Shaping the Optimal Repetition Interval for Cathodal Transcranial Direct Current Stimulation (tDCS)

Transcranial DC stimulation (tDCS) is a plasticity-inducing noninvasive brain stimulation tool with various potential therapeutic applications in neurological and psychiatric diseases. Currently, the duration of the aftereffects of stimulation is restricted. For future clinical applications, stimula...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 103; no. 4; pp. 1735 - 1740
Main Authors Monte-Silva, Katia, Kuo, Min-Fang, Liebetanz, David, Paulus, Walter, Nitsche, Michael A.
Format Journal Article
LanguageEnglish
Published United States 01.04.2010
Subjects
Online AccessGet full text
ISSN0022-3077
1522-1598
1522-1598
DOI10.1152/jn.00924.2009

Cover

Loading…
Abstract Transcranial DC stimulation (tDCS) is a plasticity-inducing noninvasive brain stimulation tool with various potential therapeutic applications in neurological and psychiatric diseases. Currently, the duration of the aftereffects of stimulation is restricted. For future clinical applications, stimulation protocols are required that produce aftereffects lasting for days or weeks. Options to prolong the effects of tDCS are further prolongation or repetition of tDCS. Nothing is known thus far about optimal protocols in this behalf, although repetitive stimulation is already performed in clinical applications. Thus we explored the effects of different break durations on cathodal tDCS-induced cortical excitability alterations. In 12 subjects, two identical periods of cathodal tDCS (9-min duration; 1 mA) with an interstimulation interval of 0 (no break), 3, or 20 min or 3 or 24 h were performed. The results indicate that doubling stimulation duration without a break prolongs the aftereffects from 60 to 90 min after tDCS. When the second stimulation was performed during the aftereffects of the first, a prolongation and enhancement of tDCS-induced effects for ≤120 min after stimulation was observed. In contrast, when the second stimulation followed the first one after 3 or 24 h, the aftereffects were initially attenuated, or abolished, but afterwards re-established for up to 120 min after tDCS in the 24-h condition. These results suggest that, for prolonging the aftereffects of cathodal tDCS, stimulation interval might be important.
AbstractList Transcranial DC stimulation (tDCS) is a plasticity-inducing noninvasive brain stimulation tool with various potential therapeutic applications in neurological and psychiatric diseases. Currently, the duration of the aftereffects of stimulation is restricted. For future clinical applications, stimulation protocols are required that produce aftereffects lasting for days or weeks. Options to prolong the effects of tDCS are further prolongation or repetition of tDCS. Nothing is known thus far about optimal protocols in this behalf, although repetitive stimulation is already performed in clinical applications. Thus we explored the effects of different break durations on cathodal tDCS-induced cortical excitability alterations. In 12 subjects, two identical periods of cathodal tDCS (9-min duration; 1 mA) with an interstimulation interval of 0 (no break), 3, or 20 min or 3 or 24 h were performed. The results indicate that doubling stimulation duration without a break prolongs the aftereffects from 60 to 90 min after tDCS. When the second stimulation was performed during the aftereffects of the first, a prolongation and enhancement of tDCS-induced effects for ≤ 120 min after stimulation was observed. In contrast, when the second stimulation followed the first one after 3 or 24 h, the aftereffects were initially attenuated, or abolished, but afterwards re-established for up to 120 min after tDCS in the 24-h condition. These results suggest that, for prolonging the aftereffects of cathodal tDCS, stimulation interval might be important.Transcranial DC stimulation (tDCS) is a plasticity-inducing noninvasive brain stimulation tool with various potential therapeutic applications in neurological and psychiatric diseases. Currently, the duration of the aftereffects of stimulation is restricted. For future clinical applications, stimulation protocols are required that produce aftereffects lasting for days or weeks. Options to prolong the effects of tDCS are further prolongation or repetition of tDCS. Nothing is known thus far about optimal protocols in this behalf, although repetitive stimulation is already performed in clinical applications. Thus we explored the effects of different break durations on cathodal tDCS-induced cortical excitability alterations. In 12 subjects, two identical periods of cathodal tDCS (9-min duration; 1 mA) with an interstimulation interval of 0 (no break), 3, or 20 min or 3 or 24 h were performed. The results indicate that doubling stimulation duration without a break prolongs the aftereffects from 60 to 90 min after tDCS. When the second stimulation was performed during the aftereffects of the first, a prolongation and enhancement of tDCS-induced effects for ≤ 120 min after stimulation was observed. In contrast, when the second stimulation followed the first one after 3 or 24 h, the aftereffects were initially attenuated, or abolished, but afterwards re-established for up to 120 min after tDCS in the 24-h condition. These results suggest that, for prolonging the aftereffects of cathodal tDCS, stimulation interval might be important.
Transcranial DC stimulation (tDCS) is a plasticity-inducing noninvasive brain stimulation tool with various potential therapeutic applications in neurological and psychiatric diseases. Currently, the duration of the aftereffects of stimulation is restricted. For future clinical applications, stimulation protocols are required that produce aftereffects lasting for days or weeks. Options to prolong the effects of tDCS are further prolongation or repetition of tDCS. Nothing is known thus far about optimal protocols in this behalf, although repetitive stimulation is already performed in clinical applications. Thus we explored the effects of different break durations on cathodal tDCS-induced cortical excitability alterations. In 12 subjects, two identical periods of cathodal tDCS (9-min duration; 1 mA) with an interstimulation interval of 0 (no break), 3, or 20 min or 3 or 24 h were performed. The results indicate that doubling stimulation duration without a break prolongs the aftereffects from 60 to 90 min after tDCS. When the second stimulation was performed during the aftereffects of the first, a prolongation and enhancement of tDCS-induced effects for ≤120 min after stimulation was observed. In contrast, when the second stimulation followed the first one after 3 or 24 h, the aftereffects were initially attenuated, or abolished, but afterwards re-established for up to 120 min after tDCS in the 24-h condition. These results suggest that, for prolonging the aftereffects of cathodal tDCS, stimulation interval might be important.
Transcranial DC stimulation (tDCS) is a plasticity-inducing noninvasive brain stimulation tool with various potential therapeutic applications in neurological and psychiatric diseases. Currently, the duration of the aftereffects of stimulation is restricted. For future clinical applications, stimulation protocols are required that produce aftereffects lasting for days or weeks. Options to prolong the effects of tDCS are further prolongation or repetition of tDCS. Nothing is known thus far about optimal protocols in this behalf, although repetitive stimulation is already performed in clinical applications. Thus we explored the effects of different break durations on cathodal tDCS-induced cortical excitability alterations. In 12 subjects, two identical periods of cathodal tDCS (9-min duration; 1 mA) with an interstimulation interval of 0 (no break), 3, or 20 min or 3 or 24 h were performed. The results indicate that doubling stimulation duration without a break prolongs the aftereffects from 60 to 90 min after tDCS. When the second stimulation was performed during the aftereffects of the first, a prolongation and enhancement of tDCS-induced effects for ≤ 120 min after stimulation was observed. In contrast, when the second stimulation followed the first one after 3 or 24 h, the aftereffects were initially attenuated, or abolished, but afterwards re-established for up to 120 min after tDCS in the 24-h condition. These results suggest that, for prolonging the aftereffects of cathodal tDCS, stimulation interval might be important.
Author Paulus, Walter
Kuo, Min-Fang
Monte-Silva, Katia
Liebetanz, David
Nitsche, Michael A.
Author_xml – sequence: 1
  givenname: Katia
  surname: Monte-Silva
  fullname: Monte-Silva, Katia
  organization: Department of Clinical Neurophysiology, Georg-August-University, Göttingen, Germany
– sequence: 2
  givenname: Min-Fang
  surname: Kuo
  fullname: Kuo, Min-Fang
  organization: Department of Clinical Neurophysiology, Georg-August-University, Göttingen, Germany
– sequence: 3
  givenname: David
  surname: Liebetanz
  fullname: Liebetanz, David
  organization: Department of Clinical Neurophysiology, Georg-August-University, Göttingen, Germany
– sequence: 4
  givenname: Walter
  surname: Paulus
  fullname: Paulus, Walter
  organization: Department of Clinical Neurophysiology, Georg-August-University, Göttingen, Germany
– sequence: 5
  givenname: Michael A.
  surname: Nitsche
  fullname: Nitsche, Michael A.
  organization: Department of Clinical Neurophysiology, Georg-August-University, Göttingen, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20107115$$D View this record in MEDLINE/PubMed
BookMark eNp1kElPwzAQhS1UREvhyBXlBhxSHCdukiMKq1SpEi1ny_FCXaVOsB0k_j3TBQ5IXGbT90Yz7xQNbGsVQhcJniQJJbdrO8G4JNmEQDpCI5iROKFlMUAjjKFOcZ4P0an3a4xxTjE5QUOCE5yDfITEYsU7Y9-jsFLRvAtmw5voVXUqmGBaG73YoNwnzHTrooqHVSuhWTpuvYBgoLk3TokQVb1zyoZoATv6hu_U1-G-WtycoWPNG6_OD3mM3h4fltVzPJs_vVR3s1iktAixoFOpJU5JXlNJaoGF0HVWJ1wQkWekLCQvp5TD5VrwkhdKQIm1LCXIeanTMbra7-1c-9ErH9jGeKGahlvV9p7ltCgAzTIgLw9kX2-UZJ2Dv90X-_EFgHgPCNd675T-RRLMtr6ztWU739nWd-DTP7wwYedBcNw0_6i-AXcHhrY
CitedBy_id crossref_primary_10_1007_s00702_012_0845_4
crossref_primary_10_1152_jn_00148_2017
crossref_primary_10_1038_s41598_020_68825_2
crossref_primary_10_1016_j_clinph_2015_03_013
crossref_primary_10_1016_j_brs_2018_10_003
crossref_primary_10_1016_j_brs_2011_04_006
crossref_primary_10_1016_j_pnpbp_2022_110672
crossref_primary_10_1038_s41598_021_95407_7
crossref_primary_10_1080_17434440_2017_1352470
crossref_primary_10_1016_j_clinph_2013_04_188
crossref_primary_10_1016_j_neuroimage_2013_05_117
crossref_primary_10_1080_10790268_2017_1361562
crossref_primary_10_3389_fnbeh_2023_1061980
crossref_primary_10_3390_brainsci10110875
crossref_primary_10_1016_j_brs_2014_10_001
crossref_primary_10_1162_jocn_a_00993
crossref_primary_10_1155_2014_837141
crossref_primary_10_1111_ner_13163
crossref_primary_10_1016_j_clinph_2015_11_012
crossref_primary_10_1016_j_seizure_2021_01_020
crossref_primary_10_3390_brainsci13050760
crossref_primary_10_1007_s00221_020_05827_6
crossref_primary_10_1016_j_neubiorev_2017_09_029
crossref_primary_10_1136_bmjopen_2016_015669
crossref_primary_10_3389_fnbeh_2014_00226
crossref_primary_10_1111_ejn_13229
crossref_primary_10_1038_s41598_020_59662_4
crossref_primary_10_1016_j_clinph_2014_01_010
crossref_primary_10_1016_j_neulet_2019_05_025
crossref_primary_10_1111_jnp_12231
crossref_primary_10_1016_j_pnpbp_2010_09_010
crossref_primary_10_3389_fnins_2018_00443
crossref_primary_10_1016_j_cortex_2014_08_015
crossref_primary_10_1080_14737175_2016_1209410
crossref_primary_10_1371_journal_pone_0131020
crossref_primary_10_1007_s00702_022_02507_3
crossref_primary_10_1007_s40473_017_0134_5
crossref_primary_10_1016_j_neuropsychologia_2014_11_021
crossref_primary_10_1080_00207454_2016_1216415
crossref_primary_10_1111_ejn_13238
crossref_primary_10_1080_09602011_2011_557292
crossref_primary_10_1016_j_cct_2010_09_007
crossref_primary_10_1007_s10309_023_00599_9
crossref_primary_10_1371_journal_pone_0122434
crossref_primary_10_1016_j_yebeh_2022_108876
crossref_primary_10_1016_j_brs_2021_05_006
crossref_primary_10_1016_j_neuropsychologia_2018_09_009
crossref_primary_10_1016_j_neuropsychologia_2017_01_028
crossref_primary_10_1113_jphysiol_2012_244764
crossref_primary_10_1016_j_brs_2014_09_008
crossref_primary_10_1016_j_brs_2010_09_008
crossref_primary_10_1016_j_brs_2014_11_011
crossref_primary_10_3389_fresc_2023_1250579
crossref_primary_10_1016_j_brs_2013_01_009
crossref_primary_10_1002_brb3_2491
crossref_primary_10_33069_cim_2022_0030
crossref_primary_10_3390_brainsci8020037
crossref_primary_10_1113_JP279340
crossref_primary_10_1002_brb3_1845
crossref_primary_10_3109_15622975_2013_876514
crossref_primary_10_14814_phy2_12884
crossref_primary_10_1515_revneuro_2016_0045
crossref_primary_10_1113_jphysiol_2012_238519
crossref_primary_10_1162_jocn_a_01839
crossref_primary_10_3390_brainsci11070948
crossref_primary_10_1002_hbm_24901
crossref_primary_10_1016_j_brs_2013_03_001
crossref_primary_10_1097_TGR_0000000000000459
crossref_primary_10_1016_j_brs_2021_01_017
crossref_primary_10_1111_ejn_12840
crossref_primary_10_1038_npp_2016_65
crossref_primary_10_1016_j_ajp_2021_102625
crossref_primary_10_3389_fnhum_2019_00328
crossref_primary_10_1097_YCT_0000000000000525
crossref_primary_10_3390_ijerph18073678
crossref_primary_10_1016_j_neuroscience_2013_10_048
crossref_primary_10_1016_j_neubiorev_2020_09_005
crossref_primary_10_1177_0883073813492385
crossref_primary_10_1002_ana_25822
crossref_primary_10_1016_j_brs_2012_01_006
crossref_primary_10_1007_s00221_018_5200_z
crossref_primary_10_1016_j_scispo_2019_01_005
crossref_primary_10_2147_PRBM_S287143
crossref_primary_10_3389_fnbeh_2018_00194
crossref_primary_10_3389_fncel_2016_00072
crossref_primary_10_1016_j_pnpbp_2022_110521
crossref_primary_10_1159_000501227
crossref_primary_10_3390_cells12081193
crossref_primary_10_1113_JP279409
crossref_primary_10_1515_mr_2022_0010
crossref_primary_10_1016_j_neurom_2022_12_014
crossref_primary_10_1371_journal_pone_0222057
crossref_primary_10_3389_fnhum_2017_00159
crossref_primary_10_1016_j_seizure_2024_03_001
crossref_primary_10_1016_j_euroneuro_2014_03_006
crossref_primary_10_1016_j_psc_2023_02_005
crossref_primary_10_1016_j_schres_2017_08_047
crossref_primary_10_1111_ejn_12623
crossref_primary_10_1038_s41598_023_48070_z
crossref_primary_10_1152_jn_00630_2015
crossref_primary_10_1142_S0129065717500599
crossref_primary_10_1016_j_neuroimage_2013_05_098
crossref_primary_10_1016_j_smrv_2015_12_005
crossref_primary_10_1016_j_brs_2011_08_005
crossref_primary_10_1111_j_1460_9568_2011_07924_x
crossref_primary_10_1113_jphysiol_2012_249730
crossref_primary_10_3389_fnins_2022_909421
crossref_primary_10_1007_s12264_020_00501_x
crossref_primary_10_1113_JP276276
crossref_primary_10_1177_1545968314562649
crossref_primary_10_1111_jnp_12091
crossref_primary_10_1016_j_cortex_2021_02_024
crossref_primary_10_1177_0883073815575369
crossref_primary_10_1111_ejn_13043
crossref_primary_10_1152_jn_00608_2009
crossref_primary_10_3389_fnhum_2016_00030
crossref_primary_10_3389_fnhum_2019_00114
crossref_primary_10_3390_bioengineering9090441
crossref_primary_10_1016_j_brs_2011_03_002
crossref_primary_10_1111_ner_12167
crossref_primary_10_1177_1545968311413906
crossref_primary_10_1016_j_brs_2012_12_005
crossref_primary_10_1177_0883073812460092
crossref_primary_10_3390_app10072616
crossref_primary_10_1002_da_22578
crossref_primary_10_1016_j_brs_2016_12_013
crossref_primary_10_1016_j_clinph_2024_12_006
crossref_primary_10_1016_j_brs_2011_10_001
crossref_primary_10_1016_j_neuropsychologia_2015_02_002
crossref_primary_10_1016_j_yebeh_2012_10_018
crossref_primary_10_1016_j_neulet_2016_05_010
crossref_primary_10_3389_fnins_2017_00641
crossref_primary_10_1016_j_neuropsychologia_2015_06_021
crossref_primary_10_3389_fnbeh_2019_00083
crossref_primary_10_1016_j_clinph_2021_03_048
crossref_primary_10_1111_ene_13363
crossref_primary_10_3389_fnhum_2016_00643
crossref_primary_10_3389_fnins_2022_998875
crossref_primary_10_3390_jcm11030782
crossref_primary_10_3389_fneur_2016_00021
crossref_primary_10_1113_jphysiol_2013_257063
crossref_primary_10_1016_j_cortex_2019_04_016
crossref_primary_10_1177_0333102410390394
crossref_primary_10_1017_S1461145712000041
crossref_primary_10_1177_1073858414526645
crossref_primary_10_1016_j_brainresbull_2020_12_007
crossref_primary_10_1016_j_neuropsychologia_2019_02_022
crossref_primary_10_1111_ejn_12307
crossref_primary_10_1179_1743132813Y_0000000248
crossref_primary_10_1007_s41465_017_0007_6
crossref_primary_10_1038_s41598_019_39262_7
crossref_primary_10_1080_17588928_2021_1877648
crossref_primary_10_1589_jpts_29_2138
crossref_primary_10_3389_fnhum_2016_00199
crossref_primary_10_3758_s13415_017_0541_9
crossref_primary_10_1088_1741_2552_ac857d
crossref_primary_10_1016_j_neuropsychologia_2015_02_028
crossref_primary_10_3389_fnins_2020_00495
crossref_primary_10_1016_j_brs_2019_09_006
crossref_primary_10_1016_j_pnpbp_2017_05_021
crossref_primary_10_1016_j_jht_2014_11_002
crossref_primary_10_1016_j_cognition_2015_08_010
crossref_primary_10_1016_j_neuropsychologia_2013_03_013
crossref_primary_10_1016_j_neubiorev_2017_06_015
crossref_primary_10_3390_brainsci14050477
crossref_primary_10_1080_09602011_2020_1805335
crossref_primary_10_1016_j_brs_2012_04_011
crossref_primary_10_1111_ejn_15389
crossref_primary_10_1142_S0129065717500265
crossref_primary_10_1038_srep37575
crossref_primary_10_1007_s11154_021_09697_3
crossref_primary_10_1097_YCT_0000000000000510
crossref_primary_10_1016_j_neuropsychologia_2016_12_002
crossref_primary_10_5812_archneurosci_24311
crossref_primary_10_3389_fnhum_2019_00157
crossref_primary_10_1177_1550059412444978
crossref_primary_10_1007_s00221_016_4667_8
crossref_primary_10_1007_s10548_024_01045_3
crossref_primary_10_1097_YCT_0000000000000518
crossref_primary_10_1177_1550059412444973
crossref_primary_10_1186_s42494_022_00086_0
crossref_primary_10_1371_journal_pone_0236061
crossref_primary_10_1016_j_cortex_2019_11_001
crossref_primary_10_1016_j_brs_2016_11_001
crossref_primary_10_1016_j_jns_2022_120521
crossref_primary_10_1016_j_apmr_2017_05_025
crossref_primary_10_1016_j_cortex_2014_07_011
crossref_primary_10_3389_fnhum_2022_952602
crossref_primary_10_3233_RNN_170757
crossref_primary_10_1016_j_brs_2017_01_003
crossref_primary_10_1016_j_neuropsychologia_2020_107555
crossref_primary_10_1177_1545968312469837
crossref_primary_10_1080_09540261_2017_1286299
crossref_primary_10_1080_02687038_2011_616925
crossref_primary_10_1093_cercor_bhaa116
crossref_primary_10_1177_21677026211009508
crossref_primary_10_1016_j_brs_2019_01_001
crossref_primary_10_1016_j_neuroimage_2013_06_076
crossref_primary_10_3390_brainsci11050662
crossref_primary_10_1016_j_cortex_2018_09_010
crossref_primary_10_1111_ner_12786
crossref_primary_10_1113_JP272738
crossref_primary_10_1016_j_brs_2011_11_004
crossref_primary_10_3389_fnhum_2021_621358
crossref_primary_10_1002_epi4_12020
crossref_primary_10_1016_j_clinph_2022_02_023
crossref_primary_10_1155_2011_105927
crossref_primary_10_1016_j_neurom_2022_10_044
crossref_primary_10_1515_revneuro_2017_0111
crossref_primary_10_1007_s10309_023_00559_3
crossref_primary_10_1016_j_eurpsy_2015_11_005
crossref_primary_10_1016_j_neubiorev_2016_05_001
crossref_primary_10_1093_ijnp_pyaa051
crossref_primary_10_1007_s00221_024_06874_z
crossref_primary_10_1093_brain_awu343
crossref_primary_10_3389_fpsyt_2019_00730
crossref_primary_10_1152_jn_00171_2011
crossref_primary_10_1007_s00221_021_06229_y
crossref_primary_10_3389_fpsyt_2022_874128
crossref_primary_10_1016_j_brs_2018_10_010
crossref_primary_10_1016_j_archger_2020_104063
crossref_primary_10_1016_j_brs_2016_11_010
crossref_primary_10_3390_brainsci12020200
crossref_primary_10_1016_j_clinph_2016_10_087
crossref_primary_10_1111_ejn_14651
crossref_primary_10_1007_s00221_019_05525_y
crossref_primary_10_1016_j_isci_2021_103683
crossref_primary_10_1155_2020_4795267
crossref_primary_10_1186_1745_6215_14_331
crossref_primary_10_1016_j_brs_2016_05_011
crossref_primary_10_1113_JP278857
Cites_doi 10.1093/brain/awh369
10.1111/j.1460-9568.2007.05603.x
10.1002/ana.20950
10.1113/jphysiol.2003.049916
10.1523/JNEUROSCI.5316-03.2004
10.1038/nrn1327
10.1016/S1388-2457(02)00412-1
10.1162/jocn.2008.20106
10.1097/01.wnr.0000177010.44602.5e
10.1212/WNL.57.10.1899
10.1002/art.22195
10.1038/81453
10.1111/j.1460-9568.2006.05032.x
10.1016/j.biopsych.2004.07.017
10.1093/cercor/bhn032
10.1037/1076-898X.14.2.101
10.1523/JNEUROSCI.23-34-10867.2003
10.1146/annurev.neuro.28.061604.135751
10.1111/j.1468-2982.2007.01337.x
10.1002/da.20201
10.1242/jeb.205.10.1429
10.1016/S0301-0082(97)00018-X
10.1093/brain/awf238
10.1038/220382a0
10.1113/jphysiol.1964.sp007425
10.1097/WNR.0b013e3282f2adfd
10.1016/j.ejpain.2008.04.001
10.1016/j.brainres.2008.01.097
10.1101/lm.239406
10.1111/j.1469-7793.2000.t01-1-00633.x
10.1007/s00221-007-1149-z
10.1111/j.1528-1167.2006.00539.x
10.1016/j.clinph.2009.01.022
10.1017/S1461145707007833
10.1016/j.jad.2009.02.015
10.1523/JNEUROSCI.5348-06.2007
10.1001/archneur.65.12.1571
10.1016/j.brainres.2005.02.028
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1152/jn.00924.2009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
EndPage 1740
ExternalDocumentID 20107115
10_1152_jn_00924_2009
Genre Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
.GJ
0VX
18M
1CY
1Z7
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5VS
8M5
AAYXX
ABCQX
ABHWK
ABIVO
ABJNI
ABKWE
ACGFO
ACGFS
ACNCT
ADBBV
ADFNX
ADHGD
ADIYS
AENEX
AETEA
AFFNX
AFOSN
AI.
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
H13
H~9
ITBOX
KQ8
L7B
MVM
NEJ
OHT
OK1
P2P
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UPT
UQL
VH1
W8F
WH7
WOQ
WOW
X7M
XJT
XOL
XSW
YBH
YQT
YSK
ZGI
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c358t-c56dfd0327b5d2bc0ccfb4b1ac2c74298da965a107fca9a8ec1070fd9d358a9f3
ISSN 0022-3077
1522-1598
IngestDate Fri Jul 11 06:57:10 EDT 2025
Mon Jul 21 05:38:10 EDT 2025
Thu Apr 24 23:03:41 EDT 2025
Tue Jul 01 04:08:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c358t-c56dfd0327b5d2bc0ccfb4b1ac2c74298da965a107fca9a8ec1070fd9d358a9f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 20107115
PQID 758835844
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_758835844
pubmed_primary_20107115
crossref_primary_10_1152_jn_00924_2009
crossref_citationtrail_10_1152_jn_00924_2009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-04-00
2010-Apr
20100401
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-04-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2010
References B20
B21
B22
B23
B24
B25
B26
B28
B29
Matsumoto Y (B27) 2002; 205
B30
B31
B10
B32
B11
B33
B12
B34
B13
B35
B14
B36
B15
B37
B16
B38
B17
B39
B18
B19
B1
B2
B3
B4
B5
Boggio PS (B6) 2007; 25
B7
B8
B9
References_xml – volume: 25
  start-page: 123
  year: 2007
  ident: B6
  publication-title: Restor Neurol Neurosci
– ident: B18
  doi: 10.1093/brain/awh369
– ident: B28
  doi: 10.1111/j.1460-9568.2007.05603.x
– ident: B14
  doi: 10.1002/ana.20950
– ident: B29
  doi: 10.1113/jphysiol.2003.049916
– ident: B38
  doi: 10.1523/JNEUROSCI.5316-03.2004
– ident: B39
  doi: 10.1038/nrn1327
– ident: B30
  doi: 10.1016/S1388-2457(02)00412-1
– ident: B5
  doi: 10.1162/jocn.2008.20106
– ident: B11
  doi: 10.1097/01.wnr.0000177010.44602.5e
– ident: B32
  doi: 10.1212/WNL.57.10.1899
– ident: B13
  doi: 10.1002/art.22195
– ident: B1
  doi: 10.1038/81453
– ident: B21
  doi: 10.1111/j.1460-9568.2006.05032.x
– ident: B22
  doi: 10.1016/j.biopsych.2004.07.017
– ident: B3
  doi: 10.1093/cercor/bhn032
– ident: B35
  doi: 10.1037/1076-898X.14.2.101
– ident: B19
  doi: 10.1523/JNEUROSCI.23-34-10867.2003
– ident: B9
  doi: 10.1146/annurev.neuro.28.061604.135751
– ident: B8
  doi: 10.1111/j.1468-2982.2007.01337.x
– ident: B12
  doi: 10.1002/da.20201
– volume: 205
  start-page: 1429
  year: 2002
  ident: B27
  publication-title: Exp Biol
  doi: 10.1242/jeb.205.10.1429
– ident: B2
  doi: 10.1016/S0301-0082(97)00018-X
– ident: B26
  doi: 10.1093/brain/awf238
– ident: B16
  doi: 10.1038/220382a0
– ident: B4
  doi: 10.1113/jphysiol.1964.sp007425
– ident: B34
  doi: 10.1097/WNR.0b013e3282f2adfd
– ident: B20
  doi: 10.1016/j.ejpain.2008.04.001
– ident: B23
  doi: 10.1016/j.brainres.2008.01.097
– ident: B17
  doi: 10.1101/lm.239406
– ident: B31
  doi: 10.1111/j.1469-7793.2000.t01-1-00633.x
– ident: B15
  doi: 10.1007/s00221-007-1149-z
– ident: B24
  doi: 10.1111/j.1528-1167.2006.00539.x
– ident: B25
  doi: 10.1016/j.clinph.2009.01.022
– ident: B7
  doi: 10.1017/S1461145707007833
– ident: B10
  doi: 10.1016/j.jad.2009.02.015
– ident: B33
  doi: 10.1523/JNEUROSCI.5348-06.2007
– ident: B36
  doi: 10.1001/archneur.65.12.1571
– ident: B37
  doi: 10.1016/j.brainres.2005.02.028
SSID ssj0007502
Score 2.4756439
Snippet Transcranial DC stimulation (tDCS) is a plasticity-inducing noninvasive brain stimulation tool with various potential therapeutic applications in neurological...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1735
SubjectTerms Adult
Deep Brain Stimulation - methods
Electric Stimulation Therapy
Electrodes
Evoked Potentials, Motor - physiology
Female
Humans
Male
Motor Cortex - physiology
Neuronal Plasticity - physiology
Time Factors
Title Shaping the Optimal Repetition Interval for Cathodal Transcranial Direct Current Stimulation (tDCS)
URI https://www.ncbi.nlm.nih.gov/pubmed/20107115
https://www.proquest.com/docview/758835844
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZW5cIFAeWxUJAPqAKBSx72JjlWhaqi4qVtpd4ixw91q21S0aQS_BZ-LONHnGzZSoWLFVmxo935PJ4Zz3xG6JVgsxyQw4kQuSZUKEYKFUtS8ZgXPBUMlpTJtvgyOzimn07YyWTye5S11LXVjvi1tq7kf6QKfSBXUyX7D5INk0IHPIN8oQUJQ3srGc9PeSh3-gpr_9wy5V8oR0Dkon1XrkLRlvo10lTjm91JQLMIGu9tz9I0hzn8fV7G9Gw_7M37UMHfBqylwrSRkZXQ_GfDd0Xmi-WVrzZrF0H1H3aNy9WvyT73e6bJBlqAkI2Vei3L3pxsdcvOJQLac_1xkMKcr4fcllHRQORvbFFe10IfWFP5ijKO0hHq6Ei1xpnjNfHbNHhS0fotgBlK2bN6x9BJ2ahZMex1_fn-tS0wJCZal4gl5Vld2uGlqw69k4ATYu7HOPw-cNGDrTVw0cNP6xlcWfJ-5eurFs8Nbow1Z47uo3tejHjXgeoBmqj6IdrcrXnbnP_E2_hbkOsmEh5nGHCGPc7wgDPc4wwDznCPMzzGGXY4wx5neIQz_Nqg7M0jdLz_8WjvgPjLOYhIWd4SWORSyyhNsorJpBKRELqiVcxFIjIwcnLJixnjcZRpAas-VwIeIy0LCcN5odPHaKNuavUUYZFzncYU5qUpzXQFA3lRyExHsyLjSk3Ru_4PLIVnrjcXqCzLteKaou3w-oWjbLnpRdxLowSlak7KeK2a7rIEJxo8k5zSKXripBRmMujOYK5nt_3Kc3R3WBFbaKP90akXYMi21UuLpz9KxJ7s
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shaping+the+Optimal+Repetition+Interval+for+Cathodal+Transcranial+Direct+Current+Stimulation+%28tDCS%29&rft.jtitle=Journal+of+neurophysiology&rft.au=Monte-Silva%2C+Katia&rft.au=Kuo%2C+Min-Fang&rft.au=Liebetanz%2C+David&rft.au=Paulus%2C+Walter&rft.date=2010-04-01&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=103&rft.issue=4&rft.spage=1735&rft.epage=1740&rft_id=info:doi/10.1152%2Fjn.00924.2009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_jn_00924_2009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon