Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation
Perovskite solar cells appear to be the most promising candidate for thin-film solar cells. ETL layer which can be processed at lower temperature is highly desired. In this work, an n-i-p PSC was simulated using SCAPS 1-D simulator in which different ETL layers were used keeping other layers fixed....
Saved in:
Published in | Journal of materials science. Materials in electronics Vol. 31; no. 19; pp. 16269 - 16280 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Perovskite solar cells appear to be the most promising candidate for thin-film solar cells. ETL layer which can be processed at lower temperature is highly desired. In this work, an n-i-p PSC was simulated using SCAPS 1-D simulator in which different ETL layers were used keeping other layers fixed. Among all the ETL layers used, we found a new ETL material WO
3
which showed better power conversion efficiency and other PV parameters as compared to other ETL’s. The proposed ETL gave an efficiency of 15.54% under optimal conditions. This paper addresses the properties of WO
3
thin films to be used as ETL layer in PSC and a comparative study has been done with other suitable ETL layers reported till date with the optimization of the absorber layer as well as HTL layer thickness. |
---|---|
AbstractList | Perovskite solar cells appear to be the most promising candidate for thin-film solar cells. ETL layer which can be processed at lower temperature is highly desired. In this work, an n-i-p PSC was simulated using SCAPS 1-D simulator in which different ETL layers were used keeping other layers fixed. Among all the ETL layers used, we found a new ETL material WO3 which showed better power conversion efficiency and other PV parameters as compared to other ETL’s. The proposed ETL gave an efficiency of 15.54% under optimal conditions. This paper addresses the properties of WO3 thin films to be used as ETL layer in PSC and a comparative study has been done with other suitable ETL layers reported till date with the optimization of the absorber layer as well as HTL layer thickness. Perovskite solar cells appear to be the most promising candidate for thin-film solar cells. ETL layer which can be processed at lower temperature is highly desired. In this work, an n-i-p PSC was simulated using SCAPS 1-D simulator in which different ETL layers were used keeping other layers fixed. Among all the ETL layers used, we found a new ETL material WO 3 which showed better power conversion efficiency and other PV parameters as compared to other ETL’s. The proposed ETL gave an efficiency of 15.54% under optimal conditions. This paper addresses the properties of WO 3 thin films to be used as ETL layer in PSC and a comparative study has been done with other suitable ETL layers reported till date with the optimization of the absorber layer as well as HTL layer thickness. |
Author | Dwivedi, D. K. Rai, Nitin Rai, Shambhavi Singh, Pravin Kumar Lohia, Pooja |
Author_xml | – sequence: 1 givenname: Nitin surname: Rai fullname: Rai, Nitin organization: Amorphous Semiconductor Research Laboratory, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology – sequence: 2 givenname: Shambhavi surname: Rai fullname: Rai, Shambhavi organization: Amorphous Semiconductor Research Laboratory, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology – sequence: 3 givenname: Pravin Kumar surname: Singh fullname: Singh, Pravin Kumar organization: Amorphous Semiconductor Research Laboratory, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology – sequence: 4 givenname: Pooja surname: Lohia fullname: Lohia, Pooja organization: Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology – sequence: 5 givenname: D. K. orcidid: 0000-0002-8334-5535 surname: Dwivedi fullname: Dwivedi, D. K. email: todkdwivedi@gmail.com organization: Amorphous Semiconductor Research Laboratory, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology |
BookMark | eNp9kE1LAzEURYNUsK3-AVcB16P5mEzispT6AQU3FdzFJM1I6kxSk0yh_fWOHUFw0dWDxz2X984EjHzwFoBrjG4xQvwuYSRYWSCCClRizorDGRhjxmlRCvI2AmN0z3hRMkIuwCSlDUKoKqkYg_eZV80-uQRDDXcqutAluFgtYauyjU41CdYhQuWhrWtnnPUZbm0Mu_TpsoUpNCpCY5sG6j30XdszRjUwubZrVHbBX4Lzum-xV79zCl4fFqv5U7F8eXyez5aFoUzkQgumjdVrpokRpGY1osQaRq0WSlW6xGtrtEbUCIU1E5gKxgyveL_jlhFFp-Bm6N3G8NXZlOUmdLF_LklScswwrRDvU2JImRhSiraWxuXjnTkq10iM5I9POfiUvU959CkPPUr-odvoWhX3pyE6QKkP-w8b_646QX0D9j6M-w |
CitedBy_id | crossref_primary_10_1016_j_solener_2022_12_027 crossref_primary_10_1364_OPTCON_536545 crossref_primary_10_1016_j_nxmate_2024_100482 crossref_primary_10_1016_j_apsadv_2024_100666 crossref_primary_10_13005_msri_190203 crossref_primary_10_1007_s12596_023_01527_w crossref_primary_10_1016_j_rineng_2025_103954 crossref_primary_10_1016_j_solener_2024_112795 crossref_primary_10_1016_j_mtcomm_2023_107007 crossref_primary_10_1016_j_physb_2024_416229 crossref_primary_10_48130_wpt_0024_0015 crossref_primary_10_3390_solar2030020 crossref_primary_10_1088_1402_4896_ad2f95 crossref_primary_10_1016_j_matpr_2024_02_033 crossref_primary_10_1016_j_micrna_2024_207991 crossref_primary_10_1007_s12596_025_02656_0 crossref_primary_10_1007_s11082_024_07812_7 crossref_primary_10_1007_s12596_024_01792_3 crossref_primary_10_1016_j_micrna_2022_207403 crossref_primary_10_1088_1402_4896_ad6d1c crossref_primary_10_1021_acsnano_3c10033 crossref_primary_10_1007_s12596_022_00946_5 crossref_primary_10_1007_s12596_023_01372_x crossref_primary_10_1088_1361_6641_ac83e4 crossref_primary_10_1680_jnaen_23_00023 crossref_primary_10_1002_er_6892 crossref_primary_10_1016_j_solener_2022_11_045 crossref_primary_10_1007_s11082_025_08043_0 crossref_primary_10_1007_s11664_024_11266_8 crossref_primary_10_1016_j_solmat_2024_112891 crossref_primary_10_1007_s12596_023_01466_6 crossref_primary_10_3390_en16062717 crossref_primary_10_1016_j_micrna_2022_207362 crossref_primary_10_1002_ente_202300772 crossref_primary_10_1109_ACCESS_2024_3352444 crossref_primary_10_1007_s42341_022_00412_w crossref_primary_10_1080_10584587_2024_2305601 crossref_primary_10_1007_s11664_024_11630_8 crossref_primary_10_1007_s10751_025_02250_7 crossref_primary_10_1088_1402_4896_acfaf2 crossref_primary_10_1007_s11082_024_07487_0 crossref_primary_10_1007_s00339_024_08170_7 crossref_primary_10_1007_s11468_025_02771_5 crossref_primary_10_1016_j_cjph_2023_01_007 crossref_primary_10_1016_j_micrna_2024_208024 crossref_primary_10_1021_acsenergylett_3c01964 crossref_primary_10_1007_s11082_024_07419_y crossref_primary_10_1002_pssa_202300275 crossref_primary_10_1016_j_matpr_2023_01_190 crossref_primary_10_1016_j_mseb_2024_117536 crossref_primary_10_1016_j_optmat_2021_111880 crossref_primary_10_1007_s11082_023_04580_8 crossref_primary_10_3390_nano12213885 crossref_primary_10_1088_2631_8695_ad6f6d crossref_primary_10_1680_jemmr_22_00059 crossref_primary_10_1016_j_ijleo_2022_169600 crossref_primary_10_1016_j_matpr_2023_01_195 crossref_primary_10_1007_s11082_021_03013_8 crossref_primary_10_3390_polym16101412 crossref_primary_10_1038_s41598_024_81797_x crossref_primary_10_1007_s10825_022_01940_7 crossref_primary_10_1155_2024_5188636 crossref_primary_10_1007_s10825_022_01983_w crossref_primary_10_1007_s00339_023_06900_x crossref_primary_10_1016_j_ijleo_2024_172012 crossref_primary_10_1088_1402_4896_ada20e crossref_primary_10_1140_epjp_s13360_021_01794_1 crossref_primary_10_1002_adts_202300784 crossref_primary_10_1016_j_optmat_2022_112517 crossref_primary_10_1007_s12596_023_01449_7 crossref_primary_10_3390_coatings13071258 crossref_primary_10_1007_s11664_023_10567_8 crossref_primary_10_1016_j_matchemphys_2023_128327 crossref_primary_10_1016_j_ijoes_2024_100641 crossref_primary_10_1007_s12596_022_01035_3 crossref_primary_10_1515_ntrev_2022_0547 crossref_primary_10_1007_s12596_024_01879_x crossref_primary_10_1016_j_jpcs_2024_112480 crossref_primary_10_1088_1402_4896_ac9dc5 crossref_primary_10_1088_1402_4896_ad986e crossref_primary_10_61435_ijred_2025_60642 crossref_primary_10_1002_aelm_202400095 crossref_primary_10_1007_s13204_022_02745_7 crossref_primary_10_1088_1361_651X_ad104e crossref_primary_10_3390_coatings15020132 crossref_primary_10_1007_s12596_025_02510_3 crossref_primary_10_1016_j_heliyon_2024_e29676 crossref_primary_10_3390_solar3030025 crossref_primary_10_1016_j_solener_2024_112987 crossref_primary_10_1063_5_0220018 crossref_primary_10_1142_S1793292023500911 crossref_primary_10_1016_j_ijleo_2023_171288 crossref_primary_10_1088_2631_8695_ad17e5 crossref_primary_10_1088_1402_4896_ad4519 crossref_primary_10_1088_1402_4896_ad69cb crossref_primary_10_1016_j_ssc_2024_115590 crossref_primary_10_1016_j_rinma_2025_100665 crossref_primary_10_2174_0115734137286096240320075126 crossref_primary_10_3390_mi15070859 crossref_primary_10_1016_j_solener_2023_112055 crossref_primary_10_1063_5_0049646 crossref_primary_10_1007_s10854_025_14407_9 crossref_primary_10_1016_j_matpr_2023_03_367 crossref_primary_10_23939_ictee2024_01_163 crossref_primary_10_13005_msri_200104 crossref_primary_10_1002_gch2_202400141 crossref_primary_10_15251_JOR_2024_205_667 crossref_primary_10_1016_j_heliyon_2023_e18776 crossref_primary_10_1016_j_jpcs_2024_112184 crossref_primary_10_1016_j_solener_2023_112185 crossref_primary_10_1002_adfm_202401508 crossref_primary_10_1007_s12596_025_02599_6 crossref_primary_10_1007_s11082_023_04809_6 crossref_primary_10_1063_5_0209332 crossref_primary_10_1007_s11664_024_11386_1 crossref_primary_10_1016_j_nexres_2024_100084 crossref_primary_10_1007_s12209_024_00423_z crossref_primary_10_1007_s42341_024_00509_4 crossref_primary_10_1016_j_solener_2024_112806 crossref_primary_10_1016_j_ijleo_2022_170357 |
Cites_doi | 10.1016/j.jallcom.2014.08.047 10.1002/solr.201800126 10.1007/s11664-018-6620-z 10.1063/1.3574907 10.1007/s40820-019-0320-y 10.1016/j.ijleo.2019.163646 10.1016/j.optmat.2019.109631 10.1039/c7ta02937c 10.1063/1.4891982 10.1002/aenm.201703432 10.1016/j.rinp.2018.12.049 10.1016/j.solmat.2016.10.002 10.1039/c8ta12254g 10.1021/acsaem.9b00547 10.1098/rsos.170942 10.3390/polym11010147 10.1038/s41560-017-0067-y 10.1039/c8ta10630d 10.1016/j.solener.2019.02.017 10.1016/j.solener.2019.02.041 10.21272/jnep.11(1).01026 10.1515/rams-2018-0012 10.1109/JPHOTOV.2018.2825228 10.1021/acs.jpcc.7b09537 10.1038/s41560-017-0060-5 10.1039/c7tc04649a 10.1016/S0040-6090(01)01405-5 10.1126/science.aag2700 10.1109/ICECTE.2016.7879585 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION 7SP 7SR 8BQ 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU D1I DWQXO F28 FR3 HCIFZ JG9 KB. L7M P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS S0W |
DOI | 10.1007/s10854-020-04175-z |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database SciTech Premium Collection Materials Research Database Materials Science Database Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection METADEX Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-482X |
EndPage | 16280 |
ExternalDocumentID | 10_1007_s10854_020_04175_z |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P62 P9N PDBOC PKN PT4 PT5 Q2X QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 Z8M Z8N Z8P Z8R Z8T Z8W Z8Z Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SP 7SR 8BQ 8FD ABRTQ DWQXO F28 FR3 JG9 L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c358t-b85bcebd5b2c82f5f032ec53eb8aa6b41decbb03c8a1b5813855c767bb07e52a3 |
IEDL.DBID | U2A |
ISSN | 0957-4522 |
IngestDate | Fri Jul 25 12:17:38 EDT 2025 Thu Apr 24 23:10:50 EDT 2025 Tue Jul 01 02:34:51 EDT 2025 Fri Feb 21 02:39:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-b85bcebd5b2c82f5f032ec53eb8aa6b41decbb03c8a1b5813855c767bb07e52a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8334-5535 |
PQID | 2471513607 |
PQPubID | 326250 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2471513607 crossref_citationtrail_10_1007_s10854_020_04175_z crossref_primary_10_1007_s10854_020_04175_z springer_journals_10_1007_s10854_020_04175_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of materials science. Materials in electronics |
PublicationTitleAbbrev | J Mater Sci: Mater Electron |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Regragui, Jousseaume, Addou, Outzourhit, Bernede, El Idrissi (CR24) 2001; 397 Thakur, Mehra, Devi (CR7) 2018; 47 Hima, Lakhdar, Saadoune (CR19) 2019; 11 Sobayel, Akhtaruzzaman, Rahman, Ferdaous, Al-Mutairi, Alharbi, Alharthi, Karim, Hasmady, Amin (CR6) 2019; 12 Swarnkar, Marshall, Sanehira, Chernomordik, Moore, Christians, Chakrabarti, Luther (CR11) 2016; 354 Fan, Wang, Chen, Zheng, Li, Li, Zhou (CR28) 2017; 5 Kumari, Patel, Gohel (CR9) 2018; 53 Yue, Su, Zhao, Lin, Zhang, Chang, Hao (CR12) 2019; 11 Rai, Pandey, Dwivedi (CR15) 2020; 100 Mohamad Noh, Teh, Daik, Lim, Yap, Ibrahim, Ahmad Ludin, Bin Mohd Yusoff, Jang, Teridi (CR3) 2018; 6 Christians, Schulz, Tinkham, Schloemer, Harvey, Tremolet De Villers, Sellinger, Berry, Luther (CR26) 2018; 3 Singh, Giri, Pal, Thiyagarajan, Kwak, Lee, Jeong, Cho (CR25) 2019; 7 Su, Fu, Yao, Liu, Ding, Feng, Feng, Xue, Liu, Yang (CR30) 2017 An, Shang, Cao, Wu, Ma, Li (CR29) 2018; 2 Zhang, Blom (CR14) 2011; 98 Simchi, McCandless, Meng, Shafarman (CR18) 2014; 617 Madan, Garg, Gupta, Rana, Manocha, Pandey (CR5) 2020; 202 Guo, Luo, Liu, Liao, Wang, Li (CR8) 2018; 8 Liu, Chang, Lin, Zhou, Yang, Chen, Zhang, Frank, Liu, Hao (CR20) 2018; 8 Tao, Ali, Chen, Huai, Sun, Fu, Kong, Yang (CR27) 2019; 7 Azri, Meftah, Sengouga, Meftah (CR4) 2019; 181 Mandadapu, Vedanayakam, Thyagarajan, Reddy, Babu (CR13) 2017; 7 Domanski, Alharbi, Hagfeldt, Grätzel, Tress (CR1) 2018; 3 CR21 Ma, Chang, Lin, Guo, Zhou, Liu, Xi, Chen, Zhang, Hao (CR10) 2018; 122 Jiang, Niu, Tang, Zhang, Xu, Huang, Yao, Yan, Xia (CR2) 2019; 11 Kanoun, Kanoun, Merad, Said (CR23) 2019; 182 Minemoto, Murata (CR17) 2014; 116 Gheno, Thu Pham, Di Bin, Bouclé, Ratier, Vedraine (CR22) 2017; 161 Ali, Pham, Fan, Tiong, Ostrikov, Bell, Wang, Tesfamichael (CR16) 2019; 2 X Guo (4175_CR8) 2018; 8 M Jiang (4175_CR2) 2019; 11 Z Liu (4175_CR20) 2018; 8 M Regragui (4175_CR24) 2001; 397 N Thakur (4175_CR7) 2018; 47 M Yue (4175_CR12) 2019; 11 Y An (4175_CR29) 2018; 2 S Rai (4175_CR15) 2020; 100 MF Mohamad Noh (4175_CR3) 2018; 6 R Fan (4175_CR28) 2017; 5 Y Zhang (4175_CR14) 2011; 98 4175_CR21 F Ali (4175_CR16) 2019; 2 P Su (4175_CR30) 2017 N Kumari (4175_CR9) 2018; 53 T Minemoto (4175_CR17) 2014; 116 H Simchi (4175_CR18) 2014; 617 AA Kanoun (4175_CR23) 2019; 182 F Azri (4175_CR4) 2019; 181 JA Christians (4175_CR26) 2018; 3 J Madan (4175_CR5) 2020; 202 R Singh (4175_CR25) 2019; 7 A Gheno (4175_CR22) 2017; 161 K Sobayel (4175_CR6) 2019; 12 A Swarnkar (4175_CR11) 2016; 354 A Hima (4175_CR19) 2019; 11 K Domanski (4175_CR1) 2018; 3 J Ma (4175_CR10) 2018; 122 J Tao (4175_CR27) 2019; 7 U Mandadapu (4175_CR13) 2017; 7 |
References_xml | – volume: 617 start-page: 609 year: 2014 end-page: 615 ident: CR18 article-title: Structural, optical, and surface properties of WO thin films for solar cells publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.08.047 – volume: 2 start-page: 1800126 year: 2018 ident: CR29 article-title: Perovskite solar cells: optoelectronic simulation and optimization publication-title: Sol. RRL doi: 10.1002/solr.201800126 – volume: 47 start-page: 6935 year: 2018 end-page: 6942 ident: CR7 article-title: Efficient design of perovskite solar cell using parametric grading of mixed halide perovskite and copper iodide publication-title: J. Electron. Mater. doi: 10.1007/s11664-018-6620-z – volume: 98 start-page: 2011 year: 2011 end-page: 2014 ident: CR14 article-title: Electron and hole transport in poly(fluorene-benzothiadiazole) publication-title: Appl. Phys. Lett. doi: 10.1063/1.3574907 – volume: 11 start-page: 1 year: 2019 end-page: 14 ident: CR12 article-title: Optimizing the performance of CsPbI -based perovskite solar cells via doping a ZnO electron transport layer coupled with interface engineering publication-title: Nano-Micro Lett doi: 10.1007/s40820-019-0320-y – volume: 202 start-page: 163646 year: 2020 ident: CR5 article-title: Numerical simulation of charge transport layer free perovskite solar cell using metal work function shifted contacts publication-title: Optik (Stuttg) doi: 10.1016/j.ijleo.2019.163646 – volume: 100 start-page: 109631 year: 2020 ident: CR15 article-title: Modeling of highly efficient and low cost CH NH Pb(I Cl ) based perovskite solar cell by numerical simulation publication-title: Opt. Mater. (Amst). doi: 10.1016/j.optmat.2019.109631 – volume: 5 start-page: 12034 year: 2017 end-page: 12042 ident: CR28 article-title: Tailored Au@TiO nanostructures for the plasmonic effect in planar perovskite solar cells publication-title: J. Mater. Chem. A doi: 10.1039/c7ta02937c – volume: 116 start-page: 054505 year: 2014 ident: CR17 article-title: Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells publication-title: J. Appl. Phys. doi: 10.1063/1.4891982 – volume: 8 start-page: 1 year: 2018 end-page: 9 ident: CR20 article-title: High-performance planar perovskite solar cells using low temperature, solution–combustion-based nickel oxide hole transporting layer with efficiency exceeding 20% publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703432 – volume: 12 start-page: 1097 year: 2019 end-page: 1103 ident: CR6 article-title: A comprehensive defect study of tungsten disulfide (WS2) as electron transport layer in perovskite solar cells by numerical simulation publication-title: Results Phys. doi: 10.1016/j.rinp.2018.12.049 – volume: 354 start-page: 92 year: 2016 end-page: 95 ident: CR11 article-title: Quantum dot-induced phase stabilization of α-CsPbI perovskite for high-efficiency photovoltaics publication-title: Science (80-) – volume: 161 start-page: 347 year: 2017 end-page: 354 ident: CR22 article-title: Printable WO electron transporting layer for perovskite solar cells: influence on device performance and stability publication-title: Sol. Energy Mater. Sol. Cells. doi: 10.1016/j.solmat.2016.10.002 – volume: 7 start-page: 7151 year: 2019 end-page: 7158 ident: CR25 article-title: Perovskite solar cells with an MoS electron transport layer publication-title: J. Mater. Chem. A doi: 10.1039/c8ta12254g – volume: 2 start-page: 5456 year: 2019 end-page: 5464 ident: CR16 article-title: Low hysteresis perovskite solar cells using an electron-beam evaporated WO thin film as the electron transport layer publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b00547 – year: 2017 ident: CR30 article-title: Enhanced photovoltaic properties of perovskite solar cells by TiO homogeneous hybrid structure publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.170942 – ident: CR21 – volume: 11 start-page: 147 year: 2019 ident: CR2 article-title: Improving the performances of perovskite solar cells via modification of electron transport layer publication-title: Polymers (Basel) doi: 10.3390/polym11010147 – volume: 3 start-page: 68 year: 2018 end-page: 74 ident: CR26 article-title: Tailored interfaces of unencapsulated perovskite solar cells for > 1,000 hour operational stability publication-title: Nat. Energy doi: 10.1038/s41560-017-0067-y – volume: 7 start-page: 1604 year: 2017 end-page: 1612 ident: CR13 article-title: Design and simulation of high efficiency tin halide perovskite solar cell publication-title: Int. J. Renew. Energy Res. – volume: 7 start-page: 1349 year: 2019 end-page: 1355 ident: CR27 article-title: Enhanced efficiency in perovskite solar cells by eliminating the electron contact barrier between the metal electrode and electron transport layer publication-title: J. Mater. Chem. A doi: 10.1039/c8ta10630d – volume: 397 start-page: 238 year: 2001 end-page: 243 ident: CR24 article-title: Electrical and optical properties of WO thin films publication-title: Thin Solid Films – volume: 181 start-page: 372 year: 2019 end-page: 378 ident: CR4 article-title: Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell publication-title: Sol. Energy doi: 10.1016/j.solener.2019.02.017 – volume: 182 start-page: 237 year: 2019 end-page: 244 ident: CR23 article-title: Toward development of high-performance perovskite solar cells based on CH NH GeI using computational approach publication-title: Sol. Energy doi: 10.1016/j.solener.2019.02.041 – volume: 11 start-page: 1 year: 2019 end-page: 3 ident: CR19 article-title: Effect of electron transporting layer on power conversion efficiency of perovskite-based solar cell: comparative study publication-title: J. Nano Electron. Phys. doi: 10.21272/jnep.11(1).01026 – volume: 53 start-page: 161 year: 2018 end-page: 186 ident: CR9 article-title: Current progressand future prospective of perovskite solar cells: a comprehensive review publication-title: Adv. Mater. Sci. doi: 10.1515/rams-2018-0012 – volume: 8 start-page: 1039 year: 2018 end-page: 1043 ident: CR8 article-title: A 16.5% efficient perovskite solar cells with inorganic NiO film as hole transport material publication-title: IEEE J. Photovoltaics doi: 10.1109/JPHOTOV.2018.2825228 – volume: 122 start-page: 1044 year: 2018 end-page: 1053 ident: CR10 article-title: Elucidating the roles of TiCl and PCBM fullerene treatment on TiO electron transporting layer for highly efficient planar perovskite solar cells publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b09537 – volume: 3 start-page: 61 year: 2018 end-page: 67 ident: CR1 article-title: Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells publication-title: Nat. Energy. doi: 10.1038/s41560-017-0060-5 – volume: 6 start-page: 682 year: 2018 end-page: 712 ident: CR3 article-title: The architecture of the electron transport layer for a perovskite solar cell publication-title: J. Mater. Chem. C doi: 10.1039/c7tc04649a – volume: 11 start-page: 1 year: 2019 ident: 4175_CR19 publication-title: J. Nano Electron. Phys. doi: 10.21272/jnep.11(1).01026 – volume: 397 start-page: 238 year: 2001 ident: 4175_CR24 publication-title: Thin Solid Films doi: 10.1016/S0040-6090(01)01405-5 – volume: 8 start-page: 1 year: 2018 ident: 4175_CR20 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703432 – volume: 98 start-page: 2011 year: 2011 ident: 4175_CR14 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3574907 – volume: 354 start-page: 92 year: 2016 ident: 4175_CR11 publication-title: Science (80-) doi: 10.1126/science.aag2700 – volume: 53 start-page: 161 year: 2018 ident: 4175_CR9 publication-title: Adv. Mater. Sci. doi: 10.1515/rams-2018-0012 – volume: 7 start-page: 7151 year: 2019 ident: 4175_CR25 publication-title: J. Mater. Chem. A doi: 10.1039/c8ta12254g – volume: 100 start-page: 109631 year: 2020 ident: 4175_CR15 publication-title: Opt. Mater. (Amst). doi: 10.1016/j.optmat.2019.109631 – volume: 7 start-page: 1604 year: 2017 ident: 4175_CR13 publication-title: Int. J. Renew. Energy Res. – volume: 122 start-page: 1044 year: 2018 ident: 4175_CR10 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b09537 – volume: 116 start-page: 054505 year: 2014 ident: 4175_CR17 publication-title: J. Appl. Phys. doi: 10.1063/1.4891982 – volume: 202 start-page: 163646 year: 2020 ident: 4175_CR5 publication-title: Optik (Stuttg) doi: 10.1016/j.ijleo.2019.163646 – volume: 3 start-page: 61 year: 2018 ident: 4175_CR1 publication-title: Nat. Energy. doi: 10.1038/s41560-017-0060-5 – volume: 8 start-page: 1039 year: 2018 ident: 4175_CR8 publication-title: IEEE J. Photovoltaics doi: 10.1109/JPHOTOV.2018.2825228 – volume: 3 start-page: 68 year: 2018 ident: 4175_CR26 publication-title: Nat. Energy doi: 10.1038/s41560-017-0067-y – volume: 47 start-page: 6935 year: 2018 ident: 4175_CR7 publication-title: J. Electron. Mater. doi: 10.1007/s11664-018-6620-z – volume: 7 start-page: 1349 year: 2019 ident: 4175_CR27 publication-title: J. Mater. Chem. A doi: 10.1039/c8ta10630d – year: 2017 ident: 4175_CR30 publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.170942 – volume: 181 start-page: 372 year: 2019 ident: 4175_CR4 publication-title: Sol. Energy doi: 10.1016/j.solener.2019.02.017 – ident: 4175_CR21 doi: 10.1109/ICECTE.2016.7879585 – volume: 12 start-page: 1097 year: 2019 ident: 4175_CR6 publication-title: Results Phys. doi: 10.1016/j.rinp.2018.12.049 – volume: 11 start-page: 147 year: 2019 ident: 4175_CR2 publication-title: Polymers (Basel) doi: 10.3390/polym11010147 – volume: 182 start-page: 237 year: 2019 ident: 4175_CR23 publication-title: Sol. Energy doi: 10.1016/j.solener.2019.02.041 – volume: 2 start-page: 5456 year: 2019 ident: 4175_CR16 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b00547 – volume: 617 start-page: 609 year: 2014 ident: 4175_CR18 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.08.047 – volume: 11 start-page: 1 year: 2019 ident: 4175_CR12 publication-title: Nano-Micro Lett doi: 10.1007/s40820-019-0320-y – volume: 6 start-page: 682 year: 2018 ident: 4175_CR3 publication-title: J. Mater. Chem. C doi: 10.1039/c7tc04649a – volume: 2 start-page: 1800126 year: 2018 ident: 4175_CR29 publication-title: Sol. RRL doi: 10.1002/solr.201800126 – volume: 161 start-page: 347 year: 2017 ident: 4175_CR22 publication-title: Sol. Energy Mater. Sol. Cells. doi: 10.1016/j.solmat.2016.10.002 – volume: 5 start-page: 12034 year: 2017 ident: 4175_CR28 publication-title: J. Mater. Chem. A doi: 10.1039/c7ta02937c |
SSID | ssj0006438 |
Score | 2.5968726 |
Snippet | Perovskite solar cells appear to be the most promising candidate for thin-film solar cells. ETL layer which can be processed at lower temperature is highly... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 16269 |
SubjectTerms | Characterization and Evaluation of Materials Chemistry and Materials Science Comparative studies Energy conversion efficiency Materials Science Optical and Electronic Materials Optimization Perovskites Photovoltaic cells Simulation Solar cells Thickness Thin films Tungsten oxides |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vehBfGK1yh68aTDZR7I5iUpLESkiLfQWd7cbEDStpi3YX-9ssmlUsKdAHnuYmcx8Mzv7DUIXEBWkDqXxAiMgQYml9pSyXeY8jdOYCUAJRZdvP-wN2cOIj1zBLXdtlZVPLBz1eKJtjfyagBflAQ396Gb64dmpUXZ31Y3Q2ERNcMECkq_mXaf_9LzyxRBvRcm2Z9m9CXHHZtzhOcGZZ9Mnn0EQ9Za_Q1ONN_9skRaRp7uLdhxkxLeljvfQhsn20fYPIsED9FJxi-BJiheQ_kI-jzuDRwx4tDQxDOAUywybgjICIg22DOGL3BZvcW7zW2xr-Fh94Wxe7uK84fz13U33OkTDbmdw3_Pc7ARPUy5mnhJcaaPGXBEtSMpTnxKjOTVKSBkqFoyNVsqnWshAcRFQwbmOwgjuRYYTSY9QI5tk5hhhJgMdyFRLcG5MwxUgnGYRTZny4zElLRRUYku0Ixa38y3ekpoS2Yo6AVEnhaiTZQtdrr6ZlrQaa99uV9pI3C-WJ7VBtNBVpaH68f-rnaxf7RRtEWsURcNeGzVmn3NzBsBjps6ddX0DW6XV6A priority: 102 providerName: ProQuest |
Title | Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation |
URI | https://link.springer.com/article/10.1007/s10854-020-04175-z https://www.proquest.com/docview/2471513607 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5svehBfGK1lhy86cJuHrvpsUofqBSRFuppTdIsCHUVtwr6653sw1ZRwVNgN5vDzGy-b5LJF4BjRAVlQmW9wEpMUNrKeFq7KnORtJM2l8gS8irfYTgY84uJmJSHwrKq2r3aksxn6qXDblJwz6U7PkfQ895rsCpc7o5RPKadz_kXMVYWCntO0ZvS8qjMz2N8haMFx_y2LZqjTW8TNkqaSDqFX7dgxabbsL4kHrgDd5WeCHlMyCumvJjDk-7oiiAHLcKKICElKiU2l4lAdCFOFfw1cwu2JHM5LXHr9kS_kfSl2LmZkez-obzRaxfGve7ofOCV9yV4hgk597QU2lg9FZoaSROR-IxaI5jVUqlQ82BqjdY-M1IFWsiASSFMFEb4LLKCKrYH9fQxtftAuApMoBKjcELjBlukbYZHLOHab08ZbUBQmS02pZi4u9NiFi9kkJ2pYzR1nJs6fm_Ayec3T4WUxp-9m5U34vK3ymKKUCoCFvpRA04rDy1e_z7awf-6H8IadUGSF-01oT5_frFHSD7mugU12eu3YLXTv73sYnvWHV7ftPII_ADH49YR |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB1xFECBOMVyuoAKIhIfiVMghIBlgYVqkeiC7XUkJMgC2QXBR_GNjHOwgAQdVaTEcTF-nsMzfgOwiVZBmVBZL7ASA5RYGU9rV2Uu0jiNuUQvoajyvQxbV_zsWlyPwHt9F8aVVdY6sVDU3Z5xZ-S7FLWoCFjoR_sPj57rGuWyq3ULjRIW5_b1BUO2fO_0CNd3i9Lmceew5VVdBTzDhOx7WgptrO4KTY2kqUh9Rq0RzGqpVKh50LVGa58ZqQItZMCkECYKI3wXWUEVw3lHYZwzFrsdJZsnn5ofrbssuf0clzil1SWd6qqeFNxzwZrP0WR7b98N4dC7_ZGQLexccwamKweVHJSImoURm83B1Bfawnm4qZlMSC8lzxhs9wY5Oe60CXq_JaAJusJEZcQWBBVo14jjI3_O3VExyV00TVzGgOhXkg3KnNEdyW_vq15iC3D1LzJdhLGsl9klIFwFJlCpUahKucEnOoyGRyzl2o-7jDYgqMWWmIrG3HXTuEuGBMxO1AmKOilEnbw1YPvzn4eSxOPP0av1aiTVhs6TIfwasFOv0PDz77Mt_z3bBky0OhftpH16eb4Ck9QBpCgVXIWx_tPArqHL09frBc4I3Pw3sD8AW6sTVQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6FRKrgUJUW1NAU9lBOYNXeh705IAQkUUurqEKJ1Ju7u1lLSMUJOAlKfhq_jll7nQASufVkyY89zHyex87sNwBn6BWUiZUNIisxQekqE2jtusxF1s26XGKUUHb5DuOLMf98K24b8Ks-C-PaKmubWBrqydS4PfJzilZURCwOk_PMt0Xc9AbvZ98DN0HKVVrrcRoVRK7s6iemb8W7yx7q-jWlg_7o00XgJwwEhgk5D7QU2lg9EZoaSTORhYxaI5jVUqlY82hijdYhM1JFWsiISSFMEid4L7GCKobrPoJWgllR2ITWx_7w5svGD6CvlxXTn2MWp9Qf2fEH96TggUvdQo4OPFj_7Ra3se4_5dnS6w0OYN-Hq-RDha-n0LD5ITz5g8TwCO5qXhMyzcgSU-_poiD90TXBWLiCN8HAmKic2JKuAr0ccezky8JtHJPC5dbE1Q-IXpF8UVWQ7knx9ZufLPYMxg8i1efQzKe5PQbCVWQilRmFhpUbvGL4aHjCMq7D7oTRNkS12FLjSc3dbI37dEvH7ESdoqjTUtTpug1vNt_MKkqPnW93am2k_vcu0i0Y2_C21tD28f9Xe7F7tVewh6BOry-HVyfwmDp8lH2DHWjOfyzsKcY_c_3SA43A3UNj-zelIRjn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+various+ETL+materials+for+an+efficient+perovskite+solar+cell+by+numerical+simulation&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Rai%2C+Nitin&rft.au=Rai%2C+Shambhavi&rft.au=Singh%2C+Pravin+Kumar&rft.au=Lohia%2C+Pooja&rft.date=2020-10-01&rft.pub=Springer+US&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=31&rft.issue=19&rft.spage=16269&rft.epage=16280&rft_id=info:doi/10.1007%2Fs10854-020-04175-z&rft.externalDocID=10_1007_s10854_020_04175_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon |