Sat-SINR: High-Resolution Species Distribution Models Through Satellite Imagery

We propose a deep learning approach for high-resolution species distribution modelling (SDM) at large scale combining point-wise, crowd-sourced species observation data and environmental data with Sentinel-2 satellite imagery. What makes this task challenging is the great variety of controlling fact...

Full description

Saved in:
Bibliographic Details
Published inISPRS annals of the photogrammetry, remote sensing and spatial information sciences Vol. X-2-2024; pp. 41 - 48
Main Authors Dollinger, Johannes, Brun, Philipp, Sainte Fare Garnot, Vivien, Wegner, Jan Dirk
Format Journal Article
LanguageEnglish
Published Gottingen Copernicus GmbH 10.06.2024
Copernicus Publications
Subjects
Online AccessGet full text
ISSN2194-9050
2194-9042
2194-9050
DOI10.5194/isprs-annals-X-2-2024-41-2024

Cover

Loading…
Abstract We propose a deep learning approach for high-resolution species distribution modelling (SDM) at large scale combining point-wise, crowd-sourced species observation data and environmental data with Sentinel-2 satellite imagery. What makes this task challenging is the great variety of controlling factors for species distribution, such as habitat conditions, human intervention, competition, disturbances, and evolutionary history. Experts either incorporate these factors into complex mechanistic models based on presence-absence data collected in field campaigns or train machine learning models to learn the relationship between environmental data and presence-only species occurrence. We extend the latter approach here and learn deep SDMs end-to-end based on point-wise, crowd-sourced presence-only data in combination with satellite imagery. Our method, dubbed Sat-SINR, jointly models the spatial distributions of 5.6k plant species across Europe and increases the spatial resolution by a factor of 100 compared to the current state of the art. We exhaustively test and ablate multiple variations of combining geo-referenced point data with satellite imagery and show that our deep learning-based SDM method consistently shows an improvement of up to 3 percentage points across three metrics. We make all code publicly available at https://github.com/ecovision-uzh/sat-sinr.
AbstractList We propose a deep learning approach for high-resolution species distribution modelling (SDM) at large scale combining point-wise, crowd-sourced species observation data and environmental data with Sentinel-2 satellite imagery. What makes this task challenging is the great variety of controlling factors for species distribution, such as habitat conditions, human intervention, competition, disturbances, and evolutionary history. Experts either incorporate these factors into complex mechanistic models based on presence-absence data collected in field campaigns or train machine learning models to learn the relationship between environmental data and presence-only species occurrence. We extend the latter approach here and learn deep SDMs end-to-end based on point-wise, crowd-sourced presence-only data in combination with satellite imagery. Our method, dubbed Sat-SINR, jointly models the spatial distributions of 5.6k plant species across Europe and increases the spatial resolution by a factor of 100 compared to the current state of the art. We exhaustively test and ablate multiple variations of combining geo-referenced point data with satellite imagery and show that our deep learning-based SDM method consistently shows an improvement of up to 3 percentage points across three metrics. We make all code publicly available at https://github.com/ecovision-uzh/sat-sinr.
Author Sainte Fare Garnot, Vivien
Brun, Philipp
Dollinger, Johannes
Wegner, Jan Dirk
Author_xml – sequence: 1
  givenname: Johannes
  surname: Dollinger
  fullname: Dollinger, Johannes
– sequence: 2
  givenname: Philipp
  surname: Brun
  fullname: Brun, Philipp
– sequence: 3
  givenname: Vivien
  surname: Sainte Fare Garnot
  fullname: Sainte Fare Garnot, Vivien
– sequence: 4
  givenname: Jan Dirk
  surname: Wegner
  fullname: Wegner, Jan Dirk
BookMark eNpNUctKA0EQHETBGP2HBfE42vPYl-BBfCXgA4xCbsPMTm8yYd2JM5tD_t5NVsRTNU11dVF1Qg5b3yIhFwwuU1bKKxfXIVLdtrqJdE455cAllWyPB2TEexItIYXDf_MxOYtxBQAsT8uy5CPyNtMdnU1f36-TiVss6TtG32w659tktsbKYUzuXeyCM8PyxVtsYvKxDH6zWCb9NTaN6zCZfukFhu0pOap7R3j2i2Py-fjwcTehz29P07vbZ1qJtOiosVgUTEiBuRWV0IhcZAZFqTMLIKXWGgomTQ1Qpjy3lnGRg2Ggpa7qzIoxmQ661uuVWgf3pcNWee3UfuHDQunQuapBZQsQ0qS8zsDI2miTV7bKTZ9BnZeIrNc6H7TWwX9vMHZq5TdhF6wSkKV576DIetbNwKqCjzFg_feVgdpVovaVqKESNVdc7apQku1R_ACcGoW4
ContentType Journal Article
Copyright 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
L6V
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.5194/isprs-annals-X-2-2024-41-2024
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 2194-9050
EndPage 48
ExternalDocumentID oai_doaj_org_article_d8034b52f60b4fbab7cdc7b017f79ee1
10_5194_isprs_annals_X_2_2024_41_2024
GroupedDBID 5VS
8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ACIWK
ADBBV
AEUYN
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
KQ8
L6V
LK5
M7R
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RKB
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c358t-bde881343e7d3c3aee236be39a6d0044aaa0814bf009527dd12370b10a4acf6d3
IEDL.DBID DOA
ISSN 2194-9050
2194-9042
IngestDate Wed Aug 27 01:32:18 EDT 2025
Fri Jul 25 10:33:30 EDT 2025
Tue Jul 01 01:58:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-bde881343e7d3c3aee236be39a6d0044aaa0814bf009527dd12370b10a4acf6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/d8034b52f60b4fbab7cdc7b017f79ee1
PQID 3065795286
PQPubID 2037681
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_d8034b52f60b4fbab7cdc7b017f79ee1
proquest_journals_3065795286
crossref_primary_10_5194_isprs_annals_X_2_2024_41_2024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-10
PublicationDateYYYYMMDD 2024-06-10
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-10
  day: 10
PublicationDecade 2020
PublicationPlace Gottingen
PublicationPlace_xml – name: Gottingen
PublicationTitle ISPRS annals of the photogrammetry, remote sensing and spatial information sciences
PublicationYear 2024
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
SSID ssj0001759992
ssib044742267
Score 2.272985
Snippet We propose a deep learning approach for high-resolution species distribution modelling (SDM) at large scale combining point-wise, crowd-sourced species...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 41
SubjectTerms Ablation
Crowdsourcing
Deep learning
High resolution
Machine learning
Plant species
Satellite imagery
Spatial distribution
Spatial resolution
SummonAdditionalLinks – databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKyE4oPISWwryAY5WEz8TLoiWVi0SC-oD7c2yY7uqBLvbTXrov2fG8VKhSpwsOfFlZjzzxeN8HyHvJbLsq6QZTyoyGXRibWwFS00XjHZC1Q47ut9m-vhCfp2reTlw68u1yk1OzIk6LDs8I99DhXPTKt7oT6trhqpR2F0tEhoPyRak4EZNyNb-4ezH6SaipDT4p6i5O3UxChARthZgp0rWQsg-Ih8gcwCQkXtX_WrdM5eZi9mccQghLpms8_hP4cr8_vfSd65JR9vkaQGT9PPo_WfkQVw8J09-XvU342z_gnw_cwM7O5mdfqR4pYPhcf0YbDRLz8eefkHu3CJ7RVEb7VdPz0f5HgqrkbFziPTkN7Jd3L4kF0eH5wfHrIgosE6oZmA-xKaphRTRBNEJFyMX2kfROh2wm-ucA1QgfUKwxU0IUMpM5evKSdclHcQrMlksF_E1oQBVIuROXUcJhZ3D-x0AmlQLFZUAJDMlemMhuxq5Mix8Y6BpbTatHU1r55ZbNKmVdR6nZB_t-XcRUl7nieX60pYdZENTCekVT7ryMnnnTRc648GlybQx1lOyu_GGLfuwt3dRs_P_x2_I4-xsVCWqdslkWN_EtwA3Bv-uxNQfbO3Q7A
  priority: 102
  providerName: ProQuest
Title Sat-SINR: High-Resolution Species Distribution Models Through Satellite Imagery
URI https://www.proquest.com/docview/3065795286
https://doaj.org/article/d8034b52f60b4fbab7cdc7b017f79ee1
Volume X-2-2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVKKyF6QEBBbCkrH8rRahJ_Jdwo7NJW6lL1A-3NsuOxVAmWqkkPXPjtzDgpFPXApZdYsmQleXn2PH_kDWO7ilz2dTKiShqEiiaJBhopUt1Ga7zUpacd3eOFObhQR0u9vJPqi86EDfbAA3B7sS6kCrpKpggqBR9sG1sbkEjJNgB54oMx785kCpmklKU_RO3f1RarUQnRlgL2UCUapOpj9g5HDBQwau-yu7ruhM-OxWIpKqROpYQqc_lPwMq-_veG7RyL5s_Y01FE8g_Dwz9na7B6wTa_XnY3Q223xb6c-V6cHS5O33M6yiFomX4gGc8p56Hjn8gzd0x3xSkn2reOnw9pezi2JqfOHvjhd3K5-PmSXcxn5x8PxJg8QbRS170IEeq6lEqCjbKVHqCSJoBsvIm0i-u9RzWgQiKRVdkYMYTZIpSFV75NJspXbH31YwWvGUeJAjhmmhIUBnREW7coZFIpNWiJCmbCzC1C7mrwyHA4tyBoXYbWDdC6pascQepUmcsJ2yc8_zQiq-tcgQRwIwHc_wgwYTu3X8ON_a9zOBHSFt-rNtsPcY837EmmBOUsKnbYen99A29RjPRhyh7V889TtrE_W5ycTjML8Xr8a_YbwsHc1A
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK_E4IJ5ioYAP9Gh1Yzt2goQQpa12abugdov2ZuzYriqV3WWTCvVP8RuZcRIqhMStJ0uOncO8_Nljz0fIG4lV9vOoGI95YNKryMpQChaLymtlRZ5ZzOgeTdToVH6a5bM18qt_C4PXKvuYmAK1X1R4Rr6NDOe6zHmh3i9_MGSNwuxqT6HRmsVBuPoJW7b63XgX9LvF-f7e9OOIdawCrBJ50TDnQ1FkQoqgvaiEDYEL5YIorfKY3rTWwjIpXUT0wbX3ENv10GVDK20VlRfw31tkA2BGCV60sbM3-XLcW7CUGl-m6utTHg2jEjMzRAbJSnCR22QLIhUAJ7l9Xi9XNbOpUjKbMQ4myyWTWWr_WigTn8A_y0VaA_cfkPsdeKUfWmt7SNbC_BG59_W8vmx768fk84lt2Ml4cvyW4hUShumB1rhporoPNd3FWr0dzRZFLraLmk5buiAKs7FCaBPo-DtW17h6Qk5vRLxPyfp8MQ_PCAVoFCBWqyxIABIcxlcAoGIm8pALQE4DonoJmWVbm8PAngZFa5JoTStaMzPcoEiNzFI7IDsozz-TsMR26liszkznscYXQyFdzqMaOhmddbrylXag0qjLELIB2ey1YTq_r821lT7__-fX5M5oenRoDseTgxfkblI8MiINN8l6s7oMLwHqNO5VZ1-UfLtpk_4NPkAOJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sat-SINR%3A+High-Resolution+Species+Distribution+Models+Through+Satellite+Imagery&rft.jtitle=ISPRS+annals+of+the+photogrammetry%2C+remote+sensing+and+spatial+information+sciences&rft.au=Dollinger%2C+Johannes&rft.au=Brun%2C+Philipp&rft.au=Sainte+Fare+Garnot%2C+Vivien&rft.au=Wegner%2C+Jan+Dirk&rft.date=2024-06-10&rft.issn=2194-9050&rft.eissn=2194-9050&rft.volume=X-2-2024&rft.spage=41&rft.epage=48&rft_id=info:doi/10.5194%2Fisprs-annals-X-2-2024-41-2024&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_isprs_annals_X_2_2024_41_2024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-9050&client=summon