ReLU networks as surrogate models in mixed-integer linear programs

We consider the embedding of piecewise-linear deep neural networks (ReLU networks) as surrogate models in mixed-integer linear programming (MILP) problems. A MILP formulation of ReLU networks has recently been applied by many authors to probe for various model properties subject to input bounds. The...

Full description

Saved in:
Bibliographic Details
Published inComputers & chemical engineering Vol. 131; p. 106580
Main Authors Grimstad, Bjarne, Andersson, Henrik
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 05.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider the embedding of piecewise-linear deep neural networks (ReLU networks) as surrogate models in mixed-integer linear programming (MILP) problems. A MILP formulation of ReLU networks has recently been applied by many authors to probe for various model properties subject to input bounds. The formulation is obtained by programming each ReLU operator with a binary variable and applying the big-M method. The efficiency of the formulation hinges on the tightness of the bounds defined by the big-M values. When ReLU networks are embedded in a larger optimization problem, the presence of output bounds can be exploited in bound tightening. To this end, we devise and study several bound tightening procedures that consider both input and output bounds. Our numerical results show that bound tightening may reduce solution times considerably, and that small-sized ReLU networks are suitable as surrogate models in mixed-integer linear programs.
AbstractList We consider the embedding of piecewise-linear deep neural networks (ReLU networks) as surrogate models in mixed-integer linear programming (MILP) problems. A MILP formulation of ReLU networks has recently been applied by many authors to probe for various model properties subject to input bounds. The formulation is obtained by programming each ReLU operator with a binary variable and applying the big-M method. The efficiency of the formulation hinges on the tightness of the bounds defined by the big-M values. When ReLU networks are embedded in a larger optimization problem, the presence of output bounds can be exploited in bound tightening. To this end, we devise and study several bound tightening procedures that consider both input and output bounds. Our numerical results show that bound tightening may reduce solution times considerably, and that small-sized ReLU networks are suitable as surrogate models in mixed-integer linear programs.
ArticleNumber 106580
Author Grimstad, Bjarne
Andersson, Henrik
Author_xml – sequence: 1
  givenname: Bjarne
  surname: Grimstad
  fullname: Grimstad, Bjarne
  email: bjarne.grimstad@gmail.com
  organization: Solution Seeker AS, Gaustadalléen 21, Oslo 0349, Norway
– sequence: 2
  givenname: Henrik
  surname: Andersson
  fullname: Andersson, Henrik
  organization: Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology,Trondheim NO-7491, Norway
BookMark eNqNkM1KAzEYRYNUsK2-Q3yAqUkzk0lWokWrUBDErkMm86WmziQliX9v75S6EFddXbjcexZngkY-eEDokpIZJZRfbWcm9DvzCj34zWxOqBx6XglygsZU1KwoWV2N0JgQKQrKqvIMTVLaEkLmpRBjdPsMqzX2kD9DfEtYJ5zeYwwbnQH3oYUuYedx776gLZzPsIGIO-dBR7wbZlH36RydWt0luPjNKVrf370sHorV0_JxcbMqDKtELhqAltcc6ha41GCp1VbOLadSSgKWiZoK0vKGgbZCGw0Np4LXJbdl1ZSkYlN0feCaGFKKYJVxWWcXfI7adYoStVeituqPErVXog5KBoL8R9hF1-v4fdR3cfgOSuDDQVTJOPAGWhfBZNUGdwTlB0VBhyE
CitedBy_id crossref_primary_10_1016_j_jlp_2022_104754
crossref_primary_10_2514_1_A36122
crossref_primary_10_1016_j_epsr_2022_108282
crossref_primary_10_3389_fenrg_2021_719658
crossref_primary_10_1016_j_jprocont_2022_08_017
crossref_primary_10_1021_acs_iecr_2c02968
crossref_primary_10_3390_pr8040441
crossref_primary_10_1021_acssuschemeng_1c02741
crossref_primary_10_1287_ijoc_2022_0312
crossref_primary_10_1016_j_dche_2023_100136
crossref_primary_10_1016_j_compchemeng_2025_109105
crossref_primary_10_1002_aic_17705
crossref_primary_10_1016_j_ifacol_2020_12_544
crossref_primary_10_1016_j_compchemeng_2023_108411
crossref_primary_10_1088_1361_6560_ad2d7e
crossref_primary_10_1007_s11042_023_17866_6
crossref_primary_10_3390_electronics9111975
crossref_primary_10_1016_j_ces_2022_118337
crossref_primary_10_1002_cjce_25316
crossref_primary_10_1016_j_conengprac_2024_106041
crossref_primary_10_1049_gtd2_12425
crossref_primary_10_1016_j_rsurfi_2024_100322
crossref_primary_10_1109_TPWRS_2023_3251724
crossref_primary_10_1007_s10846_022_01647_8
crossref_primary_10_1016_j_cherd_2024_10_005
crossref_primary_10_1016_j_compchemeng_2020_106801
crossref_primary_10_3389_fcvm_2023_1279324
crossref_primary_10_1016_j_energy_2024_131652
crossref_primary_10_1515_revce_2024_0055
crossref_primary_10_1016_j_cej_2024_155141
crossref_primary_10_1016_j_compchemeng_2023_108171
crossref_primary_10_1016_j_compchemeng_2025_109061
crossref_primary_10_1007_s10957_023_02317_x
crossref_primary_10_1016_j_compchemeng_2023_108244
crossref_primary_10_1016_j_compchemeng_2024_108584
crossref_primary_10_1016_j_compchemeng_2024_108660
crossref_primary_10_1016_j_compchemeng_2022_107970
crossref_primary_10_1016_j_compchemeng_2022_107850
crossref_primary_10_1109_LCSYS_2024_3411515
crossref_primary_10_1371_journal_pone_0261029
crossref_primary_10_1007_s10898_023_01311_x
crossref_primary_10_3390_inventions10020029
crossref_primary_10_1007_s11750_021_00604_2
crossref_primary_10_3390_s21051654
crossref_primary_10_1007_s10589_022_00404_9
crossref_primary_10_3390_healthcare8020107
crossref_primary_10_1002_cite_202100083
crossref_primary_10_3390_en15228694
crossref_primary_10_1016_j_ejor_2023_10_028
crossref_primary_10_1080_15567036_2022_2115167
crossref_primary_10_1007_s10898_024_01434_9
crossref_primary_10_1016_j_etran_2022_100200
crossref_primary_10_1016_j_compchemeng_2024_108596
crossref_primary_10_1016_j_ress_2021_108016
crossref_primary_10_1287_opre_2021_0707
crossref_primary_10_1021_acs_iecr_0c04214
crossref_primary_10_1016_j_ijepes_2023_109741
crossref_primary_10_1016_j_compchemeng_2022_107745
crossref_primary_10_1007_s10898_022_01228_x
crossref_primary_10_1007_s10898_020_00949_1
crossref_primary_10_1287_ijoc_2023_1285
crossref_primary_10_1016_j_ccst_2024_100319
crossref_primary_10_1287_ijoc_2023_0153
crossref_primary_10_2139_ssrn_4217092
crossref_primary_10_1016_j_dche_2024_100200
crossref_primary_10_1007_s10107_020_01474_5
crossref_primary_10_1016_j_adapen_2024_100179
crossref_primary_10_1016_j_apenergy_2022_118667
crossref_primary_10_3390_membranes12020199
crossref_primary_10_1021_acs_iecr_4c00632
crossref_primary_10_1016_j_compchemeng_2025_109042
crossref_primary_10_1016_j_ces_2024_120165
crossref_primary_10_3389_fceng_2020_620168
crossref_primary_10_1016_j_orl_2024_107194
crossref_primary_10_1016_j_ejor_2023_04_041
crossref_primary_10_1016_j_apm_2023_04_032
crossref_primary_10_3390_diagnostics10100744
crossref_primary_10_1016_j_energy_2023_128218
crossref_primary_10_1016_j_compchemeng_2024_108689
crossref_primary_10_1016_j_compchemeng_2023_108347
crossref_primary_10_1016_j_compchemeng_2024_108764
crossref_primary_10_1016_j_eswa_2023_120895
crossref_primary_10_1002_cite_202200172
crossref_primary_10_1016_j_compchemeng_2024_108723
crossref_primary_10_1016_j_eswa_2023_121022
crossref_primary_10_1016_j_cej_2023_148421
crossref_primary_10_1016_j_compchemeng_2021_107419
crossref_primary_10_1109_TCAD_2021_3118963
Cites_doi 10.1016/j.compchemeng.2015.08.022
10.1023/A:1008306431147
10.1007/s10898-015-0376-2
10.1007/s10898-016-0494-5
10.1007/978-3-319-77935-5_9
10.1016/0012-365X(95)00075-8
10.1007/978-3-319-63387-9_5
10.1016/j.acha.2015.12.005
10.1007/s10957-009-9626-0
10.1561/2200000049
10.1137/16M1080173
10.1016/j.compchemeng.2017.05.010
10.1016/j.compchemeng.2012.06.038
10.1016/j.cor.2016.07.014
10.1137/140962437
10.1007/s10898-012-9951-y
10.1080/00207543.2015.1037024
10.1007/s10601-018-9285-6
10.1007/s10957-018-1396-0
10.1007/s00366-009-0138-1
10.1016/j.compchemeng.2018.01.005
10.1287/opre.1090.0721
10.1287/trsc.2015.0648
10.1016/j.ijhydene.2018.08.104
10.1016/j.compchemeng.2017.09.017
10.1016/j.compchemeng.2012.06.006
10.1016/j.neunet.2014.09.003
10.1007/s10898-018-0643-0
10.1002/ceat.200500310
10.1137/090761811
10.1287/ijoc.1060.0182
10.1007/978-3-030-17953-3_3
10.1007/s00521-013-1509-5
10.1016/j.eswa.2017.10.014
10.1016/j.compchemeng.2017.05.006
10.1007/s10898-016-0450-4
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compchemeng.2019.106580
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4375
ExternalDocumentID 10_1016_j_compchemeng_2019_106580
S0098135419307203
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LG9
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SST
SSZ
T5K
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
HLY
HLZ
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
ZY4
ID FETCH-LOGICAL-c358t-beed676e7de69aef1faf92f619990ef387180d6b3eaf8acaeb6186746f45b4053
IEDL.DBID .~1
ISSN 0098-1354
IngestDate Tue Jul 01 03:20:51 EDT 2025
Thu Apr 24 22:51:41 EDT 2025
Fri Feb 23 02:26:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mixed-Integer linear programming
Regression
Deep neural networks
ReLU networks
Surrogate modeling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-beed676e7de69aef1faf92f619990ef387180d6b3eaf8acaeb6186746f45b4053
ParticipantIDs crossref_citationtrail_10_1016_j_compchemeng_2019_106580
crossref_primary_10_1016_j_compchemeng_2019_106580
elsevier_sciencedirect_doi_10_1016_j_compchemeng_2019_106580
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-05
PublicationDateYYYYMMDD 2019-12-05
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-05
  day: 05
PublicationDecade 2010
PublicationTitle Computers & chemical engineering
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org.
Fischetti, Jo (bib0022) 2018; 23
Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma, J. P., 2018. Strong mixed-integer programming formulations for trained neural networks. arXiv
Andersson, Christiansen, Desaulniers (bib0004) 2016; 54
Regis, Shoemaker (bib0047) 2007; 19
Bach, Dollevoet, Huisman (bib0005) 2016; 50
Fahmi, Cremaschi (bib0020) 2012; 46
Bottou, Curtis, Nocedal (bib0011) 2018; 60
Goodfellow, Warde-farley, Mirza, Courville, Bengio (bib0027) 2013
Schweidtmann, A. M., Mitsos, A., 2018. Global Deterministic Optimization with Artificial Neural Networks Embedded. arXiv
Vielma, Ahmed, Nemhauser (bib0058) 2010; 58
Conn, Scheinberg, Vicente (bib0016) 2009
Grimstad, Foss, Heddle, Woodman (bib0029) 2016; 84
Tjeng, V., Xiao, K., Tedrake, R., 2017. Evaluating Robustness of Neural Networks with Mixed Integer Programming. arXiv
Kumar, A., Serra, T., Ramalingam, S., 2019. Equivalent and Approximate Transformations of Deep Neural Networks. arXiv
Lin, M., Chen, Q., Yan, S., 2013. Network In Network. arXiv
Crombecq, Gorissen, Deschrijver, Dhaene (bib0017) 2011; 33
Hughes, Anderson (bib0035) 1996; 158
Ye, Ma, Tong, Xiao, Bénard, Chahine (bib0060) 2019; 44
Serra, T., Tjandraatmadja, C., Ramalingam, S., 2018. Bounding and Counting Linear Regions of Deep Neural Networks. arXiv
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0055) 2016; June
Bhosekar, Ierapetritou (bib0009) 2018; 108
.
Fernandes (bib0021) 2006; 29
Martinez, Anahideh, Rosenberger, Martinez, Chen, Wang (bib0043) 2017; 68
Bunel, R., Turkaslan, I., Torr, P. H. S., Kohli, P., Kumar, M. P., 2017. A Unified View of Piecewise Linear Neural Network Verification. arXiv
Dutta, S., Jha, S., Sanakaranarayanan, S., Tiwari, A., 2017. Output Range Analysis for Deep Feedforward Neural Networks. arXiv
Cheng, Nührenberg, Ruess (bib0014) 2017
Beykal, Boukouvala, Floudas, Sorek, Zalavadia, Gildin (bib0008) 2018; 114
Gorissen, Couckuyt, Laermans (bib0028) 2010; 26
Garud, Karimi, Kraft (bib0023) 2017; 106
Gurobi Optimization, LLC, 2018. Gurobi Optimizer Reference Manual.
Kieslich, Boukouvala, Floudas (bib0039) 2018; 71
Ciccazzo, Pillo, Latorre (bib0015) 2014; 24
Glorot, Bordes, Bengio (bib0026) 2011; 15
Weng, T.-W., Zhang, H., Chen, H., Song, Z., Hsieh, C.-J., Boning, D., Dhillon, I. S., Daniel, L., 2018. Towards Fast Computation of Certified Robustness for ReLU Networks. arXiv
Gleixner, Berthold, Müller, Weltge (bib0025) 2017; 67
Veenstra, Cherkesly, Desaulniers, Laporte (bib0057) 2017; 77
AL-Qutami, Ibrahim, Ismail, Ishak (bib0002) 2018; 93
Balestriero, R., Baraniuk, R., 2018. Mad Max: Affine Spline Insights into Deep Learning. arXiv
He, Zhang, Ren, Sun (bib0032) 2015
Sonoda, Murata (bib0054) 2017; 43
Ian Goodfellow, Bengio (bib0036) 2016
Mišić, V.V., 2017. Optimization of Tree Ensembles. arXiv
He, Zhang, Ren, Sun (bib0033) 2016
Rios, Sahinidis (bib0048) 2013; 56
Grossmann (bib0030) 2012; 47
Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., Sohl-Dickstein, J., 2016. On the Expressive Power of Deep Neural Networks. arXiv
van der Herten, Couckuyt, Deschrijver, Dhaene (bib0034) 2015; 37
Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M., 2017. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. arXiv
Jones, Schonlau, Welch (bib0037) 1998; 13
Misener, Floudas (bib0044) 2010; 145
Schmidhuber (bib0050) 2015; 61
Beale, Tomlin (bib0007) 1970
Boukouvala, Hasan, Floudas (bib0012) 2017; 67
Elmachtoub, A. N., Grigas, P., 2017. Smart “Predict, then Optimize”. arXiv
Ghavamzadeh, Mannor, Pineau, Tamar (bib0024) 2015; 8
Sant Anna, Barreto, Tavares, de Souza (bib0049) 2017; 104
Biggs, Hariss (bib0010) 2017
Krishnamurthy, Dvijotham, Stanforth, R., Gowal, S., Mann, T., Kohli, P., 2018. A Dual Approach to Scalable Verification of Deep Networks. arXiv
Singh, Gehr, Mirman, Püschel, Vechev (bib0053) 2018
Ye (10.1016/j.compchemeng.2019.106580_bib0060) 2019; 44
Beale (10.1016/j.compchemeng.2019.106580_bib0007) 1970
Sant Anna (10.1016/j.compchemeng.2019.106580_bib0049) 2017; 104
Schmidhuber (10.1016/j.compchemeng.2019.106580_bib0050) 2015; 61
10.1016/j.compchemeng.2019.106580_bib0052
10.1016/j.compchemeng.2019.106580_bib0051
He (10.1016/j.compchemeng.2019.106580_bib0032) 2015
10.1016/j.compchemeng.2019.106580_bib0056
Szegedy (10.1016/j.compchemeng.2019.106580_bib0055) 2016; June
Veenstra (10.1016/j.compchemeng.2019.106580_bib0057) 2017; 77
Grimstad (10.1016/j.compchemeng.2019.106580_bib0029) 2016; 84
10.1016/j.compchemeng.2019.106580_bib0013
10.1016/j.compchemeng.2019.106580_bib0059
10.1016/j.compchemeng.2019.106580_bib0018
10.1016/j.compchemeng.2019.106580_bib0019
Biggs (10.1016/j.compchemeng.2019.106580_bib0010) 2017
Fernandes (10.1016/j.compchemeng.2019.106580_bib0021) 2006; 29
Conn (10.1016/j.compchemeng.2019.106580_bib0016) 2009
Glorot (10.1016/j.compchemeng.2019.106580_bib0026) 2011; 15
Singh (10.1016/j.compchemeng.2019.106580_bib0053) 2018
Goodfellow (10.1016/j.compchemeng.2019.106580_bib0027) 2013
Vielma (10.1016/j.compchemeng.2019.106580_bib0058) 2010; 58
Bottou (10.1016/j.compchemeng.2019.106580_bib0011) 2018; 60
Ghavamzadeh (10.1016/j.compchemeng.2019.106580_bib0024) 2015; 8
Kieslich (10.1016/j.compchemeng.2019.106580_bib0039) 2018; 71
10.1016/j.compchemeng.2019.106580_bib0041
Jones (10.1016/j.compchemeng.2019.106580_bib0037) 1998; 13
10.1016/j.compchemeng.2019.106580_bib0040
Misener (10.1016/j.compchemeng.2019.106580_bib0044) 2010; 145
10.1016/j.compchemeng.2019.106580_bib0042
10.1016/j.compchemeng.2019.106580_bib0001
10.1016/j.compchemeng.2019.106580_bib0045
AL-Qutami (10.1016/j.compchemeng.2019.106580_bib0002) 2018; 93
10.1016/j.compchemeng.2019.106580_bib0003
10.1016/j.compchemeng.2019.106580_bib0046
10.1016/j.compchemeng.2019.106580_bib0006
Hughes (10.1016/j.compchemeng.2019.106580_bib0035) 1996; 158
Grossmann (10.1016/j.compchemeng.2019.106580_bib0030) 2012; 47
Beykal (10.1016/j.compchemeng.2019.106580_bib0008) 2018; 114
Andersson (10.1016/j.compchemeng.2019.106580_bib0004) 2016; 54
Ian Goodfellow (10.1016/j.compchemeng.2019.106580_bib0036) 2016
Martinez (10.1016/j.compchemeng.2019.106580_bib0043) 2017; 68
10.1016/j.compchemeng.2019.106580_bib0031
Gleixner (10.1016/j.compchemeng.2019.106580_bib0025) 2017; 67
10.1016/j.compchemeng.2019.106580_bib0038
Ciccazzo (10.1016/j.compchemeng.2019.106580_bib0015) 2014; 24
Sonoda (10.1016/j.compchemeng.2019.106580_bib0054) 2017; 43
Cheng (10.1016/j.compchemeng.2019.106580_bib0014) 2017
van der Herten (10.1016/j.compchemeng.2019.106580_bib0034) 2015; 37
Bhosekar (10.1016/j.compchemeng.2019.106580_bib0009) 2018; 108
Fischetti (10.1016/j.compchemeng.2019.106580_bib0022) 2018; 23
Garud (10.1016/j.compchemeng.2019.106580_bib0023) 2017; 106
Regis (10.1016/j.compchemeng.2019.106580_bib0047) 2007; 19
He (10.1016/j.compchemeng.2019.106580_bib0033) 2016
Crombecq (10.1016/j.compchemeng.2019.106580_bib0017) 2011; 33
Fahmi (10.1016/j.compchemeng.2019.106580_bib0020) 2012; 46
Bach (10.1016/j.compchemeng.2019.106580_bib0005) 2016; 50
Boukouvala (10.1016/j.compchemeng.2019.106580_bib0012) 2017; 67
Rios (10.1016/j.compchemeng.2019.106580_bib0048) 2013; 56
Gorissen (10.1016/j.compchemeng.2019.106580_bib0028) 2010; 26
References_xml – reference: Bunel, R., Turkaslan, I., Torr, P. H. S., Kohli, P., Kumar, M. P., 2017. A Unified View of Piecewise Linear Neural Network Verification. arXiv:
– volume: 93
  start-page: 72
  year: 2018
  end-page: 85
  ident: bib0002
  article-title: Virtual multiphase flow metering using diverse neural network ensemble and adaptive simulated annealing
  publication-title: Expert. Syst. Appl.
– volume: 29
  start-page: 449
  year: 2006
  end-page: 453
  ident: bib0021
  article-title: Optimization of fischer-tropsch synthesis using neural networks
  publication-title: Chem. Eng. Technol.
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: bib0050
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
– volume: 8
  start-page: 359
  year: 2015
  end-page: 483
  ident: bib0024
  article-title: Bayesian reinforcement learning: a survey
  publication-title: Found. Trend. Mach. Learn.
– volume: 84
  start-page: 237
  year: 2016
  end-page: 254
  ident: bib0029
  article-title: Global optimization of multiphase flow networks using spline surrogate models
  publication-title: Comput. Chem. Eng.
– volume: 56
  start-page: 1247
  year: 2013
  end-page: 1293
  ident: bib0048
  article-title: Derivative-free optimization: a review of algorithms and comparison of software implementations
  publication-title: J. Global Optim.
– reference: Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., Sohl-Dickstein, J., 2016. On the Expressive Power of Deep Neural Networks. arXiv:
– volume: 114
  start-page: 99
  year: 2018
  end-page: 110
  ident: bib0008
  article-title: Global optimization of grey-box computational systems using surrogate functions and application to highly constrained oil-field operations
  publication-title: Comput. Chem. Eng.
– volume: 37
  start-page: 1020
  year: 2015
  end-page: 1039
  ident: bib0034
  article-title: A fuzzy hybrid sequential design strategy for global surrogate modeling of high-dimensional computer experiments
  publication-title: SIAM J. Sci. Comput.
– start-page: 1026
  year: 2015
  end-page: 1034
  ident: bib0032
  article-title: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification
  publication-title: Proceedings of the IEEE international conference on computer vision
– volume: 71
  start-page: 845
  year: 2018
  end-page: 869
  ident: bib0039
  article-title: Optimization of black-box problems using Smolyak grids and polynomial approximations
  publication-title: J. Global Optim.
– reference: Tjeng, V., Xiao, K., Tedrake, R., 2017. Evaluating Robustness of Neural Networks with Mixed Integer Programming. arXiv:
– volume: 67
  start-page: 731
  year: 2017
  end-page: 757
  ident: bib0025
  article-title: Three enhancements for optimization-based bound tightening
  publication-title: J. Global Optim.
– volume: 68
  start-page: 563
  year: 2017
  end-page: 586
  ident: bib0043
  article-title: Global optimization of non-convex piecewise linear regression splines
  publication-title: J. Global Optim.
– volume: 44
  start-page: 5334
  year: 2019
  end-page: 5344
  ident: bib0060
  article-title: Artificial neural network based optimization for hydrogen purification performance of pressure swing adsorption
  publication-title: Int. J. Hydrogen. Energy
– volume: 24
  start-page: 69
  year: 2014
  end-page: 76
  ident: bib0015
  article-title: Support vector machines for surrogate modeling of electronic circuits
  publication-title: Neural Comput. Appl.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0033
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– reference: Balestriero, R., Baraniuk, R., 2018. Mad Max: Affine Spline Insights into Deep Learning. arXiv:
– volume: 46
  start-page: 105
  year: 2012
  end-page: 123
  ident: bib0020
  article-title: Process synthesis of biodiesel production plant using artificial neural networks as the surrogate models
  publication-title: Computers & Chemical Engineering
– reference: Krishnamurthy, Dvijotham, Stanforth, R., Gowal, S., Mann, T., Kohli, P., 2018. A Dual Approach to Scalable Verification of Deep Networks. arXiv:
– reference: Weng, T.-W., Zhang, H., Chen, H., Song, Z., Hsieh, C.-J., Boning, D., Dhillon, I. S., Daniel, L., 2018. Towards Fast Computation of Certified Robustness for ReLU Networks. arXiv:
– reference: Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M., 2017. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. arXiv:
– volume: 158
  start-page: 99
  year: 1996
  end-page: 150
  ident: bib0035
  article-title: Simplexity of the cube
  publication-title: Discrete Math.
– volume: 26
  start-page: 81
  year: 2010
  end-page: 98
  ident: bib0028
  article-title: Multiobjective global surrogate modeling, dealing with the 5-percent problem
  publication-title: Eng. Comput.
– volume: 58
  start-page: 303
  year: 2010
  end-page: 315
  ident: bib0058
  article-title: Mixed-Integer models for nonseparable piecewise-Linear optimization: unifying framework and extensions
  publication-title: Oper. Res.
– reference: Lin, M., Chen, Q., Yan, S., 2013. Network In Network. arXiv:
– volume: 67
  start-page: 3
  year: 2017
  end-page: 42
  ident: bib0012
  article-title: Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption
  publication-title: J. Global Optim.
– reference: Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org.
– volume: 77
  start-page: 127
  year: 2017
  end-page: 140
  ident: bib0057
  article-title: The pickup and delivery problem with time windows and handling operations
  publication-title: Comput. Oper. Res.
– volume: 43
  start-page: 233
  year: 2017
  end-page: 268
  ident: bib0054
  article-title: Neural network with unbounded activation functions is universal approximator
  publication-title: Appl. Comput. Harmon. Anal.
– start-page: 1
  year: 2017
  end-page: 49
  ident: bib0010
  article-title: Optimizing objective functions determined from random forests
  publication-title: SSRN Electron. J.
– volume: 145
  start-page: 120
  year: 2010
  end-page: 147
  ident: bib0044
  article-title: Piecewise-linear approximations of multidimensional functions
  publication-title: J Optim Theory Appl
– volume: 104
  start-page: 377
  year: 2017
  end-page: 391
  ident: bib0049
  article-title: Machine learning model and optimization of a PSA unit for methane-nitrogen separation
  publication-title: Comput. Chem. Eng.
– volume: 50
  start-page: 878
  year: 2016
  end-page: 891
  ident: bib0005
  article-title: Integrating timetabling and crew scheduling at a freight railway operator
  publication-title: Transp. Sci.
– volume: 108
  start-page: 250
  year: 2018
  end-page: 267
  ident: bib0009
  article-title: Advances in surrogate based modeling, feasibility analysis, and optimization: a review
  publication-title: Comput. Chem. Eng.
– volume: 15
  start-page: 315
  year: 2011
  end-page: 323
  ident: bib0026
  article-title: Deep sparse rectifier neural networks
  publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics
– volume: 47
  start-page: 2
  year: 2012
  end-page: 18
  ident: bib0030
  article-title: Advances in mathematical programming models for enterprise-wide optimization
  publication-title: Comput. Chem. Eng.
– start-page: 1319
  year: 2013
  end-page: 1327
  ident: bib0027
  article-title: Maxout networks
  publication-title: Proceedings of the 30th International Conference on Machine Learning
– reference: Gurobi Optimization, LLC, 2018. Gurobi Optimizer Reference Manual.
– volume: 23
  start-page: 296
  year: 2018
  end-page: 309
  ident: bib0022
  article-title: Deep neural networks and mixed integer linear optimization
  publication-title: Constraints
– reference: Mišić, V.V., 2017. Optimization of Tree Ensembles. arXiv:
– reference: Elmachtoub, A. N., Grigas, P., 2017. Smart “Predict, then Optimize”. arXiv:
– volume: 33
  start-page: 1948
  year: 2011
  end-page: 1974
  ident: bib0017
  article-title: A novel hybrid sequential design strategy for global surrogate modeling of computer experiments
  publication-title: SIAM J. Sci. Comput.
– start-page: 251
  year: 2017
  end-page: 268
  ident: bib0014
  article-title: Maximum resilience of artificial neural networks
  publication-title: Automated Technology for Verification and Analysis
– start-page: 10802
  year: 2018
  end-page: 10813
  ident: bib0053
  article-title: Fast and effective robustness certification
  publication-title: Adv. Neural Inf. Process. Syst.31
– reference: Serra, T., Tjandraatmadja, C., Ramalingam, S., 2018. Bounding and Counting Linear Regions of Deep Neural Networks. arXiv:
– volume: 106
  start-page: 71
  year: 2017
  end-page: 95
  ident: bib0023
  article-title: Design of computer experiments: a review
  publication-title: Comput. Chem. Eng.
– start-page: 447
  year: 1970
  end-page: 454
  ident: bib0007
  article-title: Special facilities in a general mathematical programming system for non-convex problems using ordered sets of variables
  publication-title: Proceedings of the Fifth International Conference on Operational Research
– reference: Dutta, S., Jha, S., Sanakaranarayanan, S., Tiwari, A., 2017. Output Range Analysis for Deep Feedforward Neural Networks. arXiv:
– reference: Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma, J. P., 2018. Strong mixed-integer programming formulations for trained neural networks. arXiv:
– reference: Schweidtmann, A. M., Mitsos, A., 2018. Global Deterministic Optimization with Artificial Neural Networks Embedded. arXiv:
– volume: 19
  start-page: 497
  year: 2007
  end-page: 509
  ident: bib0047
  article-title: A stochastic radial basis function method for the global optimization of expensive functions
  publication-title: INFORMS J. Comput.
– reference: .
– volume: 13
  start-page: 455
  year: 1998
  end-page: 492
  ident: bib0037
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Global Optim.
– year: 2016
  ident: bib0036
  article-title: Deep Learning
– volume: 60
  start-page: 223
  year: 2018
  end-page: 311
  ident: bib0011
  article-title: Optimization methods for large-Scale machine learning
  publication-title: SIAM Rev.
– volume: 54
  start-page: 564
  year: 2016
  end-page: 578
  ident: bib0004
  article-title: A new decomposition algorithm for a liquefied natural gas inventory routing problem
  publication-title: Int. J. Prod. Res.
– year: 2009
  ident: bib0016
  article-title: Introduction to derivative-Free optimization
– volume: June
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib0055
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: Kumar, A., Serra, T., Ramalingam, S., 2019. Equivalent and Approximate Transformations of Deep Neural Networks. arXiv:
– year: 2016
  ident: 10.1016/j.compchemeng.2019.106580_bib0036
– start-page: 770
  year: 2016
  ident: 10.1016/j.compchemeng.2019.106580_bib0033
  article-title: Deep residual learning for image recognition
– start-page: 1319
  year: 2013
  ident: 10.1016/j.compchemeng.2019.106580_bib0027
  article-title: Maxout networks
– volume: 84
  start-page: 237
  year: 2016
  ident: 10.1016/j.compchemeng.2019.106580_bib0029
  article-title: Global optimization of multiphase flow networks using spline surrogate models
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2015.08.022
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  ident: 10.1016/j.compchemeng.2019.106580_bib0037
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008306431147
– volume: 67
  start-page: 3
  issue: 1–2
  year: 2017
  ident: 10.1016/j.compchemeng.2019.106580_bib0012
  article-title: Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-015-0376-2
– volume: 68
  start-page: 563
  issue: 3
  year: 2017
  ident: 10.1016/j.compchemeng.2019.106580_bib0043
  article-title: Global optimization of non-convex piecewise linear regression splines
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-016-0494-5
– start-page: 1
  year: 2017
  ident: 10.1016/j.compchemeng.2019.106580_bib0010
  article-title: Optimizing objective functions determined from random forests
  publication-title: SSRN Electron. J.
– ident: 10.1016/j.compchemeng.2019.106580_bib0001
– ident: 10.1016/j.compchemeng.2019.106580_bib0018
  doi: 10.1007/978-3-319-77935-5_9
– volume: 158
  start-page: 99
  issue: 1–3
  year: 1996
  ident: 10.1016/j.compchemeng.2019.106580_bib0035
  article-title: Simplexity of the cube
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(95)00075-8
– ident: 10.1016/j.compchemeng.2019.106580_bib0038
  doi: 10.1007/978-3-319-63387-9_5
– ident: 10.1016/j.compchemeng.2019.106580_bib0042
– volume: 43
  start-page: 233
  issue: 2
  year: 2017
  ident: 10.1016/j.compchemeng.2019.106580_bib0054
  article-title: Neural network with unbounded activation functions is universal approximator
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2015.12.005
– volume: 145
  start-page: 120
  issue: 1
  year: 2010
  ident: 10.1016/j.compchemeng.2019.106580_bib0044
  article-title: Piecewise-linear approximations of multidimensional functions
  publication-title: J Optim Theory Appl
  doi: 10.1007/s10957-009-9626-0
– start-page: 10802
  year: 2018
  ident: 10.1016/j.compchemeng.2019.106580_bib0053
  article-title: Fast and effective robustness certification
  publication-title: Adv. Neural Inf. Process. Syst.31
– volume: 8
  start-page: 359
  issue: 5–6
  year: 2015
  ident: 10.1016/j.compchemeng.2019.106580_bib0024
  article-title: Bayesian reinforcement learning: a survey
  publication-title: Found. Trend. Mach. Learn.
  doi: 10.1561/2200000049
– ident: 10.1016/j.compchemeng.2019.106580_bib0046
– start-page: 251
  year: 2017
  ident: 10.1016/j.compchemeng.2019.106580_bib0014
  article-title: Maximum resilience of artificial neural networks
– volume: 60
  start-page: 223
  issue: 2
  year: 2018
  ident: 10.1016/j.compchemeng.2019.106580_bib0011
  article-title: Optimization methods for large-Scale machine learning
  publication-title: SIAM Rev.
  doi: 10.1137/16M1080173
– volume: 106
  start-page: 71
  year: 2017
  ident: 10.1016/j.compchemeng.2019.106580_bib0023
  article-title: Design of computer experiments: a review
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.05.010
– volume: 47
  start-page: 2
  year: 2012
  ident: 10.1016/j.compchemeng.2019.106580_bib0030
  article-title: Advances in mathematical programming models for enterprise-wide optimization
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2012.06.038
– volume: 77
  start-page: 127
  year: 2017
  ident: 10.1016/j.compchemeng.2019.106580_bib0057
  article-title: The pickup and delivery problem with time windows and handling operations
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2016.07.014
– ident: 10.1016/j.compchemeng.2019.106580_bib0031
– ident: 10.1016/j.compchemeng.2019.106580_bib0052
– volume: 37
  start-page: 1020
  year: 2015
  ident: 10.1016/j.compchemeng.2019.106580_bib0034
  article-title: A fuzzy hybrid sequential design strategy for global surrogate modeling of high-dimensional computer experiments
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/140962437
– volume: 56
  start-page: 1247
  issue: 3
  year: 2013
  ident: 10.1016/j.compchemeng.2019.106580_bib0048
  article-title: Derivative-free optimization: a review of algorithms and comparison of software implementations
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-012-9951-y
– volume: 54
  start-page: 564
  year: 2016
  ident: 10.1016/j.compchemeng.2019.106580_bib0004
  article-title: A new decomposition algorithm for a liquefied natural gas inventory routing problem
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2015.1037024
– ident: 10.1016/j.compchemeng.2019.106580_bib0056
– volume: 23
  start-page: 296
  issue: 3
  year: 2018
  ident: 10.1016/j.compchemeng.2019.106580_bib0022
  article-title: Deep neural networks and mixed integer linear optimization
  publication-title: Constraints
  doi: 10.1007/s10601-018-9285-6
– ident: 10.1016/j.compchemeng.2019.106580_bib0041
– ident: 10.1016/j.compchemeng.2019.106580_bib0051
  doi: 10.1007/s10957-018-1396-0
– volume: 15
  start-page: 315
  year: 2011
  ident: 10.1016/j.compchemeng.2019.106580_bib0026
  article-title: Deep sparse rectifier neural networks
– volume: 26
  start-page: 81
  year: 2010
  ident: 10.1016/j.compchemeng.2019.106580_bib0028
  article-title: Multiobjective global surrogate modeling, dealing with the 5-percent problem
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-009-0138-1
– volume: 114
  start-page: 99
  year: 2018
  ident: 10.1016/j.compchemeng.2019.106580_bib0008
  article-title: Global optimization of grey-box computational systems using surrogate functions and application to highly constrained oil-field operations
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2018.01.005
– volume: 58
  start-page: 303
  issue: 2
  year: 2010
  ident: 10.1016/j.compchemeng.2019.106580_bib0058
  article-title: Mixed-Integer models for nonseparable piecewise-Linear optimization: unifying framework and extensions
  publication-title: Oper. Res.
  doi: 10.1287/opre.1090.0721
– volume: 50
  start-page: 878
  issue: 3
  year: 2016
  ident: 10.1016/j.compchemeng.2019.106580_bib0005
  article-title: Integrating timetabling and crew scheduling at a freight railway operator
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.2015.0648
– ident: 10.1016/j.compchemeng.2019.106580_bib0045
– volume: 44
  start-page: 5334
  issue: 11
  year: 2019
  ident: 10.1016/j.compchemeng.2019.106580_bib0060
  article-title: Artificial neural network based optimization for hydrogen purification performance of pressure swing adsorption
  publication-title: Int. J. Hydrogen. Energy
  doi: 10.1016/j.ijhydene.2018.08.104
– volume: 108
  start-page: 250
  year: 2018
  ident: 10.1016/j.compchemeng.2019.106580_bib0009
  article-title: Advances in surrogate based modeling, feasibility analysis, and optimization: a review
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.09.017
– volume: 46
  start-page: 105
  year: 2012
  ident: 10.1016/j.compchemeng.2019.106580_bib0020
  article-title: Process synthesis of biodiesel production plant using artificial neural networks as the surrogate models
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2012.06.006
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.compchemeng.2019.106580_bib0050
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– start-page: 447
  year: 1970
  ident: 10.1016/j.compchemeng.2019.106580_bib0007
  article-title: Special facilities in a general mathematical programming system for non-convex problems using ordered sets of variables
– ident: 10.1016/j.compchemeng.2019.106580_bib0059
– volume: 71
  start-page: 845
  issue: 4
  year: 2018
  ident: 10.1016/j.compchemeng.2019.106580_bib0039
  article-title: Optimization of black-box problems using Smolyak grids and polynomial approximations
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-018-0643-0
– ident: 10.1016/j.compchemeng.2019.106580_bib0019
– volume: 29
  start-page: 449
  issue: 4
  year: 2006
  ident: 10.1016/j.compchemeng.2019.106580_bib0021
  article-title: Optimization of fischer-tropsch synthesis using neural networks
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.200500310
– start-page: 1026
  year: 2015
  ident: 10.1016/j.compchemeng.2019.106580_bib0032
  article-title: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification
– volume: 33
  start-page: 1948
  year: 2011
  ident: 10.1016/j.compchemeng.2019.106580_bib0017
  article-title: A novel hybrid sequential design strategy for global surrogate modeling of computer experiments
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090761811
– volume: 19
  start-page: 497
  issue: 4
  year: 2007
  ident: 10.1016/j.compchemeng.2019.106580_bib0047
  article-title: A stochastic radial basis function method for the global optimization of expensive functions
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1060.0182
– year: 2009
  ident: 10.1016/j.compchemeng.2019.106580_bib0016
– ident: 10.1016/j.compchemeng.2019.106580_bib0040
– ident: 10.1016/j.compchemeng.2019.106580_bib0013
– ident: 10.1016/j.compchemeng.2019.106580_bib0003
  doi: 10.1007/978-3-030-17953-3_3
– volume: 24
  start-page: 69
  issue: 1
  year: 2014
  ident: 10.1016/j.compchemeng.2019.106580_bib0015
  article-title: Support vector machines for surrogate modeling of electronic circuits
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1509-5
– ident: 10.1016/j.compchemeng.2019.106580_bib0006
– volume: 93
  start-page: 72
  year: 2018
  ident: 10.1016/j.compchemeng.2019.106580_bib0002
  article-title: Virtual multiphase flow metering using diverse neural network ensemble and adaptive simulated annealing
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2017.10.014
– volume: 104
  start-page: 377
  year: 2017
  ident: 10.1016/j.compchemeng.2019.106580_bib0049
  article-title: Machine learning model and optimization of a PSA unit for methane-nitrogen separation
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.05.006
– volume: 67
  start-page: 731
  issue: 4
  year: 2017
  ident: 10.1016/j.compchemeng.2019.106580_bib0025
  article-title: Three enhancements for optimization-based bound tightening
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-016-0450-4
– volume: June
  start-page: 1
  year: 2016
  ident: 10.1016/j.compchemeng.2019.106580_bib0055
  article-title: Going deeper with convolutions
SSID ssj0002488
Score 2.5734391
Snippet We consider the embedding of piecewise-linear deep neural networks (ReLU networks) as surrogate models in mixed-integer linear programming (MILP) problems. A...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106580
SubjectTerms Deep neural networks
Mixed-Integer linear programming
Regression
ReLU networks
Surrogate modeling
Title ReLU networks as surrogate models in mixed-integer linear programs
URI https://dx.doi.org/10.1016/j.compchemeng.2019.106580
Volume 131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5jguiDeMV5GRF8rcvapE3Alzkc87YHcbC3krSJVFw32g188reb04tOEBR8bOiB8HE4l_Y730Ho3DM8jiPKHaIj26AwQxwhPepQ4cpIKUY0g0Hhh5E_HNPbCZs0UL-ehQFaZRX7y5heROvqpFOh2ZknCcz4Ct71GLUlCIGfiTDBTgPw8ov3L5qHSzmvdTPh7XV09sXxAtq2xWaq02dgeQl7bjMy-TlHreSdwTbaqgpG3CvvtIMaOt1Fmysygnvo6lHfj3FaErpzLHOcL7NsBh_IcLHpJsdJiqfJm46dQh5CZxiqS5nhip6V76Px4PqpP3Sq3QhO5DG-cJTNbX7g6yDWvpDadI00wjU-qAoQbTzbB3ES-8rT0nAZSa1AGD-gvqFM2SLNO0DNdJbqQ4S5su2xYiwQtlnkUiheDLwG3ASUGOK2EK_RCKNKOBz2V7yGNUPsJVwBMgQgwxLIFnI_TeelesZfjC5ryMNvrhDaKP-7-dH_zI_RBjwVjBV2gpqLbKlPbd2xUO3CsdporXdzNxx9AC7U2WQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oBC8P4hXnNYKvdVmbtCn4osMxdduDbLC3krSJVFw32g188reb9OImCAq-Jj1QPtJzSb_zHYArR7EoCgmzsAx1gUIVtnzuEIv4Ng-FoFhS0yjc67udIXkc0dEKtKpeGEOrLH1_4dNzb12uNEo0G9M4Nj2-Pms6lOgUBJufiauwRvTna8YYXH8seB42YawSzjSPr8PlguRleNsanLFMXgzNy9frOiTjn4PUUuBp78B2mTGi2-KldmFFJnuwtaQjuA93z7I7REnB6M4Qz1A2T9OJuSFD-aibDMUJGsfvMrJyfQiZIpNe8hSV_KzsAIbt-0GrY5XDEazQoWxmCR3cXM-VXiRdn0vVVFz5tnKNrACWytGFEMORKxzJFeMhl8Io43vEVYQKnaU5h1BLJok8AsSEro8FpZ6vq0XGfcHyjlePKY9ghe06sAqNICyVw80Ai7egooi9BktABgbIoACyDvaX6bSQz_iL0U0FefDtLATazf9ufvw_8wvY6Ax63aD70H86gU2zk9NX6CnUZulcnukkZCbO80P2CUc62vI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ReLU+networks+as+surrogate+models+in+mixed-integer+linear+programs&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Grimstad%2C+Bjarne&rft.au=Andersson%2C+Henrik&rft.date=2019-12-05&rft.pub=Elsevier+Ltd&rft.issn=0098-1354&rft.eissn=1873-4375&rft.volume=131&rft_id=info:doi/10.1016%2Fj.compchemeng.2019.106580&rft.externalDocID=S0098135419307203
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon