Ultraprecision laser-assisted diamond machining of single crystal Ge

In this paper we present an experimental study on ultraprecision machining (UPM) of single crystal Ge using the μ-LAM process. The material is oriented with the cutting plane normal to the direction. It is shown that increased hydrostatic pressures on the surface during cutting by increasing the too...

Full description

Saved in:
Bibliographic Details
Published inPrecision engineering Vol. 65; pp. 149 - 155
Main Authors Shahinian, Hossein, Di, Kang, Navare, Jayesh, Bodlapati, Charan, Zaytsev, Dmytro, Ravindra, Deepak
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.09.2020
Elsevier
Subjects
Online AccessGet full text
ISSN0141-6359
DOI10.1016/j.precisioneng.2020.04.020

Cover

Loading…
Abstract In this paper we present an experimental study on ultraprecision machining (UPM) of single crystal Ge using the μ-LAM process. The material is oriented with the cutting plane normal to the direction. It is shown that increased hydrostatic pressures on the surface during cutting by increasing the tool radius and negative rake angle can aid in enhancing ductile material removal from the surface. It is shown that the cutting performance can be increased by approximately 400% using the optimal tool geometry. It is also shown that the optimal tooling geometry with a steep negative rake angle, i.e. −65°, is capable of producing repeatable surface form and finish over long cutting distances. Finally, it will be shown that the laser beam used for μ-LAM, with the right amount of power, produces surfaces that are under less post machining residual stresses. •Tool cross feeds during μ-LAM of Ge can be enhanced by ~400% using specific tooling geometry.•The tooling geometry with large negative rake angle can be used for extended cuts without sacrifice in from or surface finish.•The addition of the laser beam, using optimal laser powers, doesn't cause any surface finish degradation.•The laser emission during μ-LAM of Ge can produce parts with better mechanical properties.•The lower residual stresses induced during μ-LAM of Ge, suggests tool wear may reduce using the process.
AbstractList In this paper we present an experimental study on ultraprecision machining (UPM) of single crystal Ge using the μ-LAM process. The material is oriented with the cutting plane normal to the direction. It is shown that increased hydrostatic pressures on the surface during cutting by increasing the tool radius and negative rake angle can aid in enhancing ductile material removal from the surface. It is shown that the cutting performance can be increased by approximately 400% using the optimal tool geometry. It is also shown that the optimal tooling geometry with a steep negative rake angle, i.e. −65°, is capable of producing repeatable surface form and finish over long cutting distances. Finally, it will be shown that the laser beam used for μ-LAM, with the right amount of power, produces surfaces that are under less post machining residual stresses. •Tool cross feeds during μ-LAM of Ge can be enhanced by ~400% using specific tooling geometry.•The tooling geometry with large negative rake angle can be used for extended cuts without sacrifice in from or surface finish.•The addition of the laser beam, using optimal laser powers, doesn't cause any surface finish degradation.•The laser emission during μ-LAM of Ge can produce parts with better mechanical properties.•The lower residual stresses induced during μ-LAM of Ge, suggests tool wear may reduce using the process.
In this paper we present an experimental study on ultraprecision machining (UPM) of single crystal Ge using the-LAM process. The material is oriented with the cutting plane normal to the direction. It is shown that increased hydrostatic pressures on the surface during cutting by increasing the tool radius and negative rake angle can aid in enhancing ductile material removal from the surface. It is shown that the cutting performance can be increased by approximately 400% using the optimal tool geometry. It is also shown that the optimal tooling geometry with a steep negative rake angle, i.e.-65°, is capable of producing repeatable surface form and finish over long cutting distances. Finally, it will be shown that the laser beam used for-LAM, with the right amount of power, produces surfaces that are under less post machining residual stresses.
Author Di, Kang
Ravindra, Deepak
Navare, Jayesh
Shahinian, Hossein
Bodlapati, Charan
Zaytsev, Dmytro
Author_xml – sequence: 1
  givenname: Hossein
  orcidid: 0000-0001-7511-2910
  surname: Shahinian
  fullname: Shahinian, Hossein
  email: hossein.shahinian@micro-lam.com
– sequence: 2
  givenname: Kang
  surname: Di
  fullname: Di, Kang
– sequence: 3
  givenname: Jayesh
  surname: Navare
  fullname: Navare, Jayesh
– sequence: 4
  givenname: Charan
  surname: Bodlapati
  fullname: Bodlapati, Charan
– sequence: 5
  givenname: Dmytro
  surname: Zaytsev
  fullname: Zaytsev, Dmytro
– sequence: 6
  givenname: Deepak
  surname: Ravindra
  fullname: Ravindra, Deepak
BackLink https://hal.science/hal-03518051$$DView record in HAL
BookMark eNqNkEtrAkEQhOdgIGryH5bccthNt_uazSmiiQaEXOJ56J2Hjqy7MrMI_vuMmISQk6eCor5qukZs0HatZuwBIUHA4mmXHJyW1ttgt5tkAhNIIEuCDNgQMMO4SPPqlo283wFAySEbsvm66R39glFDXruYvLe-1ypSlvZdq6I9ya1tbbuJOhP5oI2OpDv5nppooe_YjaHG6_tvHbP12-vnbBmvPhbvs-kqlmnO-5iUQdIVmhRznnNTy6rGoi5NwZXJoMpK5BWllJfSKF6nqiomNU5qMFSWWPJ0zB4vvVtqxMHZPbmT6MiK5XQlzh6kOXLI8Ygh-3LJStd577QR0vbUhx_Dv7YRCOK8mtiJv6uJ82oCMhEkVDz_q_i5eRU8v8A6DHK02gkvrW6lVjYgvVCdvabmCybDlVs
CitedBy_id crossref_primary_10_1088_2631_7990_acbb42
crossref_primary_10_1016_j_ijrmhm_2023_106311
crossref_primary_10_1016_j_procir_2022_03_089
crossref_primary_10_1007_s00170_025_15166_x
crossref_primary_10_1016_j_optlastec_2021_107113
crossref_primary_10_1016_j_ijmachtools_2022_103905
crossref_primary_10_1016_j_measurement_2024_115708
crossref_primary_10_1016_j_jmsy_2022_09_001
crossref_primary_10_1115_1_4053807
crossref_primary_10_1016_j_mssp_2023_108101
crossref_primary_10_1364_AO_415265
crossref_primary_10_1016_j_optlastec_2023_110539
crossref_primary_10_1016_j_jmapro_2024_01_081
crossref_primary_10_1364_AO_504587
crossref_primary_10_1016_j_ijmachtools_2021_103770
crossref_primary_10_7736_JKSPE_023_037
crossref_primary_10_1088_1402_4896_ad8f05
crossref_primary_10_1016_j_ceramint_2023_09_206
crossref_primary_10_1016_j_jeurceramsoc_2023_01_011
crossref_primary_10_1088_2631_7990_ad2c5e
crossref_primary_10_1016_j_jmatprotec_2022_117505
Cites_doi 10.1016/S0007-8506(07)62377-4
10.1016/j.ijmachtools.2008.12.009
10.1016/j.precisioneng.2018.11.011
10.1016/j.precisioneng.2007.08.003
10.1111/j.1151-2916.1995.tb08612.x
10.1117/1.OE.58.9.092607
10.1364/AO.28.003950
10.1117/12.7972285
10.1111/j.1151-2916.1990.tb05142.x
10.1016/S0007-8506(07)61009-9
10.1016/j.matdes.2015.12.119
10.1016/S0007-8506(07)62878-9
10.1016/0141-6359(91)90500-I
10.1117/12.7972286
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.precisioneng.2020.04.020
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 155
ExternalDocumentID oai_HAL_hal_03518051v1
10_1016_j_precisioneng_2020_04_020
S0141635919309237
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AEZYN
AFJKZ
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SSM
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
XPP
ZMT
~G-
AAYWO
AAYXX
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
APXCP
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c358t-adf1ae91f315858fbc9b16b7f68df40947189a3a57cfd8b3d962b12b0fa771783
IEDL.DBID .~1
ISSN 0141-6359
IngestDate Fri May 09 12:24:36 EDT 2025
Tue Jul 01 02:13:01 EDT 2025
Thu Apr 24 23:09:05 EDT 2025
Sun Apr 06 06:53:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords IR optics
μ-LAM
Ultraprecision machining
µ-LAM
Language English
License Copyright: http://hal.archives-ouvertes.fr/licences/copyright
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-adf1ae91f315858fbc9b16b7f68df40947189a3a57cfd8b3d962b12b0fa771783
ORCID 0000-0001-7511-2910
0000-0003-0757-240X
OpenAccessLink https://hal.science/hal-03518051
PageCount 7
ParticipantIDs hal_primary_oai_HAL_hal_03518051v1
crossref_citationtrail_10_1016_j_precisioneng_2020_04_020
crossref_primary_10_1016_j_precisioneng_2020_04_020
elsevier_sciencedirect_doi_10_1016_j_precisioneng_2020_04_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Precision engineering
PublicationYear 2020
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Rhorer, Evans (bib3) 1995; 1
Shahinian, Navare, Zaytsev, Ravindra (bib17) 2019; 58
Benjamin (bib10) 1978; 17
Jonathan C Morris, Joseph, Patten, O Scattergood (bib5) 1995; 78
Blake, O Scattergood (bib8) 1990; 73
Shahinian, Zaytsev, Navare, Su, Kang, Ravindra (bib18) 2019
Lai, Zhang, Fang, Bi (bib11) 2019; 56
DE Brehl, Dow (bib13) 2008; 32
Buralli, Morris (bib9) 1989; 28
Kim (bib7) 2002; 19
Da Lucca, Chou, Hocken (bib12) 1998; 47
Cullity (bib19) 1956
Lee, Chaudhari, Zhang, Wang (bib15) 2019
Pfefferkorn, Lei, Jeon, Haddad (bib16) 2009; 49
Yaser, Ashburn, Darren (bib20) 2017; vols. 1–1
Blackley, Scattergood (bib4) 1991; 13
Sajjady, H Nouri Hossein Abadi, Nosouhi (bib14) 2016; 93
Nakasuji, Kodera, Hara, Matsunaga, Ikawa, Shimada (bib1) 1990; 39
Shimada, Ikawa, Inamura, Takezawa, Ohmori, Sata (bib6) 1995; 44
Saito (bib2) 1978; 17
Cullity (10.1016/j.precisioneng.2020.04.020_bib19) 1956
DE Brehl (10.1016/j.precisioneng.2020.04.020_bib13) 2008; 32
Sajjady (10.1016/j.precisioneng.2020.04.020_bib14) 2016; 93
Pfefferkorn (10.1016/j.precisioneng.2020.04.020_bib16) 2009; 49
Blake (10.1016/j.precisioneng.2020.04.020_bib8) 1990; 73
Rhorer (10.1016/j.precisioneng.2020.04.020_bib3) 1995; 1
Blackley (10.1016/j.precisioneng.2020.04.020_bib4) 1991; 13
Shimada (10.1016/j.precisioneng.2020.04.020_bib6) 1995; 44
Shahinian (10.1016/j.precisioneng.2020.04.020_bib17) 2019; 58
Benjamin (10.1016/j.precisioneng.2020.04.020_bib10) 1978; 17
Saito (10.1016/j.precisioneng.2020.04.020_bib2) 1978; 17
Lai (10.1016/j.precisioneng.2020.04.020_bib11) 2019; 56
Lee (10.1016/j.precisioneng.2020.04.020_bib15) 2019
Buralli (10.1016/j.precisioneng.2020.04.020_bib9) 1989; 28
Da Lucca (10.1016/j.precisioneng.2020.04.020_bib12) 1998; 47
Kim (10.1016/j.precisioneng.2020.04.020_bib7) 2002; 19
Yaser (10.1016/j.precisioneng.2020.04.020_bib20) 2017; vols. 1–1
Nakasuji (10.1016/j.precisioneng.2020.04.020_bib1) 1990; 39
Jonathan C Morris (10.1016/j.precisioneng.2020.04.020_bib5) 1995; 78
Shahinian (10.1016/j.precisioneng.2020.04.020_bib18) 2019
References_xml – start-page: 77
  year: 2019
  end-page: 102
  ident: bib15
  article-title: Thermally assisted microcutting of calcium fluoride single crystals
  publication-title: Simulation and experiments of material-oriented ultra-precision machining
– volume: 28
  start-page: 3950
  year: 1989
  end-page: 3959
  ident: bib9
  article-title: Design of a wide field diffractive landscape lens
  publication-title: Appl Optic
– volume: 19
  start-page: 126
  year: 2002
  end-page: 133
  ident: bib7
  article-title: A study on the critical depth of cut in ultra-precision machining
  publication-title: Journal of the Korean Society for Precision Engineering
– volume: 17
  start-page: 176574
  year: 1978
  ident: bib10
  article-title: Diamond turning at a large optical manufacturer
  publication-title: Opt Eng
– volume: vols. 1–1
  year: 2017
  ident: bib20
  article-title: Silicon-germanium: properties, growth and applications
  publication-title: Springer handbook of electronic and photonic materials
– volume: 13
  start-page: 95
  year: 1991
  end-page: 103
  ident: bib4
  article-title: Ductile-regime machining model for diamond turning of brittle materials
  publication-title: Precis Eng
– year: 1956
  ident: bib19
  article-title: Elements of X-ray diffraction
– volume: 44
  start-page: 523
  year: 1995
  end-page: 526
  ident: bib6
  article-title: Brittle-ductile transition phenomena in microindentation and micromachining
  publication-title: CIRP annals
– volume: 32
  start-page: 153
  year: 2008
  end-page: 172
  ident: bib13
  article-title: Review of vibration-assisted machining
  publication-title: Precis Eng
– volume: 78
  start-page: 2015
  year: 1995
  end-page: 2020
  ident: bib5
  article-title: Origins of the ductile regime in single-point diamond turning of semiconductors
  publication-title: J Am Ceram Soc
– volume: 49
  start-page: 357
  year: 2009
  end-page: 365
  ident: bib16
  article-title: A metric for defining the energy efficiency of thermally assisted machining
  publication-title: Int J Mach Tool Manufact
– volume: 39
  start-page: 89
  year: 1990
  end-page: 92
  ident: bib1
  article-title: Diamond turning of brittle materials for optical components
  publication-title: CIRP annals
– year: 2019
  ident: bib18
  article-title: Micro laser assisted machining (μ-lam) of precision optics
  publication-title: , page OT1A.5
– volume: 17
  start-page: 176570
  year: 1978
  ident: bib2
  article-title: Diamond turning of optics: the past, the present, and the exciting future
  publication-title: Opt Eng
– volume: 73
  start-page: 949
  year: 1990
  end-page: 957
  ident: bib8
  article-title: Ductile-regime machining of germanium and silicon
  publication-title: J Am Ceram Soc
– volume: 56
  start-page: 164
  year: 2019
  end-page: 171
  ident: bib11
  article-title: Effects of crystallographic orientation and negative rake angle on the brittle-ductile transition and subsurface deformation in machining of monocrystalline germanium
  publication-title: Precis Eng
– volume: 47
  start-page: 475
  year: 1998
  end-page: 478
  ident: bib12
  article-title: Effect of tool edge geometry on the nanometric cutting of ge
  publication-title: CIRP Annals
– volume: 1
  year: 1995
  ident: bib3
  article-title: Fabrication of optics by diamond turning
  publication-title: Handbook of optics
– volume: 93
  start-page: 311
  year: 2016
  end-page: 323
  ident: bib14
  article-title: Analytical and experimental study of topography of surface texture in ultrasonic vibration assisted turning
  publication-title: Mater Des
– volume: 58
  year: 2019
  ident: bib17
  article-title: Microlaser assisted diamond turning of precision silicon optics
  publication-title: Opt Eng
– volume: 44
  start-page: 523
  issue: 1
  year: 1995
  ident: 10.1016/j.precisioneng.2020.04.020_bib6
  article-title: Brittle-ductile transition phenomena in microindentation and micromachining
  publication-title: CIRP annals
  doi: 10.1016/S0007-8506(07)62377-4
– volume: 49
  start-page: 357
  issue: 5
  year: 2009
  ident: 10.1016/j.precisioneng.2020.04.020_bib16
  article-title: A metric for defining the energy efficiency of thermally assisted machining
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/j.ijmachtools.2008.12.009
– volume: 19
  start-page: 126
  issue: 8
  year: 2002
  ident: 10.1016/j.precisioneng.2020.04.020_bib7
  article-title: A study on the critical depth of cut in ultra-precision machining
  publication-title: Journal of the Korean Society for Precision Engineering
– volume: 56
  start-page: 164
  year: 2019
  ident: 10.1016/j.precisioneng.2020.04.020_bib11
  article-title: Effects of crystallographic orientation and negative rake angle on the brittle-ductile transition and subsurface deformation in machining of monocrystalline germanium
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2018.11.011
– volume: 32
  start-page: 153
  issue: 3
  year: 2008
  ident: 10.1016/j.precisioneng.2020.04.020_bib13
  article-title: Review of vibration-assisted machining
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2007.08.003
– volume: 78
  start-page: 2015
  issue: 8
  year: 1995
  ident: 10.1016/j.precisioneng.2020.04.020_bib5
  article-title: Origins of the ductile regime in single-point diamond turning of semiconductors
  publication-title: J Am Ceram Soc
  doi: 10.1111/j.1151-2916.1995.tb08612.x
– start-page: 77
  year: 2019
  ident: 10.1016/j.precisioneng.2020.04.020_bib15
  article-title: Thermally assisted microcutting of calcium fluoride single crystals
– volume: 58
  issue: 9
  year: 2019
  ident: 10.1016/j.precisioneng.2020.04.020_bib17
  article-title: Microlaser assisted diamond turning of precision silicon optics
  publication-title: Opt Eng
  doi: 10.1117/1.OE.58.9.092607
– volume: vols. 1–1
  year: 2017
  ident: 10.1016/j.precisioneng.2020.04.020_bib20
  article-title: Silicon-germanium: properties, growth and applications
– volume: 28
  start-page: 3950
  issue: 18
  year: 1989
  ident: 10.1016/j.precisioneng.2020.04.020_bib9
  article-title: Design of a wide field diffractive landscape lens
  publication-title: Appl Optic
  doi: 10.1364/AO.28.003950
– volume: 17
  start-page: 176570
  issue: 6
  year: 1978
  ident: 10.1016/j.precisioneng.2020.04.020_bib2
  article-title: Diamond turning of optics: the past, the present, and the exciting future
  publication-title: Opt Eng
  doi: 10.1117/12.7972285
– volume: 73
  start-page: 949
  issue: 4
  year: 1990
  ident: 10.1016/j.precisioneng.2020.04.020_bib8
  article-title: Ductile-regime machining of germanium and silicon
  publication-title: J Am Ceram Soc
  doi: 10.1111/j.1151-2916.1990.tb05142.x
– volume: 39
  start-page: 89
  issue: 1
  year: 1990
  ident: 10.1016/j.precisioneng.2020.04.020_bib1
  article-title: Diamond turning of brittle materials for optical components
  publication-title: CIRP annals
  doi: 10.1016/S0007-8506(07)61009-9
– year: 2019
  ident: 10.1016/j.precisioneng.2020.04.020_bib18
  article-title: Micro laser assisted machining (μ-lam) of precision optics
– year: 1956
  ident: 10.1016/j.precisioneng.2020.04.020_bib19
– volume: 1
  year: 1995
  ident: 10.1016/j.precisioneng.2020.04.020_bib3
  article-title: Fabrication of optics by diamond turning
  publication-title: Handbook of optics
– volume: 93
  start-page: 311
  year: 2016
  ident: 10.1016/j.precisioneng.2020.04.020_bib14
  article-title: Analytical and experimental study of topography of surface texture in ultrasonic vibration assisted turning
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2015.12.119
– volume: 47
  start-page: 475
  issue: 1
  year: 1998
  ident: 10.1016/j.precisioneng.2020.04.020_bib12
  article-title: Effect of tool edge geometry on the nanometric cutting of ge
  publication-title: CIRP Annals
  doi: 10.1016/S0007-8506(07)62878-9
– volume: 13
  start-page: 95
  issue: 2
  year: 1991
  ident: 10.1016/j.precisioneng.2020.04.020_bib4
  article-title: Ductile-regime machining model for diamond turning of brittle materials
  publication-title: Precis Eng
  doi: 10.1016/0141-6359(91)90500-I
– volume: 17
  start-page: 176574
  issue: 6
  year: 1978
  ident: 10.1016/j.precisioneng.2020.04.020_bib10
  article-title: Diamond turning at a large optical manufacturer
  publication-title: Opt Eng
  doi: 10.1117/12.7972286
SSID ssj0007804
Score 2.4260595
Snippet In this paper we present an experimental study on ultraprecision machining (UPM) of single crystal Ge using the μ-LAM process. The material is oriented with...
In this paper we present an experimental study on ultraprecision machining (UPM) of single crystal Ge using the-LAM process. The material is oriented with the...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 149
SubjectTerms Engineering Sciences
IR optics
Mechanical engineering
Mechanics
Optics
Photonic
Ultraprecision machining
μ-LAM
Title Ultraprecision laser-assisted diamond machining of single crystal Ge
URI https://dx.doi.org/10.1016/j.precisioneng.2020.04.020
https://hal.science/hal-03518051
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKWWBAPEV5VBZiDY3jvDwwVIUSXp2o1M2KYxuKSqmigsTCb-cuj1IkBiSWRLFycnQ-3X3nfL4j5JRpHSK73IH4YhxfA4YTAVxUKpgRJjZBhvsd94MwGfo3o2DUIL36LAzSKivfX_r0wltXI51Km53ZeNxBWhKAiUAABHEBpuCJct-P0MrPPr9pHlhgp6QxMgffrguPFhyvWV43spk-Qq7ouUXZU-z9_XuQWnmqt1uL8NPfJBsVbqTd8tO2SMNMt8n6UjXBHXIxnMzzdDEZBVxscgfAMa6kpmAIYHKavhT0SZCgr5biTsHE0Cz_AJQ4oVdmlwz7lw-9xKmaJDgZD-K5k2rLUiOY5QyQf2xVJhQLVWTDWFtM3iD4iJSnQZRZHSuuRegp5inXphGkcjHfI80pKGCfUMv9LFWQYemAQ5xXcahDbvAwqvAiz_gtImqtyKyqII6NLCaypoo9y2WNStSodH0JtxbhC9lZWUfjT1LntfLlD6uQ4PD_JH8CK7aYEEtpJ907iWP4BzUGj_TODv45ySFZw6eSeHZEmvP8zRwDUpmrdmGKbbLavb5NBl_9lOlp
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7W9aAexCe-DeK17KbpKwcPy_qouu7JBW-haRIfrOtSVsF_70wfi4IHwUsLLUPKZJj5kn75BuCUGxMRu9zD-mK9wCCGkyFedCa5lTaxYU77HXfDKB0FNw_hQwv6zVkYolXWub_K6WW2rp90am92ps_PHaIlIZgIJUKQLsKUeAEWSZ0qbMNi7_o2Hc4TMmnsVExG7pFBoz1a0rymRdPLZvKIy0W_WyqfUvvv3-vUwlOz41pWoMs1WK2hI-tVX7cOLTvZgJVvgoKbcD4az4psPhhDaGwLD_ExTaZhGAsYdYa9lgxKtGBvjtFmwdiyvPhEoDhmV3YLRpcX9_3Uq_skeLkIk5mXGcczK7kTHMF_4nQuNY907KLEOFq_Yf2RmcjCOHcm0cLIyNfc112XxbiaS8Q2tCfogB1gTgR5pnGRZUKBpV4nkYmEpfOo0o99G-yCbLyi8lpEnHpZjFXDFntR3z2qyKOqGyi87YKY204rKY0_WZ01zlc_AkNhzv-T_QnO2HxAUtNOewNFz-gnaoJJ6YPv_XOQY1hK7-8GanA9vN2HZXpT8dAOoD0r3u0hApeZPqoD8wv-pewa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultraprecision+laser-assisted+diamond+machining+of+single+crystal+Ge&rft.jtitle=Precision+engineering&rft.au=Shahinian%2C+Hossein&rft.au=Di%2C+Kang&rft.au=Navare%2C+Jayesh&rft.au=Bodlapati%2C+Charan&rft.date=2020-09-01&rft.pub=Elsevier+Inc&rft.issn=0141-6359&rft.volume=65&rft.spage=149&rft.epage=155&rft_id=info:doi/10.1016%2Fj.precisioneng.2020.04.020&rft.externalDocID=S0141635919309237
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon