The influence of thermal interaction on energy harvesting efficiency of geothermal piles in a group
•Multiphysics analyses quantify group thermal interaction for geothermal piles.•Proposed power reduction factor quantifies loss in energy harvesting efficiency.•Sustained thermal operation and small pile spacing reduce group power output.•Pile diameter and circulation tube orientation do not affect...
Saved in:
Published in | Applied thermal engineering Vol. 200; p. 117673 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
05.01.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Multiphysics analyses quantify group thermal interaction for geothermal piles.•Proposed power reduction factor quantifies loss in energy harvesting efficiency.•Sustained thermal operation and small pile spacing reduce group power output.•Pile diameter and circulation tube orientation do not affect thermal interaction.•Non-uniform placement of geothermal piles causes uneven temperature increments.
This paper employs coupled multiphysics modelling of pile-soil heat exchange to quantify pile thermal interaction and its influence in diminishing the power output expected from a group of geothermal piles. Three-dimensional finite element models, which account for the flow of heat carrier fluid through the circulation tubes and conductive heat transport in pile and soil, are developed for different group arrangements of geothermal piles. Finite element analyses (FEAs) of a pair of geothermal piles reveal the effects of spacing, diameter, orientation of embedded fluid circulation tubes, and thermal operation time of geothermal piles on thermal interaction between the piles. A simple analysis-based expression is proposed to calculate power reduction factor that quantifies thermal interaction between two simultaneously acting geothermal piles. The proposed factor is further employed, in conjunction with the principle of superposition, to estimate power output from a group of geothermal piles. Comparison of predictions using the proposed method with FEA results suggests that the proposed method can successfully predict total energy harvesting efficiency (i.e., power output) of a thermally interacting group of geothermal piles. |
---|---|
AbstractList | This paper employs coupled multiphysics modelling of pile-soil heat exchange to quantify pile thermal interaction and its influence in diminishing the power output expected from a group of geothermal piles. Three-dimensional finite element models, which account for the flow of heat carrier fluid through the circulation tubes and conductive heat transport in pile and soil, are developed for different group arrangements of geothermal piles. Finite element analyses (FEAs) of a pair of geothermal piles reveal the effects of spacing, diameter, orientation of embedded fluid circulation tubes, and thermal operation time of geothermal piles on thermal interaction between the piles. A simple analysis-based expression is proposed to calculate power reduction factor that quantifies thermal interaction between two simultaneously acting geothermal piles. The proposed factor is further employed, in conjunction with the principle of superposition, to estimate power output from a group of geothermal piles. Comparison of predictions using the proposed method with FEA results suggests that the proposed method can successfully predict total energy harvesting efficiency (i.e., power output) of a thermally interacting group of geothermal piles. •Multiphysics analyses quantify group thermal interaction for geothermal piles.•Proposed power reduction factor quantifies loss in energy harvesting efficiency.•Sustained thermal operation and small pile spacing reduce group power output.•Pile diameter and circulation tube orientation do not affect thermal interaction.•Non-uniform placement of geothermal piles causes uneven temperature increments. This paper employs coupled multiphysics modelling of pile-soil heat exchange to quantify pile thermal interaction and its influence in diminishing the power output expected from a group of geothermal piles. Three-dimensional finite element models, which account for the flow of heat carrier fluid through the circulation tubes and conductive heat transport in pile and soil, are developed for different group arrangements of geothermal piles. Finite element analyses (FEAs) of a pair of geothermal piles reveal the effects of spacing, diameter, orientation of embedded fluid circulation tubes, and thermal operation time of geothermal piles on thermal interaction between the piles. A simple analysis-based expression is proposed to calculate power reduction factor that quantifies thermal interaction between two simultaneously acting geothermal piles. The proposed factor is further employed, in conjunction with the principle of superposition, to estimate power output from a group of geothermal piles. Comparison of predictions using the proposed method with FEA results suggests that the proposed method can successfully predict total energy harvesting efficiency (i.e., power output) of a thermally interacting group of geothermal piles. |
ArticleNumber | 117673 |
Author | Tiwari, Arvind Kumar Kumar, Arvind Basu, Prasenjit |
Author_xml | – sequence: 1 givenname: Arvind Kumar orcidid: 0000-0002-9341-9382 surname: Tiwari fullname: Tiwari, Arvind Kumar email: tarvind@iitb.ac.in organization: Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400 076, India – sequence: 2 givenname: Arvind surname: Kumar fullname: Kumar, Arvind email: arvind130126@gmail.com organization: Dar Al Handasah Consultants (Shair & Partners) India Private Limited; Former MTech student in the Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400 076, India – sequence: 3 givenname: Prasenjit surname: Basu fullname: Basu, Prasenjit email: pbasu@civil.iitb.ac.in organization: Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400 076, India |
BookMark | eNqNkMtKxDAUQIMo6Kj_UNBtax5NmoIbHRwVBDe6Dml600mpSU07wvy9GUcXuhICCeGek3AW6NAHDwhdElwQTMRVX-hxHOY1xDc9gO8KiikpCKlExQ7QCZEVy7nA4jCdGa_zkhFyjBbT1GNMqKzKE2Re1pA5b4cNeANZsNm3Ll3OELWZXfBZWuAhdttsreMHTLPzXQbWOuMStt1hHYQfcnQDTInPdNbFsBnP0JHVwwTn3_spel3dvSwf8qfn-8flzVNuGJdzri2tuDRQlVbWooQG2lrXmADjuLWSN60mbSkEE7KkjNYcN6wsdUKqpqYg2Cm62HvHGN436ZeqD5vo05OKCsKlrDDlaep6P2VimKYIVo3Rvem4VQSrXVbVq99Z1S6r2mdN-O0f3LhZ7yrNUbvhv5LVXgIpx4eDqKavktC6CGZWbXD_E30CpMejOQ |
CitedBy_id | crossref_primary_10_1016_j_jobe_2024_108785 crossref_primary_10_54021_seesv5n2_591 crossref_primary_10_1007_s00231_023_03364_w crossref_primary_10_1007_s40515_025_00533_8 crossref_primary_10_1016_j_geothermics_2024_103201 crossref_primary_10_1016_j_ceramint_2024_06_115 crossref_primary_10_1002_adom_202202212 crossref_primary_10_1016_j_jobe_2023_107487 crossref_primary_10_1016_j_enbenv_2024_02_009 crossref_primary_10_1016_j_applthermaleng_2024_122605 crossref_primary_10_1016_j_jobe_2023_108360 crossref_primary_10_1016_j_renene_2024_120357 crossref_primary_10_1016_j_geothermics_2022_102645 crossref_primary_10_1016_j_geothermics_2022_102512 crossref_primary_10_1088_1742_6596_2754_1_012022 crossref_primary_10_1016_j_enbuild_2022_112111 crossref_primary_10_1016_j_csite_2025_105889 |
Cites_doi | 10.1016/j.enconman.2016.05.086 10.1016/j.apenergy.2019.114361 10.1016/j.enconman.2013.09.064 10.1016/j.ijheatmasstransfer.2019.119020 10.1016/j.energy.2013.04.060 10.1016/j.renene.2017.11.035 10.1016/j.enbuild.2016.06.064 10.1016/j.energy.2017.12.104 10.1016/j.geothermics.2018.12.007 10.3390/en13215822 10.1680/jgeot.16.P.139 10.1007/s10706-014-9822-z 10.1016/j.enbuild.2015.02.008 10.1016/j.enbuild.2016.10.032 10.1016/j.energy.2013.06.040 10.1016/j.enconman.2018.10.027 10.1016/j.geothermics.2014.02.005 10.1016/j.apenergy.2015.04.037 10.1016/j.enbuild.2012.08.041 10.1016/j.enbuild.2016.06.089 10.1016/j.apenergy.2015.03.004 10.1016/j.energy.2013.03.092 10.1680/jgere.18.00042 10.1016/j.enbuild.2017.10.033 10.1016/j.apenergy.2012.02.018 10.1631/jzus.A1700460 10.1016/j.geothermics.2006.10.006 10.1016/j.compgeo.2015.11.010 10.1016/j.jobe.2019.100768 10.1016/j.enbuild.2014.04.021 10.1016/j.energy.2013.11.014 10.1061/(ASCE)GM.1943-5622.0000567 10.1016/j.ijheatmasstransfer.2010.03.001 10.1016/j.energy.2011.12.004 10.1016/j.apenergy.2014.09.029 10.1016/j.energy.2015.02.001 10.1061/(ASCE)GT.1943-5606.0002363 10.1016/j.renene.2015.08.078 10.1016/j.enbuild.2013.07.048 10.1016/j.ijheatmasstransfer.2013.11.037 10.1002/nag.2382 10.1016/j.compgeo.2016.07.002 10.1016/j.energy.2014.10.053 10.1093/ijlct/ctaa006 10.1061/9780784482827.008 10.1016/j.gete.2015.11.001 10.1051/e3sconf/202020505025 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Jan 5, 2022 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Jan 5, 2022 |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1016/j.applthermaleng.2021.117673 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-5606 |
ExternalDocumentID | 10_1016_j_applthermaleng_2021_117673 S135943112101098X |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ R2- RIG SEW SSH 7TB 8FD EFKBS FR3 KR7 |
ID | FETCH-LOGICAL-c358t-af2758ce74f8964ebed9a901e350df85bda1d4663684232950b344a58c7b92e63 |
IEDL.DBID | .~1 |
ISSN | 1359-4311 |
IngestDate | Mon Jul 14 07:21:04 EDT 2025 Thu Apr 24 23:05:11 EDT 2025 Tue Jul 01 02:05:30 EDT 2025 Mon Mar 17 07:49:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Geothermal pile Thermal interaction Ground heat exchangers Pile group Heat transfer |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-af2758ce74f8964ebed9a901e350df85bda1d4663684232950b344a58c7b92e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9341-9382 |
PQID | 2615887025 |
PQPubID | 2045278 |
ParticipantIDs | proquest_journals_2615887025 crossref_primary_10_1016_j_applthermaleng_2021_117673 crossref_citationtrail_10_1016_j_applthermaleng_2021_117673 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2021_117673 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-05 |
PublicationDateYYYYMMDD | 2022-01-05 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Cimmino, Bernier (b0305) 2014; 70 Dehghan, Sisman, Aydin (b0030) 2016; 127 Wang, Fang, Wang, Zhang, Li (b0235) 2019; 6 Wang, Lu, Zhang, Cui (b0080) 2015; 160 Ingegneure (b0130) 2001 Ma, Wang (b0190) 2020; 261 Li, Lai (b0275) 2012; 38 Zanchini, Lazzari (b0295) 2013; 59 Loveridge, Powrie (b0020) 2014; 64 Ozudogru, Ghasemi-Fare, Olgun, Basu (b0090) 2015; 33 Koohi-Fayegh, Rosen (b0060) 2012; 97 Signorelli, Bassetti, Pahud, Kohl (b0285) 2007; 36 Incropera, DeWitt, Bergman, Lavine (b0245) 1996; Vol. 6 Bowers Jr, G.A. and Olgun, C.G. 2020. “Optimization of Energy Pile Grids during Unbalanced Heating and Cooling Operations.” Geo-Congress 2020: Geo-Systems, Sustainability, Geoenvironmental Engineering, and Unsaturated Soil Mechanics. Gultekin, Aydin, Sisman (b0025) 2016; 122 Ozudogru, Olgun, Senol (b0075) 2014; 51 Kong, Qiao, Xiao, Li (b0180) 2019; 24 Abdelaziz (b0040) 2016; 2016 Cui, Zhu (b0170) 2017; 134 Ingegneure (b0125) 2010 Caulk, Ghazanfari, McCartney (b0045) 2016; 5 Peng, Kong, Liu, Abuel-Naga, Hao (b0225) 2018; 19 Loveridge, Powrie (b0160) 2013; 57 Sailer, Taborda, Zdravković (b0100) 2018; 118 Bernier, Chahla, Pinel (b0140) 2008; 114 Saggu, Chakraborty (b0200) 2016; 16 EngineeringToolBox.com. 2021. Cecinato, Loveridge (b0085) 2015; 82 Churchill, S.W. and SW, C. 1977. “Friction-factor equation spans all fluid-flow regimes.”. Eskilson, P. 1987. “Thermal analysis of heat extraction boreholes.” Cao, Dai, Liu (b0005) 2016; 128 . Rotta Loria, Laloui (b0220) 2017; 67 Brettmann, Amis (b0165) 2011 Bayer, de Paly, Beck (b0015) 2014; 136 You, Cheng, Guo, Yao (b0035) 2014; 79 Man, Yang, Diao, Liu, Fang (b0065) 2010; 53 Hamdhan, I.N. and Clarke, B.G. 2010. “Determination of thermal conductivity of coarse and fine sand soils.” Proceedings of World Geothermal Congress. Suryatriyastuti, Burlon, Mroueh (b0215) 2016; 40 Goodfellow.com. 2021. Sani, A.K. and Singh, R.M. 2020. “Numerical investigation of the performance of group of geothermal energy piles in unsaturated sand.” E3S Web of Conferences. Lyu, Pu, Chen (b0185) 2020; 13 Di Donna, Rotta Loria, Laloui (b0210) 2016; 72 Xu, Zhang, Chen (b0055) 2020; 147 You, Yang (b0115) 2020; 15 Alberdi-Pagola, Poulsen, Jensen, Madsen (b0110) 2019; 78 Ghasemi-Fare, Basu (b0095) 2016; 86 Retkowski, Ziefle, Thöming (b0155) 2015; 149 Sarma, Saggu (b0230) 2020; 146 You, Li, Cao, Yang (b0105) 2018; 178 Capozza, De Carli, Zarrella (b0145) 2012; 55 Gnielinski (b0250) 1976; 16 Bandos, Campos-Celador, López-González, Sala-Lizarraga (b0280) 2014; 78 Koohi-Fayegh, Rosen (b0010) 2014; 78 Fossa, Rolando (b0150) 2015; 93 Cui, Zhu (b0175) 2018; 158 Rotta Loria, Laloui (b0205) 2016; 80 Zhang, Yang, Lu, Fang (b0070) 2013; 55 Kavanaugh, S.P. and Rafferty, K.D. 1997. ASHRAE. Comsol. 2008. “COMSOL Multiphysics User Guide and Model Library, Version 3.5 a.” Ghasemi-Fare, Basu (b0120) 2013; 66 (Accessed 2 September, 2021). Alberdi-Pagola, Poulsen, Loveridge, Madsen, Jensen (b0290) 2018; 145 Rotta Loria (10.1016/j.applthermaleng.2021.117673_b0205) 2016; 80 Bandos (10.1016/j.applthermaleng.2021.117673_b0280) 2014; 78 Fossa (10.1016/j.applthermaleng.2021.117673_b0150) 2015; 93 Bayer (10.1016/j.applthermaleng.2021.117673_b0015) 2014; 136 Kong (10.1016/j.applthermaleng.2021.117673_b0180) 2019; 24 10.1016/j.applthermaleng.2021.117673_b0270 Saggu (10.1016/j.applthermaleng.2021.117673_b0200) 2016; 16 10.1016/j.applthermaleng.2021.117673_b0195 Ozudogru (10.1016/j.applthermaleng.2021.117673_b0090) 2015; 33 Retkowski (10.1016/j.applthermaleng.2021.117673_b0155) 2015; 149 Gnielinski (10.1016/j.applthermaleng.2021.117673_b0250) 1976; 16 Wang (10.1016/j.applthermaleng.2021.117673_b0235) 2019; 6 Abdelaziz (10.1016/j.applthermaleng.2021.117673_b0040) 2016; 2016 Brettmann (10.1016/j.applthermaleng.2021.117673_b0165) 2011 Peng (10.1016/j.applthermaleng.2021.117673_b0225) 2018; 19 Gultekin (10.1016/j.applthermaleng.2021.117673_b0025) 2016; 122 Ingegneure (10.1016/j.applthermaleng.2021.117673_b0125) 2010 Loveridge (10.1016/j.applthermaleng.2021.117673_b0020) 2014; 64 Zanchini (10.1016/j.applthermaleng.2021.117673_b0295) 2013; 59 Incropera (10.1016/j.applthermaleng.2021.117673_b0245) 1996; Vol. 6 You (10.1016/j.applthermaleng.2021.117673_b0035) 2014; 79 Signorelli (10.1016/j.applthermaleng.2021.117673_b0285) 2007; 36 10.1016/j.applthermaleng.2021.117673_b0260 Xu (10.1016/j.applthermaleng.2021.117673_b0055) 2020; 147 Man (10.1016/j.applthermaleng.2021.117673_b0065) 2010; 53 Lyu (10.1016/j.applthermaleng.2021.117673_b0185) 2020; 13 10.1016/j.applthermaleng.2021.117673_b0265 Li (10.1016/j.applthermaleng.2021.117673_b0275) 2012; 38 10.1016/j.applthermaleng.2021.117673_b0300 Cecinato (10.1016/j.applthermaleng.2021.117673_b0085) 2015; 82 Alberdi-Pagola (10.1016/j.applthermaleng.2021.117673_b0110) 2019; 78 Koohi-Fayegh (10.1016/j.applthermaleng.2021.117673_b0010) 2014; 78 Loveridge (10.1016/j.applthermaleng.2021.117673_b0160) 2013; 57 Cao (10.1016/j.applthermaleng.2021.117673_b0005) 2016; 128 Sarma (10.1016/j.applthermaleng.2021.117673_b0230) 2020; 146 Wang (10.1016/j.applthermaleng.2021.117673_b0080) 2015; 160 Di Donna (10.1016/j.applthermaleng.2021.117673_b0210) 2016; 72 Suryatriyastuti (10.1016/j.applthermaleng.2021.117673_b0215) 2016; 40 Capozza (10.1016/j.applthermaleng.2021.117673_b0145) 2012; 55 10.1016/j.applthermaleng.2021.117673_b0050 Ma (10.1016/j.applthermaleng.2021.117673_b0190) 2020; 261 Sailer (10.1016/j.applthermaleng.2021.117673_b0100) 2018; 118 Cimmino (10.1016/j.applthermaleng.2021.117673_b0305) 2014; 70 10.1016/j.applthermaleng.2021.117673_b0255 Alberdi-Pagola (10.1016/j.applthermaleng.2021.117673_b0290) 2018; 145 10.1016/j.applthermaleng.2021.117673_b0135 Cui (10.1016/j.applthermaleng.2021.117673_b0175) 2018; 158 Caulk (10.1016/j.applthermaleng.2021.117673_b0045) 2016; 5 Ozudogru (10.1016/j.applthermaleng.2021.117673_b0075) 2014; 51 Ghasemi-Fare (10.1016/j.applthermaleng.2021.117673_b0120) 2013; 66 Zhang (10.1016/j.applthermaleng.2021.117673_b0070) 2013; 55 You (10.1016/j.applthermaleng.2021.117673_b0105) 2018; 178 You (10.1016/j.applthermaleng.2021.117673_b0115) 2020; 15 Cui (10.1016/j.applthermaleng.2021.117673_b0170) 2017; 134 10.1016/j.applthermaleng.2021.117673_b0240 Dehghan (10.1016/j.applthermaleng.2021.117673_b0030) 2016; 127 Bernier (10.1016/j.applthermaleng.2021.117673_b0140) 2008; 114 Koohi-Fayegh (10.1016/j.applthermaleng.2021.117673_b0060) 2012; 97 Rotta Loria (10.1016/j.applthermaleng.2021.117673_b0220) 2017; 67 Ghasemi-Fare (10.1016/j.applthermaleng.2021.117673_b0095) 2016; 86 Ingegneure (10.1016/j.applthermaleng.2021.117673_b0130) 2001 |
References_xml | – reference: Comsol. 2008. “COMSOL Multiphysics User Guide and Model Library, Version 3.5 a.” – volume: 128 start-page: 198 year: 2016 end-page: 213 ident: b0005 article-title: Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade publication-title: Energy Build. – volume: 16 start-page: 359 year: 1976 end-page: 368 ident: b0250 article-title: New equations for heat and mass transfer in turbulent pipe and channel flow publication-title: Int. Chem. Eng. – volume: 66 start-page: 470 year: 2013 end-page: 479 ident: b0120 article-title: A practical heat transfer model for geothermal piles publication-title: Energy Build. – volume: 6 start-page: 218 year: 2019 end-page: 226 ident: b0235 article-title: Interactions between energy piles caused by temperature publication-title: Geotech. Res. – volume: 160 start-page: 705 year: 2015 end-page: 714 ident: b0080 article-title: Numerical and analytical analysis of groundwater influence on the pile geothermal heat exchanger with cast-in spiral coils publication-title: Appl. Energy – volume: 5 start-page: 1 year: 2016 end-page: 15 ident: b0045 article-title: Parameterization of a calibrated geothermal energy pile model publication-title: Geomech. Energy Environ. – reference: Eskilson, P. 1987. “Thermal analysis of heat extraction boreholes.” – reference: . (Accessed 2 September, 2021). – volume: 97 start-page: 962 year: 2012 end-page: 969 ident: b0060 article-title: Examination of thermal interaction of multiple vertical ground heat exchangers publication-title: Appl. Energy – volume: 82 start-page: 1021 year: 2015 end-page: 1033 ident: b0085 article-title: Influences on the thermal efficiency of energy piles publication-title: Energy – volume: 24 start-page: 100768 year: 2019 ident: b0180 article-title: A study on heat transfer characteristics and pile group influence of enhanced heat transfer energy piles publication-title: J. Build. Eng. – volume: 33 start-page: 291 year: 2015 end-page: 306 ident: b0090 article-title: Numerical modeling of vertical geothermal heat exchangers using finite difference and finite element techniques publication-title: Geotech. Geol. Eng. – volume: 114 start-page: 342 year: 2008 end-page: 351 ident: b0140 article-title: Long-term ground-temperature changes in geo-exchange systems publication-title: ASHRAE Trans. – volume: 19 start-page: 638 year: 2018 end-page: 649 ident: b0225 article-title: Thermo-mechanical behaviour of floating energy pile groups in sand publication-title: J. Zhejiang Univ.-Sci. A – volume: 2016 start-page: 104 year: 2016 end-page: 113 ident: b0040 article-title: A Sustainable perspective for the long-term behavior of energy pile groups publication-title: In – volume: 72 start-page: 126 year: 2016 end-page: 142 ident: b0210 article-title: Numerical study of the response of a group of energy piles under different combinations of thermo-mechanical loads publication-title: Comput. Geotech. – start-page: 499 year: 2011 end-page: 508 ident: b0165 article-title: Thermal conductivity evaluation of a pile group using geothermal energy piles publication-title: In – volume: 53 start-page: 2593 year: 2010 end-page: 2601 ident: b0065 article-title: A new model and analytical solutions for borehole and pile ground heat exchangers publication-title: Int. J. Heat Mass Transf. – volume: 149 start-page: 259 year: 2015 end-page: 271 ident: b0155 article-title: Evaluation of different heat extraction strategies for shallow vertical ground-source heat pump systems publication-title: Appl. Energy – reference: Kavanaugh, S.P. and Rafferty, K.D. 1997. – volume: 16 start-page: 04015100 year: 2016 ident: b0200 article-title: Thermomechanical response of geothermal energy pile groups in sand publication-title: Int. J. Geomech. – volume: 122 start-page: 544 year: 2016 end-page: 551 ident: b0025 article-title: Thermal performance analysis of multiple borehole heat exchangers publication-title: Energy Convers. Manage. – volume: 261 start-page: 114361 year: 2020 ident: b0190 article-title: Underground solar energy storage via energy piles publication-title: Appl. Energy – reference: Bowers Jr, G.A. and Olgun, C.G. 2020. “Optimization of Energy Pile Grids during Unbalanced Heating and Cooling Operations.” Geo-Congress 2020: Geo-Systems, Sustainability, Geoenvironmental Engineering, and Unsaturated Soil Mechanics. – volume: 93 start-page: 315 year: 2015 end-page: 323 ident: b0150 article-title: Improving the ashrae method for vertical geothermal borefield design publication-title: Energy Build. – volume: 55 start-page: 417 year: 2013 end-page: 425 ident: b0070 article-title: The analysis on solid cylindrical heat source model of foundation pile ground heat exchangers with groundwater flow publication-title: Energy – reference: Hamdhan, I.N. and Clarke, B.G. 2010. “Determination of thermal conductivity of coarse and fine sand soils.” Proceedings of World Geothermal Congress. – volume: 55 start-page: 369 year: 2012 end-page: 379 ident: b0145 article-title: Design of borehole heat exchangers for ground-source heat pumps: a literature review, methodology comparison and analysis on the penalty temperature publication-title: Energy Build. – volume: 78 start-page: 184 year: 2014 end-page: 192 ident: b0010 article-title: An analytical approach to evaluating the effect of thermal interaction of geothermal heat exchangers on ground heat pump efficiency publication-title: Energy Convers. Manage. – volume: 40 start-page: 3 year: 2016 end-page: 24 ident: b0215 article-title: On the understanding of cyclic interaction mechanisms in an energy pile group publication-title: Int. J. Numer. Anal. Meth. Geomech. – volume: 36 start-page: 141 year: 2007 end-page: 166 ident: b0285 article-title: Numerical evaluation of thermal response tests publication-title: Geothermics – volume: 127 start-page: 999 year: 2016 end-page: 1007 ident: b0030 article-title: Parametric investigation of helical ground heat exchangers for heat pump applications publication-title: Energy Build. – volume: 78 start-page: 639 year: 2014 end-page: 648 ident: b0280 article-title: Finite cylinder-source model for energy pile heat exchangers: effects of thermal storage and vertical temperature variations publication-title: Energy – volume: 38 start-page: 255 year: 2012 end-page: 263 ident: b0275 article-title: New temperature response functions (G functions) for pile and borehole ground heat exchangers based on composite-medium line-source theory publication-title: Energy – volume: 59 start-page: 570 year: 2013 end-page: 580 ident: b0295 article-title: Temperature distribution in a field of long borehole heat exchangers (BHEs) subjected to a monthly averaged heat flux publication-title: Energy – year: 2010 ident: b0125 article-title: VDI 4640–Blatt 1 – volume: 80 start-page: 121 year: 2016 end-page: 137 ident: b0205 article-title: The interaction factor method for energy pile groups publication-title: Comput. Geotech. – volume: 64 start-page: 747 year: 2014 end-page: 757 ident: b0020 article-title: G-Functions for multiple interacting pile heat exchangers publication-title: Energy – volume: 15 start-page: 458 year: 2020 end-page: 470 ident: b0115 article-title: Influences of different factors on the three-dimensional heat transfer of spiral-coil energy pile group with seepage publication-title: Int. J. Low-Carbon Technol. – volume: 70 start-page: 641 year: 2014 end-page: 650 ident: b0305 article-title: A semi-analytical method to generate g-functions for geothermal bore fields publication-title: Int. J. Heat Mass Transf. – volume: 178 start-page: 123 year: 2018 end-page: 136 ident: b0105 article-title: Soil thermal imbalance of ground source heat pump systems with spiral-coil energy pile groups under seepage conditions and various influential factors publication-title: Energy Convers. Manage. – volume: 67 start-page: 691 year: 2017 end-page: 702 ident: b0220 article-title: The equivalent pier method for energy pile groups publication-title: Géotechnique – reference: Sani, A.K. and Singh, R.M. 2020. “Numerical investigation of the performance of group of geothermal energy piles in unsaturated sand.” E3S Web of Conferences. – reference: EngineeringToolBox.com. 2021. – reference: Goodfellow.com. 2021. – volume: 13 start-page: 5822 year: 2020 ident: b0185 article-title: Thermal performance of an energy pile group with a deeply penetrating u-shaped heat exchanger publication-title: Energies – reference: Churchill, S.W. and SW, C. 1977. “Friction-factor equation spans all fluid-flow regimes.”. – volume: 146 start-page: 04020114 year: 2020 ident: b0230 article-title: Implications of thermal cyclic loading on pile group behavior publication-title: J. Geotech. Geoenviron. Eng. – volume: 134 start-page: 129 year: 2017 end-page: 142 ident: b0170 article-title: 3D transient heat transfer numerical analysis of multiple energy piles publication-title: Energy Build. – volume: Vol. 6: year: 1996 ident: b0245 publication-title: Fund. Heat Mass Transf. – volume: 78 start-page: 201 year: 2019 end-page: 210 ident: b0110 article-title: Thermal design method for multiple precast energy piles publication-title: Geothermics – reference: (Accessed 2 September, 2021). – volume: 51 start-page: 312 year: 2014 end-page: 324 ident: b0075 article-title: 3D numerical modeling of vertical geothermal heat exchangers publication-title: Geothermics – volume: 118 start-page: 579 year: 2018 end-page: 590 ident: b0100 article-title: A new approach to estimating temperature fields around a group of vertical ground heat exchangers in two-dimensional analyses publication-title: Renew. Energy – volume: 158 start-page: 509 year: 2018 end-page: 524 ident: b0175 article-title: Year-round performance assessment of a ground source heat pump with multiple energy piles publication-title: Energy Build. – year: 2001 ident: b0130 article-title: VDI 4640–Blatt 2 – volume: 136 start-page: 445 year: 2014 end-page: 453 ident: b0015 article-title: Strategic optimization of borehole heat exchanger field for seasonal geothermal heating and cooling publication-title: Appl. Energy – reference: : ASHRAE. – volume: 79 start-page: 23 year: 2014 end-page: 31 ident: b0035 article-title: In-situ experimental study of heat exchange capacity of CFG pile geothermal exchangers publication-title: Energy Build. – volume: 86 start-page: 1178 year: 2016 end-page: 1196 ident: b0095 article-title: Predictive assessment of heat exchange performance of geothermal piles publication-title: Renew. Energy – reference: . – volume: 57 start-page: 554 year: 2013 end-page: 564 ident: b0160 article-title: Temperature response functions (G-functions) for single pile heat exchangers publication-title: Energy – volume: 145 start-page: 721 year: 2018 end-page: 733 ident: b0290 article-title: Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests publication-title: Energy – volume: 147 start-page: 119020 year: 2020 ident: b0055 article-title: Study on heat transfer performance of geothermal pile-foundation heat exchanger with 3-U pipe configuration publication-title: Int. J. Heat Mass Transf. – volume: 122 start-page: 544 year: 2016 ident: 10.1016/j.applthermaleng.2021.117673_b0025 article-title: Thermal performance analysis of multiple borehole heat exchangers publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2016.05.086 – volume: 114 start-page: 342 issue: 2 year: 2008 ident: 10.1016/j.applthermaleng.2021.117673_b0140 article-title: Long-term ground-temperature changes in geo-exchange systems publication-title: ASHRAE Trans. – volume: 261 start-page: 114361 year: 2020 ident: 10.1016/j.applthermaleng.2021.117673_b0190 article-title: Underground solar energy storage via energy piles publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114361 – ident: 10.1016/j.applthermaleng.2021.117673_b0255 – ident: 10.1016/j.applthermaleng.2021.117673_b0270 – volume: 78 start-page: 184 year: 2014 ident: 10.1016/j.applthermaleng.2021.117673_b0010 article-title: An analytical approach to evaluating the effect of thermal interaction of geothermal heat exchangers on ground heat pump efficiency publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2013.09.064 – volume: 147 start-page: 119020 year: 2020 ident: 10.1016/j.applthermaleng.2021.117673_b0055 article-title: Study on heat transfer performance of geothermal pile-foundation heat exchanger with 3-U pipe configuration publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.119020 – volume: 57 start-page: 554 year: 2013 ident: 10.1016/j.applthermaleng.2021.117673_b0160 article-title: Temperature response functions (G-functions) for single pile heat exchangers publication-title: Energy doi: 10.1016/j.energy.2013.04.060 – volume: 118 start-page: 579 year: 2018 ident: 10.1016/j.applthermaleng.2021.117673_b0100 article-title: A new approach to estimating temperature fields around a group of vertical ground heat exchangers in two-dimensional analyses publication-title: Renew. Energy doi: 10.1016/j.renene.2017.11.035 – volume: 127 start-page: 999 year: 2016 ident: 10.1016/j.applthermaleng.2021.117673_b0030 article-title: Parametric investigation of helical ground heat exchangers for heat pump applications publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.06.064 – volume: 145 start-page: 721 year: 2018 ident: 10.1016/j.applthermaleng.2021.117673_b0290 article-title: Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests publication-title: Energy doi: 10.1016/j.energy.2017.12.104 – volume: 78 start-page: 201 year: 2019 ident: 10.1016/j.applthermaleng.2021.117673_b0110 article-title: Thermal design method for multiple precast energy piles publication-title: Geothermics doi: 10.1016/j.geothermics.2018.12.007 – volume: 13 start-page: 5822 issue: 21 year: 2020 ident: 10.1016/j.applthermaleng.2021.117673_b0185 article-title: Thermal performance of an energy pile group with a deeply penetrating u-shaped heat exchanger publication-title: Energies doi: 10.3390/en13215822 – volume: 67 start-page: 691 issue: 8 year: 2017 ident: 10.1016/j.applthermaleng.2021.117673_b0220 article-title: The equivalent pier method for energy pile groups publication-title: Géotechnique doi: 10.1680/jgeot.16.P.139 – ident: 10.1016/j.applthermaleng.2021.117673_b0260 – volume: 33 start-page: 291 issue: 2 year: 2015 ident: 10.1016/j.applthermaleng.2021.117673_b0090 article-title: Numerical modeling of vertical geothermal heat exchangers using finite difference and finite element techniques publication-title: Geotech. Geol. Eng. doi: 10.1007/s10706-014-9822-z – year: 2001 ident: 10.1016/j.applthermaleng.2021.117673_b0130 – volume: 93 start-page: 315 year: 2015 ident: 10.1016/j.applthermaleng.2021.117673_b0150 article-title: Improving the ashrae method for vertical geothermal borefield design publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.02.008 – start-page: 499 year: 2011 ident: 10.1016/j.applthermaleng.2021.117673_b0165 article-title: Thermal conductivity evaluation of a pile group using geothermal energy piles – volume: 134 start-page: 129 year: 2017 ident: 10.1016/j.applthermaleng.2021.117673_b0170 article-title: 3D transient heat transfer numerical analysis of multiple energy piles publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.10.032 – volume: 59 start-page: 570 year: 2013 ident: 10.1016/j.applthermaleng.2021.117673_b0295 article-title: Temperature distribution in a field of long borehole heat exchangers (BHEs) subjected to a monthly averaged heat flux publication-title: Energy doi: 10.1016/j.energy.2013.06.040 – volume: 16 start-page: 359 issue: 2 year: 1976 ident: 10.1016/j.applthermaleng.2021.117673_b0250 article-title: New equations for heat and mass transfer in turbulent pipe and channel flow publication-title: Int. Chem. Eng. – volume: 178 start-page: 123 year: 2018 ident: 10.1016/j.applthermaleng.2021.117673_b0105 article-title: Soil thermal imbalance of ground source heat pump systems with spiral-coil energy pile groups under seepage conditions and various influential factors publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.10.027 – volume: 51 start-page: 312 year: 2014 ident: 10.1016/j.applthermaleng.2021.117673_b0075 article-title: 3D numerical modeling of vertical geothermal heat exchangers publication-title: Geothermics doi: 10.1016/j.geothermics.2014.02.005 – volume: 160 start-page: 705 year: 2015 ident: 10.1016/j.applthermaleng.2021.117673_b0080 article-title: Numerical and analytical analysis of groundwater influence on the pile geothermal heat exchanger with cast-in spiral coils publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.04.037 – volume: 55 start-page: 369 year: 2012 ident: 10.1016/j.applthermaleng.2021.117673_b0145 article-title: Design of borehole heat exchangers for ground-source heat pumps: a literature review, methodology comparison and analysis on the penalty temperature publication-title: Energy Build. doi: 10.1016/j.enbuild.2012.08.041 – volume: 128 start-page: 198 year: 2016 ident: 10.1016/j.applthermaleng.2021.117673_b0005 article-title: Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.06.089 – volume: 149 start-page: 259 year: 2015 ident: 10.1016/j.applthermaleng.2021.117673_b0155 article-title: Evaluation of different heat extraction strategies for shallow vertical ground-source heat pump systems publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.03.004 – volume: Vol. 6: year: 1996 ident: 10.1016/j.applthermaleng.2021.117673_b0245 – ident: 10.1016/j.applthermaleng.2021.117673_b0240 – ident: 10.1016/j.applthermaleng.2021.117673_b0265 – volume: 55 start-page: 417 year: 2013 ident: 10.1016/j.applthermaleng.2021.117673_b0070 article-title: The analysis on solid cylindrical heat source model of foundation pile ground heat exchangers with groundwater flow publication-title: Energy doi: 10.1016/j.energy.2013.03.092 – volume: 6 start-page: 218 issue: 3 year: 2019 ident: 10.1016/j.applthermaleng.2021.117673_b0235 article-title: Interactions between energy piles caused by temperature publication-title: Geotech. Res. doi: 10.1680/jgere.18.00042 – ident: 10.1016/j.applthermaleng.2021.117673_b0135 – volume: 158 start-page: 509 year: 2018 ident: 10.1016/j.applthermaleng.2021.117673_b0175 article-title: Year-round performance assessment of a ground source heat pump with multiple energy piles publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.10.033 – volume: 97 start-page: 962 year: 2012 ident: 10.1016/j.applthermaleng.2021.117673_b0060 article-title: Examination of thermal interaction of multiple vertical ground heat exchangers publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.02.018 – volume: 19 start-page: 638 issue: 8 year: 2018 ident: 10.1016/j.applthermaleng.2021.117673_b0225 article-title: Thermo-mechanical behaviour of floating energy pile groups in sand publication-title: J. Zhejiang Univ.-Sci. A doi: 10.1631/jzus.A1700460 – volume: 2016 start-page: 104 year: 2016 ident: 10.1016/j.applthermaleng.2021.117673_b0040 article-title: A Sustainable perspective for the long-term behavior of energy pile groups publication-title: In Geo-Chicago – volume: 36 start-page: 141 issue: 2 year: 2007 ident: 10.1016/j.applthermaleng.2021.117673_b0285 article-title: Numerical evaluation of thermal response tests publication-title: Geothermics doi: 10.1016/j.geothermics.2006.10.006 – volume: 72 start-page: 126 year: 2016 ident: 10.1016/j.applthermaleng.2021.117673_b0210 article-title: Numerical study of the response of a group of energy piles under different combinations of thermo-mechanical loads publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2015.11.010 – year: 2010 ident: 10.1016/j.applthermaleng.2021.117673_b0125 – volume: 24 start-page: 100768 year: 2019 ident: 10.1016/j.applthermaleng.2021.117673_b0180 article-title: A study on heat transfer characteristics and pile group influence of enhanced heat transfer energy piles publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2019.100768 – volume: 79 start-page: 23 year: 2014 ident: 10.1016/j.applthermaleng.2021.117673_b0035 article-title: In-situ experimental study of heat exchange capacity of CFG pile geothermal exchangers publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.04.021 – volume: 64 start-page: 747 year: 2014 ident: 10.1016/j.applthermaleng.2021.117673_b0020 article-title: G-Functions for multiple interacting pile heat exchangers publication-title: Energy doi: 10.1016/j.energy.2013.11.014 – ident: 10.1016/j.applthermaleng.2021.117673_b0300 – volume: 16 start-page: 04015100 issue: 4 year: 2016 ident: 10.1016/j.applthermaleng.2021.117673_b0200 article-title: Thermomechanical response of geothermal energy pile groups in sand publication-title: Int. J. Geomech. doi: 10.1061/(ASCE)GM.1943-5622.0000567 – volume: 53 start-page: 2593 issue: 13–14 year: 2010 ident: 10.1016/j.applthermaleng.2021.117673_b0065 article-title: A new model and analytical solutions for borehole and pile ground heat exchangers publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.03.001 – volume: 38 start-page: 255 issue: 1 year: 2012 ident: 10.1016/j.applthermaleng.2021.117673_b0275 article-title: New temperature response functions (G functions) for pile and borehole ground heat exchangers based on composite-medium line-source theory publication-title: Energy doi: 10.1016/j.energy.2011.12.004 – volume: 136 start-page: 445 year: 2014 ident: 10.1016/j.applthermaleng.2021.117673_b0015 article-title: Strategic optimization of borehole heat exchanger field for seasonal geothermal heating and cooling publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.09.029 – volume: 82 start-page: 1021 year: 2015 ident: 10.1016/j.applthermaleng.2021.117673_b0085 article-title: Influences on the thermal efficiency of energy piles publication-title: Energy doi: 10.1016/j.energy.2015.02.001 – volume: 146 start-page: 04020114 issue: 11 year: 2020 ident: 10.1016/j.applthermaleng.2021.117673_b0230 article-title: Implications of thermal cyclic loading on pile group behavior publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0002363 – volume: 86 start-page: 1178 year: 2016 ident: 10.1016/j.applthermaleng.2021.117673_b0095 article-title: Predictive assessment of heat exchange performance of geothermal piles publication-title: Renew. Energy doi: 10.1016/j.renene.2015.08.078 – volume: 66 start-page: 470 year: 2013 ident: 10.1016/j.applthermaleng.2021.117673_b0120 article-title: A practical heat transfer model for geothermal piles publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.07.048 – volume: 70 start-page: 641 year: 2014 ident: 10.1016/j.applthermaleng.2021.117673_b0305 article-title: A semi-analytical method to generate g-functions for geothermal bore fields publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.11.037 – volume: 40 start-page: 3 issue: 1 year: 2016 ident: 10.1016/j.applthermaleng.2021.117673_b0215 article-title: On the understanding of cyclic interaction mechanisms in an energy pile group publication-title: Int. J. Numer. Anal. Meth. Geomech. doi: 10.1002/nag.2382 – volume: 80 start-page: 121 year: 2016 ident: 10.1016/j.applthermaleng.2021.117673_b0205 article-title: The interaction factor method for energy pile groups publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2016.07.002 – volume: 78 start-page: 639 year: 2014 ident: 10.1016/j.applthermaleng.2021.117673_b0280 article-title: Finite cylinder-source model for energy pile heat exchangers: effects of thermal storage and vertical temperature variations publication-title: Energy doi: 10.1016/j.energy.2014.10.053 – volume: 15 start-page: 458 issue: 3 year: 2020 ident: 10.1016/j.applthermaleng.2021.117673_b0115 article-title: Influences of different factors on the three-dimensional heat transfer of spiral-coil energy pile group with seepage publication-title: Int. J. Low-Carbon Technol. doi: 10.1093/ijlct/ctaa006 – ident: 10.1016/j.applthermaleng.2021.117673_b0050 doi: 10.1061/9780784482827.008 – volume: 5 start-page: 1 year: 2016 ident: 10.1016/j.applthermaleng.2021.117673_b0045 article-title: Parameterization of a calibrated geothermal energy pile model publication-title: Geomech. Energy Environ. doi: 10.1016/j.gete.2015.11.001 – ident: 10.1016/j.applthermaleng.2021.117673_b0195 doi: 10.1051/e3sconf/202020505025 |
SSID | ssj0012874 |
Score | 2.451636 |
Snippet | •Multiphysics analyses quantify group thermal interaction for geothermal piles.•Proposed power reduction factor quantifies loss in energy harvesting... This paper employs coupled multiphysics modelling of pile-soil heat exchange to quantify pile thermal interaction and its influence in diminishing the power... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 117673 |
SubjectTerms | Diameters Energy harvesting Finite element analysis Finite element method Geothermal pile Ground heat exchangers Heat conductivity Heat exchange Heat exchangers Heat transfer Mathematical models Physics Pile group Soils Thermal interaction Three dimensional models Tubes |
Title | The influence of thermal interaction on energy harvesting efficiency of geothermal piles in a group |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2021.117673 https://www.proquest.com/docview/2615887025 |
Volume | 200 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KguhBfGK1yh56jW2yj2TxICKWquhFhd6WfVUrmpa2Xv3tzuShVhAEIYcQMtkws5lHZr4ZQtouZpiOcZFkRkCAAmfWpCxiNslsapV1FtHIN7ey_8CvBmLQIOc1FgbLKivdX-r0QltXVzoVNzuT0ahzB6soMH_YASvuqmyACHae4i4_fv8s84ixn3sRdAkV4d0rpP1V44VJYvSzXg2OLYFoMYkxiylT9puZ-qGwCyvU2yDrlftIz8o33CSNkG-RtW9NBbeJA8nTUT17hI6HtFqbYmuIaQlkoHCEAvZHn8y0aLWRP9JQ9JNAMCaSPYZxTTkB3TEDempoAQPZIQ-9i_vzflSNUogcE9k8MsMEAgMXUj7MlOQgOa8MuAKBia4fZsJ6E3sO3gem5ViiRNcyzg2QgLySINkuWcrHedgj1PtEWuY45wK-_uBNoowMisVeCi-Nb5KTmnPaVX3GcdzFi64Lyp71It818l2XfG8S8Uk9Kftt_JHutBaSXtg_GkzDH5_QqmWrq-94piG-FKCGwTHc__cCB2Q1QewE_r8RLbI0n76FQ_Bo5vao2LJHZPns8rp_-wHCk_m8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5SB9rmENIXTeoke8hV2NI-pCWHEkKM87AvTcC3ZVe7dl1a2Tju_8-MtMoLAoGADkIwWjEjfTOj2fkG4KhMOZVjykRxKzFBwTNnc55wlxUud9qVjrqRR2M1vBEXEznZgNO2F4a2VUbsbzC9Rut4pRe12VvO571fuIpG90cMWGlfF5N3sEnsVLIDmyfnl8PxfTGBKN3rvEvqhATew9HDNi-qE1Oo9c_S5BJMGLOUCpkq5y95qmeYXTuiwQ5sxwiSnTQP-Qk2QvUZth7xCn6BEo3P5u34EbaYsrg2I3aIVdPLwPAIdecf-21XNdtGNWOhppSgfkwSm4VFK7lE-LhFeWZZ3QnyFW4GZ9enwyROU0hKLot1YqcZ5gZlyMW00Eqg8by2GA0ELvt-WkjnbeoFBiBUmeOZln3HhbAogibLguLfoFMtqvAdmPeZcrwUQkgEgOBtpq0KmqdeSa-s34XjVnOmjFTjNPHir2n3lP0xT_VuSO-m0fsuyHvpZUO58Uq5n62RzJNXyKB3eOUduq1tTfyUbw2mmBKRGGPDvTcvcAgfhtejK3N1Pr78AR8zaqWg3zmyC5316n_YxwBn7Q7iC3wHRkH8bQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+influence+of+thermal+interaction+on+energy+harvesting+efficiency+of+geothermal+piles+in+a+group&rft.jtitle=Applied+thermal+engineering&rft.au=Tiwari%2C+Arvind+Kumar&rft.au=Kumar%2C+Arvind&rft.au=Basu%2C+Prasenjit&rft.date=2022-01-05&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=200&rft_id=info:doi/10.1016%2Fj.applthermaleng.2021.117673&rft.externalDocID=S135943112101098X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |