Sat-SINR: High-Resolution Species Distribution Models Through Satellite Imagery
We propose a deep learning approach for high-resolution species distribution modelling (SDM) at large scale combining point-wise, crowd-sourced species observation data and environmental data with Sentinel-2 satellite imagery. What makes this task challenging is the great variety of controlling fact...
Saved in:
Published in | ISPRS annals of the photogrammetry, remote sensing and spatial information sciences Vol. X-2-2024; pp. 41 - 48 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Gottingen
Copernicus GmbH
10.06.2024
Copernicus Publications |
Subjects | |
Online Access | Get full text |
ISSN | 2194-9050 2194-9042 2194-9050 |
DOI | 10.5194/isprs-annals-X-2-2024-41-2024 |
Cover
Loading…
Abstract | We propose a deep learning approach for high-resolution species distribution modelling (SDM) at large scale combining point-wise, crowd-sourced species observation data and environmental data with Sentinel-2 satellite imagery. What makes this task challenging is the great variety of controlling factors for species distribution, such as habitat conditions, human intervention, competition, disturbances, and evolutionary history. Experts either incorporate these factors into complex mechanistic models based on presence-absence data collected in field campaigns or train machine learning models to learn the relationship between environmental data and presence-only species occurrence. We extend the latter approach here and learn deep SDMs end-to-end based on point-wise, crowd-sourced presence-only data in combination with satellite imagery. Our method, dubbed Sat-SINR, jointly models the spatial distributions of 5.6k plant species across Europe and increases the spatial resolution by a factor of 100 compared to the current state of the art. We exhaustively test and ablate multiple variations of combining geo-referenced point data with satellite imagery and show that our deep learning-based SDM method consistently shows an improvement of up to 3 percentage points across three metrics. We make all code publicly available at https://github.com/ecovision-uzh/sat-sinr. |
---|---|
AbstractList | We propose a deep learning approach for high-resolution species distribution modelling (SDM) at large scale combining point-wise, crowd-sourced species observation data and environmental data with Sentinel-2 satellite imagery. What makes this task challenging is the great variety of controlling factors for species distribution, such as habitat conditions, human intervention, competition, disturbances, and evolutionary history. Experts either incorporate these factors into complex mechanistic models based on presence-absence data collected in field campaigns or train machine learning models to learn the relationship between environmental data and presence-only species occurrence. We extend the latter approach here and learn deep SDMs end-to-end based on point-wise, crowd-sourced presence-only data in combination with satellite imagery. Our method, dubbed Sat-SINR, jointly models the spatial distributions of 5.6k plant species across Europe and increases the spatial resolution by a factor of 100 compared to the current state of the art. We exhaustively test and ablate multiple variations of combining geo-referenced point data with satellite imagery and show that our deep learning-based SDM method consistently shows an improvement of up to 3 percentage points across three metrics. We make all code publicly available at https://github.com/ecovision-uzh/sat-sinr. |
Author | Sainte Fare Garnot, Vivien Brun, Philipp Dollinger, Johannes Wegner, Jan Dirk |
Author_xml | – sequence: 1 givenname: Johannes surname: Dollinger fullname: Dollinger, Johannes – sequence: 2 givenname: Philipp surname: Brun fullname: Brun, Philipp – sequence: 3 givenname: Vivien surname: Sainte Fare Garnot fullname: Sainte Fare Garnot, Vivien – sequence: 4 givenname: Jan Dirk surname: Wegner fullname: Wegner, Jan Dirk |
BookMark | eNpNUctKA0EQHETBGP2HBfE42vPYl-BBfCXgA4xCbsPMTm8yYd2JM5tD_t5NVsRTNU11dVF1Qg5b3yIhFwwuU1bKKxfXIVLdtrqJdE455cAllWyPB2TEexItIYXDf_MxOYtxBQAsT8uy5CPyNtMdnU1f36-TiVss6TtG32w659tktsbKYUzuXeyCM8PyxVtsYvKxDH6zWCb9NTaN6zCZfukFhu0pOap7R3j2i2Py-fjwcTehz29P07vbZ1qJtOiosVgUTEiBuRWV0IhcZAZFqTMLIKXWGgomTQ1Qpjy3lnGRg2Ggpa7qzIoxmQ661uuVWgf3pcNWee3UfuHDQunQuapBZQsQ0qS8zsDI2miTV7bKTZ9BnZeIrNc6H7TWwX9vMHZq5TdhF6wSkKV576DIetbNwKqCjzFg_feVgdpVovaVqKESNVdc7apQku1R_ACcGoW4 |
ContentType | Journal Article |
Copyright | 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO HCIFZ L6V M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.5194/isprs-annals-X-2-2024-41-2024 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 2194-9050 |
EndPage | 48 |
ExternalDocumentID | oai_doaj_org_article_d8034b52f60b4fbab7cdc7b017f79ee1 10_5194_isprs_annals_X_2_2024_41_2024 |
GroupedDBID | 5VS 8FE 8FG 8FH AAFWJ AAYXX ABJCF ACIWK ADBBV AEUYN AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ HCIFZ KQ8 L6V LK5 M7R M7S PCBAR PHGZM PHGZT PIMPY PROAC PTHSS RKB TUS ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c358t-bde881343e7d3c3aee236be39a6d0044aaa0814bf009527dd12370b10a4acf6d3 |
IEDL.DBID | DOA |
ISSN | 2194-9050 2194-9042 |
IngestDate | Wed Aug 27 01:32:18 EDT 2025 Fri Jul 25 10:33:30 EDT 2025 Tue Jul 01 01:58:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-bde881343e7d3c3aee236be39a6d0044aaa0814bf009527dd12370b10a4acf6d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/d8034b52f60b4fbab7cdc7b017f79ee1 |
PQID | 3065795286 |
PQPubID | 2037681 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d8034b52f60b4fbab7cdc7b017f79ee1 proquest_journals_3065795286 crossref_primary_10_5194_isprs_annals_X_2_2024_41_2024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-10 |
PublicationDateYYYYMMDD | 2024-06-10 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Gottingen |
PublicationPlace_xml | – name: Gottingen |
PublicationTitle | ISPRS annals of the photogrammetry, remote sensing and spatial information sciences |
PublicationYear | 2024 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
SSID | ssj0001759992 ssib044742267 |
Score | 2.272985 |
Snippet | We propose a deep learning approach for high-resolution species distribution modelling (SDM) at large scale combining point-wise, crowd-sourced species... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 41 |
SubjectTerms | Ablation Crowdsourcing Deep learning High resolution Machine learning Plant species Satellite imagery Spatial distribution Spatial resolution |
SummonAdditionalLinks | – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKyE4oPISWwryAY5WEz8TLoiWVi0SC-oD7c2yY7uqBLvbTXrov2fG8VKhSpwsOfFlZjzzxeN8HyHvJbLsq6QZTyoyGXRibWwFS00XjHZC1Q47ut9m-vhCfp2reTlw68u1yk1OzIk6LDs8I99DhXPTKt7oT6trhqpR2F0tEhoPyRak4EZNyNb-4ezH6SaipDT4p6i5O3UxChARthZgp0rWQsg-Ih8gcwCQkXtX_WrdM5eZi9mccQghLpms8_hP4cr8_vfSd65JR9vkaQGT9PPo_WfkQVw8J09-XvU342z_gnw_cwM7O5mdfqR4pYPhcf0YbDRLz8eefkHu3CJ7RVEb7VdPz0f5HgqrkbFziPTkN7Jd3L4kF0eH5wfHrIgosE6oZmA-xKaphRTRBNEJFyMX2kfROh2wm-ucA1QgfUKwxU0IUMpM5evKSdclHcQrMlksF_E1oQBVIuROXUcJhZ3D-x0AmlQLFZUAJDMlemMhuxq5Mix8Y6BpbTatHU1r55ZbNKmVdR6nZB_t-XcRUl7nieX60pYdZENTCekVT7ryMnnnTRc648GlybQx1lOyu_GGLfuwt3dRs_P_x2_I4-xsVCWqdslkWN_EtwA3Bv-uxNQfbO3Q7A priority: 102 providerName: ProQuest |
Title | Sat-SINR: High-Resolution Species Distribution Models Through Satellite Imagery |
URI | https://www.proquest.com/docview/3065795286 https://doaj.org/article/d8034b52f60b4fbab7cdc7b017f79ee1 |
Volume | X-2-2024 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVKKyF6QEBBbCkrH8rRahJ_Jdwo7NJW6lL1A-3NsuOxVAmWqkkPXPjtzDgpFPXApZdYsmQleXn2PH_kDWO7ilz2dTKiShqEiiaJBhopUt1Ga7zUpacd3eOFObhQR0u9vJPqi86EDfbAA3B7sS6kCrpKpggqBR9sG1sbkEjJNgB54oMx785kCpmklKU_RO3f1RarUQnRlgL2UCUapOpj9g5HDBQwau-yu7ruhM-OxWIpKqROpYQqc_lPwMq-_veG7RyL5s_Y01FE8g_Dwz9na7B6wTa_XnY3Q223xb6c-V6cHS5O33M6yiFomX4gGc8p56Hjn8gzd0x3xSkn2reOnw9pezi2JqfOHvjhd3K5-PmSXcxn5x8PxJg8QbRS170IEeq6lEqCjbKVHqCSJoBsvIm0i-u9RzWgQiKRVdkYMYTZIpSFV75NJspXbH31YwWvGUeJAjhmmhIUBnREW7coZFIpNWiJCmbCzC1C7mrwyHA4tyBoXYbWDdC6pascQepUmcsJ2yc8_zQiq-tcgQRwIwHc_wgwYTu3X8ON_a9zOBHSFt-rNtsPcY837EmmBOUsKnbYen99A29RjPRhyh7V889TtrE_W5ycTjML8Xr8a_YbwsHc1A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK_E4IJ5ioYAP9Gh1Yzt2goQQpa12abugdov2ZuzYriqV3WWTCvVP8RuZcRIqhMStJ0uOncO8_Nljz0fIG4lV9vOoGI95YNKryMpQChaLymtlRZ5ZzOgeTdToVH6a5bM18qt_C4PXKvuYmAK1X1R4Rr6NDOe6zHmh3i9_MGSNwuxqT6HRmsVBuPoJW7b63XgX9LvF-f7e9OOIdawCrBJ50TDnQ1FkQoqgvaiEDYEL5YIorfKY3rTWwjIpXUT0wbX3ENv10GVDK20VlRfw31tkA2BGCV60sbM3-XLcW7CUGl-m6utTHg2jEjMzRAbJSnCR22QLIhUAJ7l9Xi9XNbOpUjKbMQ4myyWTWWr_WigTn8A_y0VaA_cfkPsdeKUfWmt7SNbC_BG59_W8vmx768fk84lt2Ml4cvyW4hUShumB1rhporoPNd3FWr0dzRZFLraLmk5buiAKs7FCaBPo-DtW17h6Qk5vRLxPyfp8MQ_PCAVoFCBWqyxIABIcxlcAoGIm8pALQE4DonoJmWVbm8PAngZFa5JoTStaMzPcoEiNzFI7IDsozz-TsMR26liszkznscYXQyFdzqMaOhmddbrylXag0qjLELIB2ey1YTq_r821lT7__-fX5M5oenRoDseTgxfkblI8MiINN8l6s7oMLwHqNO5VZ1-UfLtpk_4NPkAOJA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sat-SINR%3A+High-Resolution+Species+Distribution+Models+Through+Satellite+Imagery&rft.jtitle=ISPRS+annals+of+the+photogrammetry%2C+remote+sensing+and+spatial+information+sciences&rft.au=Dollinger%2C+Johannes&rft.au=Brun%2C+Philipp&rft.au=Sainte+Fare+Garnot%2C+Vivien&rft.au=Wegner%2C+Jan+Dirk&rft.date=2024-06-10&rft.issn=2194-9050&rft.eissn=2194-9050&rft.volume=X-2-2024&rft.spage=41&rft.epage=48&rft_id=info:doi/10.5194%2Fisprs-annals-X-2-2024-41-2024&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_isprs_annals_X_2_2024_41_2024 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-9050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-9050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-9050&client=summon |