Shaping the Optimal Repetition Interval for Cathodal Transcranial Direct Current Stimulation (tDCS)
Transcranial DC stimulation (tDCS) is a plasticity-inducing noninvasive brain stimulation tool with various potential therapeutic applications in neurological and psychiatric diseases. Currently, the duration of the aftereffects of stimulation is restricted. For future clinical applications, stimula...
Saved in:
Published in | Journal of neurophysiology Vol. 103; no. 4; pp. 1735 - 1740 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.04.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-3077 1522-1598 1522-1598 |
DOI | 10.1152/jn.00924.2009 |
Cover
Loading…
Abstract | Transcranial DC stimulation (tDCS) is a plasticity-inducing noninvasive brain stimulation tool with various potential therapeutic applications in neurological and psychiatric diseases. Currently, the duration of the aftereffects of stimulation is restricted. For future clinical applications, stimulation protocols are required that produce aftereffects lasting for days or weeks. Options to prolong the effects of tDCS are further prolongation or repetition of tDCS. Nothing is known thus far about optimal protocols in this behalf, although repetitive stimulation is already performed in clinical applications. Thus we explored the effects of different break durations on cathodal tDCS-induced cortical excitability alterations. In 12 subjects, two identical periods of cathodal tDCS (9-min duration; 1 mA) with an interstimulation interval of 0 (no break), 3, or 20 min or 3 or 24 h were performed. The results indicate that doubling stimulation duration without a break prolongs the aftereffects from 60 to 90 min after tDCS. When the second stimulation was performed during the aftereffects of the first, a prolongation and enhancement of tDCS-induced effects for ≤120 min after stimulation was observed. In contrast, when the second stimulation followed the first one after 3 or 24 h, the aftereffects were initially attenuated, or abolished, but afterwards re-established for up to 120 min after tDCS in the 24-h condition. These results suggest that, for prolonging the aftereffects of cathodal tDCS, stimulation interval might be important. |
---|---|
AbstractList | Transcranial DC stimulation (tDCS) is a plasticity-inducing noninvasive brain stimulation tool with various potential therapeutic applications in neurological and psychiatric diseases. Currently, the duration of the aftereffects of stimulation is restricted. For future clinical applications, stimulation protocols are required that produce aftereffects lasting for days or weeks. Options to prolong the effects of tDCS are further prolongation or repetition of tDCS. Nothing is known thus far about optimal protocols in this behalf, although repetitive stimulation is already performed in clinical applications. Thus we explored the effects of different break durations on cathodal tDCS-induced cortical excitability alterations. In 12 subjects, two identical periods of cathodal tDCS (9-min duration; 1 mA) with an interstimulation interval of 0 (no break), 3, or 20 min or 3 or 24 h were performed. The results indicate that doubling stimulation duration without a break prolongs the aftereffects from 60 to 90 min after tDCS. When the second stimulation was performed during the aftereffects of the first, a prolongation and enhancement of tDCS-induced effects for ≤ 120 min after stimulation was observed. In contrast, when the second stimulation followed the first one after 3 or 24 h, the aftereffects were initially attenuated, or abolished, but afterwards re-established for up to 120 min after tDCS in the 24-h condition. These results suggest that, for prolonging the aftereffects of cathodal tDCS, stimulation interval might be important.Transcranial DC stimulation (tDCS) is a plasticity-inducing noninvasive brain stimulation tool with various potential therapeutic applications in neurological and psychiatric diseases. Currently, the duration of the aftereffects of stimulation is restricted. For future clinical applications, stimulation protocols are required that produce aftereffects lasting for days or weeks. Options to prolong the effects of tDCS are further prolongation or repetition of tDCS. Nothing is known thus far about optimal protocols in this behalf, although repetitive stimulation is already performed in clinical applications. Thus we explored the effects of different break durations on cathodal tDCS-induced cortical excitability alterations. In 12 subjects, two identical periods of cathodal tDCS (9-min duration; 1 mA) with an interstimulation interval of 0 (no break), 3, or 20 min or 3 or 24 h were performed. The results indicate that doubling stimulation duration without a break prolongs the aftereffects from 60 to 90 min after tDCS. When the second stimulation was performed during the aftereffects of the first, a prolongation and enhancement of tDCS-induced effects for ≤ 120 min after stimulation was observed. In contrast, when the second stimulation followed the first one after 3 or 24 h, the aftereffects were initially attenuated, or abolished, but afterwards re-established for up to 120 min after tDCS in the 24-h condition. These results suggest that, for prolonging the aftereffects of cathodal tDCS, stimulation interval might be important. Transcranial DC stimulation (tDCS) is a plasticity-inducing noninvasive brain stimulation tool with various potential therapeutic applications in neurological and psychiatric diseases. Currently, the duration of the aftereffects of stimulation is restricted. For future clinical applications, stimulation protocols are required that produce aftereffects lasting for days or weeks. Options to prolong the effects of tDCS are further prolongation or repetition of tDCS. Nothing is known thus far about optimal protocols in this behalf, although repetitive stimulation is already performed in clinical applications. Thus we explored the effects of different break durations on cathodal tDCS-induced cortical excitability alterations. In 12 subjects, two identical periods of cathodal tDCS (9-min duration; 1 mA) with an interstimulation interval of 0 (no break), 3, or 20 min or 3 or 24 h were performed. The results indicate that doubling stimulation duration without a break prolongs the aftereffects from 60 to 90 min after tDCS. When the second stimulation was performed during the aftereffects of the first, a prolongation and enhancement of tDCS-induced effects for ≤120 min after stimulation was observed. In contrast, when the second stimulation followed the first one after 3 or 24 h, the aftereffects were initially attenuated, or abolished, but afterwards re-established for up to 120 min after tDCS in the 24-h condition. These results suggest that, for prolonging the aftereffects of cathodal tDCS, stimulation interval might be important. Transcranial DC stimulation (tDCS) is a plasticity-inducing noninvasive brain stimulation tool with various potential therapeutic applications in neurological and psychiatric diseases. Currently, the duration of the aftereffects of stimulation is restricted. For future clinical applications, stimulation protocols are required that produce aftereffects lasting for days or weeks. Options to prolong the effects of tDCS are further prolongation or repetition of tDCS. Nothing is known thus far about optimal protocols in this behalf, although repetitive stimulation is already performed in clinical applications. Thus we explored the effects of different break durations on cathodal tDCS-induced cortical excitability alterations. In 12 subjects, two identical periods of cathodal tDCS (9-min duration; 1 mA) with an interstimulation interval of 0 (no break), 3, or 20 min or 3 or 24 h were performed. The results indicate that doubling stimulation duration without a break prolongs the aftereffects from 60 to 90 min after tDCS. When the second stimulation was performed during the aftereffects of the first, a prolongation and enhancement of tDCS-induced effects for ≤ 120 min after stimulation was observed. In contrast, when the second stimulation followed the first one after 3 or 24 h, the aftereffects were initially attenuated, or abolished, but afterwards re-established for up to 120 min after tDCS in the 24-h condition. These results suggest that, for prolonging the aftereffects of cathodal tDCS, stimulation interval might be important. |
Author | Paulus, Walter Kuo, Min-Fang Monte-Silva, Katia Liebetanz, David Nitsche, Michael A. |
Author_xml | – sequence: 1 givenname: Katia surname: Monte-Silva fullname: Monte-Silva, Katia organization: Department of Clinical Neurophysiology, Georg-August-University, Göttingen, Germany – sequence: 2 givenname: Min-Fang surname: Kuo fullname: Kuo, Min-Fang organization: Department of Clinical Neurophysiology, Georg-August-University, Göttingen, Germany – sequence: 3 givenname: David surname: Liebetanz fullname: Liebetanz, David organization: Department of Clinical Neurophysiology, Georg-August-University, Göttingen, Germany – sequence: 4 givenname: Walter surname: Paulus fullname: Paulus, Walter organization: Department of Clinical Neurophysiology, Georg-August-University, Göttingen, Germany – sequence: 5 givenname: Michael A. surname: Nitsche fullname: Nitsche, Michael A. organization: Department of Clinical Neurophysiology, Georg-August-University, Göttingen, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20107115$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kElPwzAQhS1UREvhyBXlBhxSHCdukiMKq1SpEi1ny_FCXaVOsB0k_j3TBQ5IXGbT90Yz7xQNbGsVQhcJniQJJbdrO8G4JNmEQDpCI5iROKFlMUAjjKFOcZ4P0an3a4xxTjE5QUOCE5yDfITEYsU7Y9-jsFLRvAtmw5voVXUqmGBaG73YoNwnzHTrooqHVSuhWTpuvYBgoLk3TokQVb1zyoZoATv6hu_U1-G-WtycoWPNG6_OD3mM3h4fltVzPJs_vVR3s1iktAixoFOpJU5JXlNJaoGF0HVWJ1wQkWekLCQvp5TD5VrwkhdKQIm1LCXIeanTMbra7-1c-9ErH9jGeKGahlvV9p7ltCgAzTIgLw9kX2-UZJ2Dv90X-_EFgHgPCNd675T-RRLMtr6ztWU739nWd-DTP7wwYedBcNw0_6i-AXcHhrY |
CitedBy_id | crossref_primary_10_1007_s00702_012_0845_4 crossref_primary_10_1152_jn_00148_2017 crossref_primary_10_1038_s41598_020_68825_2 crossref_primary_10_1016_j_clinph_2015_03_013 crossref_primary_10_1016_j_brs_2018_10_003 crossref_primary_10_1016_j_brs_2011_04_006 crossref_primary_10_1016_j_pnpbp_2022_110672 crossref_primary_10_1038_s41598_021_95407_7 crossref_primary_10_1080_17434440_2017_1352470 crossref_primary_10_1016_j_clinph_2013_04_188 crossref_primary_10_1016_j_neuroimage_2013_05_117 crossref_primary_10_1080_10790268_2017_1361562 crossref_primary_10_3389_fnbeh_2023_1061980 crossref_primary_10_3390_brainsci10110875 crossref_primary_10_1016_j_brs_2014_10_001 crossref_primary_10_1162_jocn_a_00993 crossref_primary_10_1155_2014_837141 crossref_primary_10_1111_ner_13163 crossref_primary_10_1016_j_clinph_2015_11_012 crossref_primary_10_1016_j_seizure_2021_01_020 crossref_primary_10_3390_brainsci13050760 crossref_primary_10_1007_s00221_020_05827_6 crossref_primary_10_1016_j_neubiorev_2017_09_029 crossref_primary_10_1136_bmjopen_2016_015669 crossref_primary_10_3389_fnbeh_2014_00226 crossref_primary_10_1111_ejn_13229 crossref_primary_10_1038_s41598_020_59662_4 crossref_primary_10_1016_j_clinph_2014_01_010 crossref_primary_10_1016_j_neulet_2019_05_025 crossref_primary_10_1111_jnp_12231 crossref_primary_10_1016_j_pnpbp_2010_09_010 crossref_primary_10_3389_fnins_2018_00443 crossref_primary_10_1016_j_cortex_2014_08_015 crossref_primary_10_1080_14737175_2016_1209410 crossref_primary_10_1371_journal_pone_0131020 crossref_primary_10_1007_s00702_022_02507_3 crossref_primary_10_1007_s40473_017_0134_5 crossref_primary_10_1016_j_neuropsychologia_2014_11_021 crossref_primary_10_1080_00207454_2016_1216415 crossref_primary_10_1111_ejn_13238 crossref_primary_10_1080_09602011_2011_557292 crossref_primary_10_1016_j_cct_2010_09_007 crossref_primary_10_1007_s10309_023_00599_9 crossref_primary_10_1371_journal_pone_0122434 crossref_primary_10_1016_j_yebeh_2022_108876 crossref_primary_10_1016_j_brs_2021_05_006 crossref_primary_10_1016_j_neuropsychologia_2018_09_009 crossref_primary_10_1016_j_neuropsychologia_2017_01_028 crossref_primary_10_1113_jphysiol_2012_244764 crossref_primary_10_1016_j_brs_2014_09_008 crossref_primary_10_1016_j_brs_2010_09_008 crossref_primary_10_1016_j_brs_2014_11_011 crossref_primary_10_3389_fresc_2023_1250579 crossref_primary_10_1016_j_brs_2013_01_009 crossref_primary_10_1002_brb3_2491 crossref_primary_10_33069_cim_2022_0030 crossref_primary_10_3390_brainsci8020037 crossref_primary_10_1113_JP279340 crossref_primary_10_1002_brb3_1845 crossref_primary_10_3109_15622975_2013_876514 crossref_primary_10_14814_phy2_12884 crossref_primary_10_1515_revneuro_2016_0045 crossref_primary_10_1113_jphysiol_2012_238519 crossref_primary_10_1162_jocn_a_01839 crossref_primary_10_3390_brainsci11070948 crossref_primary_10_1002_hbm_24901 crossref_primary_10_1016_j_brs_2013_03_001 crossref_primary_10_1097_TGR_0000000000000459 crossref_primary_10_1016_j_brs_2021_01_017 crossref_primary_10_1111_ejn_12840 crossref_primary_10_1038_npp_2016_65 crossref_primary_10_1016_j_ajp_2021_102625 crossref_primary_10_3389_fnhum_2019_00328 crossref_primary_10_1097_YCT_0000000000000525 crossref_primary_10_3390_ijerph18073678 crossref_primary_10_1016_j_neuroscience_2013_10_048 crossref_primary_10_1016_j_neubiorev_2020_09_005 crossref_primary_10_1177_0883073813492385 crossref_primary_10_1002_ana_25822 crossref_primary_10_1016_j_brs_2012_01_006 crossref_primary_10_1007_s00221_018_5200_z crossref_primary_10_1016_j_scispo_2019_01_005 crossref_primary_10_2147_PRBM_S287143 crossref_primary_10_3389_fnbeh_2018_00194 crossref_primary_10_3389_fncel_2016_00072 crossref_primary_10_1016_j_pnpbp_2022_110521 crossref_primary_10_1159_000501227 crossref_primary_10_3390_cells12081193 crossref_primary_10_1113_JP279409 crossref_primary_10_1515_mr_2022_0010 crossref_primary_10_1016_j_neurom_2022_12_014 crossref_primary_10_1371_journal_pone_0222057 crossref_primary_10_3389_fnhum_2017_00159 crossref_primary_10_1016_j_seizure_2024_03_001 crossref_primary_10_1016_j_euroneuro_2014_03_006 crossref_primary_10_1016_j_psc_2023_02_005 crossref_primary_10_1016_j_schres_2017_08_047 crossref_primary_10_1111_ejn_12623 crossref_primary_10_1038_s41598_023_48070_z crossref_primary_10_1152_jn_00630_2015 crossref_primary_10_1142_S0129065717500599 crossref_primary_10_1016_j_neuroimage_2013_05_098 crossref_primary_10_1016_j_smrv_2015_12_005 crossref_primary_10_1016_j_brs_2011_08_005 crossref_primary_10_1111_j_1460_9568_2011_07924_x crossref_primary_10_1113_jphysiol_2012_249730 crossref_primary_10_3389_fnins_2022_909421 crossref_primary_10_1007_s12264_020_00501_x crossref_primary_10_1113_JP276276 crossref_primary_10_1177_1545968314562649 crossref_primary_10_1111_jnp_12091 crossref_primary_10_1016_j_cortex_2021_02_024 crossref_primary_10_1177_0883073815575369 crossref_primary_10_1111_ejn_13043 crossref_primary_10_1152_jn_00608_2009 crossref_primary_10_3389_fnhum_2016_00030 crossref_primary_10_3389_fnhum_2019_00114 crossref_primary_10_3390_bioengineering9090441 crossref_primary_10_1016_j_brs_2011_03_002 crossref_primary_10_1111_ner_12167 crossref_primary_10_1177_1545968311413906 crossref_primary_10_1016_j_brs_2012_12_005 crossref_primary_10_1177_0883073812460092 crossref_primary_10_3390_app10072616 crossref_primary_10_1002_da_22578 crossref_primary_10_1016_j_brs_2016_12_013 crossref_primary_10_1016_j_clinph_2024_12_006 crossref_primary_10_1016_j_brs_2011_10_001 crossref_primary_10_1016_j_neuropsychologia_2015_02_002 crossref_primary_10_1016_j_yebeh_2012_10_018 crossref_primary_10_1016_j_neulet_2016_05_010 crossref_primary_10_3389_fnins_2017_00641 crossref_primary_10_1016_j_neuropsychologia_2015_06_021 crossref_primary_10_3389_fnbeh_2019_00083 crossref_primary_10_1016_j_clinph_2021_03_048 crossref_primary_10_1111_ene_13363 crossref_primary_10_3389_fnhum_2016_00643 crossref_primary_10_3389_fnins_2022_998875 crossref_primary_10_3390_jcm11030782 crossref_primary_10_3389_fneur_2016_00021 crossref_primary_10_1113_jphysiol_2013_257063 crossref_primary_10_1016_j_cortex_2019_04_016 crossref_primary_10_1177_0333102410390394 crossref_primary_10_1017_S1461145712000041 crossref_primary_10_1177_1073858414526645 crossref_primary_10_1016_j_brainresbull_2020_12_007 crossref_primary_10_1016_j_neuropsychologia_2019_02_022 crossref_primary_10_1111_ejn_12307 crossref_primary_10_1179_1743132813Y_0000000248 crossref_primary_10_1007_s41465_017_0007_6 crossref_primary_10_1038_s41598_019_39262_7 crossref_primary_10_1080_17588928_2021_1877648 crossref_primary_10_1589_jpts_29_2138 crossref_primary_10_3389_fnhum_2016_00199 crossref_primary_10_3758_s13415_017_0541_9 crossref_primary_10_1088_1741_2552_ac857d crossref_primary_10_1016_j_neuropsychologia_2015_02_028 crossref_primary_10_3389_fnins_2020_00495 crossref_primary_10_1016_j_brs_2019_09_006 crossref_primary_10_1016_j_pnpbp_2017_05_021 crossref_primary_10_1016_j_jht_2014_11_002 crossref_primary_10_1016_j_cognition_2015_08_010 crossref_primary_10_1016_j_neuropsychologia_2013_03_013 crossref_primary_10_1016_j_neubiorev_2017_06_015 crossref_primary_10_3390_brainsci14050477 crossref_primary_10_1080_09602011_2020_1805335 crossref_primary_10_1016_j_brs_2012_04_011 crossref_primary_10_1111_ejn_15389 crossref_primary_10_1142_S0129065717500265 crossref_primary_10_1038_srep37575 crossref_primary_10_1007_s11154_021_09697_3 crossref_primary_10_1097_YCT_0000000000000510 crossref_primary_10_1016_j_neuropsychologia_2016_12_002 crossref_primary_10_5812_archneurosci_24311 crossref_primary_10_3389_fnhum_2019_00157 crossref_primary_10_1177_1550059412444978 crossref_primary_10_1007_s00221_016_4667_8 crossref_primary_10_1007_s10548_024_01045_3 crossref_primary_10_1097_YCT_0000000000000518 crossref_primary_10_1177_1550059412444973 crossref_primary_10_1186_s42494_022_00086_0 crossref_primary_10_1371_journal_pone_0236061 crossref_primary_10_1016_j_cortex_2019_11_001 crossref_primary_10_1016_j_brs_2016_11_001 crossref_primary_10_1016_j_jns_2022_120521 crossref_primary_10_1016_j_apmr_2017_05_025 crossref_primary_10_1016_j_cortex_2014_07_011 crossref_primary_10_3389_fnhum_2022_952602 crossref_primary_10_3233_RNN_170757 crossref_primary_10_1016_j_brs_2017_01_003 crossref_primary_10_1016_j_neuropsychologia_2020_107555 crossref_primary_10_1177_1545968312469837 crossref_primary_10_1080_09540261_2017_1286299 crossref_primary_10_1080_02687038_2011_616925 crossref_primary_10_1093_cercor_bhaa116 crossref_primary_10_1177_21677026211009508 crossref_primary_10_1016_j_brs_2019_01_001 crossref_primary_10_1016_j_neuroimage_2013_06_076 crossref_primary_10_3390_brainsci11050662 crossref_primary_10_1016_j_cortex_2018_09_010 crossref_primary_10_1111_ner_12786 crossref_primary_10_1113_JP272738 crossref_primary_10_1016_j_brs_2011_11_004 crossref_primary_10_3389_fnhum_2021_621358 crossref_primary_10_1002_epi4_12020 crossref_primary_10_1016_j_clinph_2022_02_023 crossref_primary_10_1155_2011_105927 crossref_primary_10_1016_j_neurom_2022_10_044 crossref_primary_10_1515_revneuro_2017_0111 crossref_primary_10_1007_s10309_023_00559_3 crossref_primary_10_1016_j_eurpsy_2015_11_005 crossref_primary_10_1016_j_neubiorev_2016_05_001 crossref_primary_10_1093_ijnp_pyaa051 crossref_primary_10_1007_s00221_024_06874_z crossref_primary_10_1093_brain_awu343 crossref_primary_10_3389_fpsyt_2019_00730 crossref_primary_10_1152_jn_00171_2011 crossref_primary_10_1007_s00221_021_06229_y crossref_primary_10_3389_fpsyt_2022_874128 crossref_primary_10_1016_j_brs_2018_10_010 crossref_primary_10_1016_j_archger_2020_104063 crossref_primary_10_1016_j_brs_2016_11_010 crossref_primary_10_3390_brainsci12020200 crossref_primary_10_1016_j_clinph_2016_10_087 crossref_primary_10_1111_ejn_14651 crossref_primary_10_1007_s00221_019_05525_y crossref_primary_10_1016_j_isci_2021_103683 crossref_primary_10_1155_2020_4795267 crossref_primary_10_1186_1745_6215_14_331 crossref_primary_10_1016_j_brs_2016_05_011 crossref_primary_10_1113_JP278857 |
Cites_doi | 10.1093/brain/awh369 10.1111/j.1460-9568.2007.05603.x 10.1002/ana.20950 10.1113/jphysiol.2003.049916 10.1523/JNEUROSCI.5316-03.2004 10.1038/nrn1327 10.1016/S1388-2457(02)00412-1 10.1162/jocn.2008.20106 10.1097/01.wnr.0000177010.44602.5e 10.1212/WNL.57.10.1899 10.1002/art.22195 10.1038/81453 10.1111/j.1460-9568.2006.05032.x 10.1016/j.biopsych.2004.07.017 10.1093/cercor/bhn032 10.1037/1076-898X.14.2.101 10.1523/JNEUROSCI.23-34-10867.2003 10.1146/annurev.neuro.28.061604.135751 10.1111/j.1468-2982.2007.01337.x 10.1002/da.20201 10.1242/jeb.205.10.1429 10.1016/S0301-0082(97)00018-X 10.1093/brain/awf238 10.1038/220382a0 10.1113/jphysiol.1964.sp007425 10.1097/WNR.0b013e3282f2adfd 10.1016/j.ejpain.2008.04.001 10.1016/j.brainres.2008.01.097 10.1101/lm.239406 10.1111/j.1469-7793.2000.t01-1-00633.x 10.1007/s00221-007-1149-z 10.1111/j.1528-1167.2006.00539.x 10.1016/j.clinph.2009.01.022 10.1017/S1461145707007833 10.1016/j.jad.2009.02.015 10.1523/JNEUROSCI.5348-06.2007 10.1001/archneur.65.12.1571 10.1016/j.brainres.2005.02.028 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1152/jn.00924.2009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1522-1598 |
EndPage | 1740 |
ExternalDocumentID | 20107115 10_1152_jn_00924_2009 |
Genre | Clinical Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 .GJ 0VX 18M 1CY 1Z7 29L 2WC 39C 3O- 4.4 41~ 53G 5GY 5VS 8M5 AAYXX ABCQX ABHWK ABIVO ABJNI ABKWE ACGFO ACGFS ACNCT ADBBV ADFNX ADHGD ADIYS AENEX AETEA AFFNX AFOSN AI. AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW C1A CITATION CS3 DIK DU5 E3Z EBS EJD EMOBN F5P H13 H~9 ITBOX KQ8 L7B MVM NEJ OHT OK1 P2P RAP RHI RPL RPRKH SJN TR2 UHB UPT UQL VH1 W8F WH7 WOQ WOW X7M XJT XOL XSW YBH YQT YSK ZGI ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c358t-c56dfd0327b5d2bc0ccfb4b1ac2c74298da965a107fca9a8ec1070fd9d358a9f3 |
ISSN | 0022-3077 1522-1598 |
IngestDate | Fri Jul 11 06:57:10 EDT 2025 Mon Jul 21 05:38:10 EDT 2025 Thu Apr 24 23:03:41 EDT 2025 Tue Jul 01 04:08:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c358t-c56dfd0327b5d2bc0ccfb4b1ac2c74298da965a107fca9a8ec1070fd9d358a9f3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 20107115 |
PQID | 758835844 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_758835844 pubmed_primary_20107115 crossref_primary_10_1152_jn_00924_2009 crossref_citationtrail_10_1152_jn_00924_2009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-04-00 2010-Apr 20100401 |
PublicationDateYYYYMMDD | 2010-04-01 |
PublicationDate_xml | – month: 04 year: 2010 text: 2010-04-00 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 2010 |
References | B20 B21 B22 B23 B24 B25 B26 B28 B29 Matsumoto Y (B27) 2002; 205 B30 B31 B10 B32 B11 B33 B12 B34 B13 B35 B14 B36 B15 B37 B16 B38 B17 B39 B18 B19 B1 B2 B3 B4 B5 Boggio PS (B6) 2007; 25 B7 B8 B9 |
References_xml | – volume: 25 start-page: 123 year: 2007 ident: B6 publication-title: Restor Neurol Neurosci – ident: B18 doi: 10.1093/brain/awh369 – ident: B28 doi: 10.1111/j.1460-9568.2007.05603.x – ident: B14 doi: 10.1002/ana.20950 – ident: B29 doi: 10.1113/jphysiol.2003.049916 – ident: B38 doi: 10.1523/JNEUROSCI.5316-03.2004 – ident: B39 doi: 10.1038/nrn1327 – ident: B30 doi: 10.1016/S1388-2457(02)00412-1 – ident: B5 doi: 10.1162/jocn.2008.20106 – ident: B11 doi: 10.1097/01.wnr.0000177010.44602.5e – ident: B32 doi: 10.1212/WNL.57.10.1899 – ident: B13 doi: 10.1002/art.22195 – ident: B1 doi: 10.1038/81453 – ident: B21 doi: 10.1111/j.1460-9568.2006.05032.x – ident: B22 doi: 10.1016/j.biopsych.2004.07.017 – ident: B3 doi: 10.1093/cercor/bhn032 – ident: B35 doi: 10.1037/1076-898X.14.2.101 – ident: B19 doi: 10.1523/JNEUROSCI.23-34-10867.2003 – ident: B9 doi: 10.1146/annurev.neuro.28.061604.135751 – ident: B8 doi: 10.1111/j.1468-2982.2007.01337.x – ident: B12 doi: 10.1002/da.20201 – volume: 205 start-page: 1429 year: 2002 ident: B27 publication-title: Exp Biol doi: 10.1242/jeb.205.10.1429 – ident: B2 doi: 10.1016/S0301-0082(97)00018-X – ident: B26 doi: 10.1093/brain/awf238 – ident: B16 doi: 10.1038/220382a0 – ident: B4 doi: 10.1113/jphysiol.1964.sp007425 – ident: B34 doi: 10.1097/WNR.0b013e3282f2adfd – ident: B20 doi: 10.1016/j.ejpain.2008.04.001 – ident: B23 doi: 10.1016/j.brainres.2008.01.097 – ident: B17 doi: 10.1101/lm.239406 – ident: B31 doi: 10.1111/j.1469-7793.2000.t01-1-00633.x – ident: B15 doi: 10.1007/s00221-007-1149-z – ident: B24 doi: 10.1111/j.1528-1167.2006.00539.x – ident: B25 doi: 10.1016/j.clinph.2009.01.022 – ident: B7 doi: 10.1017/S1461145707007833 – ident: B10 doi: 10.1016/j.jad.2009.02.015 – ident: B33 doi: 10.1523/JNEUROSCI.5348-06.2007 – ident: B36 doi: 10.1001/archneur.65.12.1571 – ident: B37 doi: 10.1016/j.brainres.2005.02.028 |
SSID | ssj0007502 |
Score | 2.4756439 |
Snippet | Transcranial DC stimulation (tDCS) is a plasticity-inducing noninvasive brain stimulation tool with various potential therapeutic applications in neurological... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1735 |
SubjectTerms | Adult Deep Brain Stimulation - methods Electric Stimulation Therapy Electrodes Evoked Potentials, Motor - physiology Female Humans Male Motor Cortex - physiology Neuronal Plasticity - physiology Time Factors |
Title | Shaping the Optimal Repetition Interval for Cathodal Transcranial Direct Current Stimulation (tDCS) |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20107115 https://www.proquest.com/docview/758835844 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZW5cIFAeWxUJAPqAKBSx72JjlWhaqi4qVtpd4ixw91q21S0aQS_BZ-LONHnGzZSoWLFVmxo935PJ4Zz3xG6JVgsxyQw4kQuSZUKEYKFUtS8ZgXPBUMlpTJtvgyOzimn07YyWTye5S11LXVjvi1tq7kf6QKfSBXUyX7D5INk0IHPIN8oQUJQ3srGc9PeSh3-gpr_9wy5V8oR0Dkon1XrkLRlvo10lTjm91JQLMIGu9tz9I0hzn8fV7G9Gw_7M37UMHfBqylwrSRkZXQ_GfDd0Xmi-WVrzZrF0H1H3aNy9WvyT73e6bJBlqAkI2Vei3L3pxsdcvOJQLac_1xkMKcr4fcllHRQORvbFFe10IfWFP5ijKO0hHq6Ei1xpnjNfHbNHhS0fotgBlK2bN6x9BJ2ahZMex1_fn-tS0wJCZal4gl5Vld2uGlqw69k4ATYu7HOPw-cNGDrTVw0cNP6xlcWfJ-5eurFs8Nbow1Z47uo3tejHjXgeoBmqj6IdrcrXnbnP_E2_hbkOsmEh5nGHCGPc7wgDPc4wwDznCPMzzGGXY4wx5neIQz_Nqg7M0jdLz_8WjvgPjLOYhIWd4SWORSyyhNsorJpBKRELqiVcxFIjIwcnLJixnjcZRpAas-VwIeIy0LCcN5odPHaKNuavUUYZFzncYU5qUpzXQFA3lRyExHsyLjSk3Ru_4PLIVnrjcXqCzLteKaou3w-oWjbLnpRdxLowSlak7KeK2a7rIEJxo8k5zSKXripBRmMujOYK5nt_3Kc3R3WBFbaKP90akXYMi21UuLpz9KxJ7s |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shaping+the+Optimal+Repetition+Interval+for+Cathodal+Transcranial+Direct+Current+Stimulation+%28tDCS%29&rft.jtitle=Journal+of+neurophysiology&rft.au=Monte-Silva%2C+Katia&rft.au=Kuo%2C+Min-Fang&rft.au=Liebetanz%2C+David&rft.au=Paulus%2C+Walter&rft.date=2010-04-01&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=103&rft.issue=4&rft.spage=1735&rft.epage=1740&rft_id=info:doi/10.1152%2Fjn.00924.2009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_jn_00924_2009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |