Ensemble Clustering for Internet Security Applications

Due to their damage to Internet security, malware and phishing website detection has been the Internet security topics that are of great interests. Compared with malware attacks, phishing website fraud is a relatively new Internet crime. However, they share some common properties: 1) both malware sa...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on systems, man and cybernetics. Part C, Applications and reviews Vol. 42; no. 6; pp. 1784 - 1796
Main Authors Zhuang, Weiwei, Ye, Yanfang, Chen, Yong, Li, Tao
Format Journal Article
LanguageEnglish
Published New-York, NY IEEE 01.11.2012
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to their damage to Internet security, malware and phishing website detection has been the Internet security topics that are of great interests. Compared with malware attacks, phishing website fraud is a relatively new Internet crime. However, they share some common properties: 1) both malware samples and phishing websites are created at a rate of thousands per day driven by economic benefits; and 2) phishing websites represented by the term frequencies of the webpage content share similar characteristics with malware samples represented by the instruction frequencies of the program. Over the past few years, many clustering techniques have been employed for automatic malware and phishing website detection. In these techniques, the detection process is generally divided into two steps: 1) feature extraction, where representative features are extracted to capture the characteristics of the file samples or the websites; and 2) categorization, where intelligent techniques are used to automatically group the file samples or websites into different classes based on computational analysis of the feature representations. However, few have been applied in real industry products. In this paper, we develop an automatic categorization system to automatically group phishing websites or malware samples using a cluster ensemble by aggregating the clustering solutions that are generated by different base clustering algorithms. We propose a principled cluster ensemble framework to combine individual clustering solutions that are based on the consensus partition, which can not only be applied for malware categorization, but also for phishing website clustering. In addition, the domain knowledge in the form of sample-level/website-level constraints can be naturally incorporated into the ensemble framework. The case studies on large and real daily phishing websites and malware collection from the Kingsoft Internet Security Laboratory demonstrate the effectiveness and efficiency of our proposed method.
AbstractList Due to their damage to Internet security, malware and phishing website detection has been the Internet security topics that are of great interests. Compared with malware attacks, phishing website fraud is a relatively new Internet crime. However, they share some common properties: 1) both malware samples and phishing websites are created at a rate of thousands per day driven by economic benefits; and 2) phishing websites represented by the term frequencies of the webpage content share similar characteristics with malware samples represented by the instruction frequencies of the program. Over the past few years, many clustering techniques have been employed for automatic malware and phishing website detection. In these techniques, the detection process is generally divided into two steps: 1) feature extraction, where representative features are extracted to capture the characteristics of the file samples or the websites; and 2) categorization, where intelligent techniques are used to automatically group the file samples or websites into different classes based on computational analysis of the feature representations. However, few have been applied in real industry products. In this paper, we develop an automatic categorization system to automatically group phishing websites or malware samples using a cluster ensemble by aggregating the clustering solutions that are generated by different base clustering algorithms. We propose a principled cluster ensemble framework to combine individual clustering solutions that are based on the consensus partition, which can not only be applied for malware categorization, but also for phishing website clustering. In addition, the domain knowledge in the form of sample-level/website-level constraints can be naturally incorporated into the ensemble framework. The case studies on large and real daily phishing websites and malware collection from the Kingsoft Internet Security Laboratory demonstrate the effectiveness and efficiency of our proposed method.
Author Tao Li
Yanfang Ye
Weiwei Zhuang
Yong Chen
Author_xml – sequence: 1
  givenname: Weiwei
  surname: Zhuang
  fullname: Zhuang, Weiwei
– sequence: 2
  givenname: Yanfang
  surname: Ye
  fullname: Ye, Yanfang
– sequence: 3
  givenname: Yong
  surname: Chen
  fullname: Chen, Yong
– sequence: 4
  givenname: Tao
  surname: Li
  fullname: Li, Tao
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26818941$$DView record in Pascal Francis
BookMark eNp9kD1PwzAURS1UJNrCH4AlCxJLir_i2GMVFahUxNAyR67zjIxSJ9jJ0H9P-qEODHi5ftK570lngka-8YDQPcEzQrB63qzfi2JGMaEzOjxMsys0JlkmU8o5HQ1_rHgqVJ7foEmM3xgTzhUbI7HwEXbbGpKi7mMHwfmvxDYhWfph8NAlazB9cN0-mbdt7YzuXOPjLbq2uo5wd84p-nxZbIq3dPXxuizmq9SwTHbpVkhDLCMV5XRInAkmwYLIgFmlBbY2k5UCinNZbe2QXIOVOOdEE6CVYVP0dNrbhuanh9iVOxcN1LX20PSxJIxkQkmO5YA-nlEdja5t0N64WLbB7XTYl1RIIhUnA0dPnAlNjAHsBSG4PMgsjzLLg8zyLHMoyT8l47qjii5oV_9ffThVHQBcbgmmKBeE_QJjFYOH
CODEN ITCRFH
CitedBy_id crossref_primary_10_1016_j_knosys_2016_10_003
crossref_primary_10_1016_j_asoc_2016_01_043
crossref_primary_10_1016_j_cose_2023_103561
crossref_primary_10_1016_j_ijleo_2015_10_078
crossref_primary_10_1109_TCC_2015_2481378
crossref_primary_10_1109_TKDE_2015_2499200
crossref_primary_10_1109_TKDE_2023_3292573
crossref_primary_10_1109_TNSM_2022_3162885
crossref_primary_10_1093_jigpal_jzw047
crossref_primary_10_1016_j_pmcj_2015_06_006
crossref_primary_10_7717_peerj_cs_2487
crossref_primary_10_1109_TCYB_2018_2809562
crossref_primary_10_1016_j_egypro_2019_01_821
crossref_primary_10_1002_ett_4771
crossref_primary_10_1016_j_cose_2017_04_006
crossref_primary_10_1002_dac_3225
crossref_primary_10_3390_en15197419
crossref_primary_10_4018_IJAMC_2018070101
crossref_primary_10_1016_j_cosrev_2018_01_003
crossref_primary_10_1016_j_comnet_2013_04_005
crossref_primary_10_1155_2019_6271017
crossref_primary_10_1007_s11416_024_00513_5
crossref_primary_10_1142_S0218213023600059
crossref_primary_10_1007_s10044_020_00872_x
crossref_primary_10_1109_TKDE_2015_2426713
crossref_primary_10_1093_jigpal_jzu035
crossref_primary_10_1007_s11704_019_8208_z
crossref_primary_10_1080_01969722_2013_803903
crossref_primary_10_1016_j_compeleceng_2019_07_023
crossref_primary_10_1109_TSMC_2017_2700495
crossref_primary_10_1109_TCYB_2016_2569529
crossref_primary_10_1109_TKDE_2018_2818729
Cites_doi 10.1007/s11416-008-0082-4
10.1145/1250734.1250746
10.1002/9780470316801.ch2
10.1109/ICPR.2010.1010
10.1109/MALWARE.2008.4690860
10.1137/1.9781611972788.72
10.1007/978-3-540-74320-0_10
10.1145/1281192.1281308
10.1007/978-3-540-70542-0_6
10.1023/A:1023949509487
10.1109/SECPRI.2001.924286
10.1145/1242572.1242659
10.1109/ITNG.2010.117
10.1109/UIC-ATC.2009.62
10.1109/TPAMI.2005.237
10.1201/9781584889977
10.1109/TNN.2005.845141
10.1145/1299015.1299021
10.1145/1557019.1557167
10.1109/ECRIME.2009.5342614
10.1016/j.csda.2008.10.015
10.1145/505282.505283
10.1145/900051.900096
10.1007/978-3-540-74565-5_5
10.1145/1015330.1015414
10.1145/1595676.1595686
10.1109/ACSAC.2007.21
10.1109/SP.2010.11
10.1007/978-3-642-15037-1_20
10.1109/ICDE.2005.34
10.1145/1835804.1835820
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright_xml – notice: 2014 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TSMCC.2012.2222025
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Applied Sciences
EISSN 1558-2442
EndPage 1796
ExternalDocumentID 26818941
10_1109_TSMCC_2012_2222025
6392461
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
F5P
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
PZZ
RIA
RIE
RNS
VH1
AAYOK
AAYXX
CITATION
RIG
IQODW
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c358t-b68c1f31d2421f305638efe65e3f9a60ff58d9e2078dbfe204aef80741a1e2dc3
IEDL.DBID RIE
ISSN 1094-6977
IngestDate Fri Jul 11 11:31:31 EDT 2025
Wed Apr 02 07:26:17 EDT 2025
Thu Apr 24 22:52:18 EDT 2025
Tue Jul 01 03:52:42 EDT 2025
Tue Aug 26 17:18:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Cluster analysis
malware categorization
Fraud
Economic sciences
Aggregate model
phishing website detection
Computer virus
Efficiency
News
Selection criterion
Computer security
Pattern extraction
Computer attack
Damaging
Data analysis
Cluster
Pattern recognition
Distributed system
Consensus
Automatic measurement
Distributed algorithm
Cluster ensemble
Internet
Web site
Intrusion detection systems
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-b68c1f31d2421f305638efe65e3f9a60ff58d9e2078dbfe204aef80741a1e2dc3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1315698408
PQPubID 23500
PageCount 13
ParticipantIDs crossref_primary_10_1109_TSMCC_2012_2222025
proquest_miscellaneous_1315698408
crossref_citationtrail_10_1109_TSMCC_2012_2222025
ieee_primary_6392461
pascalfrancis_primary_26818941
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-11-01
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New-York, NY
PublicationPlace_xml – name: New-York, NY
PublicationTitle IEEE transactions on systems, man and cybernetics. Part C, Applications and reviews
PublicationTitleAbbrev TSMCC
PublicationYear 2012
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References strehl (ref36) 2003; 3
ref13
ref12
lee (ref22) 2006
ref16
fukuyama (ref14) 1989
ref19
gheorghescu (ref15) 2005
(ref31) 0
chou (ref8) 2004
wang (ref41) 2009
royal (ref33) 2006
basu (ref5) 2008
ref46
ref45
ref48
ref47
ref44
ref49
ref7
gurrutxaga (ref17) 2008
ref4
ref40
ref35
ref34
ref37
liu (ref25) 2006
ref30
azimi (ref3) 2009
rieck (ref32) 2008
ester (ref11) 1996
ref2
ref1
ref39
moser (ref29) 2007
elovici (ref10) 2007
ref24
ref23
ref26
ref20
hartigan (ref18) 1979; 28
theodoridis (ref38) 1999
ref21
bayer (ref6) 2009
williams (ref42) 2000
ref28
ref27
wu (ref43) 2004
dazeley (ref9) 2010
References_xml – ident: ref48
  doi: 10.1007/s11416-008-0082-4
– year: 2006
  ident: ref33
  article-title: PolyUnpack: Automating the hidden-code extraction of unpack-executing malware
  publication-title: Proc 22nd Annu Comput Secur Appl Conf
– start-page: 1279
  year: 2009
  ident: ref41
  article-title: Generalized cluster aggregation
  publication-title: Proc 21st Int Joint Conf Artif Intell
– ident: ref30
  doi: 10.1145/1250734.1250746
– year: 2009
  ident: ref6
  article-title: Scalable, behavior-based malware clustering
  publication-title: Proc 16th Netw Distributed Security Symp
– ident: ref19
  doi: 10.1002/9780470316801.ch2
– ident: ref24
  doi: 10.1109/ICPR.2010.1010
– ident: ref39
  doi: 10.1109/MALWARE.2008.4690860
– start-page: 247
  year: 1989
  ident: ref14
  article-title: A new method of choosing the number of clusters for the fuzzy C-means method
  publication-title: Proc 5th Fuzzy Syst Symp
– ident: ref23
  doi: 10.1137/1.9781611972788.72
– ident: ref4
  doi: 10.1007/978-3-540-74320-0_10
– ident: ref47
  doi: 10.1145/1281192.1281308
– start-page: 108
  year: 2008
  ident: ref32
  article-title: Learning and classification of malware behavior
  publication-title: Proc Detection of Intrusions and Malware and Vulnerability Assessment
  doi: 10.1007/978-3-540-70542-0_6
– ident: ref27
  doi: 10.1023/A:1023949509487
– year: 2004
  ident: ref8
  article-title: Client-side defense against web-based identity theft
  publication-title: Proc 11th Annu Netw Distrib Syst Security Symp
– start-page: 680
  year: 2000
  ident: ref42
  article-title: A MCMC approach to hierarchical mixture modeling
  publication-title: Proc Advance in Neural Inform Process System 12
– ident: ref35
  doi: 10.1109/SECPRI.2001.924286
– ident: ref49
  doi: 10.1145/1242572.1242659
– ident: ref2
  doi: 10.1109/ITNG.2010.117
– ident: ref20
  doi: 10.1109/UIC-ATC.2009.62
– ident: ref40
  doi: 10.1109/TPAMI.2005.237
– year: 2008
  ident: ref5
  publication-title: Constrained Clustering Advances in Algorithms Theory and Applications
  doi: 10.1201/9781584889977
– start-page: 58
  year: 2006
  ident: ref25
  article-title: An antiphishing strategy based on visual similarity assessment
  publication-title: Proc IEEE Internet Comput
– volume: 28
  start-page: 100
  year: 1979
  ident: ref18
  article-title: Algorithm AS136: A k-means clustering algorithm
  publication-title: Journal of Royal Statistical Society C Applied Statistics
– ident: ref44
  doi: 10.1109/TNN.2005.845141
– year: 0
  ident: ref31
  publication-title: QEMU (2012)
– year: 1999
  ident: ref38
  publication-title: Pattern Recognition
– ident: ref1
  doi: 10.1145/1299015.1299021
– ident: ref46
  doi: 10.1145/1557019.1557167
– start-page: 992
  year: 2009
  ident: ref3
  article-title: Adaptive cluster ensemble selection
  publication-title: Proc 21st Int Joint Conf Artif Intell
– ident: ref21
  doi: 10.1109/ECRIME.2009.5342614
– ident: ref26
  doi: 10.1016/j.csda.2008.10.015
– ident: ref34
  doi: 10.1145/505282.505283
– ident: ref37
  doi: 10.1145/900051.900096
– volume: 3
  start-page: 583
  year: 2003
  ident: ref36
  article-title: Cluster ensembles-A knowledge reuse framework for combining multiple partitions
  publication-title: J Mach Learn Res
– year: 2005
  ident: ref15
  article-title: An automated virus classification system
  publication-title: Proc Virus Bulletin Conf
– start-page: 44
  year: 2007
  ident: ref10
  article-title: Applying machine learning techniques for detection of malicious code in network traffic
  publication-title: KI 2007 Advances in Artificial Intelligence (Lecture Notes in Computer Science
  doi: 10.1007/978-3-540-74565-5_5
– ident: ref12
  doi: 10.1145/1015330.1015414
– year: 2006
  ident: ref22
  article-title: Behavioral classification
  publication-title: Proc EIC
– ident: ref7
  doi: 10.1145/1595676.1595686
– ident: ref28
  doi: 10.1109/ACSAC.2007.21
– ident: ref13
  doi: 10.1109/SP.2010.11
– start-page: 231
  year: 2007
  ident: ref29
  article-title: Exploring multiple execution paths for malware analysis
  publication-title: Proc IEEE Symp Secur Privacy
– start-page: 235
  year: 2010
  ident: ref9
  article-title: Consensus clustering and supervised classification for profiling phishing emails in internet commerce security
  publication-title: Knowledge Management and Acquisition for Smart Systems and Service (Lecture Notes in Computer Science vol 6232)
  doi: 10.1007/978-3-642-15037-1_20
– ident: ref16
  doi: 10.1109/ICDE.2005.34
– start-page: 226
  year: 1996
  ident: ref11
  article-title: A density-based algorithm for discovering clusters in large spatial database with noise
  publication-title: Proc ACM Int Conf Knowl Discovery Data Mining
– ident: ref45
  doi: 10.1145/1835804.1835820
– start-page: 163
  year: 2008
  ident: ref17
  article-title: Evaluation of Malware clustering based on its dynamic behaviour
  publication-title: Proc 7th Australas Data Mining Conf
– year: 2004
  ident: ref43
  publication-title: Fighting Phishing at the User Interface
SSID ssj0014493
Score 2.25967
Snippet Due to their damage to Internet security, malware and phishing website detection has been the Internet security topics that are of great interests. Compared...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1784
SubjectTerms Applied sciences
Cluster ensemble
Clustering
Clustering algorithms
Clusters
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Data mining
Data processing. List processing. Character string processing
Exact sciences and technology
Feature extraction
Internet
Knowledge engineering
Malware
malware categorization
Mathematical models
Memory and file management (including protection and security)
Memory organisation. Data processing
Phishing
phishing website detection
Security
Software
Websites
Title Ensemble Clustering for Internet Security Applications
URI https://ieeexplore.ieee.org/document/6392461
https://www.proquest.com/docview/1315698408
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgJzjwRozHVCQOIOho2iRrjmjahJDGBZC4VWnqXBgdYu2FX4_TdhUDhDi1Ut0qtZPYju3PAGdamiBMM04LKTA-FzHztUoHPtPCiIj2SmPdgf7kXt4-8btn8bwCV20tDCJWyWfYd7dVLD-bmdIdlV2TNnXwZ6uwSo5bXavVRgw4V3UyveK-JKNmUSATqOvHh8lw6LK4wj5pQ_L2xZISqrqquJxIPSe22LqfxY-tudI3402YLEZap5m89Msi7ZuPbyCO__2VLdhoDE_vpp4p27CC-Q6sf4Ej3IHtZqHPvfMGjfpiF-Qon-NrOkVvOC0dqgKRemTpevVZIhbeQ9MCz7v5Egzfg6fx6HF46zfNFnwTibjwUxkbZiOWuRixdY5FFKNFKTCySsvAWhFnCkMyKbLU0pVrtA5Jh2mGYWaifejksxwPwBOB4ZnkRg4Czcm_SSUyw5AbHDjoGtkFtuB-YhokctcQY5pUHkmgkkpiiZNY0kisC5ftO281Dsef1LuO5S1lw-0u9JaE3D4PJdktihPB6ULqCS0zFzvROc7KecIicnQVecPx4e_fPoI1N4K6TPEYOsV7iSdkrxRpr5qon1jW5Nk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9B9wA8jPGllTGWSXsAQdo4sd34EVWgDtq-UCTeIsc5v9ClaE1e9tdzTtKIMjTtKZFyiZw723fnu_sdwA8tTRCmGaeFFBifi5j5WqUDn2lhRER7pbHuQH8ylaMHfvsoHjfgsq2FQcQq-Qx77raK5WcLU7qjsj5pUwd_tgkfSO8LVldrtTEDzlWdTq-4L8msWZXIBKo_u58Mhy6PK-yRPiR_X6ypoaqvisuK1EtijK07Wvy1OVca52YXJqux1okmT72ySHvmzxsYx__9mU_wsTE9vat6ruzBBub7sPMKkHAf9pqlvvTOGjzq8wOQ1_kSf6Vz9Ibz0uEqEKlHtq5XnyZi4d03TfC8q1fh8EN4uLmeDUd-027BN5GICz-VsWE2YpmLElvnWkQxWpQCI6u0DKwVcaYwJKMiSy1duUbrsHSYZhhmJjqCTr7I8TN4IjA8k9zIQaA5eTipRGYYcoMDB14ju8BW3E9Mg0XuWmLMk8onCVRSSSxxEksaiXXhon3nuUbi-Cf1gWN5S9lwuwuna0Jun4eSLBfFieD7SuoJLTQXPdE5LsplwiJydRX5w_Hx-9_-Bluj2WScjH9O777AthtNXbR4Ap3id4lfyXop0tNq0r4AcX_oIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+Clustering+for+Internet+Security+Applications&rft.jtitle=IEEE+transactions+on+systems%2C+man+and+cybernetics.+Part+C%2C+Applications+and+reviews&rft.au=Zhuang%2C+Weiwei&rft.au=Ye%2C+Yanfang&rft.au=Chen%2C+Yong&rft.au=Li%2C+Tao&rft.date=2012-11-01&rft.issn=1094-6977&rft.eissn=1558-2442&rft.volume=42&rft.issue=6&rft.spage=1784&rft.epage=1796&rft_id=info:doi/10.1109%2FTSMCC.2012.2222025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSMCC_2012_2222025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-6977&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-6977&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-6977&client=summon