Groups that are transitive on all partitions of a given shape
Let [ n ] = K 1 ∪ ˙ K 2 ∪ ˙ ⋯ ∪ ˙ K r be a partition of [ n ] = { 1 , 2 , … , n } and set ℓ i = | K i | for 1 ≤ i ≤ r . Then the tuple P = { K 1 , K 2 , … , K r } is an unordered partition of [ n ] of shape [ ℓ 1 , … , ℓ r ] . Let P be the set of all partitions of [ n ] of shape [ ℓ 1 , … , ℓ r ] ....
Saved in:
Published in | Journal of algebraic combinatorics Vol. 42; no. 2; pp. 605 - 617 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Let
[
n
]
=
K
1
∪
˙
K
2
∪
˙
⋯
∪
˙
K
r
be a partition of
[
n
]
=
{
1
,
2
,
…
,
n
}
and set
ℓ
i
=
|
K
i
|
for
1
≤
i
≤
r
. Then the tuple
P
=
{
K
1
,
K
2
,
…
,
K
r
}
is an unordered partition of
[
n
]
of shape
[
ℓ
1
,
…
,
ℓ
r
]
. Let
P
be the set of all partitions of
[
n
]
of shape
[
ℓ
1
,
…
,
ℓ
r
]
. Given a fixed shape
[
ℓ
1
,
…
,
ℓ
r
]
, we determine all subgroups
G
≤
S
n
that are transitive on
P
in the following sense: Whenever
P
=
{
K
1
,
…
,
K
r
}
and
P
′
=
{
K
1
′
,
…
,
K
r
′
}
are partitions of
[
n
]
of shape
[
ℓ
1
,
…
,
ℓ
r
]
, there exists
g
∈
G
such that
g
(
P
)
=
P
′
, that is,
{
g
(
K
1
)
,
…
,
g
(
K
r
)
}
=
{
K
1
′
,
…
,
K
r
′
}
. Moreover, for an ordered shape, we determine all subgroups of
S
n
that are transitive on the set of all ordered partitions of the given shape. That is, with
P
and
P
′
as above,
g
(
K
i
)
=
K
i
′
for
1
≤
i
≤
r
. As an application, we determine which Johnson graphs are Cayley graphs. |
---|---|
AbstractList | Let
[
n
]
=
K
1
∪
˙
K
2
∪
˙
⋯
∪
˙
K
r
be a partition of
[
n
]
=
{
1
,
2
,
…
,
n
}
and set
ℓ
i
=
|
K
i
|
for
1
≤
i
≤
r
. Then the tuple
P
=
{
K
1
,
K
2
,
…
,
K
r
}
is an unordered partition of
[
n
]
of shape
[
ℓ
1
,
…
,
ℓ
r
]
. Let
P
be the set of all partitions of
[
n
]
of shape
[
ℓ
1
,
…
,
ℓ
r
]
. Given a fixed shape
[
ℓ
1
,
…
,
ℓ
r
]
, we determine all subgroups
G
≤
S
n
that are transitive on
P
in the following sense: Whenever
P
=
{
K
1
,
…
,
K
r
}
and
P
′
=
{
K
1
′
,
…
,
K
r
′
}
are partitions of
[
n
]
of shape
[
ℓ
1
,
…
,
ℓ
r
]
, there exists
g
∈
G
such that
g
(
P
)
=
P
′
, that is,
{
g
(
K
1
)
,
…
,
g
(
K
r
)
}
=
{
K
1
′
,
…
,
K
r
′
}
. Moreover, for an ordered shape, we determine all subgroups of
S
n
that are transitive on the set of all ordered partitions of the given shape. That is, with
P
and
P
′
as above,
g
(
K
i
)
=
K
i
′
for
1
≤
i
≤
r
. As an application, we determine which Johnson graphs are Cayley graphs. |
Author | Malnič, Aleksander Dobson, Edward |
Author_xml | – sequence: 1 givenname: Edward surname: Dobson fullname: Dobson, Edward email: dobson@math.msstate.edu organization: Department of Mathematics and Statistics, Mississippi State University, UP IAM, University of Primorska – sequence: 2 givenname: Aleksander surname: Malnič fullname: Malnič, Aleksander organization: Pedagoška Fakulteta, Univerza v Ljubljani, UP IAM, University of Primorska |
BookMark | eNp9j01LAzEQhoNUsK3-AG_5A9GZbLObHDxI0VYoeNFzmOxm-0FNlmQr-O9NqWdPA--8zzDPjE1CDJ6xe4QHBGgeM4IGFIBKgDKVkFdsiqqRwqCREzYFI5Uw2pgbNsv5AABGo5qyp1WKpyHzcUcjp-T5mCjk_bj_9jwGTscjHyiNJYgh89hz4tuyCzzvaPC37LqnY_Z3f3POPl9fPpZrsXlfvS2fN6KtlB6Fc-QqB04bVTWmQ1rUUOuuq0vUaSWp71yrdLdoqUZtei9bXzXg6r4BLSVWc4aXu22KOSff2yHtvyj9WAR79rcXf1v87dnfysLIC5NLN2x9sod4SqG8-Q_0C50fX2k |
