Electrochemical performance of three shaped ZnO nanoparticles prepared in LiOH, NaOH and KOH alkaline solutions as anodic materials for Ni/Zn redox batteries
ZnO nanoparticles with three morphologies were synthesized by a hydrothermal route at 120 °C for 3 h in high alkaline aqueous solutions of LiOH, NaOH, and KOH. We analyzed them by X-ray diffraction (XRD), scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), cyclic voltammetry (CV),...
Saved in:
Published in | The Korean journal of chemical engineering Vol. 33; no. 4; pp. 1447 - 1455 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2016
한국화학공학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ZnO nanoparticles with three morphologies were synthesized by a hydrothermal route at 120 °C for 3 h in high alkaline aqueous solutions of LiOH, NaOH, and KOH. We analyzed them by X-ray diffraction (XRD), scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), cyclic voltammetry (CV), Zeta potential measurement, and impedance. XRD and SEM showed that the obtained ZnO nanoparticles had high purity and perfect crystallinity, and the morphologies of the particles prepared in the LiOH, NaOH, and KOH solutions showed nanoplate, nanobead, and nanorod shapes, respectively. CV showed that the nanoplate ZnO-LiOH and nanorod ZnO-KOH have superior electrochemical activity to that of the other ZnO nanostructures. As electrode materials of Ni/Zn redox batteries, the nanoplate ZnO-LiOH showed a significantly improved cycle stability after the 30
th
cycle compared to that of ZnO-NaOH and conventional ZnO with a mean discharge capacity of 153 mA h g
−1
, a cell efficiency of 93%, and higher discharge voltages of 1.9. In addition, during the charging/discharging cycles, the growth of zinc dendrite clusters could be suppressed, which resulted in an improvement in the cycle stability of the Ni/nanoplate ZnO-LiOH redox cell. |
---|---|
AbstractList | ZnO nanoparticles with three morphologies were synthesized by a hydrothermal route at 120 oC for 3 h in high alkaline aqueous solutions of LiOH, NaOH, and KOH. We analyzed them by X-ray diffraction (XRD), scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), cyclic voltammetry (CV), Zeta potential measurement, and impedance. XRD and SEM showed that the obtained ZnO nanoparticles had high purity and perfect crystallinity, and the morphologies of the particles prepared in the LiOH, NaOH, and KOH solutions showed nanoplate, nanobead, and nanorod shapes, respectively. CV showed that the nanoplate ZnO-LiOH and nanorod ZnO-KOH have superior electrochemical activity to that of the other ZnO nanostructures. As electrode materials of Ni/Zn redox batteries, the nanoplate ZnO-LiOH showed a significantly improved cycle stability after the 30th cycle compared to that of ZnO-NaOH and conventional ZnO with a mean discharge capacity of 153 mA h g−1, a cell efficiency of 93%, and higher discharge voltages of 1.9. In addition, during the charging/discharging cycles, the growth of zinc dendrite clusters could be suppressed, which resulted in an improvement in the cycle stability of the Ni/nanoplate ZnO-LiOH redox cell. KCI Citation Count: 17 ZnO nanoparticles with three morphologies were synthesized by a hydrothermal route at 120 °C for 3 h in high alkaline aqueous solutions of LiOH, NaOH, and KOH. We analyzed them by X-ray diffraction (XRD), scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), cyclic voltammetry (CV), Zeta potential measurement, and impedance. XRD and SEM showed that the obtained ZnO nanoparticles had high purity and perfect crystallinity, and the morphologies of the particles prepared in the LiOH, NaOH, and KOH solutions showed nanoplate, nanobead, and nanorod shapes, respectively. CV showed that the nanoplate ZnO-LiOH and nanorod ZnO-KOH have superior electrochemical activity to that of the other ZnO nanostructures. As electrode materials of Ni/Zn redox batteries, the nanoplate ZnO-LiOH showed a significantly improved cycle stability after the 30 th cycle compared to that of ZnO-NaOH and conventional ZnO with a mean discharge capacity of 153 mA h g −1 , a cell efficiency of 93%, and higher discharge voltages of 1.9. In addition, during the charging/discharging cycles, the growth of zinc dendrite clusters could be suppressed, which resulted in an improvement in the cycle stability of the Ni/nanoplate ZnO-LiOH redox cell. |
Author | Lee, Jin-Sik Im, Younghwan Park, Kyoung Soo Cho, Tae Woo Kang, Sora Kwak, Byeong Sub Kang, Misook |
Author_xml | – sequence: 1 givenname: Younghwan surname: Im fullname: Im, Younghwan organization: Department of Chemistry, College of Science, Yeungnam University – sequence: 2 givenname: Sora surname: Kang fullname: Kang, Sora organization: Department of Chemistry, College of Science, Yeungnam University – sequence: 3 givenname: Byeong Sub surname: Kwak fullname: Kwak, Byeong Sub organization: Department of Chemistry, College of Science, Yeungnam University – sequence: 4 givenname: Kyoung Soo surname: Park fullname: Park, Kyoung Soo organization: Research & Development Center, Vitzrocell Co – sequence: 5 givenname: Tae Woo surname: Cho fullname: Cho, Tae Woo organization: Research & Development Center, Vitzrocell Co – sequence: 6 givenname: Jin-Sik surname: Lee fullname: Lee, Jin-Sik organization: Research & Development Center, Vitzrocell Co – sequence: 7 givenname: Misook surname: Kang fullname: Kang, Misook email: mskang@ynu.ac.kr organization: Department of Chemistry, College of Science, Yeungnam University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002092879$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kUFr3DAQhUVIoJukP6A3HXOoG40cWfYxhLQbsmShpJdcxFgeZZX1SkZyoPtj-l-r7eZcGHgM870nxDtnpyEGYuwLiG8ghL7OAC3cVAJUJWQrqv0JW0CnVaWlFKdsIaRqKgBQn9h5zm9CKNVIsWB_7keyc4p2QztvceQTJRfTDoMlHh2fN4mI5w1ONPCXsOYBQ5wwzd6OlPmUqCzl5ANf-fXyK3_C9ZJjGPjjQcctjj6UgDi-zz6GzLFMiIO3fIczJY9j5uVB_uSvXwIvUfE373E-nChfsjNXAPr8oRfs1_f757tltVr_eLi7XVW2Vu1c9aQ718q6HoR2Aqjpa4sdUO_QNQ3WA8DgbK9swZWyukOQXd31rUVyQ0v1Bbs65obkzNZ6E9H_09dotsnc_nx-MLrTUt8UFI6oTTHnRM5Mye8w7Q0Ic6jCHKswpQpzqMLsi0cePbmw4ZWSeYvvKZQf_cf0F9FckYw |
CitedBy_id | crossref_primary_10_1016_j_jiec_2017_07_044 crossref_primary_10_1016_j_materresbull_2018_12_036 crossref_primary_10_1007_s11581_018_2527_1 crossref_primary_10_3938_jkps_69_778 crossref_primary_10_1134_S0036024417110152 crossref_primary_10_1021_acsenergylett_0c02343 crossref_primary_10_1021_acs_iecr_2c01359 crossref_primary_10_1016_j_ceramint_2021_06_170 crossref_primary_10_1016_j_heliyon_2020_e05821 crossref_primary_10_1039_C7RA10917B crossref_primary_10_1007_s10854_021_07460_7 crossref_primary_10_1149_2_0741811jes crossref_primary_10_1007_s13399_024_05808_7 crossref_primary_10_1016_j_ces_2023_119199 crossref_primary_10_1016_j_mseb_2018_12_024 crossref_primary_10_1039_D3QM00604B crossref_primary_10_1021_acssensors_7b00900 crossref_primary_10_1149_2_0621807jes crossref_primary_10_1038_s41598_018_23944_9 crossref_primary_10_1007_s11814_017_0236_5 crossref_primary_10_1016_j_jiec_2018_12_025 |
Cites_doi | 10.1016/j.jpowsour.2013.11.071 10.1016/j.electacta.2010.06.075 10.1016/j.hydromet.2013.08.006 10.1016/j.jpowsour.2008.01.004 10.1039/C4TC01132E 10.1016/j.electacta.2012.08.034 10.1016/j.jallcom.2012.10.092 10.1016/j.colsurfa.2011.12.039 10.1016/j.jiec.2010.01.048 10.1016/j.jpowsour.2006.12.037 10.1016/j.electacta.2013.08.052 10.1016/j.electacta.2011.01.006 10.1016/j.jpowsour.2003.09.050 10.1016/j.cej.2011.09.019 10.1016/j.electacta.2014.01.075 10.1016/j.jpowsour.2008.01.026 10.1016/j.jallcom.2009.01.013 10.1016/j.electacta.2009.06.063 10.1016/j.jpowsour.2015.01.049 10.1016/j.electacta.2015.03.076 10.1016/j.jpowsour.2013.07.097 10.1016/j.electacta.2014.12.101 10.1088/0957-4484/16/6/031 10.1016/j.matchemphys.2013.03.057 10.1016/j.jpowsour.2013.04.121 10.1016/j.electacta.2005.10.017 10.4236/anp.2013.21009 10.1007/s11814-015-0077-z 10.1016/j.electacta.2007.02.063 10.1007/s11814-014-0358-y 10.1016/j.jpowsour.2013.10.115 10.1016/j.apcbee.2014.01.003 |
ContentType | Journal Article |
Copyright | Korean Institute of Chemical Engineers, Seoul, Korea 2016 |
Copyright_xml | – notice: Korean Institute of Chemical Engineers, Seoul, Korea 2016 |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s11814-015-0280-y |
DatabaseName | CrossRef Korean Citation Index (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1975-7220 |
EndPage | 1455 |
ExternalDocumentID | oai_kci_go_kr_ARTI_797274 10_1007_s11814_015_0280_y |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 85H 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AABYN AAFGU AAGCJ AAHNG AAIAL AAIKT AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUCO AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJGSW AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZB HZ~ IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- MZR N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z8N Z8Q Z8Z Z92 ZMTXR ZZE ~A9 ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGJZZ AGQEE AGRTI AIGIU CITATION H13 SJYHP ACYCR |
ID | FETCH-LOGICAL-c358t-be79f8233d07f01e6b3ca91ebfaf66a3d11dfcb5cc3555c79a12939b8caefd8e3 |
IEDL.DBID | AGYKE |
ISSN | 0256-1115 |
IngestDate | Wed Jan 31 06:58:08 EST 2024 Thu Sep 12 17:01:55 EDT 2024 Sat Dec 16 12:01:29 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Charge/Discharge ZnO Nanoparticles Zinc Dendrite Clusters Ni/Zn Redox Battery |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-be79f8233d07f01e6b3ca91ebfaf66a3d11dfcb5cc3555c79a12939b8caefd8e3 |
Notes | G704-000406.2016.33.4.039 |
PageCount | 9 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_797274 crossref_primary_10_1007_s11814_015_0280_y springer_journals_10_1007_s11814_015_0280_y |
PublicationCentury | 2000 |
PublicationDate | 2016-04-01 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | The Korean journal of chemical engineering |
PublicationTitleAbbrev | Korean J. Chem. Eng |
PublicationYear | 2016 |
Publisher | Springer US 한국화학공학회 |
Publisher_xml | – name: Springer US – name: 한국화학공학회 |
References | MarsalekRAPCBEE Procedia20149131:CAS:528:DC%2BC2cXhsFamsbfJ10.1016/j.apcbee.2014.01.003 HyeonD HChunJ HLeeC HJungH CKimS HKorean J. Chem. Eng.20153215541:CAS:528:DC%2BC2MXks1ygtrw%3D10.1007/s11814-014-0358-y YangHCaoYAiXXiaoLJ. Power Sources2004128971:CAS:528:DC%2BD2cXhs1Gitbs%3D10.1016/j.jpowsour.2003.09.050 LeeJ HChaeJ HKimS JKimD YParkN KKangMJ. Ind. Eng. Chem.2010161851:CAS:528:DC%2BC3cXkvVSit78%3D10.1016/j.jiec.2010.01.048 WuJ ZTuJ PYuanY FMaMWangX LZhangLLiR LZhangJJ. Alloys Compd.20094796241:CAS:528:DC%2BD1MXlvFyjs7w%3D10.1016/j.jallcom.2009.01.013 YuanY FTuJ PWuH MLiYShiD QNanotechnol.2005168031:CAS:528:DC%2BD2MXnsl2mt74%3D10.1088/0957-4484/16/6/031 LanC JLeeC YChinT SElectrochim. Acta20075254071:CAS:528:DC%2BD2sXktFOru7s%3D10.1016/j.electacta.2007.02.063 PrabhuY TRaoK VKumarV S SKumariB SAdv. Nanoparticles201324510.4236/anp.2013.21009 NikiforidisGBerlouisLHallDHodgsonDElectrochim. Acta20141251761:CAS:528:DC%2BC2cXlvVWgs7o%3D10.1016/j.electacta.2014.01.075 RáczRIleaPHydrometallurgy201313911610.1016/j.hydromet.2013.08.006 ChengYZhangHLaiQLiXShiDZhangLJ. Power Sources20132411961:CAS:528:DC%2BC3sXhtV2lurfP10.1016/j.jpowsour.2013.04.121 ChengYZhangHLaiQLiXZhengQXiXDingCJ. Power Sources20142494351:CAS:528:DC%2BC3sXhvFCqtLzL10.1016/j.jpowsour.2013.10.115 WangRYangZYangBWangTChuZJ. Power Sources20142513441:CAS:528:DC%2BC2cXpslWi10.1016/j.jpowsour.2013.11.071 YuanY FYuL QWuH MYangJ LChenY BGuoS YTuJ PElectrochim. Acta20115643781:CAS:528:DC%2BC3MXkslCnu7s%3D10.1016/j.electacta.2011.01.006 ParkS MKimHKorean J. Chem. Eng.20153224341:CAS:528:DC%2BC2MXhtlKltbrO10.1007/s11814-015-0077-z YangJ LYuanY FWuH MLiYChenY BGuoS YElectrochim. Acta20105570501:CAS:528:DC%2BC3cXhtVGjurbF10.1016/j.electacta.2010.06.075 ChenFSunQGaoWLiuJYanCLiuQJ. Power Sources20152802271:CAS:528:DC%2BC2MXmtFeitQ%3D%3D10.1016/j.jpowsour.2015.01.049 HuangHZhangLZhangW KGanY PShaoHJ. Power Sources20081846631:CAS:528:DC%2BD1cXhtVCqsbjM10.1016/j.jpowsour.2008.01.004 LeeJKumarPLeeJMoudgilB MSinghR KJ. Alloys Compd.20135505361:CAS:528:DC%2BC38XhslKntb7J10.1016/j.jallcom.2012.10.092 L. H. Thaller, NASA TM X-71540 (1974). WanLYanSFengJYangZFanXLiZZouZColloids. Surf. A Physicochem. Eng. Asp.2012396461:CAS:528:DC%2BC38XivVejsro%3D10.1016/j.colsurfa.2011.12.039 RamadossAKimS JMater. Chem. Phys.20131404051:CAS:528:DC%2BC3sXmtFSmtLc%3D10.1016/j.matchemphys.2013.03.057 XieXYangZFengZZhangZHuangJElectrochim. Acta20151543081:CAS:528:DC%2BC2cXitFOntbvL10.1016/j.electacta.2014.12.101 YuanY FLiYTaoSYeF CYangJ LGuoS YTuJ PElectrochim. Acta20095466171:CAS:528:DC%2BD1MXhtVGru7rL10.1016/j.electacta.2009.06.063 YangBYangZWangRWangTElectrochim. Acta20131115811:CAS:528:DC%2BC3sXhslCrt7rK10.1016/j.electacta.2013.08.052 YuanY FTuJ PWuH MYangY ZShiD QZhaoX BElectrochim. Acta20065136321:CAS:528:DC%2BD28Xjslyhs7o%3D10.1016/j.electacta.2005.10.017 NeveuxLChicheDBachiD BFavergeonLPijolatMChem. Eng. J.2012181–18250810.1016/j.cej.2011.09.019 WangRYangZYangBFanXWangTJ. Power Sources20142463131:CAS:528:DC%2BC3sXhsFCqurbL10.1016/j.jpowsour.2013.07.097 WenR JYangZ HFanXTanZYangBElectrochim. Acta2012833761:CAS:528:DC%2BC38XhsV2jsr3E10.1016/j.electacta.2012.08.034 JungM HChuM JJ. Mater. Chem. C2014266751:CAS:528:DC%2BC2cXhtFOjt7nJ10.1039/C4TC01132E MaMTuJ PYuanY FWangX LLiK FMaoFZengZ YJ. Power Sources20081793951:CAS:528:DC%2BD1cXivFKrtb8%3D10.1016/j.jpowsour.2008.01.026 NakataAMurayamaHFukudaKYamaneTAraiHHiraiTUchimotoYYamakiJOgumiZElectrochim. Acta2015166821:CAS:528:DC%2BC2MXktlGqsrc%3D10.1016/j.electacta.2015.03.076 YuanY FTuJ PWuH MZhangC QWangS FZhaoX BJ. Power Sources20071659051:CAS:528:DC%2BD2sXitlGgt7o%3D10.1016/j.jpowsour.2006.12.037 S M Park (280_CR4) 2015; 32 Y F Yuan (280_CR11) 2011; 56 R Wang (280_CR17) 2014; 251 J L Yang (280_CR21) 2010; 55 M H Jung (280_CR32) 2014; 2 Y Cheng (280_CR7) 2014; 249 Y F Yuan (280_CR26) 2007; 165 D H Hyeon (280_CR3) 2015; 32 J Lee (280_CR29) 2013; 550 R Wang (280_CR12) 2014; 246 L Wan (280_CR23) 2012; 396 R Rácz (280_CR16) 2013; 139 R J Wen (280_CR20) 2012; 83 Y F Yuan (280_CR18) 2005; 16 X Xie (280_CR22) 2015; 154 C J Lan (280_CR8) 2007; 52 280_CR1 Y Cheng (280_CR6) 2013; 241 A Ramadoss (280_CR28) 2013; 140 A Nakata (280_CR9) 2015; 166 Y T Prabhu (280_CR24) 2013; 2 F Chen (280_CR2) 2015; 280 J Z Wu (280_CR14) 2009; 479 Y F Yuan (280_CR33) 2006; 51 B Yang (280_CR15) 2013; 111 G Nikiforidis (280_CR5) 2014; 125 H Yang (280_CR10) 2004; 128 R Marsalek (280_CR25) 2014; 9 H Huang (280_CR27) 2008; 184 Y F Yuan (280_CR13) 2009; 54 L Neveux (280_CR31) 2012; 181–182 J H Lee (280_CR30) 2010; 16 M Ma (280_CR19) 2008; 179 |
References_xml | – volume: 251 start-page: 344 year: 2014 ident: 280_CR17 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.11.071 contributor: fullname: R Wang – volume: 55 start-page: 7050 year: 2010 ident: 280_CR21 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.06.075 contributor: fullname: J L Yang – volume: 139 start-page: 116 year: 2013 ident: 280_CR16 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2013.08.006 contributor: fullname: R Rácz – volume: 184 start-page: 663 year: 2008 ident: 280_CR27 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.01.004 contributor: fullname: H Huang – ident: 280_CR1 – volume: 2 start-page: 6675 year: 2014 ident: 280_CR32 publication-title: J. Mater. Chem. C doi: 10.1039/C4TC01132E contributor: fullname: M H Jung – volume: 83 start-page: 376 year: 2012 ident: 280_CR20 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.08.034 contributor: fullname: R J Wen – volume: 550 start-page: 536 year: 2013 ident: 280_CR29 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2012.10.092 contributor: fullname: J Lee – volume: 396 start-page: 46 year: 2012 ident: 280_CR23 publication-title: Colloids. Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2011.12.039 contributor: fullname: L Wan – volume: 16 start-page: 185 year: 2010 ident: 280_CR30 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2010.01.048 contributor: fullname: J H Lee – volume: 165 start-page: 905 year: 2007 ident: 280_CR26 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.12.037 contributor: fullname: Y F Yuan – volume: 111 start-page: 581 year: 2013 ident: 280_CR15 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.08.052 contributor: fullname: B Yang – volume: 56 start-page: 4378 year: 2011 ident: 280_CR11 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.01.006 contributor: fullname: Y F Yuan – volume: 128 start-page: 97 year: 2004 ident: 280_CR10 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2003.09.050 contributor: fullname: H Yang – volume: 181–182 start-page: 508 year: 2012 ident: 280_CR31 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.09.019 contributor: fullname: L Neveux – volume: 125 start-page: 176 year: 2014 ident: 280_CR5 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.01.075 contributor: fullname: G Nikiforidis – volume: 179 start-page: 395 year: 2008 ident: 280_CR19 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.01.026 contributor: fullname: M Ma – volume: 479 start-page: 624 year: 2009 ident: 280_CR14 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2009.01.013 contributor: fullname: J Z Wu – volume: 54 start-page: 6617 year: 2009 ident: 280_CR13 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.06.063 contributor: fullname: Y F Yuan – volume: 280 start-page: 227 year: 2015 ident: 280_CR2 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.01.049 contributor: fullname: F Chen – volume: 166 start-page: 82 year: 2015 ident: 280_CR9 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.03.076 contributor: fullname: A Nakata – volume: 246 start-page: 313 year: 2014 ident: 280_CR12 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.07.097 contributor: fullname: R Wang – volume: 154 start-page: 308 year: 2015 ident: 280_CR22 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.12.101 contributor: fullname: X Xie – volume: 16 start-page: 803 year: 2005 ident: 280_CR18 publication-title: Nanotechnol. doi: 10.1088/0957-4484/16/6/031 contributor: fullname: Y F Yuan – volume: 140 start-page: 405 year: 2013 ident: 280_CR28 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2013.03.057 contributor: fullname: A Ramadoss – volume: 241 start-page: 196 year: 2013 ident: 280_CR6 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.04.121 contributor: fullname: Y Cheng – volume: 51 start-page: 3632 year: 2006 ident: 280_CR33 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2005.10.017 contributor: fullname: Y F Yuan – volume: 2 start-page: 45 year: 2013 ident: 280_CR24 publication-title: Adv. Nanoparticles doi: 10.4236/anp.2013.21009 contributor: fullname: Y T Prabhu – volume: 32 start-page: 2434 year: 2015 ident: 280_CR4 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-015-0077-z contributor: fullname: S M Park – volume: 52 start-page: 5407 year: 2007 ident: 280_CR8 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.02.063 contributor: fullname: C J Lan – volume: 32 start-page: 1554 year: 2015 ident: 280_CR3 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-014-0358-y contributor: fullname: D H Hyeon – volume: 249 start-page: 435 year: 2014 ident: 280_CR7 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.10.115 contributor: fullname: Y Cheng – volume: 9 start-page: 13 year: 2014 ident: 280_CR25 publication-title: APCBEE Procedia doi: 10.1016/j.apcbee.2014.01.003 contributor: fullname: R Marsalek |
SSID | ssj0055620 |
Score | 2.2346187 |
Snippet | ZnO nanoparticles with three morphologies were synthesized by a hydrothermal route at 120 °C for 3 h in high alkaline aqueous solutions of LiOH, NaOH, and KOH.... ZnO nanoparticles with three morphologies were synthesized by a hydrothermal route at 120 oC for 3 h in high alkaline aqueous solutions of LiOH, NaOH, and KOH.... |
SourceID | nrf crossref springer |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1447 |
SubjectTerms | Biotechnology Catalysis Chemistry Chemistry and Materials Science Electronic Industrial Chemistry/Chemical Engineering Inorganic Materials (Organic Materials Science Thin Films 화학공학 |
Title | Electrochemical performance of three shaped ZnO nanoparticles prepared in LiOH, NaOH and KOH alkaline solutions as anodic materials for Ni/Zn redox batteries |
URI | https://link.springer.com/article/10.1007/s11814-015-0280-y https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002092879 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Korean Journal of Chemical Engineering, 2016, 33(4), 193, pp.1447-1455 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB417YH20EJbRAuNBokTsOlu9n1Mq4RAIbkQqe3Fsr02rLZyomQrUf4L_5XxPhpQ4VBpJR_W8mrtsecbz8w3AG-8QGivz12H3rpOIGJb5kUKJ5VZTPAhkXFlKH6ZRONZ8OkyvNyA_v3VhSl6rUeyOqjXuW6ki2zAhE0oTlznrgNbTd7p1uDD1cWwPX9D0uj1zYpl2CPA0_oy_zXIX9qoY5b6gUO00jOjvTr3b1XRE9rwkqJ3W4qe_PmQvPERv_AUdhvYiYNaTp7BhjL78OS8rfa2Dzt_EBMewK9hXR1HNnQCuFjnF-BcY0kSoHD1nS9UhtdmioYbsr6bIDtcLFUV2I65wc_5dPweJ3w6Rm4yvLDtTcEtusV7uUdOj5lnuURC0PWmQPogTvLTa4OW1PQHiooKlCz7Q5iNhl_Px05TyMGRfpiUjlBxqpO-72durF1PRcKXPPWU0FxHEfczz8u0FKGk7mEo45RbFJKKRHKls0T5z2HTzI16AUiIiQCNUj6Z1oHHYxIuTwShTH2hRaCDI3jbLihb1HwdbM3MbOef0fwzO__s7ghe05KzQubMsmzb9tucFUtGtsRHFqeE7WjAd-1ismZ7r_4_4vGjer-EbcJfUR0I9Ao2y-WtOiGMU4ouCfXo7GzSbYS7C51Zf_Ab-UX3sA |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDCbW9ND1sEe3od2TA3ba5s6K38eiSOcuaXJJga4XQZKlzcigBIkLrPsv_a-l_FjaPQ4FDOhgQbYpSvxokR8B3rFQGtYXvkd3fS-UiSvzoqSXqSIh-JCqpHYUT8Zxfhp-OYvO2jzuVRft3h1J1jv1OtmNjJGLmHAZxanvXW7AZthncb8Hmwefvw4H3QYckUlvfq04ij1CPN1h5r8GuWWONuzS_HUiWhuao4cw7V6xiS-Z7V9Ucl_9-oO98Y7f8AgetMATDxpNeQz3tN2BrcOu3tsObN-gJnwCV4OmPo5qCQVwsc4wwLnBinRA4-q7WOgCz-0ErbDkf7dhdrhY6jq0HUuLo3KSf8SxmOQobIFD1_6YCYdv8bfmo6DLzotSIWHoZlkgPRDH5adzi47W9CfKmgyUfPuncHo0mB7mXlvKwVNBlFae1Elm0n4QFH5ifKZjGSiRMS2NMHEsgoKxwigZKeoeRSrJhMMhmUyV0KZIdfAMenZu9S4gYSaCNFoH5FyHTCSkXkyGkcoCaWRowj14380oXzSMHXzNzezkz0n-3MmfX-7BW5pzPlMldzzbrv0257MlJ2_imCcZoTsa8EM3mbxd4Kv_j_j8Tr3fwFY-PRnx0fF4-ALuExqLm7Cgl9Crlhf6FSGeSr5uNfwa79r5Hw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RVIJyKFBaUcpjkDhB3dj1-1iVhJSUhAOVSi_bfbZW0MZKXInyX_ivzMY24XmokCztwau1vTvr-WZn5huAl0EkTLDPfY_u-l4kUlfmRQovlyol-JDJdGEovh8lg5Po3Wl82tQ5nbfR7q1Lss5pcCxNtuqWynSXiW-kmFz0hMsuznzvegVWI0eM1IHVg7efhr32ZxyTeq-PWRzdHqGf1rH5t0F-UU0rdmb-8I4ulE7_Hpy3r1vHmkz2riqxJ7_-xuT4H99zH9YbQIoHtQQ9gFvabsCdw7YO3Abc_Ymy8CF869V1c2RDNIDlMvMApwYrkg2N80teaoVndoyWW7LLm_A7LGd6EfKOhcXjYjzYxREfD5BbhUPXfp5wh3vxx45ATpedqkIiYet6uyA9EEdF98yiozv9gmJBEko2_yac9HsfDwdeU-LBk2GcVZ7QaW6y_TBUfmr8QCcilDwPtDDcJAkPVRAoI0UsqXscyzTnDp_kIpNcG5XpcAs6dmr1I0DCUgR1tA7J6I4CnpLYBSKKZR4KIyITbcOrdnVZWTN5sCVns5t_RvPP3Pyz6214QevPJrJgjn_btRdTNpkxsjKOWJoT6qMBX7cLy5qNP__3iI9v1Ps53P7wps-Oj0bDHVgjkJbU0UJPoFPNrvRTAkKVeNYI-3drxAIS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+performance+of+three+shaped+ZnO+nanoparticles+prepared+in+LiOH%2C+NaOH+and+KOH+alkaline+solutions+as+anodic+materials+for+Ni%2FZn+redox+batteries&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Im%2C+Younghwan&rft.au=Kang%2C+Sora&rft.au=Kwak%2C+Byeong+Sub&rft.au=Park%2C+Kyoung+Soo&rft.date=2016-04-01&rft.pub=Springer+US&rft.issn=0256-1115&rft.eissn=1975-7220&rft.volume=33&rft.issue=4&rft.spage=1447&rft.epage=1455&rft_id=info:doi/10.1007%2Fs11814-015-0280-y&rft.externalDocID=10_1007_s11814_015_0280_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon |