technology
– sequence: 9
  givenname: Hui
  surname: Yan
  fullname: Yan, Hui
  email: cbhan@bjut.edu.cn
  organization: College of Materials Science and Engineering, Beijing University of Technology
BookMark eNp9kEtLAzEUhYNUsK3-AVcDrqM3r0lmqaU-QHCj4C6kaaJTp5OapEL_vakjCC66uZcD57uPM0GjPvQOoXMClwRAXiUCSnAMFDAwoA3eHaExEZJhrujrCI2hERJzQekJmqS0AoCaMzVGN3Pvnc1V8FV2642LJm-jq0Jf5XdXFe1DXJveur2jyPCVPtrsqhQ6Eyvrui6domNvuuTOfvsUvdzOn2f3-PHp7mF2_YgtEypjK-0CPF9yxY1RCoj0tiYLw4EZ4-XSNaVKIQ1tlGhIXYva00UjDBBuiFdsii6GuZsYPrcuZb0K29iXlZoKVn6FRoriooPLxpBSdF5vYrs2cacJ6H1WeshKl6z0T1Z6VyD1D7JtNrkNfY6m7Q6jbEBT2dO_ufh31QHqGxUEgLE
CitedBy_id crossref_primary_10_1016_j_jpowsour_2020_228658
crossref_primary_10_1016_j_mseb_2024_117788
crossref_primary_10_1016_j_jpowsour_2025_236760
crossref_primary_10_1002_aesr_202200189
crossref_primary_10_1007_s10853_022_07335_0
crossref_primary_10_2478_rtuect_2024_0033
crossref_primary_10_1155_2023_8863346
crossref_primary_10_1063_5_0197154
crossref_primary_10_1002_pssr_202200295
crossref_primary_10_1002_cphc_202400587
crossref_primary_10_1016_j_solener_2021_09_046
crossref_primary_10_1007_s00170_024_14408_8
crossref_primary_10_1007_s10854_021_06041_y
crossref_primary_10_4028_p_H3gBxE
crossref_primary_10_1007_s11664_024_11585_w
crossref_primary_10_1016_j_inoche_2024_113473
crossref_primary_10_1016_j_optmat_2022_112894
crossref_primary_10_1038_s41598_024_78165_0
crossref_primary_10_1016_j_mseb_2024_117672
crossref_primary_10_1002_solr_202200252
crossref_primary_10_1021_acsenergylett_2c02272
crossref_primary_10_1021_acs_inorgchem_3c01696
crossref_primary_10_1088_2515_7655_acc3c2
crossref_primary_10_1016_j_nexres_2024_100022
crossref_primary_10_1002_admi_202101343
crossref_primary_10_1016_j_jpowsour_2023_233498
crossref_primary_10_1016_j_apenergy_2024_123827
crossref_primary_10_3390_nano14231975
crossref_primary_10_1002_ente_202100452
crossref_primary_10_1021_acsaem_1c02989
crossref_primary_10_1002_solr_202100971
crossref_primary_10_1016_j_jmrt_2021_06_049
crossref_primary_10_1080_14786451_2022_2092481
crossref_primary_10_1021_acsaem_4c03247
crossref_primary_10_1021_acs_energyfuels_3c02478
crossref_primary_10_1039_D1NA00465D
crossref_primary_10_1080_15567036_2020_1820628
crossref_primary_10_1039_D4RA01610F
crossref_primary_10_1007_s12274_024_6989_3
crossref_primary_10_3390_en16093706
crossref_primary_10_1016_j_solener_2021_04_040
crossref_primary_10_2139_ssrn_4158392
crossref_primary_10_1002_ente_202100560
crossref_primary_10_1016_j_jpcs_2023_111641
crossref_primary_10_1109_ACCESS_2025_3543244
crossref_primary_10_1063_5_0100183
crossref_primary_10_1002_solr_202100401
crossref_primary_10_1002_adts_202200805
crossref_primary_10_1002_solr_202201123
crossref_primary_10_1039_D1TC02315B
crossref_primary_10_1021_acsami_3c11706
crossref_primary_10_3390_mi15020192
crossref_primary_10_1038_s41598_024_81797_x
crossref_primary_10_1142_S0217979224503612
crossref_primary_10_1016_j_optmat_2022_112517
crossref_primary_10_1063_5_0078821
Cites_doi 10.1002/aenm.201500477
10.1126/science.aaa5760
10.1038/nphoton.2014.284
10.1002/adma.201806823
10.1103/PhysRev.103.1648
10.1021/ja511132a
10.1016/j.nanoen.2017.04.010
10.1021/nl400349b
10.1039/C6TA00679E
10.1038/nature14133
10.1002/chem.201605668
10.1002/aenm.201500963
10.1038/nenergy.2016.177
10.1063/1.4939269
10.1126/science.1243167
10.1038/nenergy.2015.12
10.1088/0256-307x/35/3/036104
10.1021/acsami.7b15263
10.1021/ph500255t
10.1016/j.matchemphys.2003.09.015
10.1002/adma.201703852
10.1002/adma.201701073
10.1016/S0927-0248(98)00128-7
10.1021/acsenergylett.6b00002
10.1021/ja809598r
10.1021/jacs.6b12432
10.1016/j.nanoen.2018.10.023
10.1002/advs.201801079
10.1039/c7ta03331a
10.1021/ja412583t
10.1038/s41467-018-05760-x
10.1126/science.1243982
10.1039/C6EE00030D
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
7SP
7SR
8BQ
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
F28
FR3
HCIFZ
JG9
KB.
L7M
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
S0W
DOI 10.1007/s10854-020-03029-y
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection
Materials Research Database
Materials Science Database
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Materials Research Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-482X
EndPage 12792
ExternalDocumentID 10_1007_s10854_020_03029_y
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61464005; 61574009
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P62
P9N
PDBOC
PKN
PT4
PT5
Q2X
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8W
Z8Z
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SP
7SR
8BQ
8FD
ABRTQ
DWQXO
F28
FR3
JG9
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c358t-c7cb0f4d484aa88017fc61ba403aaf7de9af7757a2985916656f2b95a014a1f83
IEDL.DBID U2A
ISSN 0957-4522
IngestDate Fri Jul 25 12:10:45 EDT 2025
Thu Apr 24 23:08:09 EDT 2025
Tue Jul 01 02:34:43 EDT 2025
Fri Feb 21 02:49:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-c7cb0f4d484aa88017fc61ba403aaf7de9af7757a2985916656f2b95a014a1f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2521-8033
PQID 2535730975
PQPubID 326250
PageCount 9
ParticipantIDs proquest_journals_2535730975
crossref_primary_10_1007_s10854_020_03029_y
crossref_citationtrail_10_1007_s10854_020_03029_y
springer_journals_10_1007_s10854_020_03029_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of materials science. Materials in electronics
PublicationTitleAbbrev J Mater Sci: Mater Electron
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Xie, Chen, Nan, Lin, Wang, Zhan, Yan, Mao, Tian (CR31) 2017; 139
Feng, Yang, Yang, Ren, Zhu, Jin, Zi, Wei, Liu (CR5) 2017; 36
Maruyama (CR26) 1998; 56
Wang, Hao, Han, Yu, Qin, Zhang, Guo, Ai, Zhang (CR36) 2017; 23
Qin, Matsushima, Klotz, Fujihara, Adachi (CR14) 2019; 6
Stranks, Eperon, Grancini, Menelaou, Alcocer, Leijtens, Herz, Petrozza, Snaith (CR2) 2013; 342
Yang, Yang, Wang, Wu, Zhu, Feng, Ren, Fang, Liu (CR8) 2018; 9
Matsui, Yamamoto, Nishihara, Morisawa, Yokoyama, Sekiguchi, Negami (CR12) 2019
Jiang, Zhang, Wang, Yang, Meng, Liu, Yin, Wu, Zhang, You (CR24) 2016; 2
Kojima, Teshima, Shirai, Miyasaka (CR9) 2009; 131
Bi, El-Zohry, Hagfeldt, Boschloo (CR35) 2015; 2
Jiang, Chu, Wang, Yang, Liu, Wang, Yin, Wu, Zhang, You (CR37) 2017
CR11
Jiang, Zhang, Wang, Yang, Meng, Liu, Yin, Wu, Zhang, You (CR18) 2017; 2
CR10
Noh, Im, Heo, Mandal, Seok (CR7) 2013; 13
Zhang, Chen, Xu, Xiang, Gong, Walsh, Wei (CR13) 2018; 95
Jesper Jacobsson, Correabaena, Pazoki, Saliba, Schenk, Grätzel, Hagfeldt (CR21) 2016; 9
Leijtens, Eperon, Noel, Habisreutinger, Petrozza, Snaith (CR28) 2015; 5
Wu, Xie, Chen, Yang, Su, Cai, Zhou, Noda, Han (CR15) 2017; 29
Tan, Bowring, Meng, McGehee, McIntyre (CR16) 2018; 10
Christians, Miranda Herrera, Kamat (CR29) 2015; 137
Oral, Menşur, Aslan, Başaran (CR25) 2004; 83
Dong, Fang, Shao, Mulligan, Qiu, Cao, Huang (CR3) 2015; 347
Song, Liu, Wang, Chen, Tian, Miyasaka (CR20) 2017; 5
Xing, Mathews, Sun, Lim, Lam, Grätzel, Mhaisalkar, Mhaisalkar (CR1) 2013; 342
CR22
Ponseca, Savenije, Abdellah, Zheng, Yartsev, Pascher, Harlang, Chabera, Pullerits, Stepanov, Wolf, Sundström (CR6) 2014; 136
Zhumekenov, Saidaminov, Haque, Alarousu, Sarmah, Murali, Dursun, Miao, Abdelhady, Wu, Mohammed, Bakr (CR4) 2016; 1
Jeon, Noh, Yang, Kim, Ryu, Seo, Seok (CR27) 2015; 517
Chang, Zhu, Xiao, Isikgor, Lin, Hao, Zeng, Xu, Ouyang (CR23) 2016; 4
Jung, Lee, Oh, Im, Do, Kim, Chae, Lee (CR30) 2018; 54
Conings, Drijkoningen, Gauquelin, Babayigit, D'Haen, D'Olieslaeger, Ethirajan, Verbeeck, Manca, Mosconi, Angelis, Boyen (CR19) 2015; 5
Divitini, Cacovich, Matteocci, Cinà, Di Carlo, Ducati (CR17) 2016; 1
Wang, Sun, Zhang, Lu, Shi (CR32) 2016
Lin, Armin, Nagiri, Burn, Meredith (CR34) 2014; 9
Lampert (CR33) 1956; 103
MA Lampert (3029_CR33) 1956; 103
Q Dong (3029_CR3) 2015; 347
SD Stranks (3029_CR2) 2013; 342
AY Oral (3029_CR25) 2004; 83
NJ Jeon (3029_CR27) 2015; 517
C Qin (3029_CR14) 2019; 6
D Bi (3029_CR35) 2015; 2
L Xie (3029_CR31) 2017; 139
Y-Y Zhang (3029_CR13) 2018; 95
T Jesper Jacobsson (3029_CR21) 2016; 9
J Song (3029_CR20) 2017; 5
HY Wang (3029_CR36) 2017; 23
Q Jiang (3029_CR24) 2016; 2
W Tan (3029_CR16) 2018; 10
T Maruyama (3029_CR26) 1998; 56
Q Jiang (3029_CR37) 2017
Y Wu (3029_CR15) 2017; 29
G Divitini (3029_CR17) 2016; 1
3029_CR22
AA Zhumekenov (3029_CR4) 2016; 1
D Yang (3029_CR8) 2018; 9
J Feng (3029_CR5) 2017; 36
Q Jiang (3029_CR18) 2017; 2
B Conings (3029_CR19) 2015; 5
JH Noh (3029_CR7) 2013; 13
T Leijtens (3029_CR28) 2015; 5
J Chang (3029_CR23) 2016; 4
K Jung (3029_CR30) 2018; 54
A Kojima (3029_CR9) 2009; 131
JA Christians (3029_CR29) 2015; 137
T Matsui (3029_CR12) 2019
Y Wang (3029_CR32) 2016
Q Lin (3029_CR34) 2014; 9
G Xing (3029_CR1) 2013; 342
3029_CR10
CS Ponseca (3029_CR6) 2014; 136
3029_CR11
References_xml – volume: 5
  start-page: 1500477
  issue: 15
  year: 2015
  ident: CR19
  article-title: Intrinsic thermal instability of methylammonium lead trihalide perovskite
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201500477
– volume: 347
  start-page: 967
  issue: 6225
  year: 2015
  ident: CR3
  article-title: Electron-hole diffusion lengths > 175 μm in solution-grown CH NH PbI single crystals
  publication-title: Science
  doi: 10.1126/science.aaa5760
– ident: CR22
– volume: 9
  start-page: 106
  year: 2014
  ident: CR34
  article-title: Electro-optics of perovskite solar cells
  publication-title: Nat Photonics
  doi: 10.1038/nphoton.2014.284
– year: 2019
  ident: CR12
  article-title: Compositional engineering for thermally stable, highly efficient perovskite solar cells exceeding 20% power conversion efficiency with 85°C/85% 1000 h stability
  publication-title: Adv Mater
  doi: 10.1002/adma.201806823
– volume: 103
  start-page: 1648
  issue: 6
  year: 1956
  end-page: 1656
  ident: CR33
  article-title: Simplified theory of space-charge-limited currents in an insulator with traps
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.103.1648
– volume: 137
  start-page: 1530
  issue: 4
  year: 2015
  end-page: 1538
  ident: CR29
  article-title: Transformation of the excited state and photovoltaic efficiency of CH NH PbI perovskite upon controlled exposure to humidified air
  publication-title: J Am Chem Soc
  doi: 10.1021/ja511132a
– volume: 36
  start-page: 1
  year: 2017
  end-page: 8
  ident: CR5
  article-title: E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.010
– volume: 13
  start-page: 1764
  issue: 4
  year: 2013
  end-page: 1769
  ident: CR7
  article-title: Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells
  publication-title: Nano Lett
  doi: 10.1021/nl400349b
– volume: 4
  start-page: 7943
  issue: 20
  year: 2016
  end-page: 7949
  ident: CR23
  article-title: Enhancing the planar heterojunction perovskite solar cell performance through tuning the precursor ratio
  publication-title: Journal of Materials Chemistry A
  doi: 10.1039/C6TA00679E
– volume: 517
  start-page: 476
  issue: 7535
  year: 2015
  ident: CR27
  article-title: Compositional engineering of perovskite materials for high-performance solar cells
  publication-title: Nature
  doi: 10.1038/nature14133
– volume: 23
  start-page: 3986
  issue: 16
  year: 2017
  end-page: 3992
  ident: CR36
  article-title: Adverse effects of excess residual PbI on photovoltaic performance, charge separation, and trap‐state properties in mesoporous structured perovskite solar cells
  publication-title: Chem.–A Eur. J.
  doi: 10.1002/chem.201605668
– ident: CR10
– volume: 5
  start-page: 1500963
  issue: 20
  year: 2015
  ident: CR28
  article-title: Stability of metal halide perovskite solar cells
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201500963
– volume: 2
  start-page: 16177
  issue: 1
  year: 2017
  ident: CR18
  article-title: Enhanced electron extraction using SnO for high-efficiency planar-structure HC(NH ) PbI -based perovskite solar cells
  publication-title: Nature Energy
  doi: 10.1038/nenergy.2016.177
– year: 2016
  ident: CR32
  article-title: Band gap engineering of a soft inorganic compound PbI by incommensurate van der Waals epitaxy
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4939269
– volume: 342
  start-page: 344
  issue: 6156
  year: 2013
  ident: CR1
  article-title: Long-range balanced electron- and hole-transport lengths in organic-inorganic CH NH PbI
  publication-title: Science
  doi: 10.1126/science.1243167
– volume: 1
  start-page: 15012
  year: 2016
  ident: CR17
  article-title: In situ observation of heat-induced degradation of perovskite solar cells
  publication-title: Nature Energy
  doi: 10.1038/nenergy.2015.12
– volume: 95
  start-page: 036104
  issue: 3
  year: 2018
  ident: CR13
  article-title: Intrinsic Instability of the Hybrid Halide Perovskite Semiconductor CH NH PbI
  publication-title: Chin Phys Lett
  doi: 10.1088/0256-307x/35/3/036104
– volume: 10
  start-page: 5485
  issue: 6
  year: 2018
  end-page: 5491
  ident: CR16
  article-title: Thermal stability of mixed cation metal halide perovskites in air
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b15263
– volume: 2
  start-page: 589
  issue: 5
  year: 2015
  end-page: 594
  ident: CR35
  article-title: Unraveling the effect of PbI concentration on charge recombination kinetics in perovskite solar cells
  publication-title: Acs Photonics
  doi: 10.1021/ph500255t
– volume: 83
  start-page: 140
  issue: 1
  year: 2004
  end-page: 144
  ident: CR25
  article-title: The preparation of copper(II) oxide thin films and the study of their microstructures and optical properties
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2003.09.015
– year: 2017
  ident: CR37
  article-title: Planar-structure perovskite solar cells with efficiency beyond 21%
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703852
– volume: 29
  start-page: 1701073
  issue: 28
  year: 2017
  ident: CR15
  article-title: Thermally stable MAPbI perovskite solar cells with efficiency of 19.19% and area over 1 cm achieved by additive engineering
  publication-title: Adv Mater
  doi: 10.1002/adma.201701073
– volume: 56
  start-page: 85
  issue: 1
  year: 1998
  end-page: 92
  ident: CR26
  article-title: Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate
  publication-title: Sol Energy Mater Sol Cells
  doi: 10.1016/S0927-0248(98)00128-7
– volume: 2
  start-page: 16177
  year: 2016
  ident: CR24
  article-title: Enhanced electron extraction using SnO for high-efficiency planar-structure HC(NH ) PbI -based perovskite solar cells
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.177
– volume: 1
  start-page: 32
  issue: 1
  year: 2016
  end-page: 37
  ident: CR4
  article-title: Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length
  publication-title: ACS Energy Letters
  doi: 10.1021/acsenergylett.6b00002
– volume: 131
  start-page: 6050
  issue: 17
  year: 2009
  end-page: 6051
  ident: CR9
  article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
  publication-title: J Am Chem Soc
  doi: 10.1021/ja809598r
– volume: 139
  start-page: 3320
  issue: 9
  year: 2017
  end-page: 3323
  ident: CR31
  article-title: Understanding the cubic phase stabilization and crystallization kinetics in mixed cations and halides perovskite single crystals
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b12432
– volume: 54
  start-page: 251
  year: 2018
  end-page: 263
  ident: CR30
  article-title: Efficient composition tuning via cation exchange and improved reproducibility of photovoltaic performance in FA MA PbI planar heterojunction solar cells fabricated by a two-step dynamic spin-coating process
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.10.023
– volume: 6
  start-page: 1801079
  issue: 1
  year: 2019
  ident: CR14
  article-title: The relation of phase-transition effects and thermal stability of planar perovskite solar cells
  publication-title: Adv Sci
  doi: 10.1002/advs.201801079
– ident: CR11
– volume: 5
  start-page: 13439
  issue: 26
  year: 2017
  end-page: 13447
  ident: CR20
  article-title: Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber
  publication-title: Journal of Materials Chemistry A
  doi: 10.1039/c7ta03331a
– volume: 136
  start-page: 5189
  issue: 14
  year: 2014
  end-page: 5192
  ident: CR6
  article-title: Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination
  publication-title: J Am Chem Soc
  doi: 10.1021/ja412583t
– volume: 9
  start-page: 3239
  issue: 1
  year: 2018
  ident: CR8
  article-title: High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05760-x
– volume: 342
  start-page: 341
  issue: 6156
  year: 2013
  end-page: 344
  ident: CR2
  article-title: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber
  publication-title: Science
  doi: 10.1126/science.1243982
– volume: 9
  start-page: 1706
  issue: 5
  year: 2016
  end-page: 1724
  ident: CR21
  article-title: Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells
  publication-title: Energy Environ Sci
  doi: 10.1039/C6EE00030D
– volume: 36
  start-page: 1
  year: 2017
  ident: 3029_CR5
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.010
– volume: 131
  start-page: 6050
  issue: 17
  year: 2009
  ident: 3029_CR9
  publication-title: J Am Chem Soc
  doi: 10.1021/ja809598r
– volume: 5
  start-page: 1500477
  issue: 15
  year: 2015
  ident: 3029_CR19
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201500477
– volume: 137
  start-page: 1530
  issue: 4
  year: 2015
  ident: 3029_CR29
  publication-title: J Am Chem Soc
  doi: 10.1021/ja511132a
– volume: 139
  start-page: 3320
  issue: 9
  year: 2017
  ident: 3029_CR31
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b12432
– volume: 1
  start-page: 15012
  year: 2016
  ident: 3029_CR17
  publication-title: Nature Energy
  doi: 10.1038/nenergy.2015.12
– volume: 4
  start-page: 7943
  issue: 20
  year: 2016
  ident: 3029_CR23
  publication-title: Journal of Materials Chemistry A
  doi: 10.1039/C6TA00679E
– year: 2016
  ident: 3029_CR32
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4939269
– ident: 3029_CR11
– volume: 342
  start-page: 341
  issue: 6156
  year: 2013
  ident: 3029_CR2
  publication-title: Science
  doi: 10.1126/science.1243982
– volume: 5
  start-page: 1500963
  issue: 20
  year: 2015
  ident: 3029_CR28
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201500963
– volume: 29
  start-page: 1701073
  issue: 28
  year: 2017
  ident: 3029_CR15
  publication-title: Adv Mater
  doi: 10.1002/adma.201701073
– volume: 56
  start-page: 85
  issue: 1
  year: 1998
  ident: 3029_CR26
  publication-title: Sol Energy Mater Sol Cells
  doi: 10.1016/S0927-0248(98)00128-7
– volume: 5
  start-page: 13439
  issue: 26
  year: 2017
  ident: 3029_CR20
  publication-title: Journal of Materials Chemistry A
  doi: 10.1039/c7ta03331a
– volume: 95
  start-page: 036104
  issue: 3
  year: 2018
  ident: 3029_CR13
  publication-title: Chin Phys Lett
  doi: 10.1088/0256-307x/35/3/036104
– volume: 54
  start-page: 251
  year: 2018
  ident: 3029_CR30
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.10.023
– volume: 517
  start-page: 476
  issue: 7535
  year: 2015
  ident: 3029_CR27
  publication-title: Nature
  doi: 10.1038/nature14133
– volume: 103
  start-page: 1648
  issue: 6
  year: 1956
  ident: 3029_CR33
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.103.1648
– volume: 2
  start-page: 16177
  year: 2016
  ident: 3029_CR24
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.177
– volume: 136
  start-page: 5189
  issue: 14
  year: 2014
  ident: 3029_CR6
  publication-title: J Am Chem Soc
  doi: 10.1021/ja412583t
– volume: 2
  start-page: 16177
  issue: 1
  year: 2017
  ident: 3029_CR18
  publication-title: Nature Energy
  doi: 10.1038/nenergy.2016.177
– volume: 9
  start-page: 106
  year: 2014
  ident: 3029_CR34
  publication-title: Nat Photonics
  doi: 10.1038/nphoton.2014.284
– ident: 3029_CR10
– volume: 347
  start-page: 967
  issue: 6225
  year: 2015
  ident: 3029_CR3
  publication-title: Science
  doi: 10.1126/science.aaa5760
– volume: 9
  start-page: 1706
  issue: 5
  year: 2016
  ident: 3029_CR21
  publication-title: Energy Environ Sci
  doi: 10.1039/C6EE00030D
– year: 2017
  ident: 3029_CR37
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703852
– volume: 2
  start-page: 589
  issue: 5
  year: 2015
  ident: 3029_CR35
  publication-title: Acs Photonics
  doi: 10.1021/ph500255t
– volume: 9
  start-page: 3239
  issue: 1
  year: 2018
  ident: 3029_CR8
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05760-x
– volume: 6
  start-page: 1801079
  issue: 1
  year: 2019
  ident: 3029_CR14
  publication-title: Adv Sci
  doi: 10.1002/advs.201801079
– volume: 10
  start-page: 5485
  issue: 6
  year: 2018
  ident: 3029_CR16
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b15263
– volume: 83
  start-page: 140
  issue: 1
  year: 2004
  ident: 3029_CR25
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2003.09.015
– volume: 342
  start-page: 344
  issue: 6156
  year: 2013
  ident: 3029_CR1
  publication-title: Science
  doi: 10.1126/science.1243167
– volume: 13
  start-page: 1764
  issue: 4
  year: 2013
  ident: 3029_CR7
  publication-title: Nano Lett
  doi: 10.1021/nl400349b
– volume: 1
  start-page: 32
  issue: 1
  year: 2016
  ident: 3029_CR4
  publication-title: ACS Energy Letters
  doi: 10.1021/acsenergylett.6b00002
– year: 2019
  ident: 3029_CR12
  publication-title: Adv Mater
  doi: 10.1002/adma.201806823
– ident: 3029_CR22
– volume: 23
  start-page: 3986
  issue: 16
  year: 2017
  ident: 3029_CR36
  publication-title: Chem.–A Eur. J.
  doi: 10.1002/chem.201605668
SSID ssj0006438
Score 2.5454016
Snippet The poor stability of perovskite solar cells is a crucial obstacle for its commercial applications. Here, we investigate the thermal stability of the mixed...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12784
SubjectTerms Characterization and Evaluation of Materials
Chemistry and Materials Science
Decomposition
Efficiency
Heat
Heat treatment
Lead compounds
Materials Science
Metal halides
Optical and Electronic Materials
Perovskites
Photovoltaic cells
Red shift
Solar cells
Temperature effects
Thermal decomposition
Thermal stability
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XfQgfuJ0Sg7eNLh8tc1JnGwMwSHiYLeStslJ2mmnsP_elzZdVXCXXpq-wkvy3u-9vPweQldUhqkymQDkZjgBg0eJsjwhjFs9MMKKsEq4PU2DyUw8zuXcJ9xKX1bZ2MTKUGdF6nLkt0xyCatRhfJu8U5c1yh3uupbaGyjLpjgKOqg7nA0fX5Z22Lwt1HNtufYvRnz12b85blICuLCJ1joTJHVb9fU4s0_R6SV5xnvoz0PGfF9PccHaMvkh2j3B5HgERrWJMS4sNhxTXmiZFzkGPAdXrSXA9wIRw3-VbqsLS5dYItd8r48RrPx6PVhQnx3BJJyGS1JGqbJwIpMREJr2IU0tGlAEy0GXGsbZkbBM5ShZspx1AUA3CxLlNQQFGlqI36COnmRm1OEI8aNkTQJAJwJBXLTTFDKLfxHacBLPUQbxcSppw53HSze4pb02CkzBmXGlTLjVQ9dr79Z1MQZG0f3G33HfhOVcTvlPXTTzEH7-n9pZ5ulnaMd5ipTqrLFPuosPz7NBUCLZXLp1883yErIvQ
  priority: 102
  providerName: ProQuest
Title Effect of temperature on the performance of perovskite solar cells
URI https://link.springer.com/article/10.1007/s10854-020-03029-y
https://www.proquest.com/docview/2535730975
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5se9GD-MRqLTl404Xm1d0cW-kDxSJioZ6W7G5ykra4Vei_d7KPbhUVvOweNpmFSTLzTTLzBeCKSj9WJhGI3Az30OBRT1keeYxb3THCCj_bcHuYdMdTcTeTs6IoLC2z3csjycxSbxW7BVJ4LtzBicmUt65BQ2Ls7hK5pqy3sb_oY4OcYc8xejNWlMr8LOOrO6ow5rdj0czbDA9gv4CJpJeP6yHsmPkR7G2RBx5DPyceJgtLHL9UQY5MFnOCmI4sq4IA18LRgX-kbqeWpC6YJW7DPj2B6XDwfDv2ihsRvJjLYOXFfhx1rEhEILTGlUd9G3dppEWHa239xCh8-tLXTDleui6CNcsiJTUGQpragJ9Cfb6YmzMgAePGSBp1EZAJhXLjRFDKLf5HacRITaClYsK4oAt3t1a8hhXRsVNmiMoMM2WG6yZcb_osc7KMP1u3Sn2HxcJJQya5RKOjfNmEm3IMqs-_Szv_X_ML2GUuOyVLXWxBffX2bi4RXqyiNtSC4agNjd7o5X6A7_5g8vjUzubYJxueyMo
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7Bcig9IKAglkfxgZ5ai_VrEx-qCtouS3mcQOIWnMQ-VbsLWUD7p_iNzORBWiS4ccklzkQaj2e-sT3fAOwJE2XW5xqRm1ccHZ7gNqiUSxVcz-ugo3LD7ey8P7zUf67M1Rw8NrUwdK2y8Ymlo87HGe2R70ujDFqjjcyPyQ2nrlF0utq00KjM4sTPHjBlK74f_8L5_SLl4PfFzyGvuwrwTJl4yrMoS3tB5zrWzqH1iihkfZE63VPOhSj3Fp-RiZy0xO3WR8ATZGqNw2TCiRArlDsPC1phJKfK9MHRs-fH6B5X3H7EJS5lXaRTl-rFRnNK1nBZSctn_wfCFt2-OJAt49xgGZZqgMoOKotagTk_WoWP_9AWfoLDivKYjQMjZqualpmNRwzRJJu0pQg0gojI7wvaI2YFpdGMjgqKNbh8F62tQ2c0HvkNYLFU3huR9hEKaotys1wLoQL-xzpEZ10QjWKSrCYqp34Zf5OWYpmUmaAyk1KZyawLX5-_mVQ0HW-O3m70ndRLtkhaA-vCt2YO2tevS9t8W9oufBhenJ0mp8fnJ1uwKOlOTHlhchs609s7v4OgZpp-Li2JwfV7m-4TSZcEJg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggCgPdaFQH8oJrK5f6_hQVZR21QesKkSl3oKT2Ce0u5AFtH-NX8dM4jRQqb31kkuciTQee76xZ74B2BHGli5UGpFbUBw3PMFdVAWXKvpR0FHb5sDt03R8fKFPL83lGvzpamEorbLbE5uNupqXdEa-K40yaI3Omt2Y0iLODyf7i--cOkjRTWvXTqM1kbOw-o3hW713cohz_UbKydGXD8c8dRjgpTLZkpe2LEZRVzrT3qMlCxvLsSi8Hinvo62Cw6c11ktHPG9jBD9RFs54DCy8iJlCufdg3VJUNID1g6Pp-ecrP4C-PmuZ_ohZXMpUspMK9zKjOYVuuMik46v_3WKPda9dzzZeb_IYHiW4yt639rUBa2H2BB7-Q2L4FA5aAmQ2j4x4rhJJM5vPGGJLtugLE2gE0ZL_qunEmNUUVDO6OKifwcWd6O05DGbzWdgElkkVghHFGIGhdii3rLQQKuJ_nEesNgTRKSYvE205dc_4lveEy6TMHJWZN8rMV0N4e_XNoiXtuHX0VqfvPC3gOu_NbQjvujnoX98s7cXt0rbhPppt_vFkevYSHkhKkGmyJ7dgsPzxM7xChLMsXidTYvD1rq33L-TGCbg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+temperature+on+the+performance+of+perovskite+solar+cells&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Meng%2C+Qi&rft.au=Chen%2C+Yichuan&rft.au=Xiao%2C+Yue+Yue&rft.au=Sun%2C+Junjie&rft.date=2021-05-01&rft.pub=Springer+US&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=32&rft.issue=10&rft.spage=12784&rft.epage=12792&rft_id=info:doi/10.1007%2Fs10854-020-03029-y&rft.externalDocID=10_1007_s10854_020_03029_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon