The influence of thermal interaction on energy harvesting efficiency of geothermal piles in a group

•Multiphysics analyses quantify group thermal interaction for geothermal piles.•Proposed power reduction factor quantifies loss in energy harvesting efficiency.•Sustained thermal operation and small pile spacing reduce group power output.•Pile diameter and circulation tube orientation do not affect...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 200; p. 117673
Main Authors Tiwari, Arvind Kumar, Kumar, Arvind, Basu, Prasenjit
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 05.01.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Multiphysics analyses quantify group thermal interaction for geothermal piles.•Proposed power reduction factor quantifies loss in energy harvesting efficiency.•Sustained thermal operation and small pile spacing reduce group power output.•Pile diameter and circulation tube orientation do not affect thermal interaction.•Non-uniform placement of geothermal piles causes uneven temperature increments. This paper employs coupled multiphysics modelling of pile-soil heat exchange to quantify pile thermal interaction and its influence in diminishing the power output expected from a group of geothermal piles. Three-dimensional finite element models, which account for the flow of heat carrier fluid through the circulation tubes and conductive heat transport in pile and soil, are developed for different group arrangements of geothermal piles. Finite element analyses (FEAs) of a pair of geothermal piles reveal the effects of spacing, diameter, orientation of embedded fluid circulation tubes, and thermal operation time of geothermal piles on thermal interaction between the piles. A simple analysis-based expression is proposed to calculate power reduction factor that quantifies thermal interaction between two simultaneously acting geothermal piles. The proposed factor is further employed, in conjunction with the principle of superposition, to estimate power output from a group of geothermal piles. Comparison of predictions using the proposed method with FEA results suggests that the proposed method can successfully predict total energy harvesting efficiency (i.e., power output) of a thermally interacting group of geothermal piles.
AbstractList This paper employs coupled multiphysics modelling of pile-soil heat exchange to quantify pile thermal interaction and its influence in diminishing the power output expected from a group of geothermal piles. Three-dimensional finite element models, which account for the flow of heat carrier fluid through the circulation tubes and conductive heat transport in pile and soil, are developed for different group arrangements of geothermal piles. Finite element analyses (FEAs) of a pair of geothermal piles reveal the effects of spacing, diameter, orientation of embedded fluid circulation tubes, and thermal operation time of geothermal piles on thermal interaction between the piles. A simple analysis-based expression is proposed to calculate power reduction factor that quantifies thermal interaction between two simultaneously acting geothermal piles. The proposed factor is further employed, in conjunction with the principle of superposition, to estimate power output from a group of geothermal piles. Comparison of predictions using the proposed method with FEA results suggests that the proposed method can successfully predict total energy harvesting efficiency (i.e., power output) of a thermally interacting group of geothermal piles.
•Multiphysics analyses quantify group thermal interaction for geothermal piles.•Proposed power reduction factor quantifies loss in energy harvesting efficiency.•Sustained thermal operation and small pile spacing reduce group power output.•Pile diameter and circulation tube orientation do not affect thermal interaction.•Non-uniform placement of geothermal piles causes uneven temperature increments. This paper employs coupled multiphysics modelling of pile-soil heat exchange to quantify pile thermal interaction and its influence in diminishing the power output expected from a group of geothermal piles. Three-dimensional finite element models, which account for the flow of heat carrier fluid through the circulation tubes and conductive heat transport in pile and soil, are developed for different group arrangements of geothermal piles. Finite element analyses (FEAs) of a pair of geothermal piles reveal the effects of spacing, diameter, orientation of embedded fluid circulation tubes, and thermal operation time of geothermal piles on thermal interaction between the piles. A simple analysis-based expression is proposed to calculate power reduction factor that quantifies thermal interaction between two simultaneously acting geothermal piles. The proposed factor is further employed, in conjunction with the principle of superposition, to estimate power output from a group of geothermal piles. Comparison of predictions using the proposed method with FEA results suggests that the proposed method can successfully predict total energy harvesting efficiency (i.e., power output) of a thermally interacting group of geothermal piles.
ArticleNumber 117673
Author Tiwari, Arvind Kumar
Kumar, Arvind
Basu, Prasenjit
Author_xml – sequence: 1
  givenname: Arvind Kumar
  orcidid: 0000-0002-9341-9382
  surname: Tiwari
  fullname: Tiwari, Arvind Kumar
  email: tarvind@iitb.ac.in
  organization: Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
– sequence: 2
  givenname: Arvind
  surname: Kumar
  fullname: Kumar, Arvind
  email: arvind130126@gmail.com
  organization: Dar Al Handasah Consultants (Shair & Partners) India Private Limited; Former MTech student in the Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
– sequence: 3
  givenname: Prasenjit
  surname: Basu
  fullname: Basu, Prasenjit
  email: pbasu@civil.iitb.ac.in
  organization: Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
BookMark eNqNkMtKxDAUQIMo6Kj_UNBtax5NmoIbHRwVBDe6Dml600mpSU07wvy9GUcXuhICCeGek3AW6NAHDwhdElwQTMRVX-hxHOY1xDc9gO8KiikpCKlExQ7QCZEVy7nA4jCdGa_zkhFyjBbT1GNMqKzKE2Re1pA5b4cNeANZsNm3Ll3OELWZXfBZWuAhdttsreMHTLPzXQbWOuMStt1hHYQfcnQDTInPdNbFsBnP0JHVwwTn3_spel3dvSwf8qfn-8flzVNuGJdzri2tuDRQlVbWooQG2lrXmADjuLWSN60mbSkEE7KkjNYcN6wsdUKqpqYg2Cm62HvHGN436ZeqD5vo05OKCsKlrDDlaep6P2VimKYIVo3Rvem4VQSrXVbVq99Z1S6r2mdN-O0f3LhZ7yrNUbvhv5LVXgIpx4eDqKavktC6CGZWbXD_E30CpMejOQ
CitedBy_id crossref_primary_10_1016_j_jobe_2024_108785
crossref_primary_10_54021_seesv5n2_591
crossref_primary_10_1007_s00231_023_03364_w
crossref_primary_10_1007_s40515_025_00533_8
crossref_primary_10_1016_j_geothermics_2024_103201
crossref_primary_10_1016_j_ceramint_2024_06_115
crossref_primary_10_1002_adom_202202212
crossref_primary_10_1016_j_jobe_2023_107487
crossref_primary_10_1016_j_enbenv_2024_02_009
crossref_primary_10_1016_j_applthermaleng_2024_122605
crossref_primary_10_1016_j_jobe_2023_108360
crossref_primary_10_1016_j_renene_2024_120357
crossref_primary_10_1016_j_geothermics_2022_102645
crossref_primary_10_1016_j_geothermics_2022_102512
crossref_primary_10_1088_1742_6596_2754_1_012022
crossref_primary_10_1016_j_enbuild_2022_112111
crossref_primary_10_1016_j_csite_2025_105889
Cites_doi 10.1016/j.enconman.2016.05.086
10.1016/j.apenergy.2019.114361
10.1016/j.enconman.2013.09.064
10.1016/j.ijheatmasstransfer.2019.119020
10.1016/j.energy.2013.04.060
10.1016/j.renene.2017.11.035
10.1016/j.enbuild.2016.06.064
10.1016/j.energy.2017.12.104
10.1016/j.geothermics.2018.12.007
10.3390/en13215822
10.1680/jgeot.16.P.139
10.1007/s10706-014-9822-z
10.1016/j.enbuild.2015.02.008
10.1016/j.enbuild.2016.10.032
10.1016/j.energy.2013.06.040
10.1016/j.enconman.2018.10.027
10.1016/j.geothermics.2014.02.005
10.1016/j.apenergy.2015.04.037
10.1016/j.enbuild.2012.08.041
10.1016/j.enbuild.2016.06.089
10.1016/j.apenergy.2015.03.004
10.1016/j.energy.2013.03.092
10.1680/jgere.18.00042
10.1016/j.enbuild.2017.10.033
10.1016/j.apenergy.2012.02.018
10.1631/jzus.A1700460
10.1016/j.geothermics.2006.10.006
10.1016/j.compgeo.2015.11.010
10.1016/j.jobe.2019.100768
10.1016/j.enbuild.2014.04.021
10.1016/j.energy.2013.11.014
10.1061/(ASCE)GM.1943-5622.0000567
10.1016/j.ijheatmasstransfer.2010.03.001
10.1016/j.energy.2011.12.004
10.1016/j.apenergy.2014.09.029
10.1016/j.energy.2015.02.001
10.1061/(ASCE)GT.1943-5606.0002363
10.1016/j.renene.2015.08.078
10.1016/j.enbuild.2013.07.048
10.1016/j.ijheatmasstransfer.2013.11.037
10.1002/nag.2382
10.1016/j.compgeo.2016.07.002
10.1016/j.energy.2014.10.053
10.1093/ijlct/ctaa006
10.1061/9780784482827.008
10.1016/j.gete.2015.11.001
10.1051/e3sconf/202020505025
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jan 5, 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 5, 2022
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.applthermaleng.2021.117673
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-5606
ExternalDocumentID 10_1016_j_applthermaleng_2021_117673
S135943112101098X
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
HZ~
R2-
RIG
SEW
SSH
7TB
8FD
EFKBS
FR3
KR7
ID FETCH-LOGICAL-c358t-af2758ce74f8964ebed9a901e350df85bda1d4663684232950b344a58c7b92e63
IEDL.DBID .~1
ISSN 1359-4311
IngestDate Mon Jul 14 07:21:04 EDT 2025
Thu Apr 24 23:05:11 EDT 2025
Tue Jul 01 02:05:30 EDT 2025
Mon Mar 17 07:49:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Geothermal pile
Thermal interaction
Ground heat exchangers
Pile group
Heat transfer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-af2758ce74f8964ebed9a901e350df85bda1d4663684232950b344a58c7b92e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9341-9382
PQID 2615887025
PQPubID 2045278
ParticipantIDs proquest_journals_2615887025
crossref_primary_10_1016_j_applthermaleng_2021_117673
crossref_citationtrail_10_1016_j_applthermaleng_2021_117673
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2021_117673
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-05
PublicationDateYYYYMMDD 2022-01-05
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-05
  day: 05
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Applied thermal engineering
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Cimmino, Bernier (b0305) 2014; 70
Dehghan, Sisman, Aydin (b0030) 2016; 127
Wang, Fang, Wang, Zhang, Li (b0235) 2019; 6
Wang, Lu, Zhang, Cui (b0080) 2015; 160
Ingegneure (b0130) 2001
Ma, Wang (b0190) 2020; 261
Li, Lai (b0275) 2012; 38
Zanchini, Lazzari (b0295) 2013; 59
Loveridge, Powrie (b0020) 2014; 64
Ozudogru, Ghasemi-Fare, Olgun, Basu (b0090) 2015; 33
Koohi-Fayegh, Rosen (b0060) 2012; 97
Signorelli, Bassetti, Pahud, Kohl (b0285) 2007; 36
Incropera, DeWitt, Bergman, Lavine (b0245) 1996; Vol. 6
Bowers Jr, G.A. and Olgun, C.G. 2020. “Optimization of Energy Pile Grids during Unbalanced Heating and Cooling Operations.” Geo-Congress 2020: Geo-Systems, Sustainability, Geoenvironmental Engineering, and Unsaturated Soil Mechanics.
Gultekin, Aydin, Sisman (b0025) 2016; 122
Ozudogru, Olgun, Senol (b0075) 2014; 51
Kong, Qiao, Xiao, Li (b0180) 2019; 24
Abdelaziz (b0040) 2016; 2016
Cui, Zhu (b0170) 2017; 134
Ingegneure (b0125) 2010
Caulk, Ghazanfari, McCartney (b0045) 2016; 5
Peng, Kong, Liu, Abuel-Naga, Hao (b0225) 2018; 19
Loveridge, Powrie (b0160) 2013; 57
Sailer, Taborda, Zdravković (b0100) 2018; 118
Bernier, Chahla, Pinel (b0140) 2008; 114
Saggu, Chakraborty (b0200) 2016; 16
EngineeringToolBox.com. 2021.
Cecinato, Loveridge (b0085) 2015; 82
Churchill, S.W. and SW, C. 1977. “Friction-factor equation spans all fluid-flow regimes.”.
Eskilson, P. 1987. “Thermal analysis of heat extraction boreholes.”
Cao, Dai, Liu (b0005) 2016; 128
.
Rotta Loria, Laloui (b0220) 2017; 67
Brettmann, Amis (b0165) 2011
Bayer, de Paly, Beck (b0015) 2014; 136
You, Cheng, Guo, Yao (b0035) 2014; 79
Man, Yang, Diao, Liu, Fang (b0065) 2010; 53
Hamdhan, I.N. and Clarke, B.G. 2010. “Determination of thermal conductivity of coarse and fine sand soils.” Proceedings of World Geothermal Congress.
Suryatriyastuti, Burlon, Mroueh (b0215) 2016; 40
Goodfellow.com. 2021.
Sani, A.K. and Singh, R.M. 2020. “Numerical investigation of the performance of group of geothermal energy piles in unsaturated sand.” E3S Web of Conferences.
Lyu, Pu, Chen (b0185) 2020; 13
Di Donna, Rotta Loria, Laloui (b0210) 2016; 72
Xu, Zhang, Chen (b0055) 2020; 147
You, Yang (b0115) 2020; 15
Alberdi-Pagola, Poulsen, Jensen, Madsen (b0110) 2019; 78
Ghasemi-Fare, Basu (b0095) 2016; 86
Retkowski, Ziefle, Thöming (b0155) 2015; 149
Sarma, Saggu (b0230) 2020; 146
You, Li, Cao, Yang (b0105) 2018; 178
Capozza, De Carli, Zarrella (b0145) 2012; 55
Gnielinski (b0250) 1976; 16
Bandos, Campos-Celador, López-González, Sala-Lizarraga (b0280) 2014; 78
Koohi-Fayegh, Rosen (b0010) 2014; 78
Fossa, Rolando (b0150) 2015; 93
Cui, Zhu (b0175) 2018; 158
Rotta Loria, Laloui (b0205) 2016; 80
Zhang, Yang, Lu, Fang (b0070) 2013; 55
Kavanaugh, S.P. and Rafferty, K.D. 1997.
ASHRAE.
Comsol. 2008. “COMSOL Multiphysics User Guide and Model Library, Version 3.5 a.”
Ghasemi-Fare, Basu (b0120) 2013; 66
(Accessed 2 September, 2021).
Alberdi-Pagola, Poulsen, Loveridge, Madsen, Jensen (b0290) 2018; 145
Rotta Loria (10.1016/j.applthermaleng.2021.117673_b0205) 2016; 80
Bandos (10.1016/j.applthermaleng.2021.117673_b0280) 2014; 78
Fossa (10.1016/j.applthermaleng.2021.117673_b0150) 2015; 93
Bayer (10.1016/j.applthermaleng.2021.117673_b0015) 2014; 136
Kong (10.1016/j.applthermaleng.2021.117673_b0180) 2019; 24
10.1016/j.applthermaleng.2021.117673_b0270
Saggu (10.1016/j.applthermaleng.2021.117673_b0200) 2016; 16
10.1016/j.applthermaleng.2021.117673_b0195
Ozudogru (10.1016/j.applthermaleng.2021.117673_b0090) 2015; 33
Retkowski (10.1016/j.applthermaleng.2021.117673_b0155) 2015; 149
Gnielinski (10.1016/j.applthermaleng.2021.117673_b0250) 1976; 16
Wang (10.1016/j.applthermaleng.2021.117673_b0235) 2019; 6
Abdelaziz (10.1016/j.applthermaleng.2021.117673_b0040) 2016; 2016
Brettmann (10.1016/j.applthermaleng.2021.117673_b0165) 2011
Peng (10.1016/j.applthermaleng.2021.117673_b0225) 2018; 19
Gultekin (10.1016/j.applthermaleng.2021.117673_b0025) 2016; 122
Ingegneure (10.1016/j.applthermaleng.2021.117673_b0125) 2010
Loveridge (10.1016/j.applthermaleng.2021.117673_b0020) 2014; 64
Zanchini (10.1016/j.applthermaleng.2021.117673_b0295) 2013; 59
Incropera (10.1016/j.applthermaleng.2021.117673_b0245) 1996; Vol. 6
You (10.1016/j.applthermaleng.2021.117673_b0035) 2014; 79
Signorelli (10.1016/j.applthermaleng.2021.117673_b0285) 2007; 36
10.1016/j.applthermaleng.2021.117673_b0260
Xu (10.1016/j.applthermaleng.2021.117673_b0055) 2020; 147
Man (10.1016/j.applthermaleng.2021.117673_b0065) 2010; 53
Lyu (10.1016/j.applthermaleng.2021.117673_b0185) 2020; 13
10.1016/j.applthermaleng.2021.117673_b0265
Li (10.1016/j.applthermaleng.2021.117673_b0275) 2012; 38
10.1016/j.applthermaleng.2021.117673_b0300
Cecinato (10.1016/j.applthermaleng.2021.117673_b0085) 2015; 82
Alberdi-Pagola (10.1016/j.applthermaleng.2021.117673_b0110) 2019; 78
Koohi-Fayegh (10.1016/j.applthermaleng.2021.117673_b0010) 2014; 78
Loveridge (10.1016/j.applthermaleng.2021.117673_b0160) 2013; 57
Cao (10.1016/j.applthermaleng.2021.117673_b0005) 2016; 128
Sarma (10.1016/j.applthermaleng.2021.117673_b0230) 2020; 146
Wang (10.1016/j.applthermaleng.2021.117673_b0080) 2015; 160
Di Donna (10.1016/j.applthermaleng.2021.117673_b0210) 2016; 72
Suryatriyastuti (10.1016/j.applthermaleng.2021.117673_b0215) 2016; 40
Capozza (10.1016/j.applthermaleng.2021.117673_b0145) 2012; 55
10.1016/j.applthermaleng.2021.117673_b0050
Ma (10.1016/j.applthermaleng.2021.117673_b0190) 2020; 261
Sailer (10.1016/j.applthermaleng.2021.117673_b0100) 2018; 118
Cimmino (10.1016/j.applthermaleng.2021.117673_b0305) 2014; 70
10.1016/j.applthermaleng.2021.117673_b0255
Alberdi-Pagola (10.1016/j.applthermaleng.2021.117673_b0290) 2018; 145
10.1016/j.applthermaleng.2021.117673_b0135
Cui (10.1016/j.applthermaleng.2021.117673_b0175) 2018; 158
Caulk (10.1016/j.applthermaleng.2021.117673_b0045) 2016; 5
Ozudogru (10.1016/j.applthermaleng.2021.117673_b0075) 2014; 51
Ghasemi-Fare (10.1016/j.applthermaleng.2021.117673_b0120) 2013; 66
Zhang (10.1016/j.applthermaleng.2021.117673_b0070) 2013; 55
You (10.1016/j.applthermaleng.2021.117673_b0105) 2018; 178
You (10.1016/j.applthermaleng.2021.117673_b0115) 2020; 15
Cui (10.1016/j.applthermaleng.2021.117673_b0170) 2017; 134
10.1016/j.applthermaleng.2021.117673_b0240
Dehghan (10.1016/j.applthermaleng.2021.117673_b0030) 2016; 127
Bernier (10.1016/j.applthermaleng.2021.117673_b0140) 2008; 114
Koohi-Fayegh (10.1016/j.applthermaleng.2021.117673_b0060) 2012; 97
Rotta Loria (10.1016/j.applthermaleng.2021.117673_b0220) 2017; 67
Ghasemi-Fare (10.1016/j.applthermaleng.2021.117673_b0095) 2016; 86
Ingegneure (10.1016/j.applthermaleng.2021.117673_b0130) 2001
References_xml – reference: Comsol. 2008. “COMSOL Multiphysics User Guide and Model Library, Version 3.5 a.”
– volume: 128
  start-page: 198
  year: 2016
  end-page: 213
  ident: b0005
  article-title: Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade
  publication-title: Energy Build.
– volume: 16
  start-page: 359
  year: 1976
  end-page: 368
  ident: b0250
  article-title: New equations for heat and mass transfer in turbulent pipe and channel flow
  publication-title: Int. Chem. Eng.
– volume: 66
  start-page: 470
  year: 2013
  end-page: 479
  ident: b0120
  article-title: A practical heat transfer model for geothermal piles
  publication-title: Energy Build.
– volume: 6
  start-page: 218
  year: 2019
  end-page: 226
  ident: b0235
  article-title: Interactions between energy piles caused by temperature
  publication-title: Geotech. Res.
– volume: 160
  start-page: 705
  year: 2015
  end-page: 714
  ident: b0080
  article-title: Numerical and analytical analysis of groundwater influence on the pile geothermal heat exchanger with cast-in spiral coils
  publication-title: Appl. Energy
– volume: 5
  start-page: 1
  year: 2016
  end-page: 15
  ident: b0045
  article-title: Parameterization of a calibrated geothermal energy pile model
  publication-title: Geomech. Energy Environ.
– reference: Eskilson, P. 1987. “Thermal analysis of heat extraction boreholes.”
– reference: . (Accessed 2 September, 2021).
– volume: 97
  start-page: 962
  year: 2012
  end-page: 969
  ident: b0060
  article-title: Examination of thermal interaction of multiple vertical ground heat exchangers
  publication-title: Appl. Energy
– volume: 82
  start-page: 1021
  year: 2015
  end-page: 1033
  ident: b0085
  article-title: Influences on the thermal efficiency of energy piles
  publication-title: Energy
– volume: 24
  start-page: 100768
  year: 2019
  ident: b0180
  article-title: A study on heat transfer characteristics and pile group influence of enhanced heat transfer energy piles
  publication-title: J. Build. Eng.
– volume: 33
  start-page: 291
  year: 2015
  end-page: 306
  ident: b0090
  article-title: Numerical modeling of vertical geothermal heat exchangers using finite difference and finite element techniques
  publication-title: Geotech. Geol. Eng.
– volume: 114
  start-page: 342
  year: 2008
  end-page: 351
  ident: b0140
  article-title: Long-term ground-temperature changes in geo-exchange systems
  publication-title: ASHRAE Trans.
– volume: 19
  start-page: 638
  year: 2018
  end-page: 649
  ident: b0225
  article-title: Thermo-mechanical behaviour of floating energy pile groups in sand
  publication-title: J. Zhejiang Univ.-Sci. A
– volume: 2016
  start-page: 104
  year: 2016
  end-page: 113
  ident: b0040
  article-title: A Sustainable perspective for the long-term behavior of energy pile groups
  publication-title: In
– volume: 72
  start-page: 126
  year: 2016
  end-page: 142
  ident: b0210
  article-title: Numerical study of the response of a group of energy piles under different combinations of thermo-mechanical loads
  publication-title: Comput. Geotech.
– start-page: 499
  year: 2011
  end-page: 508
  ident: b0165
  article-title: Thermal conductivity evaluation of a pile group using geothermal energy piles
  publication-title: In
– volume: 53
  start-page: 2593
  year: 2010
  end-page: 2601
  ident: b0065
  article-title: A new model and analytical solutions for borehole and pile ground heat exchangers
  publication-title: Int. J. Heat Mass Transf.
– volume: 149
  start-page: 259
  year: 2015
  end-page: 271
  ident: b0155
  article-title: Evaluation of different heat extraction strategies for shallow vertical ground-source heat pump systems
  publication-title: Appl. Energy
– reference: Kavanaugh, S.P. and Rafferty, K.D. 1997.
– volume: 16
  start-page: 04015100
  year: 2016
  ident: b0200
  article-title: Thermomechanical response of geothermal energy pile groups in sand
  publication-title: Int. J. Geomech.
– volume: 122
  start-page: 544
  year: 2016
  end-page: 551
  ident: b0025
  article-title: Thermal performance analysis of multiple borehole heat exchangers
  publication-title: Energy Convers. Manage.
– volume: 261
  start-page: 114361
  year: 2020
  ident: b0190
  article-title: Underground solar energy storage via energy piles
  publication-title: Appl. Energy
– reference: Bowers Jr, G.A. and Olgun, C.G. 2020. “Optimization of Energy Pile Grids during Unbalanced Heating and Cooling Operations.” Geo-Congress 2020: Geo-Systems, Sustainability, Geoenvironmental Engineering, and Unsaturated Soil Mechanics.
– volume: 93
  start-page: 315
  year: 2015
  end-page: 323
  ident: b0150
  article-title: Improving the ashrae method for vertical geothermal borefield design
  publication-title: Energy Build.
– volume: 55
  start-page: 417
  year: 2013
  end-page: 425
  ident: b0070
  article-title: The analysis on solid cylindrical heat source model of foundation pile ground heat exchangers with groundwater flow
  publication-title: Energy
– reference: Hamdhan, I.N. and Clarke, B.G. 2010. “Determination of thermal conductivity of coarse and fine sand soils.” Proceedings of World Geothermal Congress.
– volume: 55
  start-page: 369
  year: 2012
  end-page: 379
  ident: b0145
  article-title: Design of borehole heat exchangers for ground-source heat pumps: a literature review, methodology comparison and analysis on the penalty temperature
  publication-title: Energy Build.
– volume: 78
  start-page: 184
  year: 2014
  end-page: 192
  ident: b0010
  article-title: An analytical approach to evaluating the effect of thermal interaction of geothermal heat exchangers on ground heat pump efficiency
  publication-title: Energy Convers. Manage.
– volume: 40
  start-page: 3
  year: 2016
  end-page: 24
  ident: b0215
  article-title: On the understanding of cyclic interaction mechanisms in an energy pile group
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
– volume: 36
  start-page: 141
  year: 2007
  end-page: 166
  ident: b0285
  article-title: Numerical evaluation of thermal response tests
  publication-title: Geothermics
– volume: 127
  start-page: 999
  year: 2016
  end-page: 1007
  ident: b0030
  article-title: Parametric investigation of helical ground heat exchangers for heat pump applications
  publication-title: Energy Build.
– volume: 78
  start-page: 639
  year: 2014
  end-page: 648
  ident: b0280
  article-title: Finite cylinder-source model for energy pile heat exchangers: effects of thermal storage and vertical temperature variations
  publication-title: Energy
– volume: 38
  start-page: 255
  year: 2012
  end-page: 263
  ident: b0275
  article-title: New temperature response functions (G functions) for pile and borehole ground heat exchangers based on composite-medium line-source theory
  publication-title: Energy
– volume: 59
  start-page: 570
  year: 2013
  end-page: 580
  ident: b0295
  article-title: Temperature distribution in a field of long borehole heat exchangers (BHEs) subjected to a monthly averaged heat flux
  publication-title: Energy
– year: 2010
  ident: b0125
  article-title: VDI 4640–Blatt 1
– volume: 80
  start-page: 121
  year: 2016
  end-page: 137
  ident: b0205
  article-title: The interaction factor method for energy pile groups
  publication-title: Comput. Geotech.
– volume: 64
  start-page: 747
  year: 2014
  end-page: 757
  ident: b0020
  article-title: G-Functions for multiple interacting pile heat exchangers
  publication-title: Energy
– volume: 15
  start-page: 458
  year: 2020
  end-page: 470
  ident: b0115
  article-title: Influences of different factors on the three-dimensional heat transfer of spiral-coil energy pile group with seepage
  publication-title: Int. J. Low-Carbon Technol.
– volume: 70
  start-page: 641
  year: 2014
  end-page: 650
  ident: b0305
  article-title: A semi-analytical method to generate g-functions for geothermal bore fields
  publication-title: Int. J. Heat Mass Transf.
– volume: 178
  start-page: 123
  year: 2018
  end-page: 136
  ident: b0105
  article-title: Soil thermal imbalance of ground source heat pump systems with spiral-coil energy pile groups under seepage conditions and various influential factors
  publication-title: Energy Convers. Manage.
– volume: 67
  start-page: 691
  year: 2017
  end-page: 702
  ident: b0220
  article-title: The equivalent pier method for energy pile groups
  publication-title: Géotechnique
– reference: Sani, A.K. and Singh, R.M. 2020. “Numerical investigation of the performance of group of geothermal energy piles in unsaturated sand.” E3S Web of Conferences.
– reference: EngineeringToolBox.com. 2021.
– reference: Goodfellow.com. 2021.
– volume: 13
  start-page: 5822
  year: 2020
  ident: b0185
  article-title: Thermal performance of an energy pile group with a deeply penetrating u-shaped heat exchanger
  publication-title: Energies
– reference: Churchill, S.W. and SW, C. 1977. “Friction-factor equation spans all fluid-flow regimes.”.
– volume: 146
  start-page: 04020114
  year: 2020
  ident: b0230
  article-title: Implications of thermal cyclic loading on pile group behavior
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 134
  start-page: 129
  year: 2017
  end-page: 142
  ident: b0170
  article-title: 3D transient heat transfer numerical analysis of multiple energy piles
  publication-title: Energy Build.
– volume: Vol. 6:
  year: 1996
  ident: b0245
  publication-title: Fund. Heat Mass Transf.
– volume: 78
  start-page: 201
  year: 2019
  end-page: 210
  ident: b0110
  article-title: Thermal design method for multiple precast energy piles
  publication-title: Geothermics
– reference: (Accessed 2 September, 2021).
– volume: 51
  start-page: 312
  year: 2014
  end-page: 324
  ident: b0075
  article-title: 3D numerical modeling of vertical geothermal heat exchangers
  publication-title: Geothermics
– volume: 118
  start-page: 579
  year: 2018
  end-page: 590
  ident: b0100
  article-title: A new approach to estimating temperature fields around a group of vertical ground heat exchangers in two-dimensional analyses
  publication-title: Renew. Energy
– volume: 158
  start-page: 509
  year: 2018
  end-page: 524
  ident: b0175
  article-title: Year-round performance assessment of a ground source heat pump with multiple energy piles
  publication-title: Energy Build.
– year: 2001
  ident: b0130
  article-title: VDI 4640–Blatt 2
– volume: 136
  start-page: 445
  year: 2014
  end-page: 453
  ident: b0015
  article-title: Strategic optimization of borehole heat exchanger field for seasonal geothermal heating and cooling
  publication-title: Appl. Energy
– reference: : ASHRAE.
– volume: 79
  start-page: 23
  year: 2014
  end-page: 31
  ident: b0035
  article-title: In-situ experimental study of heat exchange capacity of CFG pile geothermal exchangers
  publication-title: Energy Build.
– volume: 86
  start-page: 1178
  year: 2016
  end-page: 1196
  ident: b0095
  article-title: Predictive assessment of heat exchange performance of geothermal piles
  publication-title: Renew. Energy
– reference: .
– volume: 57
  start-page: 554
  year: 2013
  end-page: 564
  ident: b0160
  article-title: Temperature response functions (G-functions) for single pile heat exchangers
  publication-title: Energy
– volume: 145
  start-page: 721
  year: 2018
  end-page: 733
  ident: b0290
  article-title: Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests
  publication-title: Energy
– volume: 147
  start-page: 119020
  year: 2020
  ident: b0055
  article-title: Study on heat transfer performance of geothermal pile-foundation heat exchanger with 3-U pipe configuration
  publication-title: Int. J. Heat Mass Transf.
– volume: 122
  start-page: 544
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.117673_b0025
  article-title: Thermal performance analysis of multiple borehole heat exchangers
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2016.05.086
– volume: 114
  start-page: 342
  issue: 2
  year: 2008
  ident: 10.1016/j.applthermaleng.2021.117673_b0140
  article-title: Long-term ground-temperature changes in geo-exchange systems
  publication-title: ASHRAE Trans.
– volume: 261
  start-page: 114361
  year: 2020
  ident: 10.1016/j.applthermaleng.2021.117673_b0190
  article-title: Underground solar energy storage via energy piles
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114361
– ident: 10.1016/j.applthermaleng.2021.117673_b0255
– ident: 10.1016/j.applthermaleng.2021.117673_b0270
– volume: 78
  start-page: 184
  year: 2014
  ident: 10.1016/j.applthermaleng.2021.117673_b0010
  article-title: An analytical approach to evaluating the effect of thermal interaction of geothermal heat exchangers on ground heat pump efficiency
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2013.09.064
– volume: 147
  start-page: 119020
  year: 2020
  ident: 10.1016/j.applthermaleng.2021.117673_b0055
  article-title: Study on heat transfer performance of geothermal pile-foundation heat exchanger with 3-U pipe configuration
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.119020
– volume: 57
  start-page: 554
  year: 2013
  ident: 10.1016/j.applthermaleng.2021.117673_b0160
  article-title: Temperature response functions (G-functions) for single pile heat exchangers
  publication-title: Energy
  doi: 10.1016/j.energy.2013.04.060
– volume: 118
  start-page: 579
  year: 2018
  ident: 10.1016/j.applthermaleng.2021.117673_b0100
  article-title: A new approach to estimating temperature fields around a group of vertical ground heat exchangers in two-dimensional analyses
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.11.035
– volume: 127
  start-page: 999
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.117673_b0030
  article-title: Parametric investigation of helical ground heat exchangers for heat pump applications
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.06.064
– volume: 145
  start-page: 721
  year: 2018
  ident: 10.1016/j.applthermaleng.2021.117673_b0290
  article-title: Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests
  publication-title: Energy
  doi: 10.1016/j.energy.2017.12.104
– volume: 78
  start-page: 201
  year: 2019
  ident: 10.1016/j.applthermaleng.2021.117673_b0110
  article-title: Thermal design method for multiple precast energy piles
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2018.12.007
– volume: 13
  start-page: 5822
  issue: 21
  year: 2020
  ident: 10.1016/j.applthermaleng.2021.117673_b0185
  article-title: Thermal performance of an energy pile group with a deeply penetrating u-shaped heat exchanger
  publication-title: Energies
  doi: 10.3390/en13215822
– volume: 67
  start-page: 691
  issue: 8
  year: 2017
  ident: 10.1016/j.applthermaleng.2021.117673_b0220
  article-title: The equivalent pier method for energy pile groups
  publication-title: Géotechnique
  doi: 10.1680/jgeot.16.P.139
– ident: 10.1016/j.applthermaleng.2021.117673_b0260
– volume: 33
  start-page: 291
  issue: 2
  year: 2015
  ident: 10.1016/j.applthermaleng.2021.117673_b0090
  article-title: Numerical modeling of vertical geothermal heat exchangers using finite difference and finite element techniques
  publication-title: Geotech. Geol. Eng.
  doi: 10.1007/s10706-014-9822-z
– year: 2001
  ident: 10.1016/j.applthermaleng.2021.117673_b0130
– volume: 93
  start-page: 315
  year: 2015
  ident: 10.1016/j.applthermaleng.2021.117673_b0150
  article-title: Improving the ashrae method for vertical geothermal borefield design
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.02.008
– start-page: 499
  year: 2011
  ident: 10.1016/j.applthermaleng.2021.117673_b0165
  article-title: Thermal conductivity evaluation of a pile group using geothermal energy piles
– volume: 134
  start-page: 129
  year: 2017
  ident: 10.1016/j.applthermaleng.2021.117673_b0170
  article-title: 3D transient heat transfer numerical analysis of multiple energy piles
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.10.032
– volume: 59
  start-page: 570
  year: 2013
  ident: 10.1016/j.applthermaleng.2021.117673_b0295
  article-title: Temperature distribution in a field of long borehole heat exchangers (BHEs) subjected to a monthly averaged heat flux
  publication-title: Energy
  doi: 10.1016/j.energy.2013.06.040
– volume: 16
  start-page: 359
  issue: 2
  year: 1976
  ident: 10.1016/j.applthermaleng.2021.117673_b0250
  article-title: New equations for heat and mass transfer in turbulent pipe and channel flow
  publication-title: Int. Chem. Eng.
– volume: 178
  start-page: 123
  year: 2018
  ident: 10.1016/j.applthermaleng.2021.117673_b0105
  article-title: Soil thermal imbalance of ground source heat pump systems with spiral-coil energy pile groups under seepage conditions and various influential factors
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.10.027
– volume: 51
  start-page: 312
  year: 2014
  ident: 10.1016/j.applthermaleng.2021.117673_b0075
  article-title: 3D numerical modeling of vertical geothermal heat exchangers
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2014.02.005
– volume: 160
  start-page: 705
  year: 2015
  ident: 10.1016/j.applthermaleng.2021.117673_b0080
  article-title: Numerical and analytical analysis of groundwater influence on the pile geothermal heat exchanger with cast-in spiral coils
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.04.037
– volume: 55
  start-page: 369
  year: 2012
  ident: 10.1016/j.applthermaleng.2021.117673_b0145
  article-title: Design of borehole heat exchangers for ground-source heat pumps: a literature review, methodology comparison and analysis on the penalty temperature
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.08.041
– volume: 128
  start-page: 198
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.117673_b0005
  article-title: Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.06.089
– volume: 149
  start-page: 259
  year: 2015
  ident: 10.1016/j.applthermaleng.2021.117673_b0155
  article-title: Evaluation of different heat extraction strategies for shallow vertical ground-source heat pump systems
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.03.004
– volume: Vol. 6:
  year: 1996
  ident: 10.1016/j.applthermaleng.2021.117673_b0245
– ident: 10.1016/j.applthermaleng.2021.117673_b0240
– ident: 10.1016/j.applthermaleng.2021.117673_b0265
– volume: 55
  start-page: 417
  year: 2013
  ident: 10.1016/j.applthermaleng.2021.117673_b0070
  article-title: The analysis on solid cylindrical heat source model of foundation pile ground heat exchangers with groundwater flow
  publication-title: Energy
  doi: 10.1016/j.energy.2013.03.092
– volume: 6
  start-page: 218
  issue: 3
  year: 2019
  ident: 10.1016/j.applthermaleng.2021.117673_b0235
  article-title: Interactions between energy piles caused by temperature
  publication-title: Geotech. Res.
  doi: 10.1680/jgere.18.00042
– ident: 10.1016/j.applthermaleng.2021.117673_b0135
– volume: 158
  start-page: 509
  year: 2018
  ident: 10.1016/j.applthermaleng.2021.117673_b0175
  article-title: Year-round performance assessment of a ground source heat pump with multiple energy piles
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.10.033
– volume: 97
  start-page: 962
  year: 2012
  ident: 10.1016/j.applthermaleng.2021.117673_b0060
  article-title: Examination of thermal interaction of multiple vertical ground heat exchangers
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.02.018
– volume: 19
  start-page: 638
  issue: 8
  year: 2018
  ident: 10.1016/j.applthermaleng.2021.117673_b0225
  article-title: Thermo-mechanical behaviour of floating energy pile groups in sand
  publication-title: J. Zhejiang Univ.-Sci. A
  doi: 10.1631/jzus.A1700460
– volume: 2016
  start-page: 104
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.117673_b0040
  article-title: A Sustainable perspective for the long-term behavior of energy pile groups
  publication-title: In Geo-Chicago
– volume: 36
  start-page: 141
  issue: 2
  year: 2007
  ident: 10.1016/j.applthermaleng.2021.117673_b0285
  article-title: Numerical evaluation of thermal response tests
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2006.10.006
– volume: 72
  start-page: 126
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.117673_b0210
  article-title: Numerical study of the response of a group of energy piles under different combinations of thermo-mechanical loads
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2015.11.010
– year: 2010
  ident: 10.1016/j.applthermaleng.2021.117673_b0125
– volume: 24
  start-page: 100768
  year: 2019
  ident: 10.1016/j.applthermaleng.2021.117673_b0180
  article-title: A study on heat transfer characteristics and pile group influence of enhanced heat transfer energy piles
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2019.100768
– volume: 79
  start-page: 23
  year: 2014
  ident: 10.1016/j.applthermaleng.2021.117673_b0035
  article-title: In-situ experimental study of heat exchange capacity of CFG pile geothermal exchangers
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.04.021
– volume: 64
  start-page: 747
  year: 2014
  ident: 10.1016/j.applthermaleng.2021.117673_b0020
  article-title: G-Functions for multiple interacting pile heat exchangers
  publication-title: Energy
  doi: 10.1016/j.energy.2013.11.014
– ident: 10.1016/j.applthermaleng.2021.117673_b0300
– volume: 16
  start-page: 04015100
  issue: 4
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.117673_b0200
  article-title: Thermomechanical response of geothermal energy pile groups in sand
  publication-title: Int. J. Geomech.
  doi: 10.1061/(ASCE)GM.1943-5622.0000567
– volume: 53
  start-page: 2593
  issue: 13–14
  year: 2010
  ident: 10.1016/j.applthermaleng.2021.117673_b0065
  article-title: A new model and analytical solutions for borehole and pile ground heat exchangers
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.03.001
– volume: 38
  start-page: 255
  issue: 1
  year: 2012
  ident: 10.1016/j.applthermaleng.2021.117673_b0275
  article-title: New temperature response functions (G functions) for pile and borehole ground heat exchangers based on composite-medium line-source theory
  publication-title: Energy
  doi: 10.1016/j.energy.2011.12.004
– volume: 136
  start-page: 445
  year: 2014
  ident: 10.1016/j.applthermaleng.2021.117673_b0015
  article-title: Strategic optimization of borehole heat exchanger field for seasonal geothermal heating and cooling
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.09.029
– volume: 82
  start-page: 1021
  year: 2015
  ident: 10.1016/j.applthermaleng.2021.117673_b0085
  article-title: Influences on the thermal efficiency of energy piles
  publication-title: Energy
  doi: 10.1016/j.energy.2015.02.001
– volume: 146
  start-page: 04020114
  issue: 11
  year: 2020
  ident: 10.1016/j.applthermaleng.2021.117673_b0230
  article-title: Implications of thermal cyclic loading on pile group behavior
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0002363
– volume: 86
  start-page: 1178
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.117673_b0095
  article-title: Predictive assessment of heat exchange performance of geothermal piles
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.08.078
– volume: 66
  start-page: 470
  year: 2013
  ident: 10.1016/j.applthermaleng.2021.117673_b0120
  article-title: A practical heat transfer model for geothermal piles
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.07.048
– volume: 70
  start-page: 641
  year: 2014
  ident: 10.1016/j.applthermaleng.2021.117673_b0305
  article-title: A semi-analytical method to generate g-functions for geothermal bore fields
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.11.037
– volume: 40
  start-page: 3
  issue: 1
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.117673_b0215
  article-title: On the understanding of cyclic interaction mechanisms in an energy pile group
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
  doi: 10.1002/nag.2382
– volume: 80
  start-page: 121
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.117673_b0205
  article-title: The interaction factor method for energy pile groups
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2016.07.002
– volume: 78
  start-page: 639
  year: 2014
  ident: 10.1016/j.applthermaleng.2021.117673_b0280
  article-title: Finite cylinder-source model for energy pile heat exchangers: effects of thermal storage and vertical temperature variations
  publication-title: Energy
  doi: 10.1016/j.energy.2014.10.053
– volume: 15
  start-page: 458
  issue: 3
  year: 2020
  ident: 10.1016/j.applthermaleng.2021.117673_b0115
  article-title: Influences of different factors on the three-dimensional heat transfer of spiral-coil energy pile group with seepage
  publication-title: Int. J. Low-Carbon Technol.
  doi: 10.1093/ijlct/ctaa006
– ident: 10.1016/j.applthermaleng.2021.117673_b0050
  doi: 10.1061/9780784482827.008
– volume: 5
  start-page: 1
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.117673_b0045
  article-title: Parameterization of a calibrated geothermal energy pile model
  publication-title: Geomech. Energy Environ.
  doi: 10.1016/j.gete.2015.11.001
– ident: 10.1016/j.applthermaleng.2021.117673_b0195
  doi: 10.1051/e3sconf/202020505025
SSID ssj0012874
Score 2.451636
Snippet •Multiphysics analyses quantify group thermal interaction for geothermal piles.•Proposed power reduction factor quantifies loss in energy harvesting...
This paper employs coupled multiphysics modelling of pile-soil heat exchange to quantify pile thermal interaction and its influence in diminishing the power...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117673
SubjectTerms Diameters
Energy harvesting
Finite element analysis
Finite element method
Geothermal pile
Ground heat exchangers
Heat conductivity
Heat exchange
Heat exchangers
Heat transfer
Mathematical models
Physics
Pile group
Soils
Thermal interaction
Three dimensional models
Tubes
Title The influence of thermal interaction on energy harvesting efficiency of geothermal piles in a group
URI https://dx.doi.org/10.1016/j.applthermaleng.2021.117673
https://www.proquest.com/docview/2615887025
Volume 200
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KguhBfGK1yh56jW2yj2TxICKWquhFhd6WfVUrmpa2Xv3tzuShVhAEIYcQMtkws5lHZr4ZQtouZpiOcZFkRkCAAmfWpCxiNslsapV1FtHIN7ey_8CvBmLQIOc1FgbLKivdX-r0QltXVzoVNzuT0ahzB6soMH_YASvuqmyACHae4i4_fv8s84ixn3sRdAkV4d0rpP1V44VJYvSzXg2OLYFoMYkxiylT9puZ-qGwCyvU2yDrlftIz8o33CSNkG-RtW9NBbeJA8nTUT17hI6HtFqbYmuIaQlkoHCEAvZHn8y0aLWRP9JQ9JNAMCaSPYZxTTkB3TEDempoAQPZIQ-9i_vzflSNUogcE9k8MsMEAgMXUj7MlOQgOa8MuAKBia4fZsJ6E3sO3gem5ViiRNcyzg2QgLySINkuWcrHedgj1PtEWuY45wK-_uBNoowMisVeCi-Nb5KTmnPaVX3GcdzFi64Lyp71It818l2XfG8S8Uk9Kftt_JHutBaSXtg_GkzDH5_QqmWrq-94piG-FKCGwTHc__cCB2Q1QewE_r8RLbI0n76FQ_Bo5vao2LJHZPns8rp_-wHCk_m8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5SB9rmENIXTeoke8hV2NI-pCWHEkKM87AvTcC3ZVe7dl1a2Tju_8-MtMoLAoGADkIwWjEjfTOj2fkG4KhMOZVjykRxKzFBwTNnc55wlxUud9qVjrqRR2M1vBEXEznZgNO2F4a2VUbsbzC9Rut4pRe12VvO571fuIpG90cMWGlfF5N3sEnsVLIDmyfnl8PxfTGBKN3rvEvqhATew9HDNi-qE1Oo9c_S5BJMGLOUCpkq5y95qmeYXTuiwQ5sxwiSnTQP-Qk2QvUZth7xCn6BEo3P5u34EbaYsrg2I3aIVdPLwPAIdecf-21XNdtGNWOhppSgfkwSm4VFK7lE-LhFeWZZ3QnyFW4GZ9enwyROU0hKLot1YqcZ5gZlyMW00Eqg8by2GA0ELvt-WkjnbeoFBiBUmeOZln3HhbAogibLguLfoFMtqvAdmPeZcrwUQkgEgOBtpq0KmqdeSa-s34XjVnOmjFTjNPHir2n3lP0xT_VuSO-m0fsuyHvpZUO58Uq5n62RzJNXyKB3eOUduq1tTfyUbw2mmBKRGGPDvTcvcAgfhtejK3N1Pr78AR8zaqWg3zmyC5316n_YxwBn7Q7iC3wHRkH8bQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+influence+of+thermal+interaction+on+energy+harvesting+efficiency+of+geothermal+piles+in+a+group&rft.jtitle=Applied+thermal+engineering&rft.au=Tiwari%2C+Arvind+Kumar&rft.au=Kumar%2C+Arvind&rft.au=Basu%2C+Prasenjit&rft.date=2022-01-05&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=200&rft_id=info:doi/10.1016%2Fj.applthermaleng.2021.117673&rft.externalDocID=S135943112101098X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon