Domain-adaptive entity recognition: unveiling the potential of CSER in cybersecurity and beyond
In the dynamic fields of cybersecurity, precise recognition and identification of cybersecurity-related entities in textual data have become crucial. Existing studies on Named Entity Recognition (NER) in the cybersecurity domain often overlook challenges posed by data sparsity and the substantial pr...
Saved in:
Published in | International journal of machine learning and cybernetics Vol. 16; no. 5; pp. 2849 - 2867 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1868-8071 1868-808X |
DOI | 10.1007/s13042-024-02424-9 |
Cover
Abstract | In the dynamic fields of cybersecurity, precise recognition and identification of cybersecurity-related entities in textual data have become crucial. Existing studies on Named Entity Recognition (NER) in the cybersecurity domain often overlook challenges posed by data sparsity and the substantial presence of Out-of-Vocabulary (OOV) tokens in Cyber Treat Intelligence (CTI) reports. To tackle these challenges, we introduce the Cybersecurity Entity Recognition (CSER) model—a comprehensive approach crafted to handle CTI data complexities and similar intricacies across other domains. The CSER model integrates output from contextual, semantic, and morphological encoders to form a robust feature vector, capturing nuanced patterns, buzzwords, and structural attributes specific to cybersecurity entities. In particular, we employ various deep-learning approaches to capture morphological and contextual features, while pre-trained embeddings are utilized to capture semantic features. Additionally, Conditional Random Field (CRF) is employed as a sequential decoder, enhancing the effectiveness of cybersecurity entity identification. Extensive experiments on genuine cybersecurity datasets reveal that the proposed CSER model surpasses contemporary state-of-the-art methods, demonstrating superior predictive performance. To validate the effectiveness of this model, experiments are extended to datasets from biomedical and material science domains, providing comprehensive insights into the model’s adaptability across diverse domains. Our research demonstrates that the CSER model excels in domains with frequent OOV tokens, particularly cybersecurity, addressing data sparsity effectively. Its capability to manage a substantial volume of OOV tokens enhances performance where traditional models struggle. |
---|---|
AbstractList | In the dynamic fields of cybersecurity, precise recognition and identification of cybersecurity-related entities in textual data have become crucial. Existing studies on Named Entity Recognition (NER) in the cybersecurity domain often overlook challenges posed by data sparsity and the substantial presence of Out-of-Vocabulary (OOV) tokens in Cyber Treat Intelligence (CTI) reports. To tackle these challenges, we introduce the Cybersecurity Entity Recognition (CSER) model—a comprehensive approach crafted to handle CTI data complexities and similar intricacies across other domains. The CSER model integrates output from contextual, semantic, and morphological encoders to form a robust feature vector, capturing nuanced patterns, buzzwords, and structural attributes specific to cybersecurity entities. In particular, we employ various deep-learning approaches to capture morphological and contextual features, while pre-trained embeddings are utilized to capture semantic features. Additionally, Conditional Random Field (CRF) is employed as a sequential decoder, enhancing the effectiveness of cybersecurity entity identification. Extensive experiments on genuine cybersecurity datasets reveal that the proposed CSER model surpasses contemporary state-of-the-art methods, demonstrating superior predictive performance. To validate the effectiveness of this model, experiments are extended to datasets from biomedical and material science domains, providing comprehensive insights into the model’s adaptability across diverse domains. Our research demonstrates that the CSER model excels in domains with frequent OOV tokens, particularly cybersecurity, addressing data sparsity effectively. Its capability to manage a substantial volume of OOV tokens enhances performance where traditional models struggle. |
Author | Marjan, Md. Abu Amagasa, Toshiyuki |
Author_xml | – sequence: 1 givenname: Md. Abu surname: Marjan fullname: Marjan, Md. Abu organization: Graduate School of Science and Technology, University of Tsukuba – sequence: 2 givenname: Toshiyuki surname: Amagasa fullname: Amagasa, Toshiyuki email: amagasa@cs.tsukuba.ac.jp organization: Center for Computational Sciences, University of Tsukuba |
BookMark | eNp9kF1LwzAUhoNMcM79Aa8CXleTpktb72TODxgIfoB3IU1OZ8aW1KQd9N-bWtE7D5yPi_c5h_Oeool1FhA6p-SSEpJfBcpIliYkzYaMtTxCU1rwIilI8T75nXN6guYhbEkMThgj6RSJW7eXxiZSy6Y1B8BgW9P22INyG2ta4-w17uwBzM7YDW4_ADeuHURyh12Nly-rZ2wsVn0FPoDq_EBLq3EFvbP6DB3Xchdg_tNn6O1u9bp8SNZP94_Lm3Wi2KJokwpAKSJrqUrCqS5pRXgtOa8oZzzPJVE0S_MS8pwVFaSallpXHFSWsVRnZc1m6GLc23j32UFoxdZ13saTgqWUL4r4LomqdFQp70LwUIvGm730vaBEDF6K0UsRfRTfXooyQmyEQhTbDfi_1f9QX8wxeZU |
Cites_doi | 10.1109/ICSC.2013.50 10.1093/bioinformatics/btz528 10.1109/TII.2022.3192027 10.1109/ACCESS.2020.2984582 10.1016/j.jbi.2017.11.007 10.1186/1758-2946-7-S1-S1 10.1109/ACCESS.2023.3263155 10.1038/s41524-022-00784-w 10.1109/WI-IAT.2011.26 10.1016/j.patter.2022.100488 10.1016/j.cose.2023.103579 10.1109/BigData59044.2023.10386941 10.1145/2976749.2978315 10.1007/978-981-15-4828-4_14 10.3115/v1/D14-1162 10.1016/j.knosys.2021.107524 10.1016/j.isci.2021.102155 10.1109/BigData.2018.8622106 10.1109/EuroSP51992.2021.00046 10.1016/j.procs.2023.01.027 10.3390/info15040214 10.1109/TrustCom50675.2020.00252 10.1007/978-3-319-19686-2_1 10.18653/v1/2022.findings-emnlp.446 10.1109/BigData52589.2021.9671824 10.1007/s13042-020-01122-6 10.1162/tacl_a_00051 10.1007/978-94-017-2390-9_10 10.1186/s40537-015-0013-4 10.1561/2200000013 10.1109/ICPR56361.2022.9956373 10.1017/S1351324916000334 10.1109/CNS.2016.7860492 10.18653/v1/W18-2321 10.3390/app9193945 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 Copyright Springer Nature B.V. Jun 2025 |
Copyright_xml | – notice: The Author(s) 2024 – notice: Copyright Springer Nature B.V. Jun 2025 |
DBID | C6C AAYXX CITATION JQ2 |
DOI | 10.1007/s13042-024-02424-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 1868-808X |
EndPage | 2867 |
ExternalDocumentID | 10_1007_s13042_024_02424_9 |
GroupedDBID | 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFDZB AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS ATHPR AUKKA AXYYD AYFIA AYJHY BENPR BGLVJ BGNMA C6C CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 GQ8 H13 HCIFZ HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PHGZM PHGZT PMFND PT4 PTHSS QOS R89 R9I RLLFE ROL RSV S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 ZMTXR ~A9 AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION ABRTQ JQ2 |
ID | FETCH-LOGICAL-c358t-beecc0afac9061d91b06fa66b163677a0c14279e7738be2d19ddb6ec4432d49f3 |
IEDL.DBID | AGYKE |
ISSN | 1868-8071 |
IngestDate | Fri Jul 25 09:31:37 EDT 2025 Thu Jul 03 08:41:31 EDT 2025 Sun Jun 08 01:10:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Deep learning Cybersecurity Feature fusion Name entity recognition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-beecc0afac9061d91b06fa66b163677a0c14279e7738be2d19ddb6ec4432d49f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s13042-024-02424-9 |
PQID | 3216583300 |
PQPubID | 2043904 |
PageCount | 19 |
ParticipantIDs | proquest_journals_3216583300 crossref_primary_10_1007_s13042_024_02424_9 springer_journals_10_1007_s13042_024_02424_9 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | International journal of machine learning and cybernetics |
PublicationTitleAbbrev | Int. J. Mach. Learn. & Cyber |
PublicationYear | 2025 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | T Ahmad (2424_CR15) 2023; 2023 2424_CR32 2424_CR34 2424_CR14 A Trewartha (2424_CR36) 2022; 3 2424_CR16 T Gupta (2424_CR37) 2022; 8 S Srivastava (2424_CR11) 2023; 218 K Ahmed (2424_CR31) 2024; 136 J Yin (2424_CR3) 2022; 19 2424_CR30 KW Church (2424_CR8) 2017; 23 2424_CR17 2424_CR18 2424_CR19 F Yi (2424_CR26) 2020; 8 I Sarhan (2424_CR22) 2021; 233 M Krallinger (2424_CR39) 2015; 7 C Sutton (2424_CR38) 2012; 4 2424_CR23 L Weber (2424_CR12) 2020; 36 2424_CR24 2424_CR25 IJ Unanue (2424_CR35) 2017; 76 2424_CR27 P Bojanowski (2424_CR10) 2017; 5 T Ahmad (2424_CR21) 2021; 11 H Gasmi (2424_CR2) 2019; 9 O Kononova (2424_CR13) 2021; 24 2424_CR40 2424_CR41 T Ahmad (2424_CR20) 2023; 11 2424_CR5 2424_CR9 2424_CR6 2424_CR28 2424_CR29 2424_CR1 G Kim (2424_CR4) 2020; 11 I Branescu (2424_CR33) 2024; 15 R Zuech (2424_CR7) 2015; 2 |
References_xml | – ident: 2424_CR18 doi: 10.1109/ICSC.2013.50 – volume: 36 start-page: 295 issue: 1 year: 2020 ident: 2424_CR12 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz528 – ident: 2424_CR27 – volume: 19 start-page: 5593 issue: 4 year: 2022 ident: 2424_CR3 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2022.3192027 – volume: 8 start-page: 63214 year: 2020 ident: 2424_CR26 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2984582 – volume: 76 start-page: 102 year: 2017 ident: 2424_CR35 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2017.11.007 – volume: 7 start-page: 1 issue: 1 year: 2015 ident: 2424_CR39 publication-title: J Cheminform doi: 10.1186/1758-2946-7-S1-S1 – volume: 11 start-page: 33148 year: 2023 ident: 2424_CR20 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3263155 – volume: 8 start-page: 102 issue: 1 year: 2022 ident: 2424_CR37 publication-title: NPJ Comput Mater doi: 10.1038/s41524-022-00784-w – ident: 2424_CR19 doi: 10.1109/WI-IAT.2011.26 – volume: 3 start-page: 1 issue: 4 year: 2022 ident: 2424_CR36 publication-title: Patterns doi: 10.1016/j.patter.2022.100488 – volume: 136 year: 2024 ident: 2424_CR31 publication-title: Comput Secur doi: 10.1016/j.cose.2023.103579 – ident: 2424_CR14 doi: 10.1109/BigData59044.2023.10386941 – ident: 2424_CR16 doi: 10.1145/2976749.2978315 – ident: 2424_CR1 doi: 10.1007/978-981-15-4828-4_14 – ident: 2424_CR9 doi: 10.3115/v1/D14-1162 – volume: 233 year: 2021 ident: 2424_CR22 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2021.107524 – volume: 24 start-page: 1 issue: 3 year: 2021 ident: 2424_CR13 publication-title: IScience doi: 10.1016/j.isci.2021.102155 – ident: 2424_CR25 doi: 10.1109/BigData.2018.8622106 – ident: 2424_CR30 doi: 10.1109/EuroSP51992.2021.00046 – volume: 2023 start-page: 1 year: 2023 ident: 2424_CR15 publication-title: IEEE Trans Comput Soc Syst – ident: 2424_CR6 – volume: 218 start-page: 449 year: 2023 ident: 2424_CR11 publication-title: Proc Comput Sci doi: 10.1016/j.procs.2023.01.027 – volume: 15 start-page: 214 issue: 4 year: 2024 ident: 2424_CR33 publication-title: Information doi: 10.3390/info15040214 – ident: 2424_CR23 doi: 10.1109/TrustCom50675.2020.00252 – ident: 2424_CR32 – ident: 2424_CR17 doi: 10.1007/978-3-319-19686-2_1 – ident: 2424_CR40 doi: 10.18653/v1/2022.findings-emnlp.446 – ident: 2424_CR29 doi: 10.1109/BigData52589.2021.9671824 – ident: 2424_CR24 – volume: 11 start-page: 2341 year: 2020 ident: 2424_CR4 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-020-01122-6 – volume: 5 start-page: 135 year: 2017 ident: 2424_CR10 publication-title: Trans Assoc Comput Linguist doi: 10.1162/tacl_a_00051 – ident: 2424_CR41 doi: 10.1007/978-94-017-2390-9_10 – volume: 2 start-page: 1 issue: 1 year: 2015 ident: 2424_CR7 publication-title: J Big Data doi: 10.1186/s40537-015-0013-4 – volume: 4 start-page: 267 issue: 4 year: 2012 ident: 2424_CR38 publication-title: Found Trends® Mach Learn doi: 10.1561/2200000013 – ident: 2424_CR28 doi: 10.1109/ICPR56361.2022.9956373 – volume: 23 start-page: 155 issue: 1 year: 2017 ident: 2424_CR8 publication-title: Nat Lang Eng doi: 10.1017/S1351324916000334 – ident: 2424_CR5 doi: 10.1109/CNS.2016.7860492 – ident: 2424_CR34 doi: 10.18653/v1/W18-2321 – volume: 9 start-page: 3945 issue: 19 year: 2019 ident: 2424_CR2 publication-title: Appl Sci doi: 10.3390/app9193945 – volume: 11 start-page: 1 year: 2021 ident: 2424_CR21 publication-title: Int J Adv Comput Sci Appl |
SSID | ssj0000603302 ssib031263576 ssib033405570 |
Score | 2.342984 |
Snippet | In the dynamic fields of cybersecurity, precise recognition and identification of cybersecurity-related entities in textual data have become crucial. Existing... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2849 |
SubjectTerms | Artificial Intelligence Automation Complex Systems Computational Intelligence Conditional random fields Control Cybercrime Cybersecurity Datasets Deep learning Effectiveness Engineering Machine learning Malware Mechatronics Methods Morphology Neural networks Original Article Pattern Recognition Recognition Robotics Semantics Software Systems Biology Threats |
Title | Domain-adaptive entity recognition: unveiling the potential of CSER in cybersecurity and beyond |
URI | https://link.springer.com/article/10.1007/s13042-024-02424-9 https://www.proquest.com/docview/3216583300 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH7augscYBsgOrbKhx2GIFMcO_7BrSvtJtB2ACqNU-RfkSpEUq0p0vjrsVNngYkddogPiZXI9ovf9-z3fQY4ZsqUFuciEU6mIUCRiZC5Skofi5jUcmFayfzLK3Yxp5-u8-tIClt12e7dlmQ7U_dktxB5J96nhMuXcht2ciykGMDO-Pz752lnRwQHhZXezRJCW6Wpu7WXlPl7m3REwUTQ48WRT_P_D_3rs3ogem_vtHVJs-cw7xqzyUT5cbpu9Kn5fU_n8bGt3YVnEaOi8cao9mDLVfvw9C_lwn3Yi3PCCp1E4eq3L6D4WP9UiypRVi3DLIpaDvAtuktSqqsPaF39covAgUceeqJl3YRK_mt1iSZfp1_QokLmVntQGg_WQ6qySLc8m5cwn02_TS6SeIBDYkgumkQ7byCpKpWRHjZYiXXKSsWY9iCQca5Sg2nGpeOcCO0yi6W1mjlDKckslSV5BYOqrtxrQIp7nBHQLeOUOoJVRqiPlIzUhjou6BDedUNULDc6HUWvyBz6svD9WLR9WcghHHajWMR_dlWQDLPAQUvTIbzvBqV__PDbDh5X_Q08ycIhwu1SziEMmpu1O_LIptEjb8izs7OrUTToEWxP2MSX82z8B_O_7Fc |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH-CcoAdptENrRsDH3YAQaQkdv2xG-JDhbUcoJV6s_wVqQeSai2T-t_PdpNmQ-PAITnEViw9f7zfs_37PYDvVJnCZn2ecCfSEKCIhIu-Sgofi5jUMm6iZP7ong4m5G7an9aksEVz2705kowrdUt2C5F34n1KePxbbMOOBwM85C2Y5BfNKMJZ0FdpnSzGJOpMbXZeUuq_rS8jcsqDGm9Ws2n-38y_HquFoS9OTqNDuvkA72skiS7WXb8PW67swru_9AW7sF_P3AU6qeWlTz-CvKqe1KxMlFXzsNahyNRdoc1Voqr8gZ7L324WmOrIA0Q0r5ahkm-tKtDl4_UDmpXIrLSHjnX6O6RKi3Rkw3yCyc31-HKQ1GkWEoP7fJlo57sxVYUywjt3KzKd0kJRqj1Uo4yp1GQkZ8Ixhrl2uc2EtZo6QwjOLREFPoBOWZXuMyDFPBoIGJQyQhzOVI6Jj2eM0IY4xkkPzhpTyvlaTUO2usnB8NIbXUbDS9GDw8basp5ZC4nzjAamWJr24Lzpgbb49b99eVv1Y9gdjEdDOby9__kV9vKQ9jduvhxCZ_nr2X3zWGSpj-LQ-wNKEM8F |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VKiE4VDzFAqU-9EAFEUns9aO3amG1hYKqFiRull-R9oCzggVp_z22NyGA6KGH5JBEiTQeZ77x-PsG4CtVprJFn2fciTwmKCLjoq-yKuQiJreMmySZf3FJR9fk7KZ_84LFn3a7tyXJOachqjT56fHEVscd8S1m4VmIL_EIZ7EAH0kMfbFcSwetR-Eiaq10ARdjkjSnnldhchquzTcmcsqjMm_RMGve_8zr6NVB0jdV1BSchqvwqUGV6MfcDdbgg_PrsPJCa3Ad1ppZfI8OGqnpbxsgT-pbNfaZsmoS_3sosXZn6HlbUe2_owf_6MaRtY4CWESTOtopeC2qKzT4e_oHjT0yMx1gZNMKDylvkU7MmE24Hp5eDUZZ03IhM7jPp5l2YUhzVSkjQqC3otA5rRSlOsA2ypjKTUFKJhxjmGtX2kJYq6kzhODSElHhLVj0tXfbgBQLyCDiUcoIcbhQJSYhtzFCG-IYJz04bE0pJ3NlDdlpKEfDy2B0mQwvRQ_2WmvLZpbdS1wWNLLG8rwHR-0IdLf__bad_3v8Cyz9PhnKXz8vz3dhuYwdgNM6zB4sTu8e3OcAS6Z6P3neE6Bh0ys |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain-adaptive+entity+recognition%3A+unveiling+the+potential+of+CSER+in+cybersecurity+and+beyond&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Marjan%2C+Md.+Abu&rft.au=Amagasa%2C+Toshiyuki&rft.date=2025-06-01&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=16&rft.issue=5-6&rft.spage=2849&rft.epage=2867&rft_id=info:doi/10.1007%2Fs13042-024-02424-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13042_024_02424_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon |