Investigation of convective heat transfer phenomena in differentially-heated vertical closed cavity: Whole field experiments and numerical simulations
•Natural convection in differentially-heated vertical closed cavity.•Whole field temperature and heat transfer rates.•Interferometry-based non-intrusive measurements and numerical simulations.•Steady to periodic flow transition. Natural convection in closed cavities has been a subject of intensive r...
Saved in:
Published in | Experimental thermal and fluid science Vol. 99; pp. 71 - 84 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Elsevier Inc
01.12.2018
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0894-1777 1879-2286 |
DOI | 10.1016/j.expthermflusci.2018.07.021 |
Cover
Loading…
Abstract | •Natural convection in differentially-heated vertical closed cavity.•Whole field temperature and heat transfer rates.•Interferometry-based non-intrusive measurements and numerical simulations.•Steady to periodic flow transition.
Natural convection in closed cavities has been a subject of intensive research in the past. Compared to numerical studies, the number of experimental works reported in this area have been relatively scarce. Of the limited number of experimental studies available in the literature, a majority have made use of invasive probes, which inherently disturb the flow. In the present work, real-time experimental measurements are carried out using one of the non-invasive techniques (Mach Zehnder interferometry), that provides the whole field temperature distribution of the fluid layer. Experiments are conducted in a differentially-heated vertical closed cavity of aspect ratio three with air as the working fluid. The vertical side walls of the cavity have been subjected to three temperature differences (ΔT = 10, 20 and 30 °C) (Ra = 9.7 × 105, 1.8 × 106 and 2.5 × 106). Transient numerical simulations have also been performed using COMSOL Multiphysics 5.2 and a detailed comparison of experimental and simulation results has been presented in the form of temperature contours, spatial distribution of Nusselt number and spatially-averaged heat transfer rates as a function of Rayleigh number. The interferometric measurements highlighted the importance of corner flows which affect the heat transfer rates between the two thermally active walls of the cavity. Buoyancy-induced flow patterns inside the cavity, as interpreted through interferometric measurements, have further been corroborated through smoke-based visualization technique as well as through the results of numerical simulations. Maximum heat transfer rates have been observed in the corners of the differentially heated cavity. Possible flow transitions have been captured by performing the spectral analysis of the interferometry-based transient data. Based on this analysis, Ra = 1.8 × 106 was found to be greater than the critical Rayleigh number wherein the flow instabilities with two dominant frequencies were to be clearly seen. |
---|---|
AbstractList | •Natural convection in differentially-heated vertical closed cavity.•Whole field temperature and heat transfer rates.•Interferometry-based non-intrusive measurements and numerical simulations.•Steady to periodic flow transition.
Natural convection in closed cavities has been a subject of intensive research in the past. Compared to numerical studies, the number of experimental works reported in this area have been relatively scarce. Of the limited number of experimental studies available in the literature, a majority have made use of invasive probes, which inherently disturb the flow. In the present work, real-time experimental measurements are carried out using one of the non-invasive techniques (Mach Zehnder interferometry), that provides the whole field temperature distribution of the fluid layer. Experiments are conducted in a differentially-heated vertical closed cavity of aspect ratio three with air as the working fluid. The vertical side walls of the cavity have been subjected to three temperature differences (ΔT = 10, 20 and 30 °C) (Ra = 9.7 × 105, 1.8 × 106 and 2.5 × 106). Transient numerical simulations have also been performed using COMSOL Multiphysics 5.2 and a detailed comparison of experimental and simulation results has been presented in the form of temperature contours, spatial distribution of Nusselt number and spatially-averaged heat transfer rates as a function of Rayleigh number. The interferometric measurements highlighted the importance of corner flows which affect the heat transfer rates between the two thermally active walls of the cavity. Buoyancy-induced flow patterns inside the cavity, as interpreted through interferometric measurements, have further been corroborated through smoke-based visualization technique as well as through the results of numerical simulations. Maximum heat transfer rates have been observed in the corners of the differentially heated cavity. Possible flow transitions have been captured by performing the spectral analysis of the interferometry-based transient data. Based on this analysis, Ra = 1.8 × 106 was found to be greater than the critical Rayleigh number wherein the flow instabilities with two dominant frequencies were to be clearly seen. Natural convection in closed cavities has been a subject of intensive research in the past. Compared to numerical studies, the number of experimental works reported in this area have been relatively scarce. Of the limited number of experimental studies available in the literature, a majority have made use of invasive probes, which inherently disturb the flow. In the present work, real-time experimental measurements are carried out using one of the non-invasive techniques (Mach Zehnder interferometry), that provides the whole field temperature distribution of the fluid layer. Experiments are conducted in a differentially-heated vertical closed cavity of aspect ratio three with air as the working fluid. The vertical side walls of the cavity have been subjected to three temperature differences (ΔT = 10, 20 and 30 °C) (Ra = 9.7 × 105, 1.8 × 106 and 2.5 × 106). Transient numerical simulations have also been performed using COMSOL Multiphysics 5.2 and a detailed comparison of experimental and simulation results has been presented in the form of temperature contours, spatial distribution of Nusselt number and spatially-averaged heat transfer rates as a function of Rayleigh number. The interferometric measurements highlighted the importance of corner flows which affect the heat transfer rates between the two thermally active walls of the cavity. Buoyancy-induced flow patterns inside the cavity, as interpreted through interferometric measurements, have further been corroborated through smoke-based visualization technique as well as through the results of numerical simulations. Maximum heat transfer rates have been observed in the corners of the differentially heated cavity. Possible flow transitions have been captured by performing the spectral analysis of the interferometry-based transient data. Based on this analysis, Ra = 1.8 × 106 was found to be greater than the critical Rayleigh number wherein the flow instabilities with two dominant frequencies were to be clearly seen. |
Author | Srivastava, Atul Kishor, Vimal Singh, Suneet |
Author_xml | – sequence: 1 givenname: Vimal surname: Kishor fullname: Kishor, Vimal organization: Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India – sequence: 2 givenname: Suneet surname: Singh fullname: Singh, Suneet organization: Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India – sequence: 3 givenname: Atul surname: Srivastava fullname: Srivastava, Atul email: atulsr@iitb.ac.in organization: Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India |
BookMark | eNqNUctqHDEQFMGBrJ38gyC-zljSPKQxviQmfoAhl4QchUbTymrRSmtJM3h_xN8brTcX--RT001VdVF1ik588IDQOSU1JbS_2NTwtMtriFvj5qRtzQgVNeE1YfQDWlHBh4ox0Z-gFRFDW1HO-Sd0mtKGECIYJSv0fO8XSNn-VdkGj4PBOpSLznYBvAaVcY7KJwMR79bgwxa8wtbjyZpyA5-tcm5fHZAw4QVitlo5rF1IZddqsXl_if-sgwNsLLgJF8sQbdHJCSs_YT9vy34gJbud3YuP9Bl9NMol-PJ_nqHfNz9-Xd9VDz9v76-_PVS66USudKe0IjCIRoxTS8ZWd6NpmoFSOrZi6HvTsaEH3YqON9zo0bRqaBWMrJto39HmDH096u5ieJxLEHIT5ujLS8koY7zrOWUF9f2I0jGkFMFIbfOL0RKOdZISeehDbuTrPuShD0m4LH0Ukas3IrsSg4r799JvjnQocSwWoiwI8BomG0tdcgr2fUL_AN4_uOI |
CitedBy_id | crossref_primary_10_1016_j_ijheatmasstransfer_2019_118933 crossref_primary_10_1080_01457632_2024_2362540 crossref_primary_10_4236_epe_2023_1512028 crossref_primary_10_1016_j_ijthermalsci_2019_106160 crossref_primary_10_1063_5_0144535 crossref_primary_10_1080_01457632_2022_2086096 crossref_primary_10_1080_08916152_2022_2095459 crossref_primary_10_1016_j_expthermflusci_2020_110053 crossref_primary_10_1080_01457632_2025_2473781 crossref_primary_10_1016_j_ijthermalsci_2022_107729 crossref_primary_10_1063_5_0251083 crossref_primary_10_1080_10407782_2022_2104585 crossref_primary_10_1016_j_ijthermalsci_2021_106964 crossref_primary_10_1002_htj_22074 crossref_primary_10_1016_j_csite_2022_101785 crossref_primary_10_1140_epjp_s13360_024_05298_6 crossref_primary_10_2139_ssrn_3969762 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121232 crossref_primary_10_1080_08916152_2022_2039329 crossref_primary_10_1063_5_0159505 crossref_primary_10_1080_08916152_2019_1586800 crossref_primary_10_1063_5_0063217 crossref_primary_10_38032_jea_2024_01_001 crossref_primary_10_1080_01457632_2023_2249728 crossref_primary_10_1016_j_ijthermalsci_2020_106279 crossref_primary_10_1016_j_ijthermalsci_2020_106554 crossref_primary_10_1016_j_tsep_2023_102118 crossref_primary_10_1016_j_ijthermalsci_2019_106035 |
Cites_doi | 10.1016/0017-9310(84)90145-5 10.1115/1.3250663 10.1002/fld.1650100502 10.1115/1.3450472 10.1016/j.optlaseng.2005.10.012 10.1016/j.ijheatmasstransfer.2015.09.074 10.1002/fld.1650180705 10.1016/j.ijheatmasstransfer.2005.06.045 10.1016/j.optlaseng.2004.03.003 10.1007/BF00418051 10.1017/S0022112065001246 10.1016/0017-9310(91)90295-P 10.1017/S0022112080001012 10.1115/1.3247513 10.1017/S0022112069001431 10.1016/j.ijheatmasstransfer.2008.07.005 10.1063/1.4947032 10.1364/AO.47.005408 10.1017/S0022112084001658 10.1016/j.jcrysgro.2008.12.001 10.1063/1.1388054 10.1364/AO.35.001566 10.1364/AO.53.002331 10.1017/S0022112080001243 10.1016/j.icheatmasstransfer.2011.03.019 10.1007/BF00384627 10.1016/j.ijheatmasstransfer.2017.01.106 10.1007/BF02188311 10.1017/S0022112078000427 10.1615/JFlowVisImageProc.v2.i4.20 10.1017/S0022112089000984 10.1002/fld.1650030305 10.1017/S0022112097008458 10.1017/S0022112099004796 10.1016/j.expthermflusci.2011.11.009 10.1016/S0169-5983(98)00044-6 10.1016/0017-9310(93)90111-I 10.1016/j.jcrysgro.2010.04.053 10.1017/S0022112078000452 10.1007/s00231-004-0534-4 10.1364/AO.43.002695 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright Elsevier Science Ltd. Dec 2018 |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright Elsevier Science Ltd. Dec 2018 |
DBID | AAYXX CITATION 7QH 7TB 7U5 7UA 8FD C1K FR3 H8D KR7 L7M |
DOI | 10.1016/j.expthermflusci.2018.07.021 |
DatabaseName | CrossRef Aqualine Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Aqualine Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2286 |
EndPage | 84 |
ExternalDocumentID | 10_1016_j_expthermflusci_2018_07_021 S0894177718308732 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SPD SSG SST SSZ T5K TN5 UHS VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7QH 7TB 7U5 7UA 8FD C1K EFKBS FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c358t-c5aca0e9838bd40b4c5bf339111b48966f5296ec485737fcbf4a94aeb25d16513 |
IEDL.DBID | .~1 |
ISSN | 0894-1777 |
IngestDate | Wed Aug 13 02:58:55 EDT 2025 Thu Apr 24 23:13:06 EDT 2025 Tue Jul 01 01:54:20 EDT 2025 Fri Feb 23 02:45:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Natural convection Differentially-heated closed cavities Whole field temperature distribution Corner flows Interferometry |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-c5aca0e9838bd40b4c5bf339111b48966f5296ec485737fcbf4a94aeb25d16513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2122756712 |
PQPubID | 2047468 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2122756712 crossref_citationtrail_10_1016_j_expthermflusci_2018_07_021 crossref_primary_10_1016_j_expthermflusci_2018_07_021 elsevier_sciencedirect_doi_10_1016_j_expthermflusci_2018_07_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2018 2018-12-00 20181201 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Experimental thermal and fluid science |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd |
References | Saury, Rouger, Djanna, Penot (b0120) 2011; 38 Wright, Jin, Hollands, Naylor (b0125) 2006; 49 Srivastava, Tsukamoto, Yokoyama, Murayama, Fukuyama (b0160) 2010; 312 Kemao, Wang, Gao (b0195) 2008; 47 Srivastava, Panigrahi, Muralidhar (b0145) 2005; 41 Choudhury, Singh, Narayan, Srivastava, Kumar (b0180) 2016; 23 Philip (b0200) 1996; 35 Arnold, Catton, Edwards (b0135) 1975; 98 Kemao (b0190) 2007; 45 Jones, Briggs (b0070) 1989; 111 Le Quere, Behnia (b0100) 1998; 359 Kemao (b0185) 2004; 43 Bergholz (b0045) 1978; 84 Gelfgat, Bar-Yoseph, Yarin (b0105) 1999; 388 Elder (b0080) 1965; 23 Pesso, Piva (b0025) 2009; 52 Xin, Le Quere (b0110) 2001; 13 Narayan, Singh, Srivastava (b0175) 2017; 109 Davis (b0005) 1983; 3 Briggs, Jones (b0065) 1985; 107 Gollub, Benson (b0130) 1980; 100 Janssen, Henkes, Hoogendoorn (b0085) 1993; 36 Markatos, Pericleous (b0010) 1984; 27 Gill, Davey (b0040) 1969; 35 Ivey (b0060) 1984; 144 Paolucci, Chenoweth (b0030) 1989; 201 Mishra, Muralidhar, Munshi (b0155) 1999; 25 Muralidhar, Patil, Kashyap (b0150) 1995; 2 Srivastava, Singh, Muralidhar (b0165) 2009; 311 Iyer (b0050) 1973; 5 Fusegi, Hyun, Kuwahara, Farouk (b0020) 1991; 34 Pulicani, del Arco, Randriamampianina, Bontoux, Peyret (b0095) 1990; 10 Mohanan, Srivastava (b0170) 2014; 53 Henkes, Hoogendoorn (b0035) 1990; 47 Fusegi, Hyun, Kuwahara (b0090) 1992; 49 Rao (b0210) 2016; 92 Barkos, Mitsoulis, Assimacopoulos (b0015) 1994; 18 Muralidhar (b0205) 2001; 12 Srivastava, Phukan, Panigrahi, Muralidhar (b0115) 2004; 42 Saury, Benkhelifa, Penot (b0140) 2012; 38 Seki, Fukusako, Inaba (b0075) 1978; 84 Patterson, Imberger (b0055) 1980; 100 Markatos (10.1016/j.expthermflusci.2018.07.021_b0010) 1984; 27 Kemao (10.1016/j.expthermflusci.2018.07.021_b0195) 2008; 47 Janssen (10.1016/j.expthermflusci.2018.07.021_b0085) 1993; 36 Bergholz (10.1016/j.expthermflusci.2018.07.021_b0045) 1978; 84 Gollub (10.1016/j.expthermflusci.2018.07.021_b0130) 1980; 100 Kemao (10.1016/j.expthermflusci.2018.07.021_b0190) 2007; 45 Srivastava (10.1016/j.expthermflusci.2018.07.021_b0115) 2004; 42 Srivastava (10.1016/j.expthermflusci.2018.07.021_b0145) 2005; 41 Mishra (10.1016/j.expthermflusci.2018.07.021_b0155) 1999; 25 Mohanan (10.1016/j.expthermflusci.2018.07.021_b0170) 2014; 53 Narayan (10.1016/j.expthermflusci.2018.07.021_b0175) 2017; 109 Fusegi (10.1016/j.expthermflusci.2018.07.021_b0090) 1992; 49 Xin (10.1016/j.expthermflusci.2018.07.021_b0110) 2001; 13 Elder (10.1016/j.expthermflusci.2018.07.021_b0080) 1965; 23 Ivey (10.1016/j.expthermflusci.2018.07.021_b0060) 1984; 144 Barkos (10.1016/j.expthermflusci.2018.07.021_b0015) 1994; 18 Pesso (10.1016/j.expthermflusci.2018.07.021_b0025) 2009; 52 Seki (10.1016/j.expthermflusci.2018.07.021_b0075) 1978; 84 Rao (10.1016/j.expthermflusci.2018.07.021_b0210) 2016; 92 Gelfgat (10.1016/j.expthermflusci.2018.07.021_b0105) 1999; 388 Saury (10.1016/j.expthermflusci.2018.07.021_b0120) 2011; 38 Wright (10.1016/j.expthermflusci.2018.07.021_b0125) 2006; 49 Davis (10.1016/j.expthermflusci.2018.07.021_b0005) 1983; 3 Gill (10.1016/j.expthermflusci.2018.07.021_b0040) 1969; 35 Srivastava (10.1016/j.expthermflusci.2018.07.021_b0160) 2010; 312 Iyer (10.1016/j.expthermflusci.2018.07.021_b0050) 1973; 5 Jones (10.1016/j.expthermflusci.2018.07.021_b0070) 1989; 111 Fusegi (10.1016/j.expthermflusci.2018.07.021_b0020) 1991; 34 Patterson (10.1016/j.expthermflusci.2018.07.021_b0055) 1980; 100 Saury (10.1016/j.expthermflusci.2018.07.021_b0140) 2012; 38 Pulicani (10.1016/j.expthermflusci.2018.07.021_b0095) 1990; 10 Arnold (10.1016/j.expthermflusci.2018.07.021_b0135) 1975; 98 Le Quere (10.1016/j.expthermflusci.2018.07.021_b0100) 1998; 359 Muralidhar (10.1016/j.expthermflusci.2018.07.021_b0150) 1995; 2 Henkes (10.1016/j.expthermflusci.2018.07.021_b0035) 1990; 47 Philip (10.1016/j.expthermflusci.2018.07.021_b0200) 1996; 35 Muralidhar (10.1016/j.expthermflusci.2018.07.021_b0205) 2001; 12 Paolucci (10.1016/j.expthermflusci.2018.07.021_b0030) 1989; 201 Kemao (10.1016/j.expthermflusci.2018.07.021_b0185) 2004; 43 Briggs (10.1016/j.expthermflusci.2018.07.021_b0065) 1985; 107 Srivastava (10.1016/j.expthermflusci.2018.07.021_b0165) 2009; 311 Choudhury (10.1016/j.expthermflusci.2018.07.021_b0180) 2016; 23 |
References_xml | – volume: 47 start-page: 195 year: 1990 end-page: 220 ident: b0035 article-title: On the stability of the natural convection flow in a square cavity heated from side publication-title: Appl. Sci. Res. – volume: 312 start-page: 2254 year: 2010 end-page: 2262 ident: b0160 article-title: Fourier analysis based phase shift interferometric tomography for three-dimensional reconstruction of concentration field around a growing crystal publication-title: J. Cryst. Growth – volume: 107 start-page: 850 year: 1985 end-page: 854 ident: b0065 article-title: Two-dimensional periodic natural convection in a rectangular enclosure of aspect ratio one publication-title: J. Heat Transf. – volume: 388 start-page: 315 year: 1999 end-page: 334 ident: b0105 article-title: Stability of multiple steady states of convection in laterally heated cavity publication-title: J. Fluid Mech. – volume: 13 start-page: 2529 year: 2001 end-page: 2542 ident: b0110 article-title: Linear stability analyses of natural convection in a differentially heated square cavity with conducting horizontal walls publication-title: Phys. Fluids – volume: 38 start-page: 679 year: 2011 end-page: 687 ident: b0120 article-title: Natural convection in an air-filled cavity: Experimental results at large Rayleigh numbers publication-title: Int. Commun. Heat Mass Transf. – volume: 27 start-page: 755 year: 1984 end-page: 772 ident: b0010 article-title: Laminar and turbulent natural convection in an enclosed cavity publication-title: Int. J. Heat Mass Transf. – volume: 52 start-page: 1036 year: 2009 end-page: 1043 ident: b0025 article-title: Laminar natural convection in a square cavity: Low Prandtl numbers and large density differences publication-title: Int. J. Heat Mass Transf. – volume: 23 start-page: 77 year: 1965 end-page: 98 ident: b0080 article-title: Laminar free convection in a vertical slot publication-title: J. Fluid Mech. – volume: 53 start-page: 2331 year: 2014 end-page: 2344 ident: b0170 article-title: Application of the windowed-Fourier-transform-based fringe analysis technique for investigating temperature and concentration fields in fluids publication-title: Appl. Opt. – volume: 41 start-page: 353 year: 2005 end-page: 359 ident: b0145 article-title: Interferometric study of buoyancy-driven convection in a differentially heated circular fluid layer publication-title: Heat Mass Transf. – volume: 18 start-page: 695 year: 1994 end-page: 719 ident: b0015 article-title: Natural convection flow in a square cavity revisited: Laminar and turbulent models with wall functions publication-title: Int. J. Num. Methods Fluids – volume: 35 start-page: 1566 year: 1996 end-page: 1573 ident: b0200 article-title: Ciddor, Refractive index of air: new equations for the visible and near infrared publication-title: Appl. Opt. – volume: 201 start-page: 379 year: 1989 end-page: 410 ident: b0030 article-title: Transition to chaos in a differentially heated vertical cavity publication-title: J. Fluid Mech. – volume: 100 start-page: 65 year: 1980 end-page: 86 ident: b0055 article-title: Unsteady natural convection in a rectangular cavity publication-title: J. Fluid Mech. – volume: 25 start-page: 231 year: 1999 end-page: 255 ident: b0155 article-title: Experimental study of Rayleigh-Bernard convection at intermediate Rayleigh numbers using interferometric tomography publication-title: Fluid Dyn. Res. – volume: 144 start-page: 389 year: 1984 end-page: 401 ident: b0060 article-title: Experiments on transient natural convection in a cavity publication-title: J. Fluid Mech. – volume: 3 start-page: 249 year: 1983 end-page: 264 ident: b0005 article-title: Natural convection in a square cavity: a benchmark numerical solution publication-title: Int. J. Num. Methods Fluids – volume: 359 start-page: 81 year: 1998 end-page: 107 ident: b0100 article-title: From onset of unsteadiness to chaos in a differentially heated square cavity publication-title: J. Fluid Mech. – volume: 311 start-page: 1166 year: 2009 end-page: 1177 ident: b0165 article-title: Reconstruction of time-dependent concentration gradients around a KDP crystal growing from its aqueous solution publication-title: J. Cryst. Growth – volume: 47 start-page: 5408 year: 2008 end-page: 5419 ident: b0195 article-title: Windowed Fourier transform for fringe pattern analysis: theoretical analyses publication-title: Appl. Opt. – volume: 5 start-page: 53 year: 1973 end-page: 66 ident: b0050 article-title: Instabilities in buoyancy-driven boundary-layer flows in a stably stratified medium publication-title: Bound. Lay. Meteorol. – volume: 23 start-page: 042108 year: 2016 ident: b0180 article-title: Time resolved interferometric study of the plasma plume induced shock wave in confined geometry: two dimensional mapping of the ambient and plasma density publication-title: Phys. Plasmas. – volume: 42 start-page: 469 year: 2004 end-page: 485 ident: b0115 article-title: Imaging of a convective field in a rectangular cavity using interferometry, schlieren, and shadowgraph publication-title: Opt. Lasers Eng. – volume: 111 start-page: 86 year: 1989 end-page: 91 ident: b0070 article-title: Periodic two-dimensional cavity flow: effect of linear horizontal thermal boundary condition publication-title: J. Heat Transf. – volume: 84 start-page: 743 year: 1978 end-page: 768 ident: b0045 article-title: Instability of steady natural convection in a vertical fluid layer publication-title: J. Fluid Mech. – volume: 10 start-page: 481 year: 1990 end-page: 517 ident: b0095 article-title: Spectral simulations of oscillatory convection at low Prandtl number publication-title: Int. J. Num. Methods Fluids – volume: 43 start-page: 2695 year: 2004 end-page: 2702 ident: b0185 article-title: Windowed Fourier transform for fringe pattern analysis publication-title: Appl. Opt. – volume: 34 start-page: 1543 year: 1991 end-page: 1557 ident: b0020 article-title: A numerical study of three dimensionalnatural convection in a differentially heated cubical enclosure publication-title: Int. J. Heat Mass Transf. – volume: 38 start-page: 74 year: 2012 end-page: 84 ident: b0140 article-title: Experimental determination of first bifurcations to unsteady natural convection in a differentially-heated cavity tilted from 0° to 180° publication-title: Exp. Therm. Fluid Sci. – volume: 35 start-page: 775 year: 1969 end-page: 798 ident: b0040 article-title: Instability of a buoyancy-driven system publication-title: J. Fluid Mech. – volume: 100 start-page: 449 year: 1980 end-page: 470 ident: b0130 article-title: Many routes to turbulent convection publication-title: J. Fluid Mech. – volume: 49 start-page: 889 year: 2006 end-page: 904 ident: b0125 article-title: Flow visualization of natural convection in a tall, air-filled vertical cavity publication-title: Int. J. Heat Mass Transf. – volume: 45 start-page: 304 year: 2007 end-page: 317 ident: b0190 article-title: Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations publication-title: Opt. Lasers Eng. – volume: 12 start-page: 256 year: 2001 end-page: 372 ident: b0205 article-title: Temperature field measurement in buoyancy-driven flows using interferometric tomography publication-title: Ann. Rev. Heat Transf. – volume: 84 start-page: 695 year: 1978 end-page: 704 ident: b0075 article-title: Visual observation of natural convective flow in a narrow vertical cavity publication-title: J. Fluid Mech. – volume: 2 start-page: 321 year: 1995 end-page: 333 ident: b0150 article-title: Interferometric study of transient convection in a square cavity publication-title: J. Flow Visualizat. Image Process. – volume: 92 start-page: 1128 year: 2016 end-page: 1142 ident: b0210 article-title: Atul Srivastava, Interferometric study of natural convection in a differentially-heated cavity with Al publication-title: Int. J. Heat Mass Transf. – volume: 49 start-page: 271 year: 1992 end-page: 282 ident: b0090 article-title: Three-dimensional numerical simulations of periodic natural convection in a differentially heated cubical enclosure publication-title: Appl. Sci. Res. – volume: 98 start-page: 67 year: 1975 end-page: 71 ident: b0135 article-title: Experimental investigation of natural convection in inclined rectangular regions of differing aspect ratios publication-title: J. Heat Transf. – volume: 109 start-page: 278 year: 2017 end-page: 292 ident: b0175 article-title: Interferometric study of natural convection heat transfer phenomena around array of heated cylinders publication-title: Int. J. Heat Mass Transf. – volume: 36 start-page: 2927 year: 1993 end-page: 2940 ident: b0085 article-title: Transition to time-periodicity of a natural-convection flow-in a 3D differentially heated cavity publication-title: Int. J. Heat Mass Transf. – volume: 27 start-page: 755 year: 1984 ident: 10.1016/j.expthermflusci.2018.07.021_b0010 article-title: Laminar and turbulent natural convection in an enclosed cavity publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(84)90145-5 – volume: 111 start-page: 86 year: 1989 ident: 10.1016/j.expthermflusci.2018.07.021_b0070 article-title: Periodic two-dimensional cavity flow: effect of linear horizontal thermal boundary condition publication-title: J. Heat Transf. doi: 10.1115/1.3250663 – volume: 10 start-page: 481 year: 1990 ident: 10.1016/j.expthermflusci.2018.07.021_b0095 article-title: Spectral simulations of oscillatory convection at low Prandtl number publication-title: Int. J. Num. Methods Fluids doi: 10.1002/fld.1650100502 – volume: 98 start-page: 67 year: 1975 ident: 10.1016/j.expthermflusci.2018.07.021_b0135 article-title: Experimental investigation of natural convection in inclined rectangular regions of differing aspect ratios publication-title: J. Heat Transf. doi: 10.1115/1.3450472 – volume: 45 start-page: 304 year: 2007 ident: 10.1016/j.expthermflusci.2018.07.021_b0190 article-title: Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2005.10.012 – volume: 92 start-page: 1128 year: 2016 ident: 10.1016/j.expthermflusci.2018.07.021_b0210 article-title: Atul Srivastava, Interferometric study of natural convection in a differentially-heated cavity with Al2O3–water based dilute nanofluids publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.09.074 – volume: 18 start-page: 695 year: 1994 ident: 10.1016/j.expthermflusci.2018.07.021_b0015 article-title: Natural convection flow in a square cavity revisited: Laminar and turbulent models with wall functions publication-title: Int. J. Num. Methods Fluids doi: 10.1002/fld.1650180705 – volume: 49 start-page: 889 year: 2006 ident: 10.1016/j.expthermflusci.2018.07.021_b0125 article-title: Flow visualization of natural convection in a tall, air-filled vertical cavity publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2005.06.045 – volume: 42 start-page: 469 year: 2004 ident: 10.1016/j.expthermflusci.2018.07.021_b0115 article-title: Imaging of a convective field in a rectangular cavity using interferometry, schlieren, and shadowgraph publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2004.03.003 – volume: 47 start-page: 195 year: 1990 ident: 10.1016/j.expthermflusci.2018.07.021_b0035 article-title: On the stability of the natural convection flow in a square cavity heated from side publication-title: Appl. Sci. Res. doi: 10.1007/BF00418051 – volume: 23 start-page: 77 year: 1965 ident: 10.1016/j.expthermflusci.2018.07.021_b0080 article-title: Laminar free convection in a vertical slot publication-title: J. Fluid Mech. doi: 10.1017/S0022112065001246 – volume: 34 start-page: 1543 year: 1991 ident: 10.1016/j.expthermflusci.2018.07.021_b0020 article-title: A numerical study of three dimensionalnatural convection in a differentially heated cubical enclosure publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(91)90295-P – volume: 100 start-page: 65 year: 1980 ident: 10.1016/j.expthermflusci.2018.07.021_b0055 article-title: Unsteady natural convection in a rectangular cavity publication-title: J. Fluid Mech. doi: 10.1017/S0022112080001012 – volume: 107 start-page: 850 year: 1985 ident: 10.1016/j.expthermflusci.2018.07.021_b0065 article-title: Two-dimensional periodic natural convection in a rectangular enclosure of aspect ratio one publication-title: J. Heat Transf. doi: 10.1115/1.3247513 – volume: 35 start-page: 775 year: 1969 ident: 10.1016/j.expthermflusci.2018.07.021_b0040 article-title: Instability of a buoyancy-driven system publication-title: J. Fluid Mech. doi: 10.1017/S0022112069001431 – volume: 52 start-page: 1036 year: 2009 ident: 10.1016/j.expthermflusci.2018.07.021_b0025 article-title: Laminar natural convection in a square cavity: Low Prandtl numbers and large density differences publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2008.07.005 – volume: 23 start-page: 042108 year: 2016 ident: 10.1016/j.expthermflusci.2018.07.021_b0180 article-title: Time resolved interferometric study of the plasma plume induced shock wave in confined geometry: two dimensional mapping of the ambient and plasma density publication-title: Phys. Plasmas. doi: 10.1063/1.4947032 – volume: 47 start-page: 5408 year: 2008 ident: 10.1016/j.expthermflusci.2018.07.021_b0195 article-title: Windowed Fourier transform for fringe pattern analysis: theoretical analyses publication-title: Appl. Opt. doi: 10.1364/AO.47.005408 – volume: 144 start-page: 389 year: 1984 ident: 10.1016/j.expthermflusci.2018.07.021_b0060 article-title: Experiments on transient natural convection in a cavity publication-title: J. Fluid Mech. doi: 10.1017/S0022112084001658 – volume: 311 start-page: 1166 year: 2009 ident: 10.1016/j.expthermflusci.2018.07.021_b0165 article-title: Reconstruction of time-dependent concentration gradients around a KDP crystal growing from its aqueous solution publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2008.12.001 – volume: 13 start-page: 2529 year: 2001 ident: 10.1016/j.expthermflusci.2018.07.021_b0110 article-title: Linear stability analyses of natural convection in a differentially heated square cavity with conducting horizontal walls publication-title: Phys. Fluids doi: 10.1063/1.1388054 – volume: 35 start-page: 1566 year: 1996 ident: 10.1016/j.expthermflusci.2018.07.021_b0200 article-title: Ciddor, Refractive index of air: new equations for the visible and near infrared publication-title: Appl. Opt. doi: 10.1364/AO.35.001566 – volume: 53 start-page: 2331 year: 2014 ident: 10.1016/j.expthermflusci.2018.07.021_b0170 article-title: Application of the windowed-Fourier-transform-based fringe analysis technique for investigating temperature and concentration fields in fluids publication-title: Appl. Opt. doi: 10.1364/AO.53.002331 – volume: 100 start-page: 449 year: 1980 ident: 10.1016/j.expthermflusci.2018.07.021_b0130 article-title: Many routes to turbulent convection publication-title: J. Fluid Mech. doi: 10.1017/S0022112080001243 – volume: 38 start-page: 679 year: 2011 ident: 10.1016/j.expthermflusci.2018.07.021_b0120 article-title: Natural convection in an air-filled cavity: Experimental results at large Rayleigh numbers publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2011.03.019 – volume: 49 start-page: 271 year: 1992 ident: 10.1016/j.expthermflusci.2018.07.021_b0090 article-title: Three-dimensional numerical simulations of periodic natural convection in a differentially heated cubical enclosure publication-title: Appl. Sci. Res. doi: 10.1007/BF00384627 – volume: 109 start-page: 278 year: 2017 ident: 10.1016/j.expthermflusci.2018.07.021_b0175 article-title: Interferometric study of natural convection heat transfer phenomena around array of heated cylinders publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.01.106 – volume: 5 start-page: 53 year: 1973 ident: 10.1016/j.expthermflusci.2018.07.021_b0050 article-title: Instabilities in buoyancy-driven boundary-layer flows in a stably stratified medium publication-title: Bound. Lay. Meteorol. doi: 10.1007/BF02188311 – volume: 84 start-page: 695 year: 1978 ident: 10.1016/j.expthermflusci.2018.07.021_b0075 article-title: Visual observation of natural convective flow in a narrow vertical cavity publication-title: J. Fluid Mech. doi: 10.1017/S0022112078000427 – volume: 2 start-page: 321 year: 1995 ident: 10.1016/j.expthermflusci.2018.07.021_b0150 article-title: Interferometric study of transient convection in a square cavity publication-title: J. Flow Visualizat. Image Process. doi: 10.1615/JFlowVisImageProc.v2.i4.20 – volume: 201 start-page: 379 year: 1989 ident: 10.1016/j.expthermflusci.2018.07.021_b0030 article-title: Transition to chaos in a differentially heated vertical cavity publication-title: J. Fluid Mech. doi: 10.1017/S0022112089000984 – volume: 12 start-page: 256 year: 2001 ident: 10.1016/j.expthermflusci.2018.07.021_b0205 article-title: Temperature field measurement in buoyancy-driven flows using interferometric tomography publication-title: Ann. Rev. Heat Transf. – volume: 3 start-page: 249 year: 1983 ident: 10.1016/j.expthermflusci.2018.07.021_b0005 article-title: Natural convection in a square cavity: a benchmark numerical solution publication-title: Int. J. Num. Methods Fluids doi: 10.1002/fld.1650030305 – volume: 359 start-page: 81 year: 1998 ident: 10.1016/j.expthermflusci.2018.07.021_b0100 article-title: From onset of unsteadiness to chaos in a differentially heated square cavity publication-title: J. Fluid Mech. doi: 10.1017/S0022112097008458 – volume: 388 start-page: 315 year: 1999 ident: 10.1016/j.expthermflusci.2018.07.021_b0105 article-title: Stability of multiple steady states of convection in laterally heated cavity publication-title: J. Fluid Mech. doi: 10.1017/S0022112099004796 – volume: 38 start-page: 74 year: 2012 ident: 10.1016/j.expthermflusci.2018.07.021_b0140 article-title: Experimental determination of first bifurcations to unsteady natural convection in a differentially-heated cavity tilted from 0° to 180° publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2011.11.009 – volume: 25 start-page: 231 year: 1999 ident: 10.1016/j.expthermflusci.2018.07.021_b0155 article-title: Experimental study of Rayleigh-Bernard convection at intermediate Rayleigh numbers using interferometric tomography publication-title: Fluid Dyn. Res. doi: 10.1016/S0169-5983(98)00044-6 – volume: 36 start-page: 2927 year: 1993 ident: 10.1016/j.expthermflusci.2018.07.021_b0085 article-title: Transition to time-periodicity of a natural-convection flow-in a 3D differentially heated cavity publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(93)90111-I – volume: 312 start-page: 2254 year: 2010 ident: 10.1016/j.expthermflusci.2018.07.021_b0160 article-title: Fourier analysis based phase shift interferometric tomography for three-dimensional reconstruction of concentration field around a growing crystal publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2010.04.053 – volume: 84 start-page: 743 year: 1978 ident: 10.1016/j.expthermflusci.2018.07.021_b0045 article-title: Instability of steady natural convection in a vertical fluid layer publication-title: J. Fluid Mech. doi: 10.1017/S0022112078000452 – volume: 41 start-page: 353 year: 2005 ident: 10.1016/j.expthermflusci.2018.07.021_b0145 article-title: Interferometric study of buoyancy-driven convection in a differentially heated circular fluid layer publication-title: Heat Mass Transf. doi: 10.1007/s00231-004-0534-4 – volume: 43 start-page: 2695 year: 2004 ident: 10.1016/j.expthermflusci.2018.07.021_b0185 article-title: Windowed Fourier transform for fringe pattern analysis publication-title: Appl. Opt. doi: 10.1364/AO.43.002695 |
SSID | ssj0008210 |
Score | 2.355598 |
Snippet | •Natural convection in differentially-heated vertical closed cavity.•Whole field temperature and heat transfer rates.•Interferometry-based non-intrusive... Natural convection in closed cavities has been a subject of intensive research in the past. Compared to numerical studies, the number of experimental works... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 71 |
SubjectTerms | Aerodynamics Aspect ratio Computational fluid dynamics Computer simulation Convection Convective heat transfer Corner flows Data processing Differentially-heated closed cavities Experiments Field tests Flow pattern Fluid flow Free convection Heat transfer Heating Holes Interferometry Natural convection Rayleigh number Simulation Smoke Spatial distribution Spectral analysis Temperature distribution Temperature effects Temperature gradients Whole field temperature distribution Working fluids |
Title | Investigation of convective heat transfer phenomena in differentially-heated vertical closed cavity: Whole field experiments and numerical simulations |
URI | https://dx.doi.org/10.1016/j.expthermflusci.2018.07.021 https://www.proquest.com/docview/2122756712 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhgdIeQtIHzaNhDrmqa6-klZQeSggJ25bm0obmJvQybHG8S7wL6aU_o7-3GtnuJoVCoEcZyTKa0Tcj9PkbQo4L5SOPNtJQOEe5DIxqWWgahOdWKq2cxxvdz5eT6RX_eC2uN8jZ8C8M0ip77O8wPaN1_2TUr-ZoMZuNvhRK81LKBK6oascQhzmX6OVvf65pHmqcFQmwM8XeT8jxmuMV7xaYZt1U9SpNgUQvlaU8x-W_wtRfgJ2j0MUO2e7TRzjtvnCXbMTmOXl2T1TwBfl1Tzpj3sC8gswsz7gGCL2wzMlqvAXkd6ECg4VZA0OplLTl6_oHxZ4xQC7XnOwIvp63qe0tFps4gW9YVxcy_w3WVQJasE2AZtVdA9XQzm768mDtS3J1cf71bEr76gvUM6GW1AvrbRG1YsoFXjjuhasYQ3B0XKVTUoVXttFzJSSTlXcVt5rbdFIXoZyIkr0im828ia8J6BQntRRpqIjcFtZWExWCDmqS4FaVbI-8Gxbb-F6aHCtk1GbgoH03D01l0FSmkCaZao-IP6MXnUTHI8e9H-xqHricSdHkkW84HNzB9Fu_NSkXQEl9WY73_3uCA_IUWx195pBsLm9X8U1KgpbuKHv5Edk6_fBpevkbu78PEw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELXQIrX0UNFSVFpofeBqbbK213Z7QAiBlgJ7KQhulr8ibRWyK7IrtX-kv7cex-GjUiWkHpN44shjvxnLL28Q2i-kCyyYQHxhLWHCU6JEoYjnjhkhlbQOTnQvpuPJFft2w2_W0FH_LwzQKjP2d5ie0DrfGebRHC5ms-H3QipWChHBFVTtaMThdVCn4gO0fnh6NpneA7IcJVECaE_A4AXaf6B5hZ8LyLRuq3oVewGul0xqnqPyX5HqL8xOgehkE73OGSQ-7D7yDVoLzVv06pGu4Bb6_Ug9Y97geYUTuTxBGwb0xcuUr4Y7DBQvEGEweNbgvlpKXPV1_YtAy-BxqtgcXYldPW_jtTNQb-ILvobSujhR4PBDoYAWm8bjZtWdBNW4nd3mCmHtO3R1cnx5NCG5AANxlMslcdw4UwQlqbSeFZY5bitKAR8tk3GjVMGpbXBMckFF5WzFjGImbta5L8e8pNto0Myb8B5hFUOlEjya8sBMYUw1lt4rL8cRcWVJd9DXfrC1y-rkUCSj1j0N7Yd-6ioNrtKF0NFVO4jfWy86lY5n2h30ftVPZp2OAeWZb9jtp4POq7_VMR0AVX1Rjj78dwef0cvJ5cW5Pj-dnn1EG_CkY9PsosHybhX2Yk60tJ_ynP8D5uwRxA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+convective+heat+transfer+phenomena+in+differentially-heated+vertical+closed+cavity%3A+Whole+field+experiments+and+numerical+simulations&rft.jtitle=Experimental+thermal+and+fluid+science&rft.au=Kishor%2C+Vimal&rft.au=Singh%2C+Suneet&rft.au=Srivastava%2C+Atul&rft.date=2018-12-01&rft.issn=0894-1777&rft.volume=99&rft.spage=71&rft.epage=84&rft_id=info:doi/10.1016%2Fj.expthermflusci.2018.07.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_expthermflusci_2018_07_021 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1777&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1777&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1777&client=summon |