Investigation of convective heat transfer phenomena in differentially-heated vertical closed cavity: Whole field experiments and numerical simulations

•Natural convection in differentially-heated vertical closed cavity.•Whole field temperature and heat transfer rates.•Interferometry-based non-intrusive measurements and numerical simulations.•Steady to periodic flow transition. Natural convection in closed cavities has been a subject of intensive r...

Full description

Saved in:
Bibliographic Details
Published inExperimental thermal and fluid science Vol. 99; pp. 71 - 84
Main Authors Kishor, Vimal, Singh, Suneet, Srivastava, Atul
Format Journal Article
LanguageEnglish
Published Philadelphia Elsevier Inc 01.12.2018
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0894-1777
1879-2286
DOI10.1016/j.expthermflusci.2018.07.021

Cover

Loading…
Abstract •Natural convection in differentially-heated vertical closed cavity.•Whole field temperature and heat transfer rates.•Interferometry-based non-intrusive measurements and numerical simulations.•Steady to periodic flow transition. Natural convection in closed cavities has been a subject of intensive research in the past. Compared to numerical studies, the number of experimental works reported in this area have been relatively scarce. Of the limited number of experimental studies available in the literature, a majority have made use of invasive probes, which inherently disturb the flow. In the present work, real-time experimental measurements are carried out using one of the non-invasive techniques (Mach Zehnder interferometry), that provides the whole field temperature distribution of the fluid layer. Experiments are conducted in a differentially-heated vertical closed cavity of aspect ratio three with air as the working fluid. The vertical side walls of the cavity have been subjected to three temperature differences (ΔT = 10, 20 and 30 °C) (Ra = 9.7 × 105, 1.8 × 106 and 2.5 × 106). Transient numerical simulations have also been performed using COMSOL Multiphysics 5.2 and a detailed comparison of experimental and simulation results has been presented in the form of temperature contours, spatial distribution of Nusselt number and spatially-averaged heat transfer rates as a function of Rayleigh number. The interferometric measurements highlighted the importance of corner flows which affect the heat transfer rates between the two thermally active walls of the cavity. Buoyancy-induced flow patterns inside the cavity, as interpreted through interferometric measurements, have further been corroborated through smoke-based visualization technique as well as through the results of numerical simulations. Maximum heat transfer rates have been observed in the corners of the differentially heated cavity. Possible flow transitions have been captured by performing the spectral analysis of the interferometry-based transient data. Based on this analysis, Ra = 1.8 × 106 was found to be greater than the critical Rayleigh number wherein the flow instabilities with two dominant frequencies were to be clearly seen.
AbstractList •Natural convection in differentially-heated vertical closed cavity.•Whole field temperature and heat transfer rates.•Interferometry-based non-intrusive measurements and numerical simulations.•Steady to periodic flow transition. Natural convection in closed cavities has been a subject of intensive research in the past. Compared to numerical studies, the number of experimental works reported in this area have been relatively scarce. Of the limited number of experimental studies available in the literature, a majority have made use of invasive probes, which inherently disturb the flow. In the present work, real-time experimental measurements are carried out using one of the non-invasive techniques (Mach Zehnder interferometry), that provides the whole field temperature distribution of the fluid layer. Experiments are conducted in a differentially-heated vertical closed cavity of aspect ratio three with air as the working fluid. The vertical side walls of the cavity have been subjected to three temperature differences (ΔT = 10, 20 and 30 °C) (Ra = 9.7 × 105, 1.8 × 106 and 2.5 × 106). Transient numerical simulations have also been performed using COMSOL Multiphysics 5.2 and a detailed comparison of experimental and simulation results has been presented in the form of temperature contours, spatial distribution of Nusselt number and spatially-averaged heat transfer rates as a function of Rayleigh number. The interferometric measurements highlighted the importance of corner flows which affect the heat transfer rates between the two thermally active walls of the cavity. Buoyancy-induced flow patterns inside the cavity, as interpreted through interferometric measurements, have further been corroborated through smoke-based visualization technique as well as through the results of numerical simulations. Maximum heat transfer rates have been observed in the corners of the differentially heated cavity. Possible flow transitions have been captured by performing the spectral analysis of the interferometry-based transient data. Based on this analysis, Ra = 1.8 × 106 was found to be greater than the critical Rayleigh number wherein the flow instabilities with two dominant frequencies were to be clearly seen.
Natural convection in closed cavities has been a subject of intensive research in the past. Compared to numerical studies, the number of experimental works reported in this area have been relatively scarce. Of the limited number of experimental studies available in the literature, a majority have made use of invasive probes, which inherently disturb the flow. In the present work, real-time experimental measurements are carried out using one of the non-invasive techniques (Mach Zehnder interferometry), that provides the whole field temperature distribution of the fluid layer. Experiments are conducted in a differentially-heated vertical closed cavity of aspect ratio three with air as the working fluid. The vertical side walls of the cavity have been subjected to three temperature differences (ΔT = 10, 20 and 30 °C) (Ra = 9.7 × 105, 1.8 × 106 and 2.5 × 106). Transient numerical simulations have also been performed using COMSOL Multiphysics 5.2 and a detailed comparison of experimental and simulation results has been presented in the form of temperature contours, spatial distribution of Nusselt number and spatially-averaged heat transfer rates as a function of Rayleigh number. The interferometric measurements highlighted the importance of corner flows which affect the heat transfer rates between the two thermally active walls of the cavity. Buoyancy-induced flow patterns inside the cavity, as interpreted through interferometric measurements, have further been corroborated through smoke-based visualization technique as well as through the results of numerical simulations. Maximum heat transfer rates have been observed in the corners of the differentially heated cavity. Possible flow transitions have been captured by performing the spectral analysis of the interferometry-based transient data. Based on this analysis, Ra = 1.8 × 106 was found to be greater than the critical Rayleigh number wherein the flow instabilities with two dominant frequencies were to be clearly seen.
Author Srivastava, Atul
Kishor, Vimal
Singh, Suneet
Author_xml – sequence: 1
  givenname: Vimal
  surname: Kishor
  fullname: Kishor, Vimal
  organization: Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
– sequence: 2
  givenname: Suneet
  surname: Singh
  fullname: Singh, Suneet
  organization: Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
– sequence: 3
  givenname: Atul
  surname: Srivastava
  fullname: Srivastava, Atul
  email: atulsr@iitb.ac.in
  organization: Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
BookMark eNqNUctqHDEQFMGBrJ38gyC-zljSPKQxviQmfoAhl4QchUbTymrRSmtJM3h_xN8brTcX--RT001VdVF1ik588IDQOSU1JbS_2NTwtMtriFvj5qRtzQgVNeE1YfQDWlHBh4ox0Z-gFRFDW1HO-Sd0mtKGECIYJSv0fO8XSNn-VdkGj4PBOpSLznYBvAaVcY7KJwMR79bgwxa8wtbjyZpyA5-tcm5fHZAw4QVitlo5rF1IZddqsXl_if-sgwNsLLgJF8sQbdHJCSs_YT9vy34gJbud3YuP9Bl9NMol-PJ_nqHfNz9-Xd9VDz9v76-_PVS66USudKe0IjCIRoxTS8ZWd6NpmoFSOrZi6HvTsaEH3YqON9zo0bRqaBWMrJto39HmDH096u5ieJxLEHIT5ujLS8koY7zrOWUF9f2I0jGkFMFIbfOL0RKOdZISeehDbuTrPuShD0m4LH0Ukas3IrsSg4r799JvjnQocSwWoiwI8BomG0tdcgr2fUL_AN4_uOI
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2019_118933
crossref_primary_10_1080_01457632_2024_2362540
crossref_primary_10_4236_epe_2023_1512028
crossref_primary_10_1016_j_ijthermalsci_2019_106160
crossref_primary_10_1063_5_0144535
crossref_primary_10_1080_01457632_2022_2086096
crossref_primary_10_1080_08916152_2022_2095459
crossref_primary_10_1016_j_expthermflusci_2020_110053
crossref_primary_10_1080_01457632_2025_2473781
crossref_primary_10_1016_j_ijthermalsci_2022_107729
crossref_primary_10_1063_5_0251083
crossref_primary_10_1080_10407782_2022_2104585
crossref_primary_10_1016_j_ijthermalsci_2021_106964
crossref_primary_10_1002_htj_22074
crossref_primary_10_1016_j_csite_2022_101785
crossref_primary_10_1140_epjp_s13360_024_05298_6
crossref_primary_10_2139_ssrn_3969762
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121232
crossref_primary_10_1080_08916152_2022_2039329
crossref_primary_10_1063_5_0159505
crossref_primary_10_1080_08916152_2019_1586800
crossref_primary_10_1063_5_0063217
crossref_primary_10_38032_jea_2024_01_001
crossref_primary_10_1080_01457632_2023_2249728
crossref_primary_10_1016_j_ijthermalsci_2020_106279
crossref_primary_10_1016_j_ijthermalsci_2020_106554
crossref_primary_10_1016_j_tsep_2023_102118
crossref_primary_10_1016_j_ijthermalsci_2019_106035
Cites_doi 10.1016/0017-9310(84)90145-5
10.1115/1.3250663
10.1002/fld.1650100502
10.1115/1.3450472
10.1016/j.optlaseng.2005.10.012
10.1016/j.ijheatmasstransfer.2015.09.074
10.1002/fld.1650180705
10.1016/j.ijheatmasstransfer.2005.06.045
10.1016/j.optlaseng.2004.03.003
10.1007/BF00418051
10.1017/S0022112065001246
10.1016/0017-9310(91)90295-P
10.1017/S0022112080001012
10.1115/1.3247513
10.1017/S0022112069001431
10.1016/j.ijheatmasstransfer.2008.07.005
10.1063/1.4947032
10.1364/AO.47.005408
10.1017/S0022112084001658
10.1016/j.jcrysgro.2008.12.001
10.1063/1.1388054
10.1364/AO.35.001566
10.1364/AO.53.002331
10.1017/S0022112080001243
10.1016/j.icheatmasstransfer.2011.03.019
10.1007/BF00384627
10.1016/j.ijheatmasstransfer.2017.01.106
10.1007/BF02188311
10.1017/S0022112078000427
10.1615/JFlowVisImageProc.v2.i4.20
10.1017/S0022112089000984
10.1002/fld.1650030305
10.1017/S0022112097008458
10.1017/S0022112099004796
10.1016/j.expthermflusci.2011.11.009
10.1016/S0169-5983(98)00044-6
10.1016/0017-9310(93)90111-I
10.1016/j.jcrysgro.2010.04.053
10.1017/S0022112078000452
10.1007/s00231-004-0534-4
10.1364/AO.43.002695
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright Elsevier Science Ltd. Dec 2018
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. Dec 2018
DBID AAYXX
CITATION
7QH
7TB
7U5
7UA
8FD
C1K
FR3
H8D
KR7
L7M
DOI 10.1016/j.expthermflusci.2018.07.021
DatabaseName CrossRef
Aqualine
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Aqualine
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2286
EndPage 84
ExternalDocumentID 10_1016_j_expthermflusci_2018_07_021
S0894177718308732
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
UHS
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7QH
7TB
7U5
7UA
8FD
C1K
EFKBS
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c358t-c5aca0e9838bd40b4c5bf339111b48966f5296ec485737fcbf4a94aeb25d16513
IEDL.DBID .~1
ISSN 0894-1777
IngestDate Wed Aug 13 02:58:55 EDT 2025
Thu Apr 24 23:13:06 EDT 2025
Tue Jul 01 01:54:20 EDT 2025
Fri Feb 23 02:45:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Natural convection
Differentially-heated closed cavities
Whole field temperature distribution
Corner flows
Interferometry
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-c5aca0e9838bd40b4c5bf339111b48966f5296ec485737fcbf4a94aeb25d16513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2122756712
PQPubID 2047468
PageCount 14
ParticipantIDs proquest_journals_2122756712
crossref_citationtrail_10_1016_j_expthermflusci_2018_07_021
crossref_primary_10_1016_j_expthermflusci_2018_07_021
elsevier_sciencedirect_doi_10_1016_j_expthermflusci_2018_07_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2018
2018-12-00
20181201
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Experimental thermal and fluid science
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Science Ltd
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
References Saury, Rouger, Djanna, Penot (b0120) 2011; 38
Wright, Jin, Hollands, Naylor (b0125) 2006; 49
Srivastava, Tsukamoto, Yokoyama, Murayama, Fukuyama (b0160) 2010; 312
Kemao, Wang, Gao (b0195) 2008; 47
Srivastava, Panigrahi, Muralidhar (b0145) 2005; 41
Choudhury, Singh, Narayan, Srivastava, Kumar (b0180) 2016; 23
Philip (b0200) 1996; 35
Arnold, Catton, Edwards (b0135) 1975; 98
Kemao (b0190) 2007; 45
Jones, Briggs (b0070) 1989; 111
Le Quere, Behnia (b0100) 1998; 359
Kemao (b0185) 2004; 43
Bergholz (b0045) 1978; 84
Gelfgat, Bar-Yoseph, Yarin (b0105) 1999; 388
Elder (b0080) 1965; 23
Pesso, Piva (b0025) 2009; 52
Xin, Le Quere (b0110) 2001; 13
Narayan, Singh, Srivastava (b0175) 2017; 109
Davis (b0005) 1983; 3
Briggs, Jones (b0065) 1985; 107
Gollub, Benson (b0130) 1980; 100
Janssen, Henkes, Hoogendoorn (b0085) 1993; 36
Markatos, Pericleous (b0010) 1984; 27
Gill, Davey (b0040) 1969; 35
Ivey (b0060) 1984; 144
Paolucci, Chenoweth (b0030) 1989; 201
Mishra, Muralidhar, Munshi (b0155) 1999; 25
Muralidhar, Patil, Kashyap (b0150) 1995; 2
Srivastava, Singh, Muralidhar (b0165) 2009; 311
Iyer (b0050) 1973; 5
Fusegi, Hyun, Kuwahara, Farouk (b0020) 1991; 34
Pulicani, del Arco, Randriamampianina, Bontoux, Peyret (b0095) 1990; 10
Mohanan, Srivastava (b0170) 2014; 53
Henkes, Hoogendoorn (b0035) 1990; 47
Fusegi, Hyun, Kuwahara (b0090) 1992; 49
Rao (b0210) 2016; 92
Barkos, Mitsoulis, Assimacopoulos (b0015) 1994; 18
Muralidhar (b0205) 2001; 12
Srivastava, Phukan, Panigrahi, Muralidhar (b0115) 2004; 42
Saury, Benkhelifa, Penot (b0140) 2012; 38
Seki, Fukusako, Inaba (b0075) 1978; 84
Patterson, Imberger (b0055) 1980; 100
Markatos (10.1016/j.expthermflusci.2018.07.021_b0010) 1984; 27
Kemao (10.1016/j.expthermflusci.2018.07.021_b0195) 2008; 47
Janssen (10.1016/j.expthermflusci.2018.07.021_b0085) 1993; 36
Bergholz (10.1016/j.expthermflusci.2018.07.021_b0045) 1978; 84
Gollub (10.1016/j.expthermflusci.2018.07.021_b0130) 1980; 100
Kemao (10.1016/j.expthermflusci.2018.07.021_b0190) 2007; 45
Srivastava (10.1016/j.expthermflusci.2018.07.021_b0115) 2004; 42
Srivastava (10.1016/j.expthermflusci.2018.07.021_b0145) 2005; 41
Mishra (10.1016/j.expthermflusci.2018.07.021_b0155) 1999; 25
Mohanan (10.1016/j.expthermflusci.2018.07.021_b0170) 2014; 53
Narayan (10.1016/j.expthermflusci.2018.07.021_b0175) 2017; 109
Fusegi (10.1016/j.expthermflusci.2018.07.021_b0090) 1992; 49
Xin (10.1016/j.expthermflusci.2018.07.021_b0110) 2001; 13
Elder (10.1016/j.expthermflusci.2018.07.021_b0080) 1965; 23
Ivey (10.1016/j.expthermflusci.2018.07.021_b0060) 1984; 144
Barkos (10.1016/j.expthermflusci.2018.07.021_b0015) 1994; 18
Pesso (10.1016/j.expthermflusci.2018.07.021_b0025) 2009; 52
Seki (10.1016/j.expthermflusci.2018.07.021_b0075) 1978; 84
Rao (10.1016/j.expthermflusci.2018.07.021_b0210) 2016; 92
Gelfgat (10.1016/j.expthermflusci.2018.07.021_b0105) 1999; 388
Saury (10.1016/j.expthermflusci.2018.07.021_b0120) 2011; 38
Wright (10.1016/j.expthermflusci.2018.07.021_b0125) 2006; 49
Davis (10.1016/j.expthermflusci.2018.07.021_b0005) 1983; 3
Gill (10.1016/j.expthermflusci.2018.07.021_b0040) 1969; 35
Srivastava (10.1016/j.expthermflusci.2018.07.021_b0160) 2010; 312
Iyer (10.1016/j.expthermflusci.2018.07.021_b0050) 1973; 5
Jones (10.1016/j.expthermflusci.2018.07.021_b0070) 1989; 111
Fusegi (10.1016/j.expthermflusci.2018.07.021_b0020) 1991; 34
Patterson (10.1016/j.expthermflusci.2018.07.021_b0055) 1980; 100
Saury (10.1016/j.expthermflusci.2018.07.021_b0140) 2012; 38
Pulicani (10.1016/j.expthermflusci.2018.07.021_b0095) 1990; 10
Arnold (10.1016/j.expthermflusci.2018.07.021_b0135) 1975; 98
Le Quere (10.1016/j.expthermflusci.2018.07.021_b0100) 1998; 359
Muralidhar (10.1016/j.expthermflusci.2018.07.021_b0150) 1995; 2
Henkes (10.1016/j.expthermflusci.2018.07.021_b0035) 1990; 47
Philip (10.1016/j.expthermflusci.2018.07.021_b0200) 1996; 35
Muralidhar (10.1016/j.expthermflusci.2018.07.021_b0205) 2001; 12
Paolucci (10.1016/j.expthermflusci.2018.07.021_b0030) 1989; 201
Kemao (10.1016/j.expthermflusci.2018.07.021_b0185) 2004; 43
Briggs (10.1016/j.expthermflusci.2018.07.021_b0065) 1985; 107
Srivastava (10.1016/j.expthermflusci.2018.07.021_b0165) 2009; 311
Choudhury (10.1016/j.expthermflusci.2018.07.021_b0180) 2016; 23
References_xml – volume: 47
  start-page: 195
  year: 1990
  end-page: 220
  ident: b0035
  article-title: On the stability of the natural convection flow in a square cavity heated from side
  publication-title: Appl. Sci. Res.
– volume: 312
  start-page: 2254
  year: 2010
  end-page: 2262
  ident: b0160
  article-title: Fourier analysis based phase shift interferometric tomography for three-dimensional reconstruction of concentration field around a growing crystal
  publication-title: J. Cryst. Growth
– volume: 107
  start-page: 850
  year: 1985
  end-page: 854
  ident: b0065
  article-title: Two-dimensional periodic natural convection in a rectangular enclosure of aspect ratio one
  publication-title: J. Heat Transf.
– volume: 388
  start-page: 315
  year: 1999
  end-page: 334
  ident: b0105
  article-title: Stability of multiple steady states of convection in laterally heated cavity
  publication-title: J. Fluid Mech.
– volume: 13
  start-page: 2529
  year: 2001
  end-page: 2542
  ident: b0110
  article-title: Linear stability analyses of natural convection in a differentially heated square cavity with conducting horizontal walls
  publication-title: Phys. Fluids
– volume: 38
  start-page: 679
  year: 2011
  end-page: 687
  ident: b0120
  article-title: Natural convection in an air-filled cavity: Experimental results at large Rayleigh numbers
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 27
  start-page: 755
  year: 1984
  end-page: 772
  ident: b0010
  article-title: Laminar and turbulent natural convection in an enclosed cavity
  publication-title: Int. J. Heat Mass Transf.
– volume: 52
  start-page: 1036
  year: 2009
  end-page: 1043
  ident: b0025
  article-title: Laminar natural convection in a square cavity: Low Prandtl numbers and large density differences
  publication-title: Int. J. Heat Mass Transf.
– volume: 23
  start-page: 77
  year: 1965
  end-page: 98
  ident: b0080
  article-title: Laminar free convection in a vertical slot
  publication-title: J. Fluid Mech.
– volume: 53
  start-page: 2331
  year: 2014
  end-page: 2344
  ident: b0170
  article-title: Application of the windowed-Fourier-transform-based fringe analysis technique for investigating temperature and concentration fields in fluids
  publication-title: Appl. Opt.
– volume: 41
  start-page: 353
  year: 2005
  end-page: 359
  ident: b0145
  article-title: Interferometric study of buoyancy-driven convection in a differentially heated circular fluid layer
  publication-title: Heat Mass Transf.
– volume: 18
  start-page: 695
  year: 1994
  end-page: 719
  ident: b0015
  article-title: Natural convection flow in a square cavity revisited: Laminar and turbulent models with wall functions
  publication-title: Int. J. Num. Methods Fluids
– volume: 35
  start-page: 1566
  year: 1996
  end-page: 1573
  ident: b0200
  article-title: Ciddor, Refractive index of air: new equations for the visible and near infrared
  publication-title: Appl. Opt.
– volume: 201
  start-page: 379
  year: 1989
  end-page: 410
  ident: b0030
  article-title: Transition to chaos in a differentially heated vertical cavity
  publication-title: J. Fluid Mech.
– volume: 100
  start-page: 65
  year: 1980
  end-page: 86
  ident: b0055
  article-title: Unsteady natural convection in a rectangular cavity
  publication-title: J. Fluid Mech.
– volume: 25
  start-page: 231
  year: 1999
  end-page: 255
  ident: b0155
  article-title: Experimental study of Rayleigh-Bernard convection at intermediate Rayleigh numbers using interferometric tomography
  publication-title: Fluid Dyn. Res.
– volume: 144
  start-page: 389
  year: 1984
  end-page: 401
  ident: b0060
  article-title: Experiments on transient natural convection in a cavity
  publication-title: J. Fluid Mech.
– volume: 3
  start-page: 249
  year: 1983
  end-page: 264
  ident: b0005
  article-title: Natural convection in a square cavity: a benchmark numerical solution
  publication-title: Int. J. Num. Methods Fluids
– volume: 359
  start-page: 81
  year: 1998
  end-page: 107
  ident: b0100
  article-title: From onset of unsteadiness to chaos in a differentially heated square cavity
  publication-title: J. Fluid Mech.
– volume: 311
  start-page: 1166
  year: 2009
  end-page: 1177
  ident: b0165
  article-title: Reconstruction of time-dependent concentration gradients around a KDP crystal growing from its aqueous solution
  publication-title: J. Cryst. Growth
– volume: 47
  start-page: 5408
  year: 2008
  end-page: 5419
  ident: b0195
  article-title: Windowed Fourier transform for fringe pattern analysis: theoretical analyses
  publication-title: Appl. Opt.
– volume: 5
  start-page: 53
  year: 1973
  end-page: 66
  ident: b0050
  article-title: Instabilities in buoyancy-driven boundary-layer flows in a stably stratified medium
  publication-title: Bound. Lay. Meteorol.
– volume: 23
  start-page: 042108
  year: 2016
  ident: b0180
  article-title: Time resolved interferometric study of the plasma plume induced shock wave in confined geometry: two dimensional mapping of the ambient and plasma density
  publication-title: Phys. Plasmas.
– volume: 42
  start-page: 469
  year: 2004
  end-page: 485
  ident: b0115
  article-title: Imaging of a convective field in a rectangular cavity using interferometry, schlieren, and shadowgraph
  publication-title: Opt. Lasers Eng.
– volume: 111
  start-page: 86
  year: 1989
  end-page: 91
  ident: b0070
  article-title: Periodic two-dimensional cavity flow: effect of linear horizontal thermal boundary condition
  publication-title: J. Heat Transf.
– volume: 84
  start-page: 743
  year: 1978
  end-page: 768
  ident: b0045
  article-title: Instability of steady natural convection in a vertical fluid layer
  publication-title: J. Fluid Mech.
– volume: 10
  start-page: 481
  year: 1990
  end-page: 517
  ident: b0095
  article-title: Spectral simulations of oscillatory convection at low Prandtl number
  publication-title: Int. J. Num. Methods Fluids
– volume: 43
  start-page: 2695
  year: 2004
  end-page: 2702
  ident: b0185
  article-title: Windowed Fourier transform for fringe pattern analysis
  publication-title: Appl. Opt.
– volume: 34
  start-page: 1543
  year: 1991
  end-page: 1557
  ident: b0020
  article-title: A numerical study of three dimensionalnatural convection in a differentially heated cubical enclosure
  publication-title: Int. J. Heat Mass Transf.
– volume: 38
  start-page: 74
  year: 2012
  end-page: 84
  ident: b0140
  article-title: Experimental determination of first bifurcations to unsteady natural convection in a differentially-heated cavity tilted from 0° to 180°
  publication-title: Exp. Therm. Fluid Sci.
– volume: 35
  start-page: 775
  year: 1969
  end-page: 798
  ident: b0040
  article-title: Instability of a buoyancy-driven system
  publication-title: J. Fluid Mech.
– volume: 100
  start-page: 449
  year: 1980
  end-page: 470
  ident: b0130
  article-title: Many routes to turbulent convection
  publication-title: J. Fluid Mech.
– volume: 49
  start-page: 889
  year: 2006
  end-page: 904
  ident: b0125
  article-title: Flow visualization of natural convection in a tall, air-filled vertical cavity
  publication-title: Int. J. Heat Mass Transf.
– volume: 45
  start-page: 304
  year: 2007
  end-page: 317
  ident: b0190
  article-title: Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations
  publication-title: Opt. Lasers Eng.
– volume: 12
  start-page: 256
  year: 2001
  end-page: 372
  ident: b0205
  article-title: Temperature field measurement in buoyancy-driven flows using interferometric tomography
  publication-title: Ann. Rev. Heat Transf.
– volume: 84
  start-page: 695
  year: 1978
  end-page: 704
  ident: b0075
  article-title: Visual observation of natural convective flow in a narrow vertical cavity
  publication-title: J. Fluid Mech.
– volume: 2
  start-page: 321
  year: 1995
  end-page: 333
  ident: b0150
  article-title: Interferometric study of transient convection in a square cavity
  publication-title: J. Flow Visualizat. Image Process.
– volume: 92
  start-page: 1128
  year: 2016
  end-page: 1142
  ident: b0210
  article-title: Atul Srivastava, Interferometric study of natural convection in a differentially-heated cavity with Al
  publication-title: Int. J. Heat Mass Transf.
– volume: 49
  start-page: 271
  year: 1992
  end-page: 282
  ident: b0090
  article-title: Three-dimensional numerical simulations of periodic natural convection in a differentially heated cubical enclosure
  publication-title: Appl. Sci. Res.
– volume: 98
  start-page: 67
  year: 1975
  end-page: 71
  ident: b0135
  article-title: Experimental investigation of natural convection in inclined rectangular regions of differing aspect ratios
  publication-title: J. Heat Transf.
– volume: 109
  start-page: 278
  year: 2017
  end-page: 292
  ident: b0175
  article-title: Interferometric study of natural convection heat transfer phenomena around array of heated cylinders
  publication-title: Int. J. Heat Mass Transf.
– volume: 36
  start-page: 2927
  year: 1993
  end-page: 2940
  ident: b0085
  article-title: Transition to time-periodicity of a natural-convection flow-in a 3D differentially heated cavity
  publication-title: Int. J. Heat Mass Transf.
– volume: 27
  start-page: 755
  year: 1984
  ident: 10.1016/j.expthermflusci.2018.07.021_b0010
  article-title: Laminar and turbulent natural convection in an enclosed cavity
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(84)90145-5
– volume: 111
  start-page: 86
  year: 1989
  ident: 10.1016/j.expthermflusci.2018.07.021_b0070
  article-title: Periodic two-dimensional cavity flow: effect of linear horizontal thermal boundary condition
  publication-title: J. Heat Transf.
  doi: 10.1115/1.3250663
– volume: 10
  start-page: 481
  year: 1990
  ident: 10.1016/j.expthermflusci.2018.07.021_b0095
  article-title: Spectral simulations of oscillatory convection at low Prandtl number
  publication-title: Int. J. Num. Methods Fluids
  doi: 10.1002/fld.1650100502
– volume: 98
  start-page: 67
  year: 1975
  ident: 10.1016/j.expthermflusci.2018.07.021_b0135
  article-title: Experimental investigation of natural convection in inclined rectangular regions of differing aspect ratios
  publication-title: J. Heat Transf.
  doi: 10.1115/1.3450472
– volume: 45
  start-page: 304
  year: 2007
  ident: 10.1016/j.expthermflusci.2018.07.021_b0190
  article-title: Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2005.10.012
– volume: 92
  start-page: 1128
  year: 2016
  ident: 10.1016/j.expthermflusci.2018.07.021_b0210
  article-title: Atul Srivastava, Interferometric study of natural convection in a differentially-heated cavity with Al2O3–water based dilute nanofluids
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.09.074
– volume: 18
  start-page: 695
  year: 1994
  ident: 10.1016/j.expthermflusci.2018.07.021_b0015
  article-title: Natural convection flow in a square cavity revisited: Laminar and turbulent models with wall functions
  publication-title: Int. J. Num. Methods Fluids
  doi: 10.1002/fld.1650180705
– volume: 49
  start-page: 889
  year: 2006
  ident: 10.1016/j.expthermflusci.2018.07.021_b0125
  article-title: Flow visualization of natural convection in a tall, air-filled vertical cavity
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2005.06.045
– volume: 42
  start-page: 469
  year: 2004
  ident: 10.1016/j.expthermflusci.2018.07.021_b0115
  article-title: Imaging of a convective field in a rectangular cavity using interferometry, schlieren, and shadowgraph
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2004.03.003
– volume: 47
  start-page: 195
  year: 1990
  ident: 10.1016/j.expthermflusci.2018.07.021_b0035
  article-title: On the stability of the natural convection flow in a square cavity heated from side
  publication-title: Appl. Sci. Res.
  doi: 10.1007/BF00418051
– volume: 23
  start-page: 77
  year: 1965
  ident: 10.1016/j.expthermflusci.2018.07.021_b0080
  article-title: Laminar free convection in a vertical slot
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112065001246
– volume: 34
  start-page: 1543
  year: 1991
  ident: 10.1016/j.expthermflusci.2018.07.021_b0020
  article-title: A numerical study of three dimensionalnatural convection in a differentially heated cubical enclosure
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(91)90295-P
– volume: 100
  start-page: 65
  year: 1980
  ident: 10.1016/j.expthermflusci.2018.07.021_b0055
  article-title: Unsteady natural convection in a rectangular cavity
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112080001012
– volume: 107
  start-page: 850
  year: 1985
  ident: 10.1016/j.expthermflusci.2018.07.021_b0065
  article-title: Two-dimensional periodic natural convection in a rectangular enclosure of aspect ratio one
  publication-title: J. Heat Transf.
  doi: 10.1115/1.3247513
– volume: 35
  start-page: 775
  year: 1969
  ident: 10.1016/j.expthermflusci.2018.07.021_b0040
  article-title: Instability of a buoyancy-driven system
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112069001431
– volume: 52
  start-page: 1036
  year: 2009
  ident: 10.1016/j.expthermflusci.2018.07.021_b0025
  article-title: Laminar natural convection in a square cavity: Low Prandtl numbers and large density differences
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2008.07.005
– volume: 23
  start-page: 042108
  year: 2016
  ident: 10.1016/j.expthermflusci.2018.07.021_b0180
  article-title: Time resolved interferometric study of the plasma plume induced shock wave in confined geometry: two dimensional mapping of the ambient and plasma density
  publication-title: Phys. Plasmas.
  doi: 10.1063/1.4947032
– volume: 47
  start-page: 5408
  year: 2008
  ident: 10.1016/j.expthermflusci.2018.07.021_b0195
  article-title: Windowed Fourier transform for fringe pattern analysis: theoretical analyses
  publication-title: Appl. Opt.
  doi: 10.1364/AO.47.005408
– volume: 144
  start-page: 389
  year: 1984
  ident: 10.1016/j.expthermflusci.2018.07.021_b0060
  article-title: Experiments on transient natural convection in a cavity
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112084001658
– volume: 311
  start-page: 1166
  year: 2009
  ident: 10.1016/j.expthermflusci.2018.07.021_b0165
  article-title: Reconstruction of time-dependent concentration gradients around a KDP crystal growing from its aqueous solution
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2008.12.001
– volume: 13
  start-page: 2529
  year: 2001
  ident: 10.1016/j.expthermflusci.2018.07.021_b0110
  article-title: Linear stability analyses of natural convection in a differentially heated square cavity with conducting horizontal walls
  publication-title: Phys. Fluids
  doi: 10.1063/1.1388054
– volume: 35
  start-page: 1566
  year: 1996
  ident: 10.1016/j.expthermflusci.2018.07.021_b0200
  article-title: Ciddor, Refractive index of air: new equations for the visible and near infrared
  publication-title: Appl. Opt.
  doi: 10.1364/AO.35.001566
– volume: 53
  start-page: 2331
  year: 2014
  ident: 10.1016/j.expthermflusci.2018.07.021_b0170
  article-title: Application of the windowed-Fourier-transform-based fringe analysis technique for investigating temperature and concentration fields in fluids
  publication-title: Appl. Opt.
  doi: 10.1364/AO.53.002331
– volume: 100
  start-page: 449
  year: 1980
  ident: 10.1016/j.expthermflusci.2018.07.021_b0130
  article-title: Many routes to turbulent convection
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112080001243
– volume: 38
  start-page: 679
  year: 2011
  ident: 10.1016/j.expthermflusci.2018.07.021_b0120
  article-title: Natural convection in an air-filled cavity: Experimental results at large Rayleigh numbers
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2011.03.019
– volume: 49
  start-page: 271
  year: 1992
  ident: 10.1016/j.expthermflusci.2018.07.021_b0090
  article-title: Three-dimensional numerical simulations of periodic natural convection in a differentially heated cubical enclosure
  publication-title: Appl. Sci. Res.
  doi: 10.1007/BF00384627
– volume: 109
  start-page: 278
  year: 2017
  ident: 10.1016/j.expthermflusci.2018.07.021_b0175
  article-title: Interferometric study of natural convection heat transfer phenomena around array of heated cylinders
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.01.106
– volume: 5
  start-page: 53
  year: 1973
  ident: 10.1016/j.expthermflusci.2018.07.021_b0050
  article-title: Instabilities in buoyancy-driven boundary-layer flows in a stably stratified medium
  publication-title: Bound. Lay. Meteorol.
  doi: 10.1007/BF02188311
– volume: 84
  start-page: 695
  year: 1978
  ident: 10.1016/j.expthermflusci.2018.07.021_b0075
  article-title: Visual observation of natural convective flow in a narrow vertical cavity
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112078000427
– volume: 2
  start-page: 321
  year: 1995
  ident: 10.1016/j.expthermflusci.2018.07.021_b0150
  article-title: Interferometric study of transient convection in a square cavity
  publication-title: J. Flow Visualizat. Image Process.
  doi: 10.1615/JFlowVisImageProc.v2.i4.20
– volume: 201
  start-page: 379
  year: 1989
  ident: 10.1016/j.expthermflusci.2018.07.021_b0030
  article-title: Transition to chaos in a differentially heated vertical cavity
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112089000984
– volume: 12
  start-page: 256
  year: 2001
  ident: 10.1016/j.expthermflusci.2018.07.021_b0205
  article-title: Temperature field measurement in buoyancy-driven flows using interferometric tomography
  publication-title: Ann. Rev. Heat Transf.
– volume: 3
  start-page: 249
  year: 1983
  ident: 10.1016/j.expthermflusci.2018.07.021_b0005
  article-title: Natural convection in a square cavity: a benchmark numerical solution
  publication-title: Int. J. Num. Methods Fluids
  doi: 10.1002/fld.1650030305
– volume: 359
  start-page: 81
  year: 1998
  ident: 10.1016/j.expthermflusci.2018.07.021_b0100
  article-title: From onset of unsteadiness to chaos in a differentially heated square cavity
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112097008458
– volume: 388
  start-page: 315
  year: 1999
  ident: 10.1016/j.expthermflusci.2018.07.021_b0105
  article-title: Stability of multiple steady states of convection in laterally heated cavity
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112099004796
– volume: 38
  start-page: 74
  year: 2012
  ident: 10.1016/j.expthermflusci.2018.07.021_b0140
  article-title: Experimental determination of first bifurcations to unsteady natural convection in a differentially-heated cavity tilted from 0° to 180°
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2011.11.009
– volume: 25
  start-page: 231
  year: 1999
  ident: 10.1016/j.expthermflusci.2018.07.021_b0155
  article-title: Experimental study of Rayleigh-Bernard convection at intermediate Rayleigh numbers using interferometric tomography
  publication-title: Fluid Dyn. Res.
  doi: 10.1016/S0169-5983(98)00044-6
– volume: 36
  start-page: 2927
  year: 1993
  ident: 10.1016/j.expthermflusci.2018.07.021_b0085
  article-title: Transition to time-periodicity of a natural-convection flow-in a 3D differentially heated cavity
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(93)90111-I
– volume: 312
  start-page: 2254
  year: 2010
  ident: 10.1016/j.expthermflusci.2018.07.021_b0160
  article-title: Fourier analysis based phase shift interferometric tomography for three-dimensional reconstruction of concentration field around a growing crystal
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2010.04.053
– volume: 84
  start-page: 743
  year: 1978
  ident: 10.1016/j.expthermflusci.2018.07.021_b0045
  article-title: Instability of steady natural convection in a vertical fluid layer
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112078000452
– volume: 41
  start-page: 353
  year: 2005
  ident: 10.1016/j.expthermflusci.2018.07.021_b0145
  article-title: Interferometric study of buoyancy-driven convection in a differentially heated circular fluid layer
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-004-0534-4
– volume: 43
  start-page: 2695
  year: 2004
  ident: 10.1016/j.expthermflusci.2018.07.021_b0185
  article-title: Windowed Fourier transform for fringe pattern analysis
  publication-title: Appl. Opt.
  doi: 10.1364/AO.43.002695
SSID ssj0008210
Score 2.355598
Snippet •Natural convection in differentially-heated vertical closed cavity.•Whole field temperature and heat transfer rates.•Interferometry-based non-intrusive...
Natural convection in closed cavities has been a subject of intensive research in the past. Compared to numerical studies, the number of experimental works...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 71
SubjectTerms Aerodynamics
Aspect ratio
Computational fluid dynamics
Computer simulation
Convection
Convective heat transfer
Corner flows
Data processing
Differentially-heated closed cavities
Experiments
Field tests
Flow pattern
Fluid flow
Free convection
Heat transfer
Heating
Holes
Interferometry
Natural convection
Rayleigh number
Simulation
Smoke
Spatial distribution
Spectral analysis
Temperature distribution
Temperature effects
Temperature gradients
Whole field temperature distribution
Working fluids
Title Investigation of convective heat transfer phenomena in differentially-heated vertical closed cavity: Whole field experiments and numerical simulations
URI https://dx.doi.org/10.1016/j.expthermflusci.2018.07.021
https://www.proquest.com/docview/2122756712
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhgdIeQtIHzaNhDrmqa6-klZQeSggJ25bm0obmJvQybHG8S7wL6aU_o7-3GtnuJoVCoEcZyTKa0Tcj9PkbQo4L5SOPNtJQOEe5DIxqWWgahOdWKq2cxxvdz5eT6RX_eC2uN8jZ8C8M0ip77O8wPaN1_2TUr-ZoMZuNvhRK81LKBK6oascQhzmX6OVvf65pHmqcFQmwM8XeT8jxmuMV7xaYZt1U9SpNgUQvlaU8x-W_wtRfgJ2j0MUO2e7TRzjtvnCXbMTmOXl2T1TwBfl1Tzpj3sC8gswsz7gGCL2wzMlqvAXkd6ECg4VZA0OplLTl6_oHxZ4xQC7XnOwIvp63qe0tFps4gW9YVxcy_w3WVQJasE2AZtVdA9XQzm768mDtS3J1cf71bEr76gvUM6GW1AvrbRG1YsoFXjjuhasYQ3B0XKVTUoVXttFzJSSTlXcVt5rbdFIXoZyIkr0im828ia8J6BQntRRpqIjcFtZWExWCDmqS4FaVbI-8Gxbb-F6aHCtk1GbgoH03D01l0FSmkCaZao-IP6MXnUTHI8e9H-xqHricSdHkkW84HNzB9Fu_NSkXQEl9WY73_3uCA_IUWx195pBsLm9X8U1KgpbuKHv5Edk6_fBpevkbu78PEw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELXQIrX0UNFSVFpofeBqbbK213Z7QAiBlgJ7KQhulr8ibRWyK7IrtX-kv7cex-GjUiWkHpN44shjvxnLL28Q2i-kCyyYQHxhLWHCU6JEoYjnjhkhlbQOTnQvpuPJFft2w2_W0FH_LwzQKjP2d5ie0DrfGebRHC5ms-H3QipWChHBFVTtaMThdVCn4gO0fnh6NpneA7IcJVECaE_A4AXaf6B5hZ8LyLRuq3oVewGul0xqnqPyX5HqL8xOgehkE73OGSQ-7D7yDVoLzVv06pGu4Bb6_Ug9Y97geYUTuTxBGwb0xcuUr4Y7DBQvEGEweNbgvlpKXPV1_YtAy-BxqtgcXYldPW_jtTNQb-ILvobSujhR4PBDoYAWm8bjZtWdBNW4nd3mCmHtO3R1cnx5NCG5AANxlMslcdw4UwQlqbSeFZY5bitKAR8tk3GjVMGpbXBMckFF5WzFjGImbta5L8e8pNto0Myb8B5hFUOlEjya8sBMYUw1lt4rL8cRcWVJd9DXfrC1y-rkUCSj1j0N7Yd-6ioNrtKF0NFVO4jfWy86lY5n2h30ftVPZp2OAeWZb9jtp4POq7_VMR0AVX1Rjj78dwef0cvJ5cW5Pj-dnn1EG_CkY9PsosHybhX2Yk60tJ_ynP8D5uwRxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+convective+heat+transfer+phenomena+in+differentially-heated+vertical+closed+cavity%3A+Whole+field+experiments+and+numerical+simulations&rft.jtitle=Experimental+thermal+and+fluid+science&rft.au=Kishor%2C+Vimal&rft.au=Singh%2C+Suneet&rft.au=Srivastava%2C+Atul&rft.date=2018-12-01&rft.issn=0894-1777&rft.volume=99&rft.spage=71&rft.epage=84&rft_id=info:doi/10.1016%2Fj.expthermflusci.2018.07.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_expthermflusci_2018_07_021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1777&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1777&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1777&client=summon