Groups that are transitive on all partitions of a given shape

Let [ n ] = K 1 ∪ ˙ K 2 ∪ ˙ ⋯ ∪ ˙ K r be a partition of [ n ] = { 1 , 2 , … , n } and set ℓ i = | K i | for 1 ≤ i ≤ r . Then the tuple P = { K 1 , K 2 , … , K r } is an unordered partition of [ n ] of shape [ ℓ 1 , … , ℓ r ] . Let P be the set of all partitions of [ n ] of shape [ ℓ 1 , … , ℓ r ] ....

Full description

Saved in:
Bibliographic Details
Published inJournal of algebraic combinatorics Vol. 42; no. 2; pp. 605 - 617
Main Authors Dobson, Edward, Malnič, Aleksander
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Let [ n ] = K 1 ∪ ˙ K 2 ∪ ˙ ⋯ ∪ ˙ K r be a partition of [ n ] = { 1 , 2 , … , n } and set ℓ i = | K i | for 1 ≤ i ≤ r . Then the tuple P = { K 1 , K 2 , … , K r } is an unordered partition of [ n ] of shape [ ℓ 1 , … , ℓ r ] . Let P be the set of all partitions of [ n ] of shape [ ℓ 1 , … , ℓ r ] . Given a fixed shape [ ℓ 1 , … , ℓ r ] , we determine all subgroups G ≤ S n that are transitive on P in the following sense: Whenever P = { K 1 , … , K r } and P ′ = { K 1 ′ , … , K r ′ } are partitions of [ n ] of shape [ ℓ 1 , … , ℓ r ] , there exists g ∈ G such that g ( P ) = P ′ , that is, { g ( K 1 ) , … , g ( K r ) } = { K 1 ′ , … , K r ′ } . Moreover, for an ordered shape, we determine all subgroups of S n that are transitive on the set of all ordered partitions of the given shape. That is, with P and P ′ as above, g ( K i ) = K i ′ for 1 ≤ i ≤ r . As an application, we determine which Johnson graphs are Cayley graphs.
AbstractList Let [ n ] = K 1 ∪ ˙ K 2 ∪ ˙ ⋯ ∪ ˙ K r be a partition of [ n ] = { 1 , 2 , … , n } and set ℓ i = | K i | for 1 ≤ i ≤ r . Then the tuple P = { K 1 , K 2 , … , K r } is an unordered partition of [ n ] of shape [ ℓ 1 , … , ℓ r ] . Let P be the set of all partitions of [ n ] of shape [ ℓ 1 , … , ℓ r ] . Given a fixed shape [ ℓ 1 , … , ℓ r ] , we determine all subgroups G ≤ S n that are transitive on P in the following sense: Whenever P = { K 1 , … , K r } and P ′ = { K 1 ′ , … , K r ′ } are partitions of [ n ] of shape [ ℓ 1 , … , ℓ r ] , there exists g ∈ G such that g ( P ) = P ′ , that is, { g ( K 1 ) , … , g ( K r ) } = { K 1 ′ , … , K r ′ } . Moreover, for an ordered shape, we determine all subgroups of S n that are transitive on the set of all ordered partitions of the given shape. That is, with P and P ′ as above, g ( K i ) = K i ′ for 1 ≤ i ≤ r . As an application, we determine which Johnson graphs are Cayley graphs.
Author Malnič, Aleksander
Dobson, Edward
Author_xml – sequence: 1
  givenname: Edward
  surname: Dobson
  fullname: Dobson, Edward
  email: dobson@math.msstate.edu
  organization: Department of Mathematics and Statistics, Mississippi State University, UP IAM, University of Primorska
– sequence: 2
  givenname: Aleksander
  surname: Malnič
  fullname: Malnič, Aleksander
  organization: Pedagoška Fakulteta, Univerza v Ljubljani, UP IAM, University of Primorska
BookMark eNp9j01LAzEQhoNUsK3-AG_5A9GZbLObHDxI0VYoeNFzmOxm-0FNlmQr-O9NqWdPA--8zzDPjE1CDJ6xe4QHBGgeM4IGFIBKgDKVkFdsiqqRwqCREzYFI5Uw2pgbNsv5AABGo5qyp1WKpyHzcUcjp-T5mCjk_bj_9jwGTscjHyiNJYgh89hz4tuyCzzvaPC37LqnY_Z3f3POPl9fPpZrsXlfvS2fN6KtlB6Fc-QqB04bVTWmQ1rUUOuuq0vUaSWp71yrdLdoqUZtei9bXzXg6r4BLSVWc4aXu22KOSff2yHtvyj9WAR79rcXf1v87dnfysLIC5NLN2x9sod4SqG8-Q_0C50fX2k
CitedBy_id crossref_primary_10_1007_s10801_016_0699_1
crossref_primary_10_1016_j_disc_2022_113043
crossref_primary_10_1002_jgt_22690
crossref_primary_10_1007_s00373_017_1871_7
Cites_doi 10.1112/blms/13.1.1
10.4153/CJM-1955-005-x
10.1007/BF01113919
10.1112/S0024610705022441
10.1080/00927878308822884
10.1007/BF01112361
10.1090/S0002-9939-1958-0097068-7
10.1016/0012-365X(80)90055-2
10.1007/978-1-4612-0619-4
10.1007/978-1-4613-0163-9
10.1007/978-1-4612-0731-3
10.1007/978-3-642-74341-2
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
Copyright_xml – notice: Springer Science+Business Media New York 2015
DBID AAYXX
CITATION
DOI 10.1007/s10801-015-0593-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1572-9192
EndPage 617
ExternalDocumentID 10_1007_s10801_015_0593_2
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~9
-~C
.86
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AABHQ
AABYN
AAFGU
AAGAY
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFLOW
AFMKY
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGPAZ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAK
LLZTM
M4Y
MA-
MQGED
N2Q
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
OVD
P19
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z81
Z8U
ZMTXR
ZWQNP
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEARS
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
ID FETCH-LOGICAL-c358t-bbab3b0b895379d1a46068dd60b8d852afdbc58d4ca6189fe2ce370b6f7082213
IEDL.DBID AGYKE
ISSN 0925-9899
IngestDate Thu Sep 12 17:30:01 EDT 2024
Sat Dec 16 12:04:58 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Unordered partition
Johnson graph
Transitive group
Cayley graph
Ordered partition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-bbab3b0b895379d1a46068dd60b8d852afdbc58d4ca6189fe2ce370b6f7082213
PageCount 13
ParticipantIDs crossref_primary_10_1007_s10801_015_0593_2
springer_journals_10_1007_s10801_015_0593_2
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Journal of algebraic combinatorics
PublicationTitleAbbrev J Algebr Comb
PublicationYear 2015
Publisher Springer US
Publisher_xml – name: Springer US
References Butler, McKay (CR5) 1983; 11
Martin, Sagan (CR12) 2006; 73
CR2
Kantor (CR10) 1972; 124
CR3
Livingstone, Wagner (CR11) 1965; 90
Wielandt (CR14) 1964
CR7
CR9
Godsil (CR8) 1980; 32
Cameron (CR6) 1981; 13
Burnside (CR4) 1897
Sabidussi (CR13) 1958; 9
Beaumont, Peterson (CR1) 1955; 7
G Sabidussi (593_CR13) 1958; 9
PJ Cameron (593_CR6) 1981; 13
G Butler (593_CR5) 1983; 11
593_CR7
D Livingstone (593_CR11) 1965; 90
WJ Martin (593_CR12) 2006; 73
RA Beaumont (593_CR1) 1955; 7
593_CR9
CD Godsil (593_CR8) 1980; 32
H Wielandt (593_CR14) 1964
WM Kantor (593_CR10) 1972; 124
W Burnside (593_CR4) 1897
593_CR2
593_CR3
References_xml – volume: 13
  start-page: 1
  year: 1981
  end-page: 22
  ident: CR6
  article-title: Finite permutation groups and finite simple groups
  publication-title: Bull. Lond. Math. Soc.
  doi: 10.1112/blms/13.1.1
  contributor:
    fullname: Cameron
– volume: 7
  start-page: 35
  year: 1955
  end-page: 42
  ident: CR1
  article-title: Set-transitive permutation groups
  publication-title: Canad. J. Math.
  doi: 10.4153/CJM-1955-005-x
  contributor:
    fullname: Peterson
– volume: 124
  start-page: 261
  year: 1972
  end-page: 265
  ident: CR10
  article-title: -homogeneous groups
  publication-title: Math. Z.
  doi: 10.1007/BF01113919
  contributor:
    fullname: Kantor
– volume: 73
  start-page: 1
  year: 2006
  end-page: 13
  ident: CR12
  article-title: A new notion of transitivity for groups and sets of permutations
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/S0024610705022441
  contributor:
    fullname: Sagan
– ident: CR3
– ident: CR2
– volume: 11
  start-page: 863
  year: 1983
  end-page: 911
  ident: CR5
  article-title: The transitive groups of degree up to eleven
  publication-title: Commun. Algebra
  doi: 10.1080/00927878308822884
  contributor:
    fullname: McKay
– year: 1964
  ident: CR14
  publication-title: Finite permutation groups, translated from the German by R. Bercov
  contributor:
    fullname: Wielandt
– ident: CR9
– ident: CR7
– volume: 90
  start-page: 393
  year: 1965
  end-page: 403
  ident: CR11
  article-title: Transitivity of finite permutation groups on unordered sets
  publication-title: Math. Z.
  doi: 10.1007/BF01112361
  contributor:
    fullname: Wagner
– year: 1897
  ident: CR4
  publication-title: Theory of Groups of Finite Order
  contributor:
    fullname: Burnside
– volume: 9
  start-page: 800
  year: 1958
  end-page: 804
  ident: CR13
  article-title: On a class of fixed-point-free graphs
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1958-0097068-7
  contributor:
    fullname: Sabidussi
– volume: 32
  start-page: 205
  year: 1980
  end-page: 207
  ident: CR8
  article-title: More odd graph theory
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(80)90055-2
  contributor:
    fullname: Godsil
– ident: 593_CR2
  doi: 10.1007/978-1-4612-0619-4
– volume-title: Theory of Groups of Finite Order
  year: 1897
  ident: 593_CR4
  contributor:
    fullname: W Burnside
– volume: 32
  start-page: 205
  year: 1980
  ident: 593_CR8
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(80)90055-2
  contributor:
    fullname: CD Godsil
– ident: 593_CR9
  doi: 10.1007/978-1-4613-0163-9
– volume: 124
  start-page: 261
  year: 1972
  ident: 593_CR10
  publication-title: Math. Z.
  doi: 10.1007/BF01113919
  contributor:
    fullname: WM Kantor
– volume-title: Finite permutation groups, translated from the German by R. Bercov
  year: 1964
  ident: 593_CR14
  contributor:
    fullname: H Wielandt
– volume: 90
  start-page: 393
  year: 1965
  ident: 593_CR11
  publication-title: Math. Z.
  doi: 10.1007/BF01112361
  contributor:
    fullname: D Livingstone
– volume: 7
  start-page: 35
  year: 1955
  ident: 593_CR1
  publication-title: Canad. J. Math.
  doi: 10.4153/CJM-1955-005-x
  contributor:
    fullname: RA Beaumont
– ident: 593_CR7
  doi: 10.1007/978-1-4612-0731-3
– volume: 11
  start-page: 863
  year: 1983
  ident: 593_CR5
  publication-title: Commun. Algebra
  doi: 10.1080/00927878308822884
  contributor:
    fullname: G Butler
– ident: 593_CR3
  doi: 10.1007/978-3-642-74341-2
– volume: 13
  start-page: 1
  year: 1981
  ident: 593_CR6
  publication-title: Bull. Lond. Math. Soc.
  doi: 10.1112/blms/13.1.1
  contributor:
    fullname: PJ Cameron
– volume: 9
  start-page: 800
  year: 1958
  ident: 593_CR13
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1958-0097068-7
  contributor:
    fullname: G Sabidussi
– volume: 73
  start-page: 1
  year: 2006
  ident: 593_CR12
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/S0024610705022441
  contributor:
    fullname: WJ Martin
SSID ssj0009815
Score 2.0925348
Snippet Let [ n ] = K 1 ∪ ˙ K 2 ∪ ˙ ⋯ ∪ ˙ K r be a partition of [ n ] = { 1 , 2 , … , n } and set ℓ i = | K i | for 1 ≤ i ≤ r . Then the tuple P = { K 1 , K 2 , … , K...
SourceID crossref
springer
SourceType Aggregation Database
Publisher
StartPage 605
SubjectTerms Combinatorics
Computer Science
Convex and Discrete Geometry
Group Theory and Generalizations
Lattices
Mathematics
Mathematics and Statistics
Order
Ordered Algebraic Structures
Title Groups that are transitive on all partitions of a given shape
URI https://link.springer.com/article/10.1007/s10801-015-0593-2
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8QLnoQRY34QXrwpCnZurXrDh6IAYkGT5LgaWnXThLIIGxc_Ottuw0k6oHr0jTN2-v76Hu_3wPgjnEcuz6XyKEJQwYKiRjnFAXaVRDhSOYJgx0evdHh2H-ZkEkN4M3TRTrrVhVJa6h_YN2YzXwJMlPokDa7jRJ32ug9f7z2t1S7rJhbEGKCQp1OVLXMvzbZ9Ua7pVDrYQbNAvWXWWJC01gy665z0Y2_ftM27nH4E3BcBpywV2jIKaiptAWa1TAHWN7tFjgabQhcszPwaN-kMphPeQ75SsHc-DTbZwQXKeTzOVwapbNaCxcJ5PDT2E2YTflSnYPxoP_-NETlpAUUe4TlSAguPOEIFhIvCKXLfZ3XMCmp_iQZwTyRIiZM-jGnLgsThWPlBY6gSWAY413vAtTTRaouAeTKxHjUCbivQzFtDwkXYaB3NkQ8VNA2uK8kHi0LQo1oS51sxBRpMUVGTBFug4dKnlF5t7L_V1_ttfoaHGL7Q0y_2A2o56u1utUBRi46pUZ1wMEY974BlETFXw
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hMgADjwKiPD0wgSzlZccZGCpEVaDt1ErdonPs0KFKqyb8f2w3oVSCgdWyPHw-38N39x3AvcAg8yNU1OO5oLYVkgpETmNjKpj0lAil7R0ejnh_Er1N2bTu4y6bavcmJek09Y9mN-FCX0btGDpq9O6upVe3hPmToLth2hXrsQVJwGhiookmlfnbEdvGaDsT6gxM7xgOa8-QdNdXeQI7umjDUTN1gdSPsA0Hw2-m1fIUntznUUmqGVYEV5pU1vi4giCyKAjO52RppcOJF1nkBMmHVXCknOFSn8Gk9zJ-7tN6JALNQiYqKiXKUHpSJCyME-VjZAIQoRQ3S0qwAHMlMyZUlCH3RZLrINNh7Emex5ba3Q_PoVUsCn0BBLV1xrgXY2R8JqO4GMokNidbxhwueQceGmzS5Zr5It1wHFsgUwNkaoFMgw48Nuil9SMo_959-a_dd7DXHw8H6eB19H4F-4G7PlvkdQ2tavWpb4xXUMlbJwVfJf2rkA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hIiEYeBQQ5emBCWQ1TWLHGRgqoCqPVgxU6hadY4cOVRo14f9j50GpBAOrZXn4fL6H7-47gGuBbtzzUVGHJ4LaVkgqEDkNjKlg0lHCk7Z3eDTmw4n_PGXTes5p3lS7NynJqqfBsjSlRTdTSfdH45sow2BG7Ug6anTwprFEnq3pm7j9FeuuqEYYhC6joYksmrTmb0esG6b1rGhpbAb7sFt7iaRfXesBbOi0DXvNBAZSP8g27Iy-WVfzQ7grP5JyUsywILjUpLCGqCwOIouU4HxOMisppaiRRUKQfFhlR_IZZvoIJoPH9_shrccj0NhjoqBSovSkI0XIvCBUPfRNMCKU4mZJCeZiomTMhPJj5D0RJtqNtRc4kieBpXnvecfQShepPgGC2jpm3AnQN_6TUWIMZRiYky17Dpe8AzcNNlFWsWBEK75jC2RkgIwskJHbgdsGvah-EPnfu0__tfsKtt4eBtHr0_jlDLbd8vZsvdc5tIrlp74wDkIhL0sh-AKt4a_V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Groups+that+are+transitive+on+all+partitions+of+a+given+shape&rft.jtitle=Journal+of+algebraic+combinatorics&rft.au=Dobson%2C+Edward&rft.au=Malni%C4%8D%2C+Aleksander&rft.date=2015-09-01&rft.issn=0925-9899&rft.eissn=1572-9192&rft.volume=42&rft.issue=2&rft.spage=605&rft.epage=617&rft_id=info:doi/10.1007%2Fs10801-015-0593-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10801_015_0593_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-9899&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-9899&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-9899&client=summon