CitedBy_id | crossref_primary_10_1007_s10801_016_0699_1 crossref_primary_10_1016_j_disc_2022_113043 crossref_primary_10_1002_jgt_22690 crossref_primary_10_1007_s00373_017_1871_7 |
Cites_doi | 10.1112/blms/13.1.1 10.4153/CJM-1955-005-x 10.1007/BF01113919 10.1112/S0024610705022441 10.1080/00927878308822884 10.1007/BF01112361 10.1090/S0002-9939-1958-0097068-7 10.1016/0012-365X(80)90055-2 10.1007/978-1-4612-0619-4 10.1007/978-1-4613-0163-9 10.1007/978-1-4612-0731-3 10.1007/978-3-642-74341-2 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2015 |
Copyright_xml | – notice: Springer Science+Business Media New York 2015 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10801-015-0593-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 1572-9192 |
EndPage | 617 |
ExternalDocumentID | 10_1007_s10801_015_0593_2 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~9 -~C .86 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AABHQ AABYN AAFGU AAGAY AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFLOW AFMKY AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGPAZ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KQ8 LAK LLZTM M4Y MA- MQGED N2Q NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 OVD P19 P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I REI RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z81 Z8U ZMTXR ZWQNP AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEARS AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 |
ID | FETCH-LOGICAL-c358t-bbab3b0b895379d1a46068dd60b8d852afdbc58d4ca6189fe2ce370b6f7082213 |
IEDL.DBID | AGYKE |
ISSN | 0925-9899 |
IngestDate | Thu Sep 12 17:30:01 EDT 2024 Sat Dec 16 12:04:58 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Unordered partition Johnson graph Transitive group Cayley graph Ordered partition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-bbab3b0b895379d1a46068dd60b8d852afdbc58d4ca6189fe2ce370b6f7082213 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1007_s10801_015_0593_2 springer_journals_10_1007_s10801_015_0593_2 |
PublicationCentury | 2000 |
PublicationDate | 2015-09-01 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | An International Journal |
PublicationTitle | Journal of algebraic combinatorics |
PublicationTitleAbbrev | J Algebr Comb |
PublicationYear | 2015 |
Publisher | Springer US |
Publisher_xml | – name: Springer US |
References | Butler, McKay (CR5) 1983; 11 Martin, Sagan (CR12) 2006; 73 CR2 Kantor (CR10) 1972; 124 CR3 Livingstone, Wagner (CR11) 1965; 90 Wielandt (CR14) 1964 CR7 CR9 Godsil (CR8) 1980; 32 Cameron (CR6) 1981; 13 Burnside (CR4) 1897 Sabidussi (CR13) 1958; 9 Beaumont, Peterson (CR1) 1955; 7 G Sabidussi (593_CR13) 1958; 9 PJ Cameron (593_CR6) 1981; 13 G Butler (593_CR5) 1983; 11 593_CR7 D Livingstone (593_CR11) 1965; 90 WJ Martin (593_CR12) 2006; 73 RA Beaumont (593_CR1) 1955; 7 593_CR9 CD Godsil (593_CR8) 1980; 32 H Wielandt (593_CR14) 1964 WM Kantor (593_CR10) 1972; 124 W Burnside (593_CR4) 1897 593_CR2 593_CR3 |
References_xml | – volume: 13 start-page: 1 year: 1981 end-page: 22 ident: CR6 article-title: Finite permutation groups and finite simple groups publication-title: Bull. Lond. Math. Soc. doi: 10.1112/blms/13.1.1 contributor: fullname: Cameron – volume: 7 start-page: 35 year: 1955 end-page: 42 ident: CR1 article-title: Set-transitive permutation groups publication-title: Canad. J. Math. doi: 10.4153/CJM-1955-005-x contributor: fullname: Peterson – volume: 124 start-page: 261 year: 1972 end-page: 265 ident: CR10 article-title: -homogeneous groups publication-title: Math. Z. doi: 10.1007/BF01113919 contributor: fullname: Kantor – volume: 73 start-page: 1 year: 2006 end-page: 13 ident: CR12 article-title: A new notion of transitivity for groups and sets of permutations publication-title: J. Lond. Math. Soc. doi: 10.1112/S0024610705022441 contributor: fullname: Sagan – ident: CR3 – ident: CR2 – volume: 11 start-page: 863 year: 1983 end-page: 911 ident: CR5 article-title: The transitive groups of degree up to eleven publication-title: Commun. Algebra doi: 10.1080/00927878308822884 contributor: fullname: McKay – year: 1964 ident: CR14 publication-title: Finite permutation groups, translated from the German by R. Bercov contributor: fullname: Wielandt – ident: CR9 – ident: CR7 – volume: 90 start-page: 393 year: 1965 end-page: 403 ident: CR11 article-title: Transitivity of finite permutation groups on unordered sets publication-title: Math. Z. doi: 10.1007/BF01112361 contributor: fullname: Wagner – year: 1897 ident: CR4 publication-title: Theory of Groups of Finite Order contributor: fullname: Burnside – volume: 9 start-page: 800 year: 1958 end-page: 804 ident: CR13 article-title: On a class of fixed-point-free graphs publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1958-0097068-7 contributor: fullname: Sabidussi – volume: 32 start-page: 205 year: 1980 end-page: 207 ident: CR8 article-title: More odd graph theory publication-title: Discrete Math. doi: 10.1016/0012-365X(80)90055-2 contributor: fullname: Godsil – ident: 593_CR2 doi: 10.1007/978-1-4612-0619-4 – volume-title: Theory of Groups of Finite Order year: 1897 ident: 593_CR4 contributor: fullname: W Burnside – volume: 32 start-page: 205 year: 1980 ident: 593_CR8 publication-title: Discrete Math. doi: 10.1016/0012-365X(80)90055-2 contributor: fullname: CD Godsil – ident: 593_CR9 doi: 10.1007/978-1-4613-0163-9 – volume: 124 start-page: 261 year: 1972 ident: 593_CR10 publication-title: Math. Z. doi: 10.1007/BF01113919 contributor: fullname: WM Kantor – volume-title: Finite permutation groups, translated from the German by R. Bercov year: 1964 ident: 593_CR14 contributor: fullname: H Wielandt – volume: 90 start-page: 393 year: 1965 ident: 593_CR11 publication-title: Math. Z. doi: 10.1007/BF01112361 contributor: fullname: D Livingstone – volume: 7 start-page: 35 year: 1955 ident: 593_CR1 publication-title: Canad. J. Math. doi: 10.4153/CJM-1955-005-x contributor: fullname: RA Beaumont – ident: 593_CR7 doi: 10.1007/978-1-4612-0731-3 – volume: 11 start-page: 863 year: 1983 ident: 593_CR5 publication-title: Commun. Algebra doi: 10.1080/00927878308822884 contributor: fullname: G Butler – ident: 593_CR3 doi: 10.1007/978-3-642-74341-2 – volume: 13 start-page: 1 year: 1981 ident: 593_CR6 publication-title: Bull. Lond. Math. Soc. doi: 10.1112/blms/13.1.1 contributor: fullname: PJ Cameron – volume: 9 start-page: 800 year: 1958 ident: 593_CR13 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1958-0097068-7 contributor: fullname: G Sabidussi – volume: 73 start-page: 1 year: 2006 ident: 593_CR12 publication-title: J. Lond. Math. Soc. doi: 10.1112/S0024610705022441 contributor: fullname: WJ Martin |
SSID | ssj0009815 |
Score | 2.0925348 |
Snippet | Let
[
n
]
=
K
1
∪
˙
K
2
∪
˙
⋯
∪
˙
K
r
be a partition of
[
n
]
=
{
1
,
2
,
…
,
n
}
and set
ℓ
i
=
|
K
i
|
for
1
≤
i
≤
r
. Then the tuple
P
=
{
K
1
,
K
2
,
…
,
K... |
SourceID | crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 605 |
SubjectTerms | Combinatorics Computer Science Convex and Discrete Geometry Group Theory and Generalizations Lattices Mathematics Mathematics and Statistics Order Ordered Algebraic Structures |
Title | Groups that are transitive on all partitions of a given shape |
URI | https://link.springer.com/article/10.1007/s10801-015-0593-2 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8QLnoQRY34QXrwpCnZurXrDh6IAYkGT5LgaWnXThLIIGxc_Ottuw0k6oHr0jTN2-v76Hu_3wPgjnEcuz6XyKEJQwYKiRjnFAXaVRDhSOYJgx0evdHh2H-ZkEkN4M3TRTrrVhVJa6h_YN2YzXwJMlPokDa7jRJ32ug9f7z2t1S7rJhbEGKCQp1OVLXMvzbZ9Ua7pVDrYQbNAvWXWWJC01gy665z0Y2_ftM27nH4E3BcBpywV2jIKaiptAWa1TAHWN7tFjgabQhcszPwaN-kMphPeQ75SsHc-DTbZwQXKeTzOVwapbNaCxcJ5PDT2E2YTflSnYPxoP_-NETlpAUUe4TlSAguPOEIFhIvCKXLfZ3XMCmp_iQZwTyRIiZM-jGnLgsThWPlBY6gSWAY413vAtTTRaouAeTKxHjUCbivQzFtDwkXYaB3NkQ8VNA2uK8kHi0LQo1oS51sxBRpMUVGTBFug4dKnlF5t7L_V1_ttfoaHGL7Q0y_2A2o56u1utUBRi46pUZ1wMEY974BlETFXw |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hMgADjwKiPD0wgSzlZccZGCpEVaDt1ErdonPs0KFKqyb8f2w3oVSCgdWyPHw-38N39x3AvcAg8yNU1OO5oLYVkgpETmNjKpj0lAil7R0ejnh_Er1N2bTu4y6bavcmJek09Y9mN-FCX0btGDpq9O6upVe3hPmToLth2hXrsQVJwGhiookmlfnbEdvGaDsT6gxM7xgOa8-QdNdXeQI7umjDUTN1gdSPsA0Hw2-m1fIUntznUUmqGVYEV5pU1vi4giCyKAjO52RppcOJF1nkBMmHVXCknOFSn8Gk9zJ-7tN6JALNQiYqKiXKUHpSJCyME-VjZAIQoRQ3S0qwAHMlMyZUlCH3RZLrINNh7Emex5ba3Q_PoVUsCn0BBLV1xrgXY2R8JqO4GMokNidbxhwueQceGmzS5Zr5It1wHFsgUwNkaoFMgw48Nuil9SMo_959-a_dd7DXHw8H6eB19H4F-4G7PlvkdQ2tavWpb4xXUMlbJwVfJf2rkA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hIiEYeBQQ5emBCWQ1TWLHGRgqoCqPVgxU6hadY4cOVRo14f9j50GpBAOrZXn4fL6H7-47gGuBbtzzUVGHJ4LaVkgqEDkNjKlg0lHCk7Z3eDTmw4n_PGXTes5p3lS7NynJqqfBsjSlRTdTSfdH45sow2BG7Ug6anTwprFEnq3pm7j9FeuuqEYYhC6joYksmrTmb0esG6b1rGhpbAb7sFt7iaRfXesBbOi0DXvNBAZSP8g27Iy-WVfzQ7grP5JyUsywILjUpLCGqCwOIouU4HxOMisppaiRRUKQfFhlR_IZZvoIJoPH9_shrccj0NhjoqBSovSkI0XIvCBUPfRNMCKU4mZJCeZiomTMhPJj5D0RJtqNtRc4kieBpXnvecfQShepPgGC2jpm3AnQN_6TUWIMZRiYky17Dpe8AzcNNlFWsWBEK75jC2RkgIwskJHbgdsGvah-EPnfu0__tfsKtt4eBtHr0_jlDLbd8vZsvdc5tIrlp74wDkIhL0sh-AKt4a_V |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Groups+that+are+transitive+on+all+partitions+of+a+given+shape&rft.jtitle=Journal+of+algebraic+combinatorics&rft.au=Dobson%2C+Edward&rft.au=Malni%C4%8D%2C+Aleksander&rft.date=2015-09-01&rft.issn=0925-9899&rft.eissn=1572-9192&rft.volume=42&rft.issue=2&rft.spage=605&rft.epage=617&rft_id=info:doi/10.1007%2Fs10801-015-0593-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10801_015_0593_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-9899&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-9899&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-9899&client=summon |