An information dissemination strategy in social networks based on graph and content analysis
Social networking platforms like Facebook, Twitter, Instagram, and LinkedIn have revolutionized communication, but there’s growing concern about invalid information, misinformation, and disinformation. Malicious actors exploit these platforms for economic, political, or ideological purposes, impacti...
Saved in:
Published in | Egyptian informatics journal Vol. 29; p. 100563 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Social networking platforms like Facebook, Twitter, Instagram, and LinkedIn have revolutionized communication, but there’s growing concern about invalid information, misinformation, and disinformation. Malicious actors exploit these platforms for economic, political, or ideological purposes, impacting public trust, democratic processes, and individual decision-making. Research is being conducted to develop tools to distinguish genuine and invalid information. Twitter, with its vast user base, has become a focal point for studying information diffusion patterns and identifying potential sources of misinformation. A novel method is proposed for identifying information dissemination paths based on node centrality criteria, analyzing the network structure and characteristics of Twitter users to uncover influential nodes that play a crucial role in spreading information across the network. The study explores the potential of deep learning and ensemble learning techniques in content development to improve the accuracy of information classification. Examining the performance of the proposed hybrid model in classifying misinformation showed that in terms of average accuracy, f-measure, and AUC, it achieved 98.6 %, 0.9858, and 0.9862 respectively, which are at least 1.6 %, 1.62 % and 1.5 % higher than the compared method. Additionally, the proposed model could recognize the leader nodes in information dissemination by the highest accuracy of 86% which is competitive with the metaheuristic-based approaches such as FFO and GWO. By leveraging advanced computational techniques and data analysis, we can strive towards a more informed and trustworthy digital environment, where users can navigate through the sea of information with confidence and make well-informed decisions. |
---|---|
AbstractList | Social networking platforms like Facebook, Twitter, Instagram, and LinkedIn have revolutionized communication, but there’s growing concern about invalid information, misinformation, and disinformation. Malicious actors exploit these platforms for economic, political, or ideological purposes, impacting public trust, democratic processes, and individual decision-making. Research is being conducted to develop tools to distinguish genuine and invalid information. Twitter, with its vast user base, has become a focal point for studying information diffusion patterns and identifying potential sources of misinformation. A novel method is proposed for identifying information dissemination paths based on node centrality criteria, analyzing the network structure and characteristics of Twitter users to uncover influential nodes that play a crucial role in spreading information across the network. The study explores the potential of deep learning and ensemble learning techniques in content development to improve the accuracy of information classification. Examining the performance of the proposed hybrid model in classifying misinformation showed that in terms of average accuracy, f-measure, and AUC, it achieved 98.6 %, 0.9858, and 0.9862 respectively, which are at least 1.6 %, 1.62 % and 1.5 % higher than the compared method. Additionally, the proposed model could recognize the leader nodes in information dissemination by the highest accuracy of 86% which is competitive with the metaheuristic-based approaches such as FFO and GWO. By leveraging advanced computational techniques and data analysis, we can strive towards a more informed and trustworthy digital environment, where users can navigate through the sea of information with confidence and make well-informed decisions. |
ArticleNumber | 100563 |
Author | Huang, Jing |
Author_xml | – sequence: 1 givenname: Jing surname: Huang fullname: Huang, Jing email: janehuang198905@gmail.com organization: Digital Arts Academy, Shanghai University, Baoshan 200444, Shanghai, China |
BookMark | eNp9UMtOHDEQ9IFIEOADuM0P7Mbv8SgnhEiChMQFbkhWj91ePOzayLaI9u9jMhHH9KW7WlWl7vpKTlJOSMgVo1tGmf62bDEuW0657JgqLU7IGWOMbozW6pRc1rrQXppxqfQZeb5OQ0whlwO0mNPgY614iGlFtRVouDt2ylCzi7AfErbfubzWYYaKfuikXYG3lwGSH1xODVPrM-yPNdYL8iXAvuLlv35Onn7cPt782tw__Ly7ub7fOKFM24ALQXitpZpGL6WjEvXMlBFumoBz7kcDIxsnBsJzw70AKYygnDIZjJuDOCd3q6_PsNi3Eg9QjjZDtH8XuewslBbdHq0LBjEEE4A5GVAZNQYGbsIZFJsN7V5s9XIl11owfPoxaj8StovtCduPhO2acNd8XzXYn3yPWGx1EZNDHwu61q-I_1H_AWfpiLs |
Cites_doi | 10.1016/j.cie.2024.110010 10.1016/j.omega.2023.102945 10.1016/j.physa.2015.06.043 10.1016/j.is.2018.12.001 10.1109/ACCESS.2024.3381038 10.1142/S0219622023500347 10.1109/ICICT46931.2019.8977659 10.1016/j.eswa.2019.112971 10.1007/s42452-020-2326-y 10.1177/03019233241249361 10.1007/s11042-020-10183-2 10.1007/s13042-017-0768-3 10.1016/j.eswa.2022.118869 10.1089/big.2020.0062 10.1145/3459665 10.1016/j.knosys.2023.111163 10.1007/s11227-018-2641-x 10.1016/j.patrec.2017.10.014 10.1016/j.eswa.2018.12.043 10.1109/ICCED46541.2019.9161090 10.1007/s00521-024-09531-2 10.1016/j.indmarman.2019.08.003 10.54097/farmdr42 10.1007/978-3-319-99722-3_33 10.1007/s12665-018-7498-z 10.1007/s00500-019-04107-y 10.1016/j.eswa.2019.112905 10.1109/BigData.2017.8258484 10.1108/AJEB-01-2024-0007 10.1007/s11633-019-1216-5 |
ContentType | Journal Article |
Copyright | 2025 |
Copyright_xml | – notice: 2025 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.eij.2024.100563 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ DIrectory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | oai_doaj_org_article_cf8eeff8fa1c4fe5857f1ac9eba51b80 10_1016_j_eij_2024_100563 S1110866524001269 |
GroupedDBID | --K 0R~ 1B1 4.4 457 5VS 6I. AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV E3Z EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 O-L O9- OK1 RIG ROL SES SSZ AAYXX CITATION |
ID | FETCH-LOGICAL-c358t-acff3d664597d44c04e6b1583c99a222d78a71791a3d282d3a438302014f8cbf3 |
IEDL.DBID | DOA |
ISSN | 1110-8665 |
IngestDate | Wed Aug 27 01:25:48 EDT 2025 Sun Jul 06 05:02:20 EDT 2025 Sat Jun 28 18:18:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Social networks Ensemble learning Information dissemination |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-acff3d664597d44c04e6b1583c99a222d78a71791a3d282d3a438302014f8cbf3 |
OpenAccessLink | https://doaj.org/article/cf8eeff8fa1c4fe5857f1ac9eba51b80 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cf8eeff8fa1c4fe5857f1ac9eba51b80 crossref_primary_10_1016_j_eij_2024_100563 elsevier_sciencedirect_doi_10_1016_j_eij_2024_100563 |
PublicationCentury | 2000 |
PublicationDate | March 2025 2025-03-00 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
PublicationDecade | 2020 |
PublicationTitle | Egyptian informatics journal |
PublicationYear | 2025 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Liu T, Cai Q, Xu C, Zhou Z, Ni F, Qiao Y, Yang T. (2024). Rumor Detection with a novel graph neural network approach. arXiv preprint arXiv:2403.16206. Chen, Zhang, Yeo, Lau, Lee (b0090) 2018; 105 Wen, Chen, abbas Syed, Wu (b0115) 2024; 122 Bouyer, Beni, Arasteh, Aghaee, Ghanbarzadeh (b0155) 2023; 213 Tschiatschek, Singla, Gomez Rodriguez, Merchant, Krause (b0010) 2018 Monteiro RA, Santos RL, Pardo TA, De Almeida TA, Ruiz EE, Vale OA. (2018). Contributions to the study of fake news in portuguese: New corpus and automatic detection results. In Computational Processing of the Portuguese Language: 13th International Conference, PROPOR 2018, Canela, Brazil, September 24–26, 2018, Proceedings 13 (pp. 324-334). Springer International Publishing. Jain, Katarya (b0145) 2019; 122 Adewole, Han, Wu, Song, Sangaiah (b0015) 2020; 76 Luo, Yang, Chen, Wei (b0135) 2018; 14 Keikha, Rahgozar, Asadpour, Abdollahi (b0140) 2020; 140 Wu, Liu (b0070) 2018 Campan A, Cuzzocrea A, Truta TM. (2017, December). Fighting fake news spread in online social networks: Actual trends and future research directions. In 2017 IEEE International Conference on Big Data (Big Data) (pp. 4453-4457). IEEE. Zareie, Sheikhahmadi, Jalili (b0150) 2020; 142 Kauffmann, Peral, Gil, Ferrández, Sellers, Mora (b0040) 2020; 90 Dhingra, Yadav (b0030) 2019; 10 Cunningham, Delany (b0170) 2021; 54 Jin, Xu (b0045) 2024 Asghar, Ullah, Ahmad, Khan (b0020) 2020; 24 Jin, Xu (b0055) 2024 Reddy, Raj, Gala, Basava (b0065) 2020; 17 Shu, Mahudeswaran, Wang, Lee, Liu (b0100) 2020; 8 Kaliyar, Goswami, Narang (b0110) 2021; 80 Zhou X, Zafarani R. (2018). Fake news: A survey of research, detection methods, and opportunities. arXiv preprint arXiv:1812.00315, 2. Boididou, Papadopoulos, Zampoglou, Apostolidis, Papadopoulou, Kompatsiaris (b0025) 2018; 7 Jin, Xu (b0050) 2024; 36 Li, Jia, Yu (b0185) 2015; 438 Arianti ND, Irfan M, Syaripudin U, Mariana D, Rosmawarni N, Maylawati DSA. (2019, April). Porter stemmer and cosine similarity for automated essay assessment. In 2019 5th International Conference on Computing Engineering and Design (ICCED) (pp. 1-6). IEEE. Jang, Jeong, Kim (b0035) 2019; 81 Baziyad, Kayvanfar, Toloo (b0120) 2024; 190 Mahbub (b0060) 2020; 2 Hashmi, Yayilgan, Yamin, Ali, Abomhara (b0095) 2024 Pisner, Schnyer (b0180) 2020 Madani, Motameni, Roshani (b0085) 2024; 23 Choubin, Zehtabian, Azareh, Rafiei-Sardooi, Sajedi-Hosseini, Kişi (b0175) 2018; 77 Rashid, Bhat (b0125) 2024; 283 Jain A, Shakya A, Khatter H, Gupta AK. (2019, September). A smart system for fake news detection using machine learning. In 2019 International conference on issues and challenges in intelligent computing techniques (ICICT) (Vol. 1, pp. 1-4). IEEE. Kim, Gil (b0165) 2019; 9 10.1016/j.eij.2024.100563_b0080 10.1016/j.eij.2024.100563_b0160 Dhingra (10.1016/j.eij.2024.100563_b0030) 2019; 10 Chen (10.1016/j.eij.2024.100563_b0090) 2018; 105 10.1016/j.eij.2024.100563_b0005 10.1016/j.eij.2024.100563_b0105 Jin (10.1016/j.eij.2024.100563_b0045) 2024 Kaliyar (10.1016/j.eij.2024.100563_b0110) 2021; 80 Zareie (10.1016/j.eij.2024.100563_b0150) 2020; 142 Wu (10.1016/j.eij.2024.100563_b0070) 2018 Jin (10.1016/j.eij.2024.100563_b0055) 2024 Adewole (10.1016/j.eij.2024.100563_b0015) 2020; 76 Keikha (10.1016/j.eij.2024.100563_b0140) 2020; 140 Cunningham (10.1016/j.eij.2024.100563_b0170) 2021; 54 Jin (10.1016/j.eij.2024.100563_b0050) 2024; 36 Hashmi (10.1016/j.eij.2024.100563_b0095) 2024 Bouyer (10.1016/j.eij.2024.100563_b0155) 2023; 213 Kim (10.1016/j.eij.2024.100563_b0165) 2019; 9 Choubin (10.1016/j.eij.2024.100563_b0175) 2018; 77 Rashid (10.1016/j.eij.2024.100563_b0125) 2024; 283 Mahbub (10.1016/j.eij.2024.100563_b0060) 2020; 2 10.1016/j.eij.2024.100563_b0075 10.1016/j.eij.2024.100563_b0130 Tschiatschek (10.1016/j.eij.2024.100563_b0010) 2018 Madani (10.1016/j.eij.2024.100563_b0085) 2024; 23 Luo (10.1016/j.eij.2024.100563_b0135) 2018; 14 Jain (10.1016/j.eij.2024.100563_b0145) 2019; 122 Kauffmann (10.1016/j.eij.2024.100563_b0040) 2020; 90 Shu (10.1016/j.eij.2024.100563_b0100) 2020; 8 Boididou (10.1016/j.eij.2024.100563_b0025) 2018; 7 Asghar (10.1016/j.eij.2024.100563_b0020) 2020; 24 Reddy (10.1016/j.eij.2024.100563_b0065) 2020; 17 Li (10.1016/j.eij.2024.100563_b0185) 2015; 438 Wen (10.1016/j.eij.2024.100563_b0115) 2024; 122 Baziyad (10.1016/j.eij.2024.100563_b0120) 2024; 190 Pisner (10.1016/j.eij.2024.100563_b0180) 2020 Jang (10.1016/j.eij.2024.100563_b0035) 2019; 81 |
References_xml | – volume: 8 start-page: 171 year: 2020 end-page: 188 ident: b0100 article-title: Fakenewsnet: A data repository with news content, social context, and spatiotemporal information for studying fake news on social media publication-title: Big Data – year: 2024 ident: b0045 article-title: Wholesale price forecasts of green grams using the neural network publication-title: Asian J Econ Banking – volume: 54 start-page: 1 year: 2021 end-page: 25 ident: b0170 article-title: k-Nearest neighbour classifiers-A Tutorial publication-title: ACM Comput Surveys (CSUR) – volume: 81 start-page: 104 year: 2019 end-page: 116 ident: b0035 article-title: Distance-based customer detection in fake follower markets publication-title: Inf Syst – volume: 9 start-page: 1 year: 2019 end-page: 21 ident: b0165 article-title: Research paper classification systems based on TF-IDF and LDA schemes publication-title: HCIS – volume: 122 start-page: 1 year: 2019 end-page: 15 ident: b0145 article-title: Discover opinion leader in online social network using firefly algorithm publication-title: Expert Syst Appl – volume: 90 start-page: 523 year: 2020 end-page: 537 ident: b0040 article-title: A framework for big data analytics in commercial social networks: a case study on sentiment analysis and fake review detection for marketing decision-making publication-title: Ind Mark Manag – reference: Monteiro RA, Santos RL, Pardo TA, De Almeida TA, Ruiz EE, Vale OA. (2018). Contributions to the study of fake news in portuguese: New corpus and automatic detection results. In Computational Processing of the Portuguese Language: 13th International Conference, PROPOR 2018, Canela, Brazil, September 24–26, 2018, Proceedings 13 (pp. 324-334). Springer International Publishing. – volume: 76 start-page: 4802 year: 2020 end-page: 4837 ident: b0015 article-title: Twitter spam account detection based on clustering and classification methods publication-title: J Supercomput – volume: 23 start-page: 1063 year: 2024 end-page: 1098 ident: b0085 article-title: Fake news detection using feature extraction, natural language processing, curriculum learning, and deep learning publication-title: Int J Inf Technol Decis Mak – year: 2024 ident: b0055 article-title: Contemporaneous causality among price indices of ten major steel products publication-title: Ironmak Steelmak – volume: 80 start-page: 11765 year: 2021 end-page: 11788 ident: b0110 article-title: FakeBERT: Fake news detection in social media with a BERT-based deep learning approach publication-title: Multimed Tools Appl – volume: 2 start-page: 525 year: 2020 ident: b0060 article-title: A robust technique of fake news detection using ensemble voting classifier and comparison with other classifiers publication-title: SN Appl Sci – start-page: 517 year: 2018 end-page: 524 ident: b0010 article-title: April). Fake news detection in social networks via crowd signals publication-title: In Companion Proceedings of the the Web Conference 2018 – reference: Campan A, Cuzzocrea A, Truta TM. (2017, December). Fighting fake news spread in online social networks: Actual trends and future research directions. In 2017 IEEE International Conference on Big Data (Big Data) (pp. 4453-4457). IEEE. – volume: 14 start-page: 193 year: 2018 ident: b0135 article-title: Identifying opinion leaders with improved weighted LeaderRank in online learning communities publication-title: Int J Perform Eng – start-page: 101 year: 2020 end-page: 121 ident: b0180 article-title: Support vector machine publication-title: Machine Learning – volume: 140 year: 2020 ident: b0140 article-title: Influence maximization across heterogeneous interconnected networks based on deep learning publication-title: Expert Syst Appl – volume: 77 start-page: 1 year: 2018 end-page: 13 ident: b0175 article-title: Precipitation forecasting using classification and regression trees (CART) model: a comparative study of different approaches publication-title: Environ Earth Sci – volume: 105 start-page: 226 year: 2018 end-page: 233 ident: b0090 article-title: Unsupervised rumor detection based on users’ behaviors using neural networks publication-title: Pattern Recogn Lett – volume: 122 year: 2024 ident: b0115 article-title: ERIUE: evidential reasoning-based influential users evaluation in social networks publication-title: Omega – reference: Jain A, Shakya A, Khatter H, Gupta AK. (2019, September). A smart system for fake news detection using machine learning. In 2019 International conference on issues and challenges in intelligent computing techniques (ICICT) (Vol. 1, pp. 1-4). IEEE. – volume: 438 start-page: 321 year: 2015 end-page: 334 ident: b0185 article-title: A parameter-free community detection method based on centrality and dispersion of nodes in complex networks publication-title: Physica A – volume: 10 start-page: 2143 year: 2019 end-page: 2162 ident: b0030 article-title: Spam analysis of big reviews dataset using fuzzy ranking evaluation algorithm and Hadoop publication-title: Int J Mach Learn Cybern – volume: 36 start-page: 8693 year: 2024 end-page: 8710 ident: b0050 article-title: Forecasting wholesale prices of yellow corn through the Gaussian process regression publication-title: Neural Comput Appl – volume: 24 start-page: 3475 year: 2020 end-page: 3498 ident: b0020 article-title: Opinion spam detection framework using hybrid classification scheme publication-title: Soft Comput – volume: 213 year: 2023 ident: b0155 article-title: FIP: a fast overlapping community-based influence maximization algorithm using probability coefficient of global diffusion in social networks publication-title: Expert Syst Appl – volume: 142 year: 2020 ident: b0150 article-title: Identification of influential users in social network using gray wolf optimization algorithm publication-title: Expert Syst Appl – reference: Arianti ND, Irfan M, Syaripudin U, Mariana D, Rosmawarni N, Maylawati DSA. (2019, April). Porter stemmer and cosine similarity for automated essay assessment. In 2019 5th International Conference on Computing Engineering and Design (ICCED) (pp. 1-6). IEEE. – year: 2024 ident: b0095 article-title: Advancing fake news detection: hybrid deep learning with fasttext and explainable AI publication-title: IEEE Access – volume: 7 start-page: 71 year: 2018 end-page: 86 ident: b0025 article-title: Detection and visualization of misleading content on Twitter publication-title: Int J Multim Inf Retrieval – reference: Zhou X, Zafarani R. (2018). Fake news: A survey of research, detection methods, and opportunities. arXiv preprint arXiv:1812.00315, 2. – volume: 283 year: 2024 ident: b0125 article-title: OlapGN: a multi-layered graph convolution network-based model for locating influential nodes in graph networks publication-title: Knowl-Based Syst – start-page: 637 year: 2018 end-page: 645 ident: b0070 article-title: February). Tracing fake-news footprints: Characterizing social media messages by how they propagate publication-title: In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining – reference: Liu T, Cai Q, Xu C, Zhou Z, Ni F, Qiao Y, Yang T. (2024). Rumor Detection with a novel graph neural network approach. arXiv preprint arXiv:2403.16206. – volume: 17 start-page: 210 year: 2020 end-page: 221 ident: b0065 article-title: Text-mining-based fake news detection using ensemble methods publication-title: Int J Autom Comput – volume: 190 year: 2024 ident: b0120 article-title: A data envelopment analysis model for opinion leaders’ identification in social networks publication-title: Comput Ind Eng – volume: 190 year: 2024 ident: 10.1016/j.eij.2024.100563_b0120 article-title: A data envelopment analysis model for opinion leaders’ identification in social networks publication-title: Comput Ind Eng doi: 10.1016/j.cie.2024.110010 – volume: 122 year: 2024 ident: 10.1016/j.eij.2024.100563_b0115 article-title: ERIUE: evidential reasoning-based influential users evaluation in social networks publication-title: Omega doi: 10.1016/j.omega.2023.102945 – volume: 438 start-page: 321 year: 2015 ident: 10.1016/j.eij.2024.100563_b0185 article-title: A parameter-free community detection method based on centrality and dispersion of nodes in complex networks publication-title: Physica A doi: 10.1016/j.physa.2015.06.043 – volume: 81 start-page: 104 year: 2019 ident: 10.1016/j.eij.2024.100563_b0035 article-title: Distance-based customer detection in fake follower markets publication-title: Inf Syst doi: 10.1016/j.is.2018.12.001 – year: 2024 ident: 10.1016/j.eij.2024.100563_b0095 article-title: Advancing fake news detection: hybrid deep learning with fasttext and explainable AI publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3381038 – volume: 23 start-page: 1063 issue: 03 year: 2024 ident: 10.1016/j.eij.2024.100563_b0085 article-title: Fake news detection using feature extraction, natural language processing, curriculum learning, and deep learning publication-title: Int J Inf Technol Decis Mak doi: 10.1142/S0219622023500347 – ident: 10.1016/j.eij.2024.100563_b0105 doi: 10.1109/ICICT46931.2019.8977659 – volume: 142 year: 2020 ident: 10.1016/j.eij.2024.100563_b0150 article-title: Identification of influential users in social network using gray wolf optimization algorithm publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.112971 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.eij.2024.100563_b0165 article-title: Research paper classification systems based on TF-IDF and LDA schemes publication-title: HCIS – volume: 2 start-page: 525 issue: 4 year: 2020 ident: 10.1016/j.eij.2024.100563_b0060 article-title: A robust technique of fake news detection using ensemble voting classifier and comparison with other classifiers publication-title: SN Appl Sci doi: 10.1007/s42452-020-2326-y – year: 2024 ident: 10.1016/j.eij.2024.100563_b0055 article-title: Contemporaneous causality among price indices of ten major steel products publication-title: Ironmak Steelmak doi: 10.1177/03019233241249361 – start-page: 101 year: 2020 ident: 10.1016/j.eij.2024.100563_b0180 article-title: Support vector machine – volume: 7 start-page: 71 issue: 1 year: 2018 ident: 10.1016/j.eij.2024.100563_b0025 article-title: Detection and visualization of misleading content on Twitter publication-title: Int J Multim Inf Retrieval – start-page: 517 year: 2018 ident: 10.1016/j.eij.2024.100563_b0010 article-title: April). Fake news detection in social networks via crowd signals – volume: 80 start-page: 11765 issue: 8 year: 2021 ident: 10.1016/j.eij.2024.100563_b0110 article-title: FakeBERT: Fake news detection in social media with a BERT-based deep learning approach publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-10183-2 – volume: 10 start-page: 2143 year: 2019 ident: 10.1016/j.eij.2024.100563_b0030 article-title: Spam analysis of big reviews dataset using fuzzy ranking evaluation algorithm and Hadoop publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-017-0768-3 – start-page: 637 year: 2018 ident: 10.1016/j.eij.2024.100563_b0070 article-title: February). Tracing fake-news footprints: Characterizing social media messages by how they propagate – volume: 213 year: 2023 ident: 10.1016/j.eij.2024.100563_b0155 article-title: FIP: a fast overlapping community-based influence maximization algorithm using probability coefficient of global diffusion in social networks publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.118869 – volume: 8 start-page: 171 issue: 3 year: 2020 ident: 10.1016/j.eij.2024.100563_b0100 article-title: Fakenewsnet: A data repository with news content, social context, and spatiotemporal information for studying fake news on social media publication-title: Big Data doi: 10.1089/big.2020.0062 – volume: 54 start-page: 1 issue: 6 year: 2021 ident: 10.1016/j.eij.2024.100563_b0170 article-title: k-Nearest neighbour classifiers-A Tutorial publication-title: ACM Comput Surveys (CSUR) doi: 10.1145/3459665 – volume: 283 year: 2024 ident: 10.1016/j.eij.2024.100563_b0125 article-title: OlapGN: a multi-layered graph convolution network-based model for locating influential nodes in graph networks publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2023.111163 – volume: 76 start-page: 4802 year: 2020 ident: 10.1016/j.eij.2024.100563_b0015 article-title: Twitter spam account detection based on clustering and classification methods publication-title: J Supercomput doi: 10.1007/s11227-018-2641-x – volume: 105 start-page: 226 year: 2018 ident: 10.1016/j.eij.2024.100563_b0090 article-title: Unsupervised rumor detection based on users’ behaviors using neural networks publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2017.10.014 – volume: 14 start-page: 193 issue: 2 year: 2018 ident: 10.1016/j.eij.2024.100563_b0135 article-title: Identifying opinion leaders with improved weighted LeaderRank in online learning communities publication-title: Int J Perform Eng – volume: 122 start-page: 1 year: 2019 ident: 10.1016/j.eij.2024.100563_b0145 article-title: Discover opinion leader in online social network using firefly algorithm publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.12.043 – ident: 10.1016/j.eij.2024.100563_b0160 doi: 10.1109/ICCED46541.2019.9161090 – volume: 36 start-page: 8693 issue: 15 year: 2024 ident: 10.1016/j.eij.2024.100563_b0050 article-title: Forecasting wholesale prices of yellow corn through the Gaussian process regression publication-title: Neural Comput Appl doi: 10.1007/s00521-024-09531-2 – volume: 90 start-page: 523 year: 2020 ident: 10.1016/j.eij.2024.100563_b0040 article-title: A framework for big data analytics in commercial social networks: a case study on sentiment analysis and fake review detection for marketing decision-making publication-title: Ind Mark Manag doi: 10.1016/j.indmarman.2019.08.003 – ident: 10.1016/j.eij.2024.100563_b0080 – ident: 10.1016/j.eij.2024.100563_b0130 doi: 10.54097/farmdr42 – ident: 10.1016/j.eij.2024.100563_b0075 doi: 10.1007/978-3-319-99722-3_33 – volume: 77 start-page: 1 year: 2018 ident: 10.1016/j.eij.2024.100563_b0175 article-title: Precipitation forecasting using classification and regression trees (CART) model: a comparative study of different approaches publication-title: Environ Earth Sci doi: 10.1007/s12665-018-7498-z – volume: 24 start-page: 3475 year: 2020 ident: 10.1016/j.eij.2024.100563_b0020 article-title: Opinion spam detection framework using hybrid classification scheme publication-title: Soft Comput doi: 10.1007/s00500-019-04107-y – volume: 140 year: 2020 ident: 10.1016/j.eij.2024.100563_b0140 article-title: Influence maximization across heterogeneous interconnected networks based on deep learning publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.112905 – ident: 10.1016/j.eij.2024.100563_b0005 doi: 10.1109/BigData.2017.8258484 – year: 2024 ident: 10.1016/j.eij.2024.100563_b0045 article-title: Wholesale price forecasts of green grams using the neural network publication-title: Asian J Econ Banking doi: 10.1108/AJEB-01-2024-0007 – volume: 17 start-page: 210 issue: 2 year: 2020 ident: 10.1016/j.eij.2024.100563_b0065 article-title: Text-mining-based fake news detection using ensemble methods publication-title: Int J Autom Comput doi: 10.1007/s11633-019-1216-5 |
SSID | ssj0000612456 |
Score | 2.311938 |
Snippet | Social networking platforms like Facebook, Twitter, Instagram, and LinkedIn have revolutionized communication, but there’s growing concern about invalid... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 100563 |
SubjectTerms | Deep learning Ensemble learning Information dissemination Social networks |
SummonAdditionalLinks | – databaseName: Elsevier Free Content dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBahUzuUPmn6QkOngoltybI8JqEhFNqpgQwFo2dxBick6dB_3zvZDsnQpZstTrY5ybo76bvvCHlSFrzQOPERLIR5xEViI43HhQi_UN7G0Amzkd_exXTGX-fZvEfGXS4Mwirbtb9Z08Nq3bYMWm0OVlU1gP8QqwSJDFGQSSowiY9xGZL45qPdPguacB6KuKJ8hB26w80A83LVAqLElCNcIBPswDwFFv89K7VneSZn5LR1Gemw-apz0nP1BTnZIxK8JJ_DmrYUqKhoGk7ZEeQS7jYNA-0PiNBmj5zWDfp7Q9GKWQpCgbmaqtpSRK-DKYLrhq_kiswmLx_jadTWTYgMy-Q2UsZ7ZgXSxOSWcxNzJ3SSSWaKQoE_YHOpcqQlVcxCxGWZQr5S8BsT7qXRnl2To3pZuxtCTWG9sSI2TFouIVQTWpvYp5mNtTBe9Mlzp65y1dBjlB1ubFGCbkvUbdnotk9GqNCdIDJbh4bl-qtsh7Y0XjrnvfQqMdw7iGZynyhTOK2yRMu4T3g3HOXBRIFHVX-_-_Z_3e7IcYoFfwPo7J4cbdff7gG8kK1-DNPsFzBa2tQ priority: 102 providerName: Elsevier |
Title | An information dissemination strategy in social networks based on graph and content analysis |
URI | https://dx.doi.org/10.1016/j.eij.2024.100563 https://doaj.org/article/cf8eeff8fa1c4fe5857f1ac9eba51b80 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv9uBJCGabzWZ7bMVSFQXBQg_Csk9oD1FsPfjvndlNJB7Ei5eQhE02zIT9ZjJfviHkQjuIQnMWMlgIq4wL5jKD5UKkX-jgcrgI_0Z-eBTTGb-bl_NOqy_khCV54GS4Kxuk9yHIoJnlwUN0WwWm7dAbXTIjY7YOmNdJptIazLCiFzurwEKDom5tSTOSu_xiCbnhgCNJoBTFD1CK2v0dbOrgzWSHbDeBIh2lB9wlG77eI1sd-cB98jKqaSN8iualsbaO1JZ4tEq6s58whKYv47ROnO8VRexyFAZFvWqqa0eRsw4ABPtJpeSAzCY3z9fTrOmWkNmilOtM2xAKJ1AcpnKc25x7YVgpCzscaogCXCV1hWKkunCQZ7lCo0opRIuMB2lNKA5Jr36t_RGhduiCdSK3hXRcQoImjLF5GJQuN8IG0SeXrbnUWxLFUC1bbKnAtgptq5Jt-2SMBv0eiHrW8QR4WTVeVn95uU946w7VhAYJ8uFWi9_nPv6PuU_I5gCb_kbi2Snprd8__BlEImtzHl862N7Ox7C9f5JfO__ffA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYAB8RTl6YEJKWrSOI4zUgQqzwmkDkiWn6gMAUEZ-PfcOQkqAwtbYvmS6Ozcw_78HcCJdhiFpllI0BCWCReZSwxtFxL8QgeXohCdRr67F-NHfj0pJgtw3p2FIVhla_sbmx6tddsyaLU5eJtOB_gfUpUgURAKMhuKahGWMBooqX7D1WT0s9BCPpzHKq4kkJBEt7sZcV5--oJp4pATXqAQ-S__FGn859zUnOu5XIe1NmZkZ81nbcCCrzdhdY5JcAuezmrWcqCSplncZieUS7z7aChov7ALaxbJWd3Avz8YuTHHsFOkrma6dozg6-iL8LohLNmGx8uLh_Nx0hZOSGxeyFmibQi5E8QTUzrObcq9MFkhc1tVGgMCV0pdEi-pzh2mXC7XRFiKgWPGg7Qm5DvQq19rvwvMVi5YJ1KbS8cl5mrCGJuGYeFSI2wQfTjt1KXeGn4M1QHHXhTqVpFuVaPbPoxIoT8dido6Nry-P6t2bJUN0vsQZNCZ5cFjOlOGTNvKG11kRqZ94N1wqF8zBR81_fvde_8TO4bl8cPdrbq9ur_Zh5UhVf-NCLQD6M3eP_0hhiQzcxSn3Dc6zt3z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+information+dissemination+strategy+in+social+networks+based+on+graph+and+content+analysis&rft.jtitle=Egyptian+informatics+journal&rft.au=Huang%2C+Jing&rft.date=2025-03-01&rft.issn=1110-8665&rft.volume=29&rft.spage=100563&rft_id=info:doi/10.1016%2Fj.eij.2024.100563&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eij_2024_100563 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-8665&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-8665&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-8665&client=summon |