ReLU networks as surrogate models in mixed-integer linear programs
We consider the embedding of piecewise-linear deep neural networks (ReLU networks) as surrogate models in mixed-integer linear programming (MILP) problems. A MILP formulation of ReLU networks has recently been applied by many authors to probe for various model properties subject to input bounds. The...
Saved in:
Published in | Computers & chemical engineering Vol. 131; p. 106580 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
05.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider the embedding of piecewise-linear deep neural networks (ReLU networks) as surrogate models in mixed-integer linear programming (MILP) problems. A MILP formulation of ReLU networks has recently been applied by many authors to probe for various model properties subject to input bounds. The formulation is obtained by programming each ReLU operator with a binary variable and applying the big-M method. The efficiency of the formulation hinges on the tightness of the bounds defined by the big-M values. When ReLU networks are embedded in a larger optimization problem, the presence of output bounds can be exploited in bound tightening. To this end, we devise and study several bound tightening procedures that consider both input and output bounds. Our numerical results show that bound tightening may reduce solution times considerably, and that small-sized ReLU networks are suitable as surrogate models in mixed-integer linear programs. |
---|---|
AbstractList | We consider the embedding of piecewise-linear deep neural networks (ReLU networks) as surrogate models in mixed-integer linear programming (MILP) problems. A MILP formulation of ReLU networks has recently been applied by many authors to probe for various model properties subject to input bounds. The formulation is obtained by programming each ReLU operator with a binary variable and applying the big-M method. The efficiency of the formulation hinges on the tightness of the bounds defined by the big-M values. When ReLU networks are embedded in a larger optimization problem, the presence of output bounds can be exploited in bound tightening. To this end, we devise and study several bound tightening procedures that consider both input and output bounds. Our numerical results show that bound tightening may reduce solution times considerably, and that small-sized ReLU networks are suitable as surrogate models in mixed-integer linear programs. |
ArticleNumber | 106580 |
Author | Grimstad, Bjarne Andersson, Henrik |
Author_xml | – sequence: 1 givenname: Bjarne surname: Grimstad fullname: Grimstad, Bjarne email: bjarne.grimstad@gmail.com organization: Solution Seeker AS, Gaustadalléen 21, Oslo 0349, Norway – sequence: 2 givenname: Henrik surname: Andersson fullname: Andersson, Henrik organization: Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology,Trondheim NO-7491, Norway |
BookMark | eNqNkM1KAzEYRYNUsK2-Q3yAqUkzk0lWokWrUBDErkMm86WmziQliX9v75S6EFddXbjcexZngkY-eEDokpIZJZRfbWcm9DvzCj34zWxOqBx6XglygsZU1KwoWV2N0JgQKQrKqvIMTVLaEkLmpRBjdPsMqzX2kD9DfEtYJ5zeYwwbnQH3oYUuYedx776gLZzPsIGIO-dBR7wbZlH36RydWt0luPjNKVrf370sHorV0_JxcbMqDKtELhqAltcc6ha41GCp1VbOLadSSgKWiZoK0vKGgbZCGw0Np4LXJbdl1ZSkYlN0feCaGFKKYJVxWWcXfI7adYoStVeituqPErVXog5KBoL8R9hF1-v4fdR3cfgOSuDDQVTJOPAGWhfBZNUGdwTlB0VBhyE |
CitedBy_id | crossref_primary_10_1016_j_jlp_2022_104754 crossref_primary_10_2514_1_A36122 crossref_primary_10_1016_j_epsr_2022_108282 crossref_primary_10_3389_fenrg_2021_719658 crossref_primary_10_1016_j_jprocont_2022_08_017 crossref_primary_10_1021_acs_iecr_2c02968 crossref_primary_10_3390_pr8040441 crossref_primary_10_1021_acssuschemeng_1c02741 crossref_primary_10_1287_ijoc_2022_0312 crossref_primary_10_1016_j_dche_2023_100136 crossref_primary_10_1016_j_compchemeng_2025_109105 crossref_primary_10_1002_aic_17705 crossref_primary_10_1016_j_ifacol_2020_12_544 crossref_primary_10_1016_j_compchemeng_2023_108411 crossref_primary_10_1088_1361_6560_ad2d7e crossref_primary_10_1007_s11042_023_17866_6 crossref_primary_10_3390_electronics9111975 crossref_primary_10_1016_j_ces_2022_118337 crossref_primary_10_1002_cjce_25316 crossref_primary_10_1016_j_conengprac_2024_106041 crossref_primary_10_1049_gtd2_12425 crossref_primary_10_1016_j_rsurfi_2024_100322 crossref_primary_10_1109_TPWRS_2023_3251724 crossref_primary_10_1007_s10846_022_01647_8 crossref_primary_10_1016_j_cherd_2024_10_005 crossref_primary_10_1016_j_compchemeng_2020_106801 crossref_primary_10_3389_fcvm_2023_1279324 crossref_primary_10_1016_j_energy_2024_131652 crossref_primary_10_1515_revce_2024_0055 crossref_primary_10_1016_j_cej_2024_155141 crossref_primary_10_1016_j_compchemeng_2023_108171 crossref_primary_10_1016_j_compchemeng_2025_109061 crossref_primary_10_1007_s10957_023_02317_x crossref_primary_10_1016_j_compchemeng_2023_108244 crossref_primary_10_1016_j_compchemeng_2024_108584 crossref_primary_10_1016_j_compchemeng_2024_108660 crossref_primary_10_1016_j_compchemeng_2022_107970 crossref_primary_10_1016_j_compchemeng_2022_107850 crossref_primary_10_1109_LCSYS_2024_3411515 crossref_primary_10_1371_journal_pone_0261029 crossref_primary_10_1007_s10898_023_01311_x crossref_primary_10_3390_inventions10020029 crossref_primary_10_1007_s11750_021_00604_2 crossref_primary_10_3390_s21051654 crossref_primary_10_1007_s10589_022_00404_9 crossref_primary_10_3390_healthcare8020107 crossref_primary_10_1002_cite_202100083 crossref_primary_10_3390_en15228694 crossref_primary_10_1016_j_ejor_2023_10_028 crossref_primary_10_1080_15567036_2022_2115167 crossref_primary_10_1007_s10898_024_01434_9 crossref_primary_10_1016_j_etran_2022_100200 crossref_primary_10_1016_j_compchemeng_2024_108596 crossref_primary_10_1016_j_ress_2021_108016 crossref_primary_10_1287_opre_2021_0707 crossref_primary_10_1021_acs_iecr_0c04214 crossref_primary_10_1016_j_ijepes_2023_109741 crossref_primary_10_1016_j_compchemeng_2022_107745 crossref_primary_10_1007_s10898_022_01228_x crossref_primary_10_1007_s10898_020_00949_1 crossref_primary_10_1287_ijoc_2023_1285 crossref_primary_10_1016_j_ccst_2024_100319 crossref_primary_10_1287_ijoc_2023_0153 crossref_primary_10_2139_ssrn_4217092 crossref_primary_10_1016_j_dche_2024_100200 crossref_primary_10_1007_s10107_020_01474_5 crossref_primary_10_1016_j_adapen_2024_100179 crossref_primary_10_1016_j_apenergy_2022_118667 crossref_primary_10_3390_membranes12020199 crossref_primary_10_1021_acs_iecr_4c00632 crossref_primary_10_1016_j_compchemeng_2025_109042 crossref_primary_10_1016_j_ces_2024_120165 crossref_primary_10_3389_fceng_2020_620168 crossref_primary_10_1016_j_orl_2024_107194 crossref_primary_10_1016_j_ejor_2023_04_041 crossref_primary_10_1016_j_apm_2023_04_032 crossref_primary_10_3390_diagnostics10100744 crossref_primary_10_1016_j_energy_2023_128218 crossref_primary_10_1016_j_compchemeng_2024_108689 crossref_primary_10_1016_j_compchemeng_2023_108347 crossref_primary_10_1016_j_compchemeng_2024_108764 crossref_primary_10_1016_j_eswa_2023_120895 crossref_primary_10_1002_cite_202200172 crossref_primary_10_1016_j_compchemeng_2024_108723 crossref_primary_10_1016_j_eswa_2023_121022 crossref_primary_10_1016_j_cej_2023_148421 crossref_primary_10_1016_j_compchemeng_2021_107419 crossref_primary_10_1109_TCAD_2021_3118963 |
Cites_doi | 10.1016/j.compchemeng.2015.08.022 10.1023/A:1008306431147 10.1007/s10898-015-0376-2 10.1007/s10898-016-0494-5 10.1007/978-3-319-77935-5_9 10.1016/0012-365X(95)00075-8 10.1007/978-3-319-63387-9_5 10.1016/j.acha.2015.12.005 10.1007/s10957-009-9626-0 10.1561/2200000049 10.1137/16M1080173 10.1016/j.compchemeng.2017.05.010 10.1016/j.compchemeng.2012.06.038 10.1016/j.cor.2016.07.014 10.1137/140962437 10.1007/s10898-012-9951-y 10.1080/00207543.2015.1037024 10.1007/s10601-018-9285-6 10.1007/s10957-018-1396-0 10.1007/s00366-009-0138-1 10.1016/j.compchemeng.2018.01.005 10.1287/opre.1090.0721 10.1287/trsc.2015.0648 10.1016/j.ijhydene.2018.08.104 10.1016/j.compchemeng.2017.09.017 10.1016/j.compchemeng.2012.06.006 10.1016/j.neunet.2014.09.003 10.1007/s10898-018-0643-0 10.1002/ceat.200500310 10.1137/090761811 10.1287/ijoc.1060.0182 10.1007/978-3-030-17953-3_3 10.1007/s00521-013-1509-5 10.1016/j.eswa.2017.10.014 10.1016/j.compchemeng.2017.05.006 10.1007/s10898-016-0450-4 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.compchemeng.2019.106580 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4375 |
ExternalDocumentID | 10_1016_j_compchemeng_2019_106580 S0098135419307203 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LG9 LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SBC SDF SDG SDP SES SPC SPCBC SSG SST SSZ T5K ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB HLY HLZ HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ ZY4 |
ID | FETCH-LOGICAL-c358t-beed676e7de69aef1faf92f619990ef387180d6b3eaf8acaeb6186746f45b4053 |
IEDL.DBID | .~1 |
ISSN | 0098-1354 |
IngestDate | Tue Jul 01 03:20:51 EDT 2025 Thu Apr 24 22:51:41 EDT 2025 Fri Feb 23 02:26:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mixed-Integer linear programming Regression Deep neural networks ReLU networks Surrogate modeling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-beed676e7de69aef1faf92f619990ef387180d6b3eaf8acaeb6186746f45b4053 |
ParticipantIDs | crossref_citationtrail_10_1016_j_compchemeng_2019_106580 crossref_primary_10_1016_j_compchemeng_2019_106580 elsevier_sciencedirect_doi_10_1016_j_compchemeng_2019_106580 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-05 |
PublicationDateYYYYMMDD | 2019-12-05 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-05 day: 05 |
PublicationDecade | 2010 |
PublicationTitle | Computers & chemical engineering |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org. Fischetti, Jo (bib0022) 2018; 23 Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma, J. P., 2018. Strong mixed-integer programming formulations for trained neural networks. arXiv Andersson, Christiansen, Desaulniers (bib0004) 2016; 54 Regis, Shoemaker (bib0047) 2007; 19 Bach, Dollevoet, Huisman (bib0005) 2016; 50 Fahmi, Cremaschi (bib0020) 2012; 46 Bottou, Curtis, Nocedal (bib0011) 2018; 60 Goodfellow, Warde-farley, Mirza, Courville, Bengio (bib0027) 2013 Schweidtmann, A. M., Mitsos, A., 2018. Global Deterministic Optimization with Artificial Neural Networks Embedded. arXiv Vielma, Ahmed, Nemhauser (bib0058) 2010; 58 Conn, Scheinberg, Vicente (bib0016) 2009 Grimstad, Foss, Heddle, Woodman (bib0029) 2016; 84 Tjeng, V., Xiao, K., Tedrake, R., 2017. Evaluating Robustness of Neural Networks with Mixed Integer Programming. arXiv Kumar, A., Serra, T., Ramalingam, S., 2019. Equivalent and Approximate Transformations of Deep Neural Networks. arXiv Lin, M., Chen, Q., Yan, S., 2013. Network In Network. arXiv Crombecq, Gorissen, Deschrijver, Dhaene (bib0017) 2011; 33 Hughes, Anderson (bib0035) 1996; 158 Ye, Ma, Tong, Xiao, Bénard, Chahine (bib0060) 2019; 44 Serra, T., Tjandraatmadja, C., Ramalingam, S., 2018. Bounding and Counting Linear Regions of Deep Neural Networks. arXiv Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0055) 2016; June Bhosekar, Ierapetritou (bib0009) 2018; 108 . Fernandes (bib0021) 2006; 29 Martinez, Anahideh, Rosenberger, Martinez, Chen, Wang (bib0043) 2017; 68 Bunel, R., Turkaslan, I., Torr, P. H. S., Kohli, P., Kumar, M. P., 2017. A Unified View of Piecewise Linear Neural Network Verification. arXiv Dutta, S., Jha, S., Sanakaranarayanan, S., Tiwari, A., 2017. Output Range Analysis for Deep Feedforward Neural Networks. arXiv Cheng, Nührenberg, Ruess (bib0014) 2017 Beykal, Boukouvala, Floudas, Sorek, Zalavadia, Gildin (bib0008) 2018; 114 Gorissen, Couckuyt, Laermans (bib0028) 2010; 26 Garud, Karimi, Kraft (bib0023) 2017; 106 Gurobi Optimization, LLC, 2018. Gurobi Optimizer Reference Manual. Kieslich, Boukouvala, Floudas (bib0039) 2018; 71 Ciccazzo, Pillo, Latorre (bib0015) 2014; 24 Glorot, Bordes, Bengio (bib0026) 2011; 15 Weng, T.-W., Zhang, H., Chen, H., Song, Z., Hsieh, C.-J., Boning, D., Dhillon, I. S., Daniel, L., 2018. Towards Fast Computation of Certified Robustness for ReLU Networks. arXiv Gleixner, Berthold, Müller, Weltge (bib0025) 2017; 67 Veenstra, Cherkesly, Desaulniers, Laporte (bib0057) 2017; 77 AL-Qutami, Ibrahim, Ismail, Ishak (bib0002) 2018; 93 Balestriero, R., Baraniuk, R., 2018. Mad Max: Affine Spline Insights into Deep Learning. arXiv He, Zhang, Ren, Sun (bib0032) 2015 Sonoda, Murata (bib0054) 2017; 43 Ian Goodfellow, Bengio (bib0036) 2016 Mišić, V.V., 2017. Optimization of Tree Ensembles. arXiv He, Zhang, Ren, Sun (bib0033) 2016 Rios, Sahinidis (bib0048) 2013; 56 Grossmann (bib0030) 2012; 47 Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., Sohl-Dickstein, J., 2016. On the Expressive Power of Deep Neural Networks. arXiv van der Herten, Couckuyt, Deschrijver, Dhaene (bib0034) 2015; 37 Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M., 2017. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. arXiv Jones, Schonlau, Welch (bib0037) 1998; 13 Misener, Floudas (bib0044) 2010; 145 Schmidhuber (bib0050) 2015; 61 Beale, Tomlin (bib0007) 1970 Boukouvala, Hasan, Floudas (bib0012) 2017; 67 Elmachtoub, A. N., Grigas, P., 2017. Smart “Predict, then Optimize”. arXiv Ghavamzadeh, Mannor, Pineau, Tamar (bib0024) 2015; 8 Sant Anna, Barreto, Tavares, de Souza (bib0049) 2017; 104 Biggs, Hariss (bib0010) 2017 Krishnamurthy, Dvijotham, Stanforth, R., Gowal, S., Mann, T., Kohli, P., 2018. A Dual Approach to Scalable Verification of Deep Networks. arXiv Singh, Gehr, Mirman, Püschel, Vechev (bib0053) 2018 Ye (10.1016/j.compchemeng.2019.106580_bib0060) 2019; 44 Beale (10.1016/j.compchemeng.2019.106580_bib0007) 1970 Sant Anna (10.1016/j.compchemeng.2019.106580_bib0049) 2017; 104 Schmidhuber (10.1016/j.compchemeng.2019.106580_bib0050) 2015; 61 10.1016/j.compchemeng.2019.106580_bib0052 10.1016/j.compchemeng.2019.106580_bib0051 He (10.1016/j.compchemeng.2019.106580_bib0032) 2015 10.1016/j.compchemeng.2019.106580_bib0056 Szegedy (10.1016/j.compchemeng.2019.106580_bib0055) 2016; June Veenstra (10.1016/j.compchemeng.2019.106580_bib0057) 2017; 77 Grimstad (10.1016/j.compchemeng.2019.106580_bib0029) 2016; 84 10.1016/j.compchemeng.2019.106580_bib0013 10.1016/j.compchemeng.2019.106580_bib0059 10.1016/j.compchemeng.2019.106580_bib0018 10.1016/j.compchemeng.2019.106580_bib0019 Biggs (10.1016/j.compchemeng.2019.106580_bib0010) 2017 Fernandes (10.1016/j.compchemeng.2019.106580_bib0021) 2006; 29 Conn (10.1016/j.compchemeng.2019.106580_bib0016) 2009 Glorot (10.1016/j.compchemeng.2019.106580_bib0026) 2011; 15 Singh (10.1016/j.compchemeng.2019.106580_bib0053) 2018 Goodfellow (10.1016/j.compchemeng.2019.106580_bib0027) 2013 Vielma (10.1016/j.compchemeng.2019.106580_bib0058) 2010; 58 Bottou (10.1016/j.compchemeng.2019.106580_bib0011) 2018; 60 Ghavamzadeh (10.1016/j.compchemeng.2019.106580_bib0024) 2015; 8 Kieslich (10.1016/j.compchemeng.2019.106580_bib0039) 2018; 71 10.1016/j.compchemeng.2019.106580_bib0041 Jones (10.1016/j.compchemeng.2019.106580_bib0037) 1998; 13 10.1016/j.compchemeng.2019.106580_bib0040 Misener (10.1016/j.compchemeng.2019.106580_bib0044) 2010; 145 10.1016/j.compchemeng.2019.106580_bib0042 10.1016/j.compchemeng.2019.106580_bib0001 10.1016/j.compchemeng.2019.106580_bib0045 AL-Qutami (10.1016/j.compchemeng.2019.106580_bib0002) 2018; 93 10.1016/j.compchemeng.2019.106580_bib0003 10.1016/j.compchemeng.2019.106580_bib0046 10.1016/j.compchemeng.2019.106580_bib0006 Hughes (10.1016/j.compchemeng.2019.106580_bib0035) 1996; 158 Grossmann (10.1016/j.compchemeng.2019.106580_bib0030) 2012; 47 Beykal (10.1016/j.compchemeng.2019.106580_bib0008) 2018; 114 Andersson (10.1016/j.compchemeng.2019.106580_bib0004) 2016; 54 Ian Goodfellow (10.1016/j.compchemeng.2019.106580_bib0036) 2016 Martinez (10.1016/j.compchemeng.2019.106580_bib0043) 2017; 68 10.1016/j.compchemeng.2019.106580_bib0031 Gleixner (10.1016/j.compchemeng.2019.106580_bib0025) 2017; 67 10.1016/j.compchemeng.2019.106580_bib0038 Ciccazzo (10.1016/j.compchemeng.2019.106580_bib0015) 2014; 24 Sonoda (10.1016/j.compchemeng.2019.106580_bib0054) 2017; 43 Cheng (10.1016/j.compchemeng.2019.106580_bib0014) 2017 van der Herten (10.1016/j.compchemeng.2019.106580_bib0034) 2015; 37 Bhosekar (10.1016/j.compchemeng.2019.106580_bib0009) 2018; 108 Fischetti (10.1016/j.compchemeng.2019.106580_bib0022) 2018; 23 Garud (10.1016/j.compchemeng.2019.106580_bib0023) 2017; 106 Regis (10.1016/j.compchemeng.2019.106580_bib0047) 2007; 19 He (10.1016/j.compchemeng.2019.106580_bib0033) 2016 Crombecq (10.1016/j.compchemeng.2019.106580_bib0017) 2011; 33 Fahmi (10.1016/j.compchemeng.2019.106580_bib0020) 2012; 46 Bach (10.1016/j.compchemeng.2019.106580_bib0005) 2016; 50 Boukouvala (10.1016/j.compchemeng.2019.106580_bib0012) 2017; 67 Rios (10.1016/j.compchemeng.2019.106580_bib0048) 2013; 56 Gorissen (10.1016/j.compchemeng.2019.106580_bib0028) 2010; 26 |
References_xml | – reference: Bunel, R., Turkaslan, I., Torr, P. H. S., Kohli, P., Kumar, M. P., 2017. A Unified View of Piecewise Linear Neural Network Verification. arXiv: – volume: 93 start-page: 72 year: 2018 end-page: 85 ident: bib0002 article-title: Virtual multiphase flow metering using diverse neural network ensemble and adaptive simulated annealing publication-title: Expert. Syst. Appl. – volume: 29 start-page: 449 year: 2006 end-page: 453 ident: bib0021 article-title: Optimization of fischer-tropsch synthesis using neural networks publication-title: Chem. Eng. Technol. – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: bib0050 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw. – volume: 8 start-page: 359 year: 2015 end-page: 483 ident: bib0024 article-title: Bayesian reinforcement learning: a survey publication-title: Found. Trend. Mach. Learn. – volume: 84 start-page: 237 year: 2016 end-page: 254 ident: bib0029 article-title: Global optimization of multiphase flow networks using spline surrogate models publication-title: Comput. Chem. Eng. – volume: 56 start-page: 1247 year: 2013 end-page: 1293 ident: bib0048 article-title: Derivative-free optimization: a review of algorithms and comparison of software implementations publication-title: J. Global Optim. – reference: Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., Sohl-Dickstein, J., 2016. On the Expressive Power of Deep Neural Networks. arXiv: – volume: 114 start-page: 99 year: 2018 end-page: 110 ident: bib0008 article-title: Global optimization of grey-box computational systems using surrogate functions and application to highly constrained oil-field operations publication-title: Comput. Chem. Eng. – volume: 37 start-page: 1020 year: 2015 end-page: 1039 ident: bib0034 article-title: A fuzzy hybrid sequential design strategy for global surrogate modeling of high-dimensional computer experiments publication-title: SIAM J. Sci. Comput. – start-page: 1026 year: 2015 end-page: 1034 ident: bib0032 article-title: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification publication-title: Proceedings of the IEEE international conference on computer vision – volume: 71 start-page: 845 year: 2018 end-page: 869 ident: bib0039 article-title: Optimization of black-box problems using Smolyak grids and polynomial approximations publication-title: J. Global Optim. – reference: Tjeng, V., Xiao, K., Tedrake, R., 2017. Evaluating Robustness of Neural Networks with Mixed Integer Programming. arXiv: – volume: 67 start-page: 731 year: 2017 end-page: 757 ident: bib0025 article-title: Three enhancements for optimization-based bound tightening publication-title: J. Global Optim. – volume: 68 start-page: 563 year: 2017 end-page: 586 ident: bib0043 article-title: Global optimization of non-convex piecewise linear regression splines publication-title: J. Global Optim. – volume: 44 start-page: 5334 year: 2019 end-page: 5344 ident: bib0060 article-title: Artificial neural network based optimization for hydrogen purification performance of pressure swing adsorption publication-title: Int. J. Hydrogen. Energy – volume: 24 start-page: 69 year: 2014 end-page: 76 ident: bib0015 article-title: Support vector machines for surrogate modeling of electronic circuits publication-title: Neural Comput. Appl. – start-page: 770 year: 2016 end-page: 778 ident: bib0033 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – reference: Balestriero, R., Baraniuk, R., 2018. Mad Max: Affine Spline Insights into Deep Learning. arXiv: – volume: 46 start-page: 105 year: 2012 end-page: 123 ident: bib0020 article-title: Process synthesis of biodiesel production plant using artificial neural networks as the surrogate models publication-title: Computers & Chemical Engineering – reference: Krishnamurthy, Dvijotham, Stanforth, R., Gowal, S., Mann, T., Kohli, P., 2018. A Dual Approach to Scalable Verification of Deep Networks. arXiv: – reference: Weng, T.-W., Zhang, H., Chen, H., Song, Z., Hsieh, C.-J., Boning, D., Dhillon, I. S., Daniel, L., 2018. Towards Fast Computation of Certified Robustness for ReLU Networks. arXiv: – reference: Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M., 2017. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. arXiv: – volume: 158 start-page: 99 year: 1996 end-page: 150 ident: bib0035 article-title: Simplexity of the cube publication-title: Discrete Math. – volume: 26 start-page: 81 year: 2010 end-page: 98 ident: bib0028 article-title: Multiobjective global surrogate modeling, dealing with the 5-percent problem publication-title: Eng. Comput. – volume: 58 start-page: 303 year: 2010 end-page: 315 ident: bib0058 article-title: Mixed-Integer models for nonseparable piecewise-Linear optimization: unifying framework and extensions publication-title: Oper. Res. – reference: Lin, M., Chen, Q., Yan, S., 2013. Network In Network. arXiv: – volume: 67 start-page: 3 year: 2017 end-page: 42 ident: bib0012 article-title: Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption publication-title: J. Global Optim. – reference: Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org. – volume: 77 start-page: 127 year: 2017 end-page: 140 ident: bib0057 article-title: The pickup and delivery problem with time windows and handling operations publication-title: Comput. Oper. Res. – volume: 43 start-page: 233 year: 2017 end-page: 268 ident: bib0054 article-title: Neural network with unbounded activation functions is universal approximator publication-title: Appl. Comput. Harmon. Anal. – start-page: 1 year: 2017 end-page: 49 ident: bib0010 article-title: Optimizing objective functions determined from random forests publication-title: SSRN Electron. J. – volume: 145 start-page: 120 year: 2010 end-page: 147 ident: bib0044 article-title: Piecewise-linear approximations of multidimensional functions publication-title: J Optim Theory Appl – volume: 104 start-page: 377 year: 2017 end-page: 391 ident: bib0049 article-title: Machine learning model and optimization of a PSA unit for methane-nitrogen separation publication-title: Comput. Chem. Eng. – volume: 50 start-page: 878 year: 2016 end-page: 891 ident: bib0005 article-title: Integrating timetabling and crew scheduling at a freight railway operator publication-title: Transp. Sci. – volume: 108 start-page: 250 year: 2018 end-page: 267 ident: bib0009 article-title: Advances in surrogate based modeling, feasibility analysis, and optimization: a review publication-title: Comput. Chem. Eng. – volume: 15 start-page: 315 year: 2011 end-page: 323 ident: bib0026 article-title: Deep sparse rectifier neural networks publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics – volume: 47 start-page: 2 year: 2012 end-page: 18 ident: bib0030 article-title: Advances in mathematical programming models for enterprise-wide optimization publication-title: Comput. Chem. Eng. – start-page: 1319 year: 2013 end-page: 1327 ident: bib0027 article-title: Maxout networks publication-title: Proceedings of the 30th International Conference on Machine Learning – reference: Gurobi Optimization, LLC, 2018. Gurobi Optimizer Reference Manual. – volume: 23 start-page: 296 year: 2018 end-page: 309 ident: bib0022 article-title: Deep neural networks and mixed integer linear optimization publication-title: Constraints – reference: Mišić, V.V., 2017. Optimization of Tree Ensembles. arXiv: – reference: Elmachtoub, A. N., Grigas, P., 2017. Smart “Predict, then Optimize”. arXiv: – volume: 33 start-page: 1948 year: 2011 end-page: 1974 ident: bib0017 article-title: A novel hybrid sequential design strategy for global surrogate modeling of computer experiments publication-title: SIAM J. Sci. Comput. – start-page: 251 year: 2017 end-page: 268 ident: bib0014 article-title: Maximum resilience of artificial neural networks publication-title: Automated Technology for Verification and Analysis – start-page: 10802 year: 2018 end-page: 10813 ident: bib0053 article-title: Fast and effective robustness certification publication-title: Adv. Neural Inf. Process. Syst.31 – reference: Serra, T., Tjandraatmadja, C., Ramalingam, S., 2018. Bounding and Counting Linear Regions of Deep Neural Networks. arXiv: – volume: 106 start-page: 71 year: 2017 end-page: 95 ident: bib0023 article-title: Design of computer experiments: a review publication-title: Comput. Chem. Eng. – start-page: 447 year: 1970 end-page: 454 ident: bib0007 article-title: Special facilities in a general mathematical programming system for non-convex problems using ordered sets of variables publication-title: Proceedings of the Fifth International Conference on Operational Research – reference: Dutta, S., Jha, S., Sanakaranarayanan, S., Tiwari, A., 2017. Output Range Analysis for Deep Feedforward Neural Networks. arXiv: – reference: Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma, J. P., 2018. Strong mixed-integer programming formulations for trained neural networks. arXiv: – reference: Schweidtmann, A. M., Mitsos, A., 2018. Global Deterministic Optimization with Artificial Neural Networks Embedded. arXiv: – volume: 19 start-page: 497 year: 2007 end-page: 509 ident: bib0047 article-title: A stochastic radial basis function method for the global optimization of expensive functions publication-title: INFORMS J. Comput. – reference: . – volume: 13 start-page: 455 year: 1998 end-page: 492 ident: bib0037 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Global Optim. – year: 2016 ident: bib0036 article-title: Deep Learning – volume: 60 start-page: 223 year: 2018 end-page: 311 ident: bib0011 article-title: Optimization methods for large-Scale machine learning publication-title: SIAM Rev. – volume: 54 start-page: 564 year: 2016 end-page: 578 ident: bib0004 article-title: A new decomposition algorithm for a liquefied natural gas inventory routing problem publication-title: Int. J. Prod. Res. – year: 2009 ident: bib0016 article-title: Introduction to derivative-Free optimization – volume: June start-page: 1 year: 2016 end-page: 9 ident: bib0055 article-title: Going deeper with convolutions publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – reference: Kumar, A., Serra, T., Ramalingam, S., 2019. Equivalent and Approximate Transformations of Deep Neural Networks. arXiv: – year: 2016 ident: 10.1016/j.compchemeng.2019.106580_bib0036 – start-page: 770 year: 2016 ident: 10.1016/j.compchemeng.2019.106580_bib0033 article-title: Deep residual learning for image recognition – start-page: 1319 year: 2013 ident: 10.1016/j.compchemeng.2019.106580_bib0027 article-title: Maxout networks – volume: 84 start-page: 237 year: 2016 ident: 10.1016/j.compchemeng.2019.106580_bib0029 article-title: Global optimization of multiphase flow networks using spline surrogate models publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2015.08.022 – volume: 13 start-page: 455 issue: 4 year: 1998 ident: 10.1016/j.compchemeng.2019.106580_bib0037 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Global Optim. doi: 10.1023/A:1008306431147 – volume: 67 start-page: 3 issue: 1–2 year: 2017 ident: 10.1016/j.compchemeng.2019.106580_bib0012 article-title: Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption publication-title: J. Global Optim. doi: 10.1007/s10898-015-0376-2 – volume: 68 start-page: 563 issue: 3 year: 2017 ident: 10.1016/j.compchemeng.2019.106580_bib0043 article-title: Global optimization of non-convex piecewise linear regression splines publication-title: J. Global Optim. doi: 10.1007/s10898-016-0494-5 – start-page: 1 year: 2017 ident: 10.1016/j.compchemeng.2019.106580_bib0010 article-title: Optimizing objective functions determined from random forests publication-title: SSRN Electron. J. – ident: 10.1016/j.compchemeng.2019.106580_bib0001 – ident: 10.1016/j.compchemeng.2019.106580_bib0018 doi: 10.1007/978-3-319-77935-5_9 – volume: 158 start-page: 99 issue: 1–3 year: 1996 ident: 10.1016/j.compchemeng.2019.106580_bib0035 article-title: Simplexity of the cube publication-title: Discrete Math. doi: 10.1016/0012-365X(95)00075-8 – ident: 10.1016/j.compchemeng.2019.106580_bib0038 doi: 10.1007/978-3-319-63387-9_5 – ident: 10.1016/j.compchemeng.2019.106580_bib0042 – volume: 43 start-page: 233 issue: 2 year: 2017 ident: 10.1016/j.compchemeng.2019.106580_bib0054 article-title: Neural network with unbounded activation functions is universal approximator publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2015.12.005 – volume: 145 start-page: 120 issue: 1 year: 2010 ident: 10.1016/j.compchemeng.2019.106580_bib0044 article-title: Piecewise-linear approximations of multidimensional functions publication-title: J Optim Theory Appl doi: 10.1007/s10957-009-9626-0 – start-page: 10802 year: 2018 ident: 10.1016/j.compchemeng.2019.106580_bib0053 article-title: Fast and effective robustness certification publication-title: Adv. Neural Inf. Process. Syst.31 – volume: 8 start-page: 359 issue: 5–6 year: 2015 ident: 10.1016/j.compchemeng.2019.106580_bib0024 article-title: Bayesian reinforcement learning: a survey publication-title: Found. Trend. Mach. Learn. doi: 10.1561/2200000049 – ident: 10.1016/j.compchemeng.2019.106580_bib0046 – start-page: 251 year: 2017 ident: 10.1016/j.compchemeng.2019.106580_bib0014 article-title: Maximum resilience of artificial neural networks – volume: 60 start-page: 223 issue: 2 year: 2018 ident: 10.1016/j.compchemeng.2019.106580_bib0011 article-title: Optimization methods for large-Scale machine learning publication-title: SIAM Rev. doi: 10.1137/16M1080173 – volume: 106 start-page: 71 year: 2017 ident: 10.1016/j.compchemeng.2019.106580_bib0023 article-title: Design of computer experiments: a review publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.05.010 – volume: 47 start-page: 2 year: 2012 ident: 10.1016/j.compchemeng.2019.106580_bib0030 article-title: Advances in mathematical programming models for enterprise-wide optimization publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2012.06.038 – volume: 77 start-page: 127 year: 2017 ident: 10.1016/j.compchemeng.2019.106580_bib0057 article-title: The pickup and delivery problem with time windows and handling operations publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2016.07.014 – ident: 10.1016/j.compchemeng.2019.106580_bib0031 – ident: 10.1016/j.compchemeng.2019.106580_bib0052 – volume: 37 start-page: 1020 year: 2015 ident: 10.1016/j.compchemeng.2019.106580_bib0034 article-title: A fuzzy hybrid sequential design strategy for global surrogate modeling of high-dimensional computer experiments publication-title: SIAM J. Sci. Comput. doi: 10.1137/140962437 – volume: 56 start-page: 1247 issue: 3 year: 2013 ident: 10.1016/j.compchemeng.2019.106580_bib0048 article-title: Derivative-free optimization: a review of algorithms and comparison of software implementations publication-title: J. Global Optim. doi: 10.1007/s10898-012-9951-y – volume: 54 start-page: 564 year: 2016 ident: 10.1016/j.compchemeng.2019.106580_bib0004 article-title: A new decomposition algorithm for a liquefied natural gas inventory routing problem publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2015.1037024 – ident: 10.1016/j.compchemeng.2019.106580_bib0056 – volume: 23 start-page: 296 issue: 3 year: 2018 ident: 10.1016/j.compchemeng.2019.106580_bib0022 article-title: Deep neural networks and mixed integer linear optimization publication-title: Constraints doi: 10.1007/s10601-018-9285-6 – ident: 10.1016/j.compchemeng.2019.106580_bib0041 – ident: 10.1016/j.compchemeng.2019.106580_bib0051 doi: 10.1007/s10957-018-1396-0 – volume: 15 start-page: 315 year: 2011 ident: 10.1016/j.compchemeng.2019.106580_bib0026 article-title: Deep sparse rectifier neural networks – volume: 26 start-page: 81 year: 2010 ident: 10.1016/j.compchemeng.2019.106580_bib0028 article-title: Multiobjective global surrogate modeling, dealing with the 5-percent problem publication-title: Eng. Comput. doi: 10.1007/s00366-009-0138-1 – volume: 114 start-page: 99 year: 2018 ident: 10.1016/j.compchemeng.2019.106580_bib0008 article-title: Global optimization of grey-box computational systems using surrogate functions and application to highly constrained oil-field operations publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2018.01.005 – volume: 58 start-page: 303 issue: 2 year: 2010 ident: 10.1016/j.compchemeng.2019.106580_bib0058 article-title: Mixed-Integer models for nonseparable piecewise-Linear optimization: unifying framework and extensions publication-title: Oper. Res. doi: 10.1287/opre.1090.0721 – volume: 50 start-page: 878 issue: 3 year: 2016 ident: 10.1016/j.compchemeng.2019.106580_bib0005 article-title: Integrating timetabling and crew scheduling at a freight railway operator publication-title: Transp. Sci. doi: 10.1287/trsc.2015.0648 – ident: 10.1016/j.compchemeng.2019.106580_bib0045 – volume: 44 start-page: 5334 issue: 11 year: 2019 ident: 10.1016/j.compchemeng.2019.106580_bib0060 article-title: Artificial neural network based optimization for hydrogen purification performance of pressure swing adsorption publication-title: Int. J. Hydrogen. Energy doi: 10.1016/j.ijhydene.2018.08.104 – volume: 108 start-page: 250 year: 2018 ident: 10.1016/j.compchemeng.2019.106580_bib0009 article-title: Advances in surrogate based modeling, feasibility analysis, and optimization: a review publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.09.017 – volume: 46 start-page: 105 year: 2012 ident: 10.1016/j.compchemeng.2019.106580_bib0020 article-title: Process synthesis of biodiesel production plant using artificial neural networks as the surrogate models publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2012.06.006 – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.compchemeng.2019.106580_bib0050 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – start-page: 447 year: 1970 ident: 10.1016/j.compchemeng.2019.106580_bib0007 article-title: Special facilities in a general mathematical programming system for non-convex problems using ordered sets of variables – ident: 10.1016/j.compchemeng.2019.106580_bib0059 – volume: 71 start-page: 845 issue: 4 year: 2018 ident: 10.1016/j.compchemeng.2019.106580_bib0039 article-title: Optimization of black-box problems using Smolyak grids and polynomial approximations publication-title: J. Global Optim. doi: 10.1007/s10898-018-0643-0 – ident: 10.1016/j.compchemeng.2019.106580_bib0019 – volume: 29 start-page: 449 issue: 4 year: 2006 ident: 10.1016/j.compchemeng.2019.106580_bib0021 article-title: Optimization of fischer-tropsch synthesis using neural networks publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.200500310 – start-page: 1026 year: 2015 ident: 10.1016/j.compchemeng.2019.106580_bib0032 article-title: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification – volume: 33 start-page: 1948 year: 2011 ident: 10.1016/j.compchemeng.2019.106580_bib0017 article-title: A novel hybrid sequential design strategy for global surrogate modeling of computer experiments publication-title: SIAM J. Sci. Comput. doi: 10.1137/090761811 – volume: 19 start-page: 497 issue: 4 year: 2007 ident: 10.1016/j.compchemeng.2019.106580_bib0047 article-title: A stochastic radial basis function method for the global optimization of expensive functions publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.1060.0182 – year: 2009 ident: 10.1016/j.compchemeng.2019.106580_bib0016 – ident: 10.1016/j.compchemeng.2019.106580_bib0040 – ident: 10.1016/j.compchemeng.2019.106580_bib0013 – ident: 10.1016/j.compchemeng.2019.106580_bib0003 doi: 10.1007/978-3-030-17953-3_3 – volume: 24 start-page: 69 issue: 1 year: 2014 ident: 10.1016/j.compchemeng.2019.106580_bib0015 article-title: Support vector machines for surrogate modeling of electronic circuits publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1509-5 – ident: 10.1016/j.compchemeng.2019.106580_bib0006 – volume: 93 start-page: 72 year: 2018 ident: 10.1016/j.compchemeng.2019.106580_bib0002 article-title: Virtual multiphase flow metering using diverse neural network ensemble and adaptive simulated annealing publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2017.10.014 – volume: 104 start-page: 377 year: 2017 ident: 10.1016/j.compchemeng.2019.106580_bib0049 article-title: Machine learning model and optimization of a PSA unit for methane-nitrogen separation publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.05.006 – volume: 67 start-page: 731 issue: 4 year: 2017 ident: 10.1016/j.compchemeng.2019.106580_bib0025 article-title: Three enhancements for optimization-based bound tightening publication-title: J. Global Optim. doi: 10.1007/s10898-016-0450-4 – volume: June start-page: 1 year: 2016 ident: 10.1016/j.compchemeng.2019.106580_bib0055 article-title: Going deeper with convolutions |
SSID | ssj0002488 |
Score | 2.5734391 |
Snippet | We consider the embedding of piecewise-linear deep neural networks (ReLU networks) as surrogate models in mixed-integer linear programming (MILP) problems. A... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106580 |
SubjectTerms | Deep neural networks Mixed-Integer linear programming Regression ReLU networks Surrogate modeling |
Title | ReLU networks as surrogate models in mixed-integer linear programs |
URI | https://dx.doi.org/10.1016/j.compchemeng.2019.106580 |
Volume | 131 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5jguiDeMV5GRF8rcvapE3Alzkc87YHcbC3krSJVFw32g188reb04tOEBR8bOiB8HE4l_Y730Ho3DM8jiPKHaIj26AwQxwhPepQ4cpIKUY0g0Hhh5E_HNPbCZs0UL-ehQFaZRX7y5heROvqpFOh2ZknCcz4Ct71GLUlCIGfiTDBTgPw8ov3L5qHSzmvdTPh7XV09sXxAtq2xWaq02dgeQl7bjMy-TlHreSdwTbaqgpG3CvvtIMaOt1Fmysygnvo6lHfj3FaErpzLHOcL7NsBh_IcLHpJsdJiqfJm46dQh5CZxiqS5nhip6V76Px4PqpP3Sq3QhO5DG-cJTNbX7g6yDWvpDadI00wjU-qAoQbTzbB3ES-8rT0nAZSa1AGD-gvqFM2SLNO0DNdJbqQ4S5su2xYiwQtlnkUiheDLwG3ASUGOK2EK_RCKNKOBz2V7yGNUPsJVwBMgQgwxLIFnI_TeelesZfjC5ryMNvrhDaKP-7-dH_zI_RBjwVjBV2gpqLbKlPbd2xUO3CsdporXdzNxx9AC7U2WQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oBC8P4hXnNYKvdVmbtCn4osMxdduDbLC3krSJVFw32g188reb9OImCAq-Jj1QPtJzSb_zHYArR7EoCgmzsAx1gUIVtnzuEIv4Ng-FoFhS0yjc67udIXkc0dEKtKpeGEOrLH1_4dNzb12uNEo0G9M4Nj2-Pms6lOgUBJufiauwRvTna8YYXH8seB42YawSzjSPr8PlguRleNsanLFMXgzNy9frOiTjn4PUUuBp78B2mTGi2-KldmFFJnuwtaQjuA93z7I7REnB6M4Qz1A2T9OJuSFD-aibDMUJGsfvMrJyfQiZIpNe8hSV_KzsAIbt-0GrY5XDEazQoWxmCR3cXM-VXiRdn0vVVFz5tnKNrACWytGFEMORKxzJFeMhl8Io43vEVYQKnaU5h1BLJok8AsSEro8FpZ6vq0XGfcHyjlePKY9ghe06sAqNICyVw80Ai7egooi9BktABgbIoACyDvaX6bSQz_iL0U0FefDtLATazf9ufvw_8wvY6Ax63aD70H86gU2zk9NX6CnUZulcnukkZCbO80P2CUc62vI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ReLU+networks+as+surrogate+models+in+mixed-integer+linear+programs&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Grimstad%2C+Bjarne&rft.au=Andersson%2C+Henrik&rft.date=2019-12-05&rft.pub=Elsevier+Ltd&rft.issn=0098-1354&rft.eissn=1873-4375&rft.volume=131&rft_id=info:doi/10.1016%2Fj.compchemeng.2019.106580&rft.externalDocID=S0098135419307203 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon |