Domain-adaptive entity recognition: unveiling the potential of CSER in cybersecurity and beyond

In the dynamic fields of cybersecurity, precise recognition and identification of cybersecurity-related entities in textual data have become crucial. Existing studies on Named Entity Recognition (NER) in the cybersecurity domain often overlook challenges posed by data sparsity and the substantial pr...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of machine learning and cybernetics Vol. 16; no. 5; pp. 2849 - 2867
Main Authors Marjan, Md. Abu, Amagasa, Toshiyuki
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1868-8071
1868-808X
DOI10.1007/s13042-024-02424-9

Cover

Abstract In the dynamic fields of cybersecurity, precise recognition and identification of cybersecurity-related entities in textual data have become crucial. Existing studies on Named Entity Recognition (NER) in the cybersecurity domain often overlook challenges posed by data sparsity and the substantial presence of Out-of-Vocabulary (OOV) tokens in Cyber Treat Intelligence (CTI) reports. To tackle these challenges, we introduce the Cybersecurity Entity Recognition (CSER) model—a comprehensive approach crafted to handle CTI data complexities and similar intricacies across other domains. The CSER model integrates output from contextual, semantic, and morphological encoders to form a robust feature vector, capturing nuanced patterns, buzzwords, and structural attributes specific to cybersecurity entities. In particular, we employ various deep-learning approaches to capture morphological and contextual features, while pre-trained embeddings are utilized to capture semantic features. Additionally, Conditional Random Field (CRF) is employed as a sequential decoder, enhancing the effectiveness of cybersecurity entity identification. Extensive experiments on genuine cybersecurity datasets reveal that the proposed CSER model surpasses contemporary state-of-the-art methods, demonstrating superior predictive performance. To validate the effectiveness of this model, experiments are extended to datasets from biomedical and material science domains, providing comprehensive insights into the model’s adaptability across diverse domains. Our research demonstrates that the CSER model excels in domains with frequent OOV tokens, particularly cybersecurity, addressing data sparsity effectively. Its capability to manage a substantial volume of OOV tokens enhances performance where traditional models struggle.
AbstractList In the dynamic fields of cybersecurity, precise recognition and identification of cybersecurity-related entities in textual data have become crucial. Existing studies on Named Entity Recognition (NER) in the cybersecurity domain often overlook challenges posed by data sparsity and the substantial presence of Out-of-Vocabulary (OOV) tokens in Cyber Treat Intelligence (CTI) reports. To tackle these challenges, we introduce the Cybersecurity Entity Recognition (CSER) model—a comprehensive approach crafted to handle CTI data complexities and similar intricacies across other domains. The CSER model integrates output from contextual, semantic, and morphological encoders to form a robust feature vector, capturing nuanced patterns, buzzwords, and structural attributes specific to cybersecurity entities. In particular, we employ various deep-learning approaches to capture morphological and contextual features, while pre-trained embeddings are utilized to capture semantic features. Additionally, Conditional Random Field (CRF) is employed as a sequential decoder, enhancing the effectiveness of cybersecurity entity identification. Extensive experiments on genuine cybersecurity datasets reveal that the proposed CSER model surpasses contemporary state-of-the-art methods, demonstrating superior predictive performance. To validate the effectiveness of this model, experiments are extended to datasets from biomedical and material science domains, providing comprehensive insights into the model’s adaptability across diverse domains. Our research demonstrates that the CSER model excels in domains with frequent OOV tokens, particularly cybersecurity, addressing data sparsity effectively. Its capability to manage a substantial volume of OOV tokens enhances performance where traditional models struggle.
Author Marjan, Md. Abu
Amagasa, Toshiyuki
Author_xml – sequence: 1
  givenname: Md. Abu
  surname: Marjan
  fullname: Marjan, Md. Abu
  organization: Graduate School of Science and Technology, University of Tsukuba
– sequence: 2
  givenname: Toshiyuki
  surname: Amagasa
  fullname: Amagasa, Toshiyuki
  email: amagasa@cs.tsukuba.ac.jp
  organization: Center for Computational Sciences, University of Tsukuba
BookMark eNp9kF1LwzAUhoNMcM79Aa8CXleTpktb72TODxgIfoB3IU1OZ8aW1KQd9N-bWtE7D5yPi_c5h_Oeool1FhA6p-SSEpJfBcpIliYkzYaMtTxCU1rwIilI8T75nXN6guYhbEkMThgj6RSJW7eXxiZSy6Y1B8BgW9P22INyG2ta4-w17uwBzM7YDW4_ADeuHURyh12Nly-rZ2wsVn0FPoDq_EBLq3EFvbP6DB3Xchdg_tNn6O1u9bp8SNZP94_Lm3Wi2KJokwpAKSJrqUrCqS5pRXgtOa8oZzzPJVE0S_MS8pwVFaSallpXHFSWsVRnZc1m6GLc23j32UFoxdZ13saTgqWUL4r4LomqdFQp70LwUIvGm730vaBEDF6K0UsRfRTfXooyQmyEQhTbDfi_1f9QX8wxeZU
Cites_doi 10.1109/ICSC.2013.50
10.1093/bioinformatics/btz528
10.1109/TII.2022.3192027
10.1109/ACCESS.2020.2984582
10.1016/j.jbi.2017.11.007
10.1186/1758-2946-7-S1-S1
10.1109/ACCESS.2023.3263155
10.1038/s41524-022-00784-w
10.1109/WI-IAT.2011.26
10.1016/j.patter.2022.100488
10.1016/j.cose.2023.103579
10.1109/BigData59044.2023.10386941
10.1145/2976749.2978315
10.1007/978-981-15-4828-4_14
10.3115/v1/D14-1162
10.1016/j.knosys.2021.107524
10.1016/j.isci.2021.102155
10.1109/BigData.2018.8622106
10.1109/EuroSP51992.2021.00046
10.1016/j.procs.2023.01.027
10.3390/info15040214
10.1109/TrustCom50675.2020.00252
10.1007/978-3-319-19686-2_1
10.18653/v1/2022.findings-emnlp.446
10.1109/BigData52589.2021.9671824
10.1007/s13042-020-01122-6
10.1162/tacl_a_00051
10.1007/978-94-017-2390-9_10
10.1186/s40537-015-0013-4
10.1561/2200000013
10.1109/ICPR56361.2022.9956373
10.1017/S1351324916000334
10.1109/CNS.2016.7860492
10.18653/v1/W18-2321
10.3390/app9193945
ContentType Journal Article
Copyright The Author(s) 2024
Copyright Springer Nature B.V. Jun 2025
Copyright_xml – notice: The Author(s) 2024
– notice: Copyright Springer Nature B.V. Jun 2025
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s13042-024-02424-9
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1868-808X
EndPage 2867
ExternalDocumentID 10_1007_s13042_024_02424_9
GroupedDBID 06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFDZB
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
ATHPR
AUKKA
AXYYD
AYFIA
AYJHY
BENPR
BGLVJ
BGNMA
C6C
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
GQ8
H13
HCIFZ
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PHGZM
PHGZT
PMFND
PT4
PTHSS
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
ZMTXR
~A9
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
ABRTQ
JQ2
ID FETCH-LOGICAL-c358t-beecc0afac9061d91b06fa66b163677a0c14279e7738be2d19ddb6ec4432d49f3
IEDL.DBID AGYKE
ISSN 1868-8071
IngestDate Fri Jul 25 09:31:37 EDT 2025
Thu Jul 03 08:41:31 EDT 2025
Sun Jun 08 01:10:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Deep learning
Cybersecurity
Feature fusion
Name entity recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-beecc0afac9061d91b06fa66b163677a0c14279e7738be2d19ddb6ec4432d49f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s13042-024-02424-9
PQID 3216583300
PQPubID 2043904
PageCount 19
ParticipantIDs proquest_journals_3216583300
crossref_primary_10_1007_s13042_024_02424_9
springer_journals_10_1007_s13042_024_02424_9
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of machine learning and cybernetics
PublicationTitleAbbrev Int. J. Mach. Learn. & Cyber
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References T Ahmad (2424_CR15) 2023; 2023
2424_CR32
2424_CR34
2424_CR14
A Trewartha (2424_CR36) 2022; 3
2424_CR16
T Gupta (2424_CR37) 2022; 8
S Srivastava (2424_CR11) 2023; 218
K Ahmed (2424_CR31) 2024; 136
J Yin (2424_CR3) 2022; 19
2424_CR30
KW Church (2424_CR8) 2017; 23
2424_CR17
2424_CR18
2424_CR19
F Yi (2424_CR26) 2020; 8
I Sarhan (2424_CR22) 2021; 233
M Krallinger (2424_CR39) 2015; 7
C Sutton (2424_CR38) 2012; 4
2424_CR23
L Weber (2424_CR12) 2020; 36
2424_CR24
2424_CR25
IJ Unanue (2424_CR35) 2017; 76
2424_CR27
P Bojanowski (2424_CR10) 2017; 5
T Ahmad (2424_CR21) 2021; 11
H Gasmi (2424_CR2) 2019; 9
O Kononova (2424_CR13) 2021; 24
2424_CR40
2424_CR41
T Ahmad (2424_CR20) 2023; 11
2424_CR5
2424_CR9
2424_CR6
2424_CR28
2424_CR29
2424_CR1
G Kim (2424_CR4) 2020; 11
I Branescu (2424_CR33) 2024; 15
R Zuech (2424_CR7) 2015; 2
References_xml – ident: 2424_CR18
  doi: 10.1109/ICSC.2013.50
– volume: 36
  start-page: 295
  issue: 1
  year: 2020
  ident: 2424_CR12
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz528
– ident: 2424_CR27
– volume: 19
  start-page: 5593
  issue: 4
  year: 2022
  ident: 2424_CR3
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2022.3192027
– volume: 8
  start-page: 63214
  year: 2020
  ident: 2424_CR26
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2984582
– volume: 76
  start-page: 102
  year: 2017
  ident: 2424_CR35
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2017.11.007
– volume: 7
  start-page: 1
  issue: 1
  year: 2015
  ident: 2424_CR39
  publication-title: J Cheminform
  doi: 10.1186/1758-2946-7-S1-S1
– volume: 11
  start-page: 33148
  year: 2023
  ident: 2424_CR20
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3263155
– volume: 8
  start-page: 102
  issue: 1
  year: 2022
  ident: 2424_CR37
  publication-title: NPJ Comput Mater
  doi: 10.1038/s41524-022-00784-w
– ident: 2424_CR19
  doi: 10.1109/WI-IAT.2011.26
– volume: 3
  start-page: 1
  issue: 4
  year: 2022
  ident: 2424_CR36
  publication-title: Patterns
  doi: 10.1016/j.patter.2022.100488
– volume: 136
  year: 2024
  ident: 2424_CR31
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2023.103579
– ident: 2424_CR14
  doi: 10.1109/BigData59044.2023.10386941
– ident: 2424_CR16
  doi: 10.1145/2976749.2978315
– ident: 2424_CR1
  doi: 10.1007/978-981-15-4828-4_14
– ident: 2424_CR9
  doi: 10.3115/v1/D14-1162
– volume: 233
  year: 2021
  ident: 2424_CR22
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2021.107524
– volume: 24
  start-page: 1
  issue: 3
  year: 2021
  ident: 2424_CR13
  publication-title: IScience
  doi: 10.1016/j.isci.2021.102155
– ident: 2424_CR25
  doi: 10.1109/BigData.2018.8622106
– ident: 2424_CR30
  doi: 10.1109/EuroSP51992.2021.00046
– volume: 2023
  start-page: 1
  year: 2023
  ident: 2424_CR15
  publication-title: IEEE Trans Comput Soc Syst
– ident: 2424_CR6
– volume: 218
  start-page: 449
  year: 2023
  ident: 2424_CR11
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2023.01.027
– volume: 15
  start-page: 214
  issue: 4
  year: 2024
  ident: 2424_CR33
  publication-title: Information
  doi: 10.3390/info15040214
– ident: 2424_CR23
  doi: 10.1109/TrustCom50675.2020.00252
– ident: 2424_CR32
– ident: 2424_CR17
  doi: 10.1007/978-3-319-19686-2_1
– ident: 2424_CR40
  doi: 10.18653/v1/2022.findings-emnlp.446
– ident: 2424_CR29
  doi: 10.1109/BigData52589.2021.9671824
– ident: 2424_CR24
– volume: 11
  start-page: 2341
  year: 2020
  ident: 2424_CR4
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-020-01122-6
– volume: 5
  start-page: 135
  year: 2017
  ident: 2424_CR10
  publication-title: Trans Assoc Comput Linguist
  doi: 10.1162/tacl_a_00051
– ident: 2424_CR41
  doi: 10.1007/978-94-017-2390-9_10
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  ident: 2424_CR7
  publication-title: J Big Data
  doi: 10.1186/s40537-015-0013-4
– volume: 4
  start-page: 267
  issue: 4
  year: 2012
  ident: 2424_CR38
  publication-title: Found Trends® Mach Learn
  doi: 10.1561/2200000013
– ident: 2424_CR28
  doi: 10.1109/ICPR56361.2022.9956373
– volume: 23
  start-page: 155
  issue: 1
  year: 2017
  ident: 2424_CR8
  publication-title: Nat Lang Eng
  doi: 10.1017/S1351324916000334
– ident: 2424_CR5
  doi: 10.1109/CNS.2016.7860492
– ident: 2424_CR34
  doi: 10.18653/v1/W18-2321
– volume: 9
  start-page: 3945
  issue: 19
  year: 2019
  ident: 2424_CR2
  publication-title: Appl Sci
  doi: 10.3390/app9193945
– volume: 11
  start-page: 1
  year: 2021
  ident: 2424_CR21
  publication-title: Int J Adv Comput Sci Appl
SSID ssj0000603302
ssib031263576
ssib033405570
Score 2.342984
Snippet In the dynamic fields of cybersecurity, precise recognition and identification of cybersecurity-related entities in textual data have become crucial. Existing...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 2849
SubjectTerms Artificial Intelligence
Automation
Complex Systems
Computational Intelligence
Conditional random fields
Control
Cybercrime
Cybersecurity
Datasets
Deep learning
Effectiveness
Engineering
Machine learning
Malware
Mechatronics
Methods
Morphology
Neural networks
Original Article
Pattern Recognition
Recognition
Robotics
Semantics
Software
Systems Biology
Threats
Title Domain-adaptive entity recognition: unveiling the potential of CSER in cybersecurity and beyond
URI https://link.springer.com/article/10.1007/s13042-024-02424-9
https://www.proquest.com/docview/3216583300
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH7augscYBsgOrbKhx2GIFMcO_7BrSvtJtB2ACqNU-RfkSpEUq0p0vjrsVNngYkddogPiZXI9ovf9-z3fQY4ZsqUFuciEU6mIUCRiZC5Skofi5jUcmFayfzLK3Yxp5-u8-tIClt12e7dlmQ7U_dktxB5J96nhMuXcht2ciykGMDO-Pz752lnRwQHhZXezRJCW6Wpu7WXlPl7m3REwUTQ48WRT_P_D_3rs3ogem_vtHVJs-cw7xqzyUT5cbpu9Kn5fU_n8bGt3YVnEaOi8cao9mDLVfvw9C_lwn3Yi3PCCp1E4eq3L6D4WP9UiypRVi3DLIpaDvAtuktSqqsPaF39covAgUceeqJl3YRK_mt1iSZfp1_QokLmVntQGg_WQ6qySLc8m5cwn02_TS6SeIBDYkgumkQ7byCpKpWRHjZYiXXKSsWY9iCQca5Sg2nGpeOcCO0yi6W1mjlDKckslSV5BYOqrtxrQIp7nBHQLeOUOoJVRqiPlIzUhjou6BDedUNULDc6HUWvyBz6svD9WLR9WcghHHajWMR_dlWQDLPAQUvTIbzvBqV__PDbDh5X_Q08ycIhwu1SziEMmpu1O_LIptEjb8izs7OrUTToEWxP2MSX82z8B_O_7Fc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH-CcoAdptENrRsDH3YAQaQkdv2xG-JDhbUcoJV6s_wVqQeSai2T-t_PdpNmQ-PAITnEViw9f7zfs_37PYDvVJnCZn2ecCfSEKCIhIu-Sgofi5jUMm6iZP7ong4m5G7an9aksEVz2705kowrdUt2C5F34n1KePxbbMOOBwM85C2Y5BfNKMJZ0FdpnSzGJOpMbXZeUuq_rS8jcsqDGm9Ws2n-38y_HquFoS9OTqNDuvkA72skiS7WXb8PW67swru_9AW7sF_P3AU6qeWlTz-CvKqe1KxMlFXzsNahyNRdoc1Voqr8gZ7L324WmOrIA0Q0r5ahkm-tKtDl4_UDmpXIrLSHjnX6O6RKi3Rkw3yCyc31-HKQ1GkWEoP7fJlo57sxVYUywjt3KzKd0kJRqj1Uo4yp1GQkZ8Ixhrl2uc2EtZo6QwjOLREFPoBOWZXuMyDFPBoIGJQyQhzOVI6Jj2eM0IY4xkkPzhpTyvlaTUO2usnB8NIbXUbDS9GDw8basp5ZC4nzjAamWJr24Lzpgbb49b99eVv1Y9gdjEdDOby9__kV9vKQ9jduvhxCZ_nr2X3zWGSpj-LQ-wNKEM8F
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VKiE4VDzFAqU-9EAFEUns9aO3amG1hYKqFiRull-R9oCzggVp_z22NyGA6KGH5JBEiTQeZ77x-PsG4CtVprJFn2fciTwmKCLjoq-yKuQiJreMmySZf3FJR9fk7KZ_84LFn3a7tyXJOachqjT56fHEVscd8S1m4VmIL_EIZ7EAH0kMfbFcSwetR-Eiaq10ARdjkjSnnldhchquzTcmcsqjMm_RMGve_8zr6NVB0jdV1BSchqvwqUGV6MfcDdbgg_PrsPJCa3Ad1ppZfI8OGqnpbxsgT-pbNfaZsmoS_3sosXZn6HlbUe2_owf_6MaRtY4CWESTOtopeC2qKzT4e_oHjT0yMx1gZNMKDylvkU7MmE24Hp5eDUZZ03IhM7jPp5l2YUhzVSkjQqC3otA5rRSlOsA2ypjKTUFKJhxjmGtX2kJYq6kzhODSElHhLVj0tXfbgBQLyCDiUcoIcbhQJSYhtzFCG-IYJz04bE0pJ3NlDdlpKEfDy2B0mQwvRQ_2WmvLZpbdS1wWNLLG8rwHR-0IdLf__bad_3v8Cyz9PhnKXz8vz3dhuYwdgNM6zB4sTu8e3OcAS6Z6P3neE6Bh0ys
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain-adaptive+entity+recognition%3A+unveiling+the+potential+of+CSER+in+cybersecurity+and+beyond&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Marjan%2C+Md.+Abu&rft.au=Amagasa%2C+Toshiyuki&rft.date=2025-06-01&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=16&rft.issue=5-6&rft.spage=2849&rft.epage=2867&rft_id=info:doi/10.1007%2Fs13042-024-02424-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13042_024_02424_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon