Evolution of evapotranspiration models using thermal and shortwave remote sensing data
Evapotranspiration (ET) from the land surface is an important component of the terrestrial hydrological cycle. Since the advent of Earth observation by satellites, various models have been developed to use thermal and shortwave remote sensing data for ET estimation. In this review, we provide a brie...
Saved in:
Published in | Remote sensing of environment Vol. 237; p. 111594 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
01.02.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Evapotranspiration (ET) from the land surface is an important component of the terrestrial hydrological cycle. Since the advent of Earth observation by satellites, various models have been developed to use thermal and shortwave remote sensing data for ET estimation. In this review, we provide a brief account of the key milestones in the history of remote sensing ET model development in two categories: temperature-based and conductance-based models. Temperature-based ET models utilize land surface temperature (LST) observed through thermal remote sensing to calculate the sensible heat flux from which ET is estimated as a residual of the surface energy balance or to estimate the evaporative fraction from which ET is derived from the available energy. Models of various complexities have been developed to estimate ET from surfaces of different vegetation fractions. One-source models combine soil and vegetation into a composite surface for ET estimation, while two-source models estimate ET of soil and vegetation components separately. Image contexture-based triangular and trapezoid models are simple and effective temperature-based ET models based on spatial and/or temporal variation patterns of LST. Several effective temporal scaling schemes are available for extending instantaneous temperature-based ET estimation to daily or longer time periods. Conductance-based ET models usually use the Penman-Monteith (P-M) equation to estimate ET with shortwave remote sensing data. A key put to these models is canopy conductance to water vapor, which depends on canopy structure and leaf stomatal conductance. Shortwave remote sensing data are used to determine canopy structural parameters, and stomatal conductance can be estimated in different ways. Based on the principle of the coupling between carbon and water cycles, stomatal conductance can be reliably derived from the plant photosynthesis rate. Three types of photosynthesis models are available for deriving stomatal or canopy conductance: (1) big-leaf models for the total canopy conductance, (2) two-big-leaf models for canopy conductances for sunlit and shaded leaf groups, and (3) two-leaf models for stomatal conductances for the average sunlit and shaded leaves separately. Correspondingly, there are also big-leaf, two-big-leaf and two-leaf ET models based on these conductances. The main difference among them is the level of aggregation of conductances before the P-M equation is used for ET estimation, with big-leaf models having the highest aggregation. Since the relationship between ET and conductance is nonlinear, this aggregation causes negative bias errors, with the big-leaf models having the largest bias. It is apparent from the existing literature that two-leaf conductance-based ET models have the least bias in comparison with flux measurements. Based on this review, we make the following recommendations for future work: (1) improving key remote sensing products needed for ET mapping purposes, including soil moisture, foliage clumping index, and leaf carboxylation rate, (2) combining temperature-based and conductance-based models for regional ET estimation, (3) refining methodologies for tight coupling between carbon and water cycles, (4) fully utilizing vegetation structural and biochemical parameters that can now be reliably retrieved from shortwave remote sensing, and (5) to improve regional and global ET monitoring capacity.
•Separating ET models into temperature-based and conductance-based models•Comprehensive accounts for the historical developments of models of these two types•In-depth analysis of bias errors by big-leaf, two-big-leaf and two-leaf ET conductance-based ET models•Future directions for ET research are identified. |
---|---|
AbstractList | Evapotranspiration (ET) from the land surface is an important component of the terrestrial hydrological cycle. Since the advent of Earth observation by satellites, various models have been developed to use thermal and shortwave remote sensing data for ET estimation. In this review, we provide a brief account of the key milestones in the history of remote sensing ET model development in two categories: temperature-based and conductance-based models. Temperature-based ET models utilize land surface temperature (LST) observed through thermal remote sensing to calculate the sensible heat flux from which ET is estimated as a residual of the surface energy balance or to estimate the evaporative fraction from which ET is derived from the available energy. Models of various complexities have been developed to estimate ET from surfaces of different vegetation fractions. One-source models combine soil and vegetation into a composite surface for ET estimation, while two-source models estimate ET of soil and vegetation components separately. Image contexture-based triangular and trapezoid models are simple and effective temperature-based ET models based on spatial and/or temporal variation patterns of LST. Several effective temporal scaling schemes are available for extending instantaneous temperature-based ET estimation to daily or longer time periods. Conductance-based ET models usually use the Penman-Monteith (P-M) equation to estimate ET with shortwave remote sensing data. A key put to these models is canopy conductance to water vapor, which depends on canopy structure and leaf stomatal conductance. Shortwave remote sensing data are used to determine canopy structural parameters, and stomatal conductance can be estimated in different ways. Based on the principle of the coupling between carbon and water cycles, stomatal conductance can be reliably derived from the plant photosynthesis rate. Three types of photosynthesis models are available for deriving stomatal or canopy conductance: (1) big-leaf models for the total canopy conductance, (2) two-big-leaf models for canopy conductances for sunlit and shaded leaf groups, and (3) two-leaf models for stomatal conductances for the average sunlit and shaded leaves separately. Correspondingly, there are also big-leaf, two-big-leaf and two-leaf ET models based on these conductances. The main difference among them is the level of aggregation of conductances before the P-M equation is used for ET estimation, with big-leaf models having the highest aggregation. Since the relationship between ET and conductance is nonlinear, this aggregation causes negative bias errors, with the big-leaf models having the largest bias. It is apparent from the existing literature that two-leaf conductance-based ET models have the least bias in comparison with flux measurements. Based on this review, we make the following recommendations for future work: (1) improving key remote sensing products needed for ET mapping purposes, including soil moisture, foliage clumping index, and leaf carboxylation rate, (2) combining temperature-based and conductance-based models for regional ET estimation, (3) refining methodologies for tight coupling between carbon and water cycles, (4) fully utilizing vegetation structural and biochemical parameters that can now be reliably retrieved from shortwave remote sensing, and (5) to improve regional and global ET monitoring capacity.
•Separating ET models into temperature-based and conductance-based models•Comprehensive accounts for the historical developments of models of these two types•In-depth analysis of bias errors by big-leaf, two-big-leaf and two-leaf ET conductance-based ET models•Future directions for ET research are identified. Evapotranspiration (ET) from the land surface is an important component of the terrestrial hydrological cycle. Since the advent of Earth observation by satellites, various models have been developed to use thermal and shortwave remote sensing data for ET estimation. In this review, we provide a brief account of the key milestones in the history of remote sensing ET model development in two categories: temperature-based and conductance-based models. Temperature-based ET models utilize land surface temperature (LST) observed through thermal remote sensing to calculate the sensible heat flux from which ET is estimated as a residual of the surface energy balance or to estimate the evaporative fraction from which ET is derived from the available energy. Models of various complexities have been developed to estimate ET from surfaces of different vegetation fractions. One-source models combine soil and vegetation into a composite surface for ET estimation, while two-source models estimate ET of soil and vegetation components separately. Image contexture-based triangular and trapezoid models are simple and effective temperature-based ET models based on spatial and/or temporal variation patterns of LST. Several effective temporal scaling schemes are available for extending instantaneous temperature-based ET estimation to daily or longer time periods. Conductance-based ET models usually use the Penman-Monteith (P-M) equation to estimate ET with shortwave remote sensing data. A key put to these models is canopy conductance to water vapor, which depends on canopy structure and leaf stomatal conductance. Shortwave remote sensing data are used to determine canopy structural parameters, and stomatal conductance can be estimated in different ways. Based on the principle of the coupling between carbon and water cycles, stomatal conductance can be reliably derived from the plant photosynthesis rate. Three types of photosynthesis models are available for deriving stomatal or canopy conductance: (1) big-leaf models for the total canopy conductance, (2) two-big-leaf models for canopy conductances for sunlit and shaded leaf groups, and (3) two-leaf models for stomatal conductances for the average sunlit and shaded leaves separately. Correspondingly, there are also big-leaf, two-big-leaf and two-leaf ET models based on these conductances. The main difference among them is the level of aggregation of conductances before the P-M equation is used for ET estimation, with big-leaf models having the highest aggregation. Since the relationship between ET and conductance is nonlinear, this aggregation causes negative bias errors, with the big-leaf models having the largest bias. It is apparent from the existing literature that two-leaf conductance-based ET models have the least bias in comparison with flux measurements. Based on this review, we make the following recommendations for future work: (1) improving key remote sensing products needed for ET mapping purposes, including soil moisture, foliage clumping index, and leaf carboxylation rate, (2) combining temperature-based and conductance-based models for regional ET estimation, (3) refining methodologies for tight coupling between carbon and water cycles, (4) fully utilizing vegetation structural and biochemical parameters that can now be reliably retrieved from shortwave remote sensing, and (5) to improve regional and global ET monitoring capacity. |
ArticleNumber | 111594 |
Author | Chen, Jing M. Liu, Jane |
Author_xml | – sequence: 1 givenname: Jing M. surname: Chen fullname: Chen, Jing M. email: chenj@geog.utoronto.ca – sequence: 2 givenname: Jane surname: Liu fullname: Liu, Jane email: janejj.liu@utoronto.ca |
BookMark | eNp9kE1LAzEQQINUsK3-AG8LXrxsTXaTJsGTlPoBBS_qNaTZWZuym9Qku-K_d9t68tDTwPDeMLwJGjnvAKFrgmcEk_nddhYizApM5IwQwiQ9Q2MiuMwxx3SExhiXNKcF4xdoEuMWY8IEJ2P0sex90yXrXebrDHq98yloF3c26MO29RU0MeuidZ9Z2kBodZNpV2Vx40P61j1kAVqfIIvgDlClk75E57VuIlz9zSl6f1y-LZ7z1evTy-JhlZuSiZRrIyjwOZFSr-V6LWpaykKUc1ExWUIttTFC11hUnDGzhkJTwsEUpmaYkIKbcopuj3d3wX91EJNqbTTQNNqB76IqSiE4x1LQAb35h259F9zw3UCxopxjyvFAkSNlgo8xQK12wbY6_CiC1b602qqhtNqXVsfSg8P_OcamQ70hpW1OmvdHc0gMvYWgorHgDFQ2gEmq8vaE_QtqeJt4 |
CitedBy_id | crossref_primary_10_5194_essd_16_1283_2024 crossref_primary_10_1016_j_rse_2022_113105 crossref_primary_10_1016_j_jhydrol_2023_129459 crossref_primary_10_1016_j_jhydrol_2022_128887 crossref_primary_10_3390_rs13071344 crossref_primary_10_3390_rs14081914 crossref_primary_10_1109_TGRS_2024_3514359 crossref_primary_10_1016_j_rse_2023_113989 crossref_primary_10_1016_j_scitotenv_2023_161919 crossref_primary_10_1029_2023JG007678 crossref_primary_10_3389_fpls_2023_1164078 crossref_primary_10_1016_j_ejrh_2023_101574 crossref_primary_10_1109_TGRS_2023_3324481 crossref_primary_10_1111_1752_1688_13155 crossref_primary_10_1029_2022WR034132 crossref_primary_10_2166_wcc_2022_111 crossref_primary_10_1016_j_isprsjprs_2023_08_004 crossref_primary_10_1080_01431161_2025_2466766 crossref_primary_10_1016_j_isprsjprs_2023_01_004 crossref_primary_10_1109_TGRS_2024_3381696 crossref_primary_10_1016_j_agwat_2021_107390 crossref_primary_10_3390_land14020283 crossref_primary_10_3390_rs16030509 crossref_primary_10_1016_j_acags_2024_100206 crossref_primary_10_1016_j_agwat_2021_107434 crossref_primary_10_1016_j_jhydrol_2022_128807 crossref_primary_10_1016_j_scitotenv_2022_157823 crossref_primary_10_1016_j_rse_2023_113981 crossref_primary_10_1016_j_agrformet_2021_108734 crossref_primary_10_3390_rs13183720 crossref_primary_10_3390_rs13183686 crossref_primary_10_3390_rs14184624 crossref_primary_10_1016_j_jhydrol_2021_127422 crossref_primary_10_1016_j_fcr_2021_108419 crossref_primary_10_1016_j_rse_2024_113998 crossref_primary_10_1007_s12145_025_01786_0 crossref_primary_10_1109_TGRS_2023_3247806 crossref_primary_10_1016_j_agrformet_2023_109702 crossref_primary_10_3390_w14213469 crossref_primary_10_1016_j_agrformet_2023_109701 crossref_primary_10_3390_ijerph20042795 crossref_primary_10_3390_rs13234848 crossref_primary_10_1016_j_jhydrol_2020_125827 crossref_primary_10_1109_TGRS_2020_3030900 crossref_primary_10_1029_2022GL102706 crossref_primary_10_1029_2023WR035251 crossref_primary_10_1007_s00271_024_00963_1 crossref_primary_10_1016_j_agrformet_2024_110117 crossref_primary_10_1002_ird_2890 crossref_primary_10_37394_232015_2023_19_98 crossref_primary_10_3389_ffgc_2023_1106773 crossref_primary_10_1016_j_ecolind_2022_109661 crossref_primary_10_1016_j_jhydrol_2021_127179 crossref_primary_10_1016_j_agrformet_2023_109357 crossref_primary_10_1016_j_agrformet_2024_109955 crossref_primary_10_1016_j_jhydrol_2024_132201 crossref_primary_10_1029_2021WR029691 crossref_primary_10_1029_2024WR037582 crossref_primary_10_1016_j_atmosres_2025_107972 crossref_primary_10_1016_j_advwatres_2020_103667 crossref_primary_10_1016_j_jhydrol_2021_126805 crossref_primary_10_1038_s41559_023_02187_6 crossref_primary_10_1016_j_agrformet_2024_109960 crossref_primary_10_5194_hess_26_6207_2022 crossref_primary_10_1111_pce_14892 crossref_primary_10_3390_rs14164094 crossref_primary_10_1016_j_rse_2025_114657 crossref_primary_10_3390_rs13030343 crossref_primary_10_1016_j_scitotenv_2024_171816 crossref_primary_10_1029_2021WR031069 crossref_primary_10_1016_j_agwat_2021_106763 crossref_primary_10_3389_feart_2020_00092 crossref_primary_10_1016_j_agwat_2023_108466 crossref_primary_10_1029_2021JG006363 crossref_primary_10_1016_j_rse_2023_113519 crossref_primary_10_1016_j_agrformet_2023_109408 crossref_primary_10_3390_rs17030395 crossref_primary_10_1016_j_jhydrol_2022_128678 crossref_primary_10_1109_JSTARS_2024_3492033 crossref_primary_10_1016_j_jhydrol_2022_127982 crossref_primary_10_1038_s44221_023_00181_7 crossref_primary_10_1016_j_agrformet_2023_109520 crossref_primary_10_2166_ws_2021_142 crossref_primary_10_1029_2022RG000777 crossref_primary_10_1016_j_rse_2024_114066 crossref_primary_10_1038_s43017_022_00298_5 crossref_primary_10_3390_s21217196 crossref_primary_10_1016_j_gloplacha_2020_103226 crossref_primary_10_47280_RevFacAgron_LUZ__v42_n1_XI crossref_primary_10_3390_hydrology11030039 crossref_primary_10_1016_j_rse_2022_113212 crossref_primary_10_1016_j_rse_2024_114586 crossref_primary_10_3390_rs16193699 crossref_primary_10_3390_rs13244976 crossref_primary_10_1016_j_rse_2022_113306 crossref_primary_10_1016_j_agrformet_2021_108769 crossref_primary_10_1029_2021WR030747 crossref_primary_10_1002_hyp_14070 crossref_primary_10_1016_j_jhydrol_2022_128204 crossref_primary_10_1080_15481603_2020_1857625 crossref_primary_10_1016_j_agrformet_2021_108806 crossref_primary_10_2166_wcc_2024_724 crossref_primary_10_1016_j_jhydrol_2022_128444 crossref_primary_10_1016_j_agrformet_2022_108882 crossref_primary_10_1016_j_agwat_2023_108609 crossref_primary_10_5194_hess_29_485_2025 crossref_primary_10_1016_j_rse_2024_114080 crossref_primary_10_3390_rs13245148 crossref_primary_10_1016_j_agrformet_2022_109215 crossref_primary_10_1093_aobpla_plad039 crossref_primary_10_1016_j_agrformet_2022_108887 crossref_primary_10_1016_j_jhydrol_2025_133076 crossref_primary_10_1016_j_agwat_2023_108324 crossref_primary_10_1155_2022_2076633 crossref_primary_10_1016_j_rse_2022_113261 crossref_primary_10_1016_j_srs_2024_100152 crossref_primary_10_1109_TGRS_2023_3348526 crossref_primary_10_3390_su15065422 crossref_primary_10_1007_s00271_022_00783_1 crossref_primary_10_1007_s11056_021_09869_8 crossref_primary_10_1016_j_rse_2020_111887 crossref_primary_10_1016_j_rse_2023_113544 crossref_primary_10_1016_j_agwat_2024_109017 crossref_primary_10_1029_2022MS003224 crossref_primary_10_3390_rs15112887 crossref_primary_10_1016_j_rse_2021_112566 crossref_primary_10_1117_1_JRS_17_034503 crossref_primary_10_1029_2020JG005917 crossref_primary_10_1016_j_rse_2021_112602 crossref_primary_10_3390_rs16111927 crossref_primary_10_1016_j_rse_2021_112606 crossref_primary_10_1016_j_agrformet_2024_109961 crossref_primary_10_1016_j_isprsjprs_2023_10_004 crossref_primary_10_3390_rs16122143 crossref_primary_10_1002_wwp2_12255 crossref_primary_10_1016_j_rse_2024_114481 crossref_primary_10_1029_2023JD039246 crossref_primary_10_1016_j_agrformet_2023_109595 crossref_primary_10_1080_2150704X_2025_2466760 crossref_primary_10_5194_hess_25_4417_2021 crossref_primary_10_1016_j_compag_2024_108992 crossref_primary_10_1109_MGRS_2024_3421268 crossref_primary_10_1016_j_isprsjprs_2022_09_016 crossref_primary_10_1016_j_jhydrol_2022_128855 crossref_primary_10_3390_land11060808 crossref_primary_10_1016_j_rse_2020_112113 crossref_primary_10_1111_gcb_15958 crossref_primary_10_3390_rs14092035 crossref_primary_10_3390_rs14102482 crossref_primary_10_3390_rs16101777 crossref_primary_10_1016_j_jhydrol_2023_130224 crossref_primary_10_1016_j_jhydrol_2022_128346 crossref_primary_10_1186_s13717_024_00488_7 crossref_primary_10_1002_hyp_14527 crossref_primary_10_1016_j_agrformet_2021_108421 crossref_primary_10_1016_j_jag_2021_102579 crossref_primary_10_1175_JHM_D_20_0224_1 crossref_primary_10_1016_j_jhydrol_2024_131436 crossref_primary_10_1016_j_agrformet_2022_108984 crossref_primary_10_3390_rs15235465 crossref_primary_10_1016_j_agwat_2024_108864 crossref_primary_10_1016_j_jag_2021_102329 crossref_primary_10_1016_j_fcr_2024_109507 crossref_primary_10_1088_1748_9326_ac3532 crossref_primary_10_3390_land11111903 crossref_primary_10_1016_j_jhydrol_2021_126205 crossref_primary_10_3390_w13233424 crossref_primary_10_3390_rs14174142 crossref_primary_10_1016_j_jhydrol_2022_127786 crossref_primary_10_1016_j_rsase_2022_100704 crossref_primary_10_1016_j_jhydrol_2025_132798 crossref_primary_10_1111_1365_2745_13957 crossref_primary_10_1080_20964471_2024_2423431 crossref_primary_10_1016_j_agwat_2024_108735 crossref_primary_10_1029_2021EA001818 crossref_primary_10_35633_inmateh_70_47 crossref_primary_10_1109_TGRS_2024_3501411 crossref_primary_10_1016_j_compag_2024_109223 crossref_primary_10_3390_f12101296 crossref_primary_10_5194_hess_27_4505_2023 crossref_primary_10_1016_j_rse_2024_114544 crossref_primary_10_1007_s12273_024_1158_x |
Cites_doi | 10.1016/j.rse.2005.03.004 10.1016/S0022-1694(98)00253-4 10.1007/BF00386231 10.1016/0034-4257(94)90090-6 10.1109/JPROC.2010.2043918 10.1007/BF00866416 10.1093/treephys/17.8-9.589 10.3390/s8106165 10.1016/0034-4257(76)90044-4 10.1016/j.rse.2008.09.014 10.1038/nature11983 10.1016/j.agrformet.2008.05.016 10.1016/S0168-1923(98)00109-9 10.1016/S0034-4257(02)00074-3 10.1016/j.jhydrol.2004.08.029 10.1016/j.rse.2007.07.018 10.1016/j.agrformet.2015.09.017 10.1016/j.rse.2019.111296 10.1016/S0034-4257(01)00274-7 10.1016/j.agrformet.2018.04.010 10.1016/j.rse.2012.02.003 10.1016/j.jhydrol.2009.02.013 10.1016/j.agrformet.2009.06.014 10.1029/2010GL043622 10.1109/JPROC.2010.2043032 10.1111/gcb.13599 10.3390/s90503801 10.1029/92JD00255 10.2134/agronj1974.00021962006600030033x 10.1016/j.rse.2007.02.008 10.1029/2007JG000635 10.1098/rspa.1948.0037 10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2 10.2134/agronj1972.00021962006400050016x 10.1029/2007WR006562 10.1029/2009WR008125 10.1016/j.rse.2015.12.018 10.1002/2017JG003978 10.1029/94JD02961 10.1016/0034-4257(96)00039-9 10.1175/1520-0469(1995)052<1096:DOSFFT>2.0.CO;2 10.1016/0034-4257(85)90044-6 10.1007/s10795-005-5186-0 10.1016/j.rse.2014.08.002 10.1002/qj.49709942209 10.1016/j.agrformet.2011.09.010 10.1016/0034-4257(95)00139-R 10.5194/hess-6-85-2002 10.1016/j.rse.2015.06.020 10.1016/0034-4257(93)90096-G 10.1016/S0034-4257(97)00108-9 10.5194/hess-15-967-2011 10.1111/j.1365-2486.1996.tb00069.x 10.1016/j.rse.2009.10.012 10.1029/2006JD007506 10.1111/j.1365-3040.1995.tb00370.x 10.1016/j.agrformet.2017.09.012 10.1046/j.1365-3040.2003.01035.x 10.1016/0168-1923(86)90069-9 10.1111/gcb.13787 10.1016/0168-1923(90)90033-3 10.1016/j.agrformet.2013.10.002 10.1093/treephys/14.7-8-9.1069 10.1111/j.1365-3040.1992.tb00992.x 10.1016/S0034-4257(02)00093-7 10.1016/0034-4257(94)90022-1 10.1016/S0034-4257(99)00049-8 10.1016/S0168-1923(98)00061-6 10.1016/j.rse.2012.12.008 10.1016/0034-4257(92)90102-P 10.1016/j.rse.2017.01.021 10.1016/S0168-1923(99)00005-2 10.1016/j.rse.2005.05.003 10.1029/95WR03097 10.1029/2000WR900033 10.1016/0002-1571(74)90019-3 10.1002/qj.49710544304 10.1023/A:1002071421362 10.1029/WR013i006p00915 10.1016/j.rse.2019.111344 10.3390/s7081612 10.1016/j.rse.2011.02.019 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2 10.1016/j.agrformet.2006.04.006 10.1016/j.rse.2005.07.003 10.1016/0002-1571(71)90034-3 10.1016/j.rse.2007.06.025 10.1016/S0034-4257(96)00215-5 10.1016/0168-1923(95)02259-Z 10.1016/j.rse.2007.02.017 10.1511/2008.74.390 10.1139/x01-228 10.1016/j.rse.2006.07.006 10.1016/0034-4257(89)90027-8 10.1016/j.isprsjprs.2010.03.002 10.1061/(ASCE)0733-9437(2007)133:4(380) 10.1029/2010JG001407 10.1177/0309133309338997 10.1016/j.rse.2013.07.001 10.1038/nature09396 10.1016/S1464-1909(99)00128-8 10.1016/j.agrformet.2009.05.016 10.1016/j.rse.2007.04.015 10.1029/2011GB004053 10.1016/j.jhydrol.2012.08.005 10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2 10.1016/0168-1923(95)02292-9 10.1007/BF00709229 10.1016/S0304-3800(99)00156-8 10.1080/014311697217026 10.1080/01431169008955028 10.1016/0034-4257(80)90045-0 10.1098/rstb.1976.0035 10.1029/2012JG002084 10.1016/0034-4257(93)90092-C 10.1029/1999GL006049 10.1016/0168-1923(95)02265-Y 10.1016/j.rse.2010.01.022 10.1007/s00271-008-0122-3 10.1029/WR026i012p02937 10.1002/qj.49712152704 10.1016/0034-4257(90)90090-9 10.1007/s10712-008-9037-z 10.1016/j.rse.2008.11.007 10.1175/1520-0450(1989)028<0276:EORSRT>2.0.CO;2 10.1016/0034-4257(88)90106-X 10.1029/2000WR900255 10.1109/TGRS.2017.2715361 10.1016/S0168-1923(00)00197-0 10.1016/0034-4257(91)90069-I 10.1016/j.jhydrol.2016.01.035 10.1007/BF02579393 10.1016/j.rse.2006.07.007 10.1109/36.58983 10.1016/S0168-1923(99)00124-0 10.1175/BAMS-84-8-1013 10.1016/0168-1923(89)90017-8 10.1007/BF00121475 10.1029/2002WR001680 10.1016/0034-4257(85)90039-2 10.1016/S0034-4257(01)00283-8 10.1002/2017GL072621 10.1002/qj.49709339809 10.1002/jgrg.20056 10.1016/j.rse.2012.02.015 10.1029/2002JD002062 10.1016/j.rse.2018.12.031 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright Elsevier BV Feb 2020 |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright Elsevier BV Feb 2020 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
DOI | 10.1016/j.rse.2019.111594 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Environmental Sciences |
EISSN | 1879-0704 |
ExternalDocumentID | 10_1016_j_rse_2019_111594 S0034425719306145 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 41~ 457 4G. 53G 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ VOH WH7 WUQ XOL ZCA ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K EFKBS F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
ID | FETCH-LOGICAL-c358t-ac84e76199ab9bb8f43928368d593ef9acc8af08d755cbe2a417ec2cf501127c3 |
IEDL.DBID | .~1 |
ISSN | 0034-4257 |
IngestDate | Fri Jul 11 02:35:01 EDT 2025 Wed Aug 13 05:54:59 EDT 2025 Tue Jul 01 03:51:22 EDT 2025 Thu Apr 24 22:52:42 EDT 2025 Fri Feb 23 02:48:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-ac84e76199ab9bb8f43928368d593ef9acc8af08d755cbe2a417ec2cf501127c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2352360470 |
PQPubID | 2045405 |
ParticipantIDs | proquest_miscellaneous_2388770984 proquest_journals_2352360470 crossref_primary_10_1016_j_rse_2019_111594 crossref_citationtrail_10_1016_j_rse_2019_111594 elsevier_sciencedirect_doi_10_1016_j_rse_2019_111594 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Remote sensing of environment |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Chávez, Neale, Prueger, Kustas (bb0135) 2008; 27 Su (bb0715) 2002; 6 Leuning (bb0420) 1995; 18 Sobrino, Coll, Caselles (bb0690) 1991; 38 Mu, Zhao, Running (bb0540) 2011; 115 Jasechko, Sharp, Gibson, Birks, Yi, Fawcett (bb0335) 2013; 496 Yang, Shang, Guan, Jiang (bb0815) 2013; 118 Yuan, Liu, Yu, Bonnefond, Chen, Davis, Desai, Goldstein, Gianelle, Rossi (bb0825) 2010; 114 Penman (bb0585) 1948; 193 Anderson, Norman, Mecikalski, Otkin, Kustas (bb0020) 2007; 112 Qualls, Brutsaert (bb0625) 1996; 32 Entekhabi, Njoku, O’Neill, Kellogg, Crow, Edelstein (bb0230) 2010; 98 Coll, Caselles, Valor, Niclos, Sanchez, Galve (bb0195) 2007; 110 Jiang, Ryu, Fang, Myneni, Claverie, Zhu (bb0350) 2017; 23 Soer (bb0700) 1980; 9 McCabe, Wood (bb0485) 2006; 105 Chen, Menges, Leblanc (bb0160) 2005; 97 Sellers, Berry, Collatz, Field, Hall (bb0680) 1992; 42 Kustas, Choudhury, Moran, Reginato, Jackson, Gay, Weaver (bb0400) 1989; 44 Van Niel, McVicar, Roderick, Van Dijk, Beringer, Hutley, Van Gorsel (bb0780) 2012; 468 Houborg, Anderson, Norman, Wilson, Meyers (bb0305) 2009; 149 Chen, Black (bb0145) 1992; 15 Goodrich, Scott, Qic, Goff, Unkrich (bb0270) 2000; 105 Stewart (bb8540) 1977; 13 Lefsky (bb0410) 2010; 37 Stone, Horton (bb0710) 1974; 66 Norman, Becker (bb0565) 1995; 77 . Zhang, Tian, Su, Sun, Chen, Xia (bb0840) 2008; 8 Brown (bb0090) 1974; 14 Loranty, M. M., Mackay, D. S., Ewers, B. E., Traver, E., Gruger, E. L., 2010. Contribution of competition for light to within-species variability in stomatal conductance. Water Resour. Res., Vol. 46, W05516, do Kalma, McVicar, McCabe (bb0365) 2008; 29 Croft, H., Chen, J. M., Luo, X., Bartlett, P., Chen, B., Staebler, R. M., 2017. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Glob. Chang. Biol., 23(9): 1365–1386, DOI:10.111/geb.13599. Yang, Su, Zhang, Tian, Li (bb0820) 2015; 168 Liu, Liu, Chen (bb0455) 2012; 117 Tang, Li (bb0735) 2017; 55 Sandholt, Andersen (bb0670) 1993; 46 Bartholie, Namken, Wiegand (bb0050) 1972; 64 Li, Tang, Wan, Bi, Zhou, Tang, Yan, Zhang (bb9000) 2009; 9 Monteith (bb0525) 1977; 12 Farquhar, von Caemmerer, Berry (bb0240) 1980; 149 Kimball, Thornton, White, Running (bb0380) 1997; 12 Chen, Ju, Ciais, Viovy, Liu, Liu (bb0175) 2019 Huang, Band, Hales (bb0315) 2009; 45 Gash (bb8000) 1979; 105 Pisek, Chen, Lacaze, Sonnentag, Alikas (bb0600) 2010; 65 Sobrino, Gomez, Jimenez-Munoz, Olioso (bb0695) 2007; 110 Raupach (bb0630) 1994; 71 Zhang, Kang, Li, Zhang (bb0835) 2008; 148 Merlin, Olivera-Guerra, Hssaine, Amazirh, Rafi, Ezzahar, Gentinec, Khabbab, Gascoina, Er-Raki (bb0495) 2018; 256 Luo, Croft, Chen, Bartlett, Staebler, Froelich (bb0475) 2017; 248 Shuttleworth (bb0685) 1975; 8 Bausch (bb0065) 1993; 46 Katerji, Rana (bb0370) 2006; 138 Bastiaanssen, Menenti, Feddes, Holtslag (bb0060) 1998; 213 Lhomme, Chehbouni (bb0430) 1999; 94 Li, Becker, Stoll, Wan (bb0435) 1999; 69 Carlson, Buffum (bb0120) 1989; 29 Wei, Yoshimura, Wang, Miralles, Jasechko, Lee (bb0805) 2017 Tang, Li, Sun (bb0755) 2013; 138 Kustas, Perry, Doraiswamy, Moran (bb0405) 1994; 49 Miernecki, Wigneron, Lopez-Baeza, Kerr, Jeu (bb0500) 2014; 154 Norman, Kustas, Prueger, Diak (bb0575) 2000; 36 Dyer (bb0225) 1967; 93 Sprintsin, Chen, Desai, Gough (bb0705) 2012; 117 Gillies, Carlson, Cui, Kustas, Humes (bb0260) 1997; 18 Moran, Rahman, Washburne, Goodrich, Weltz, Kustas (bb0530) 1994; 80 Kustas, Daughtry (bb0390) 1990; 49 Huete (bb0320) 1988; 25 Ball, Woodrow, Berry (bb0045) 1987 Jung (bb0360) 2010; 467 Nishida, Nemani, Running, Glassy (bb0555) 2003; 108 Myneni, Smith, Lotsch, Friedl, Morisette, Votava, Running, Hoffman, Knyazikhin, Privette (bb0545) 2002; 83 Grelle, Lindroth, Molder (bb0280) 1999; 98–99 Brutsaert, Sugita (bb0100) 1992; 97 Ryu, Baldocchi, Black, Detto, Law, Leuning (bb0660) 2012; 152 Businger, Wyngaard, Izumi, Bradley (bb0110) 1971; 28 Dai, Dickinson, Wang (bb0215) 2004; 17 Goward, Cruickshanks, Hope (bb9125) 1985; 18 Luo, Chen, Liu, Black, Croft, Staefler, He, Arain, Chen, Mo, Gonsamo, McCaughey (bb0480) 2018 Baldrige, Hook, Grove, Rivera (bb0040) 2009; 113 Jiang, Islam (bb0340) 1999; 26 Sun, Mahrt (bb0730) 1995; 52 Wan, Zhang, Zhang, Li (bb0790) 2002; 83 Gokmen, Vekerdy, Verhoef, Verhoef, Baelaan, van der Tol (bb0265) 2012; 121 He, Chen, Liu, Zheng, Wang, Joiner, Chou, Chen, Liu, Liu (bb0290) 2019; 232 Nemani, Running (bb0550) 1989; 28 Houborg, Anderson, Daughtry (bb0310) 2009; 113 Mu, Heinsch, Zhao, Running (bb0535) 2007; 111 Pereira, Valente, David, Jackson, Minunno, Gash (bb0590) 2016; 534 Price (bb0615) 1984; 79 Chen, Liu, Cihlar, Guolden (bb0150) 1999; 124 Norman, Kustas, Humes (bb0570) 1995; 77 Brutsaert (bb0095) 1982 Jiang, Islam (bb0345) 2001; 37 Garratt, Hicks (bb0250) 1973; 99 Wang, Guicai Li, Ding, Guo, Tang, Wang, Huang, Liu, Chen (bb0800) 2016 Chen, Mo, Pisek, Deng, Ishozawa, Chan (bb0165) 2012; 26 Bonan (bb0080) 1995; 100 Guerschman, Van Dijk, Mattersdorf, Beringer, Hutley, Leuning, Pipunic, Sherman (bb0285) 2009; 369 Reginato, Jackson, Pinter (bb0635) 1985; 18 Boegh, Soegaard, Thomsen (bb0075) 2002; 79 Fisher, Tu, Baldocchi (bb0245) 2008; 112 Dai, Zeng, Dickinson (bb0210) 2003 Sánchez, Kustas, Caselles, Anderson (bb0665) 2008; 112 Minacapilli, Consoli, Vanella, Ciraolo, Motisi (bb0505) 2016; 174 Monteith (bb0520) 1973 Jarvis (bb0330) 1976; 273 Kustas, Norman (bb0395) 1999; 94 Sun (bb0725) 1999; 92 Zhang, Sun, Wang, Xu, Zhu, Tian (bb0830) 2005; 48 Tang, Li, Tang (bb0750) 2010; 114 Rutter, Kershaw, Robins, Morton (bb0650) 1971; 9 Zhang, Peña-Arancibia, McVicar, Chiew, Vaze, Liu, Lu, Zheng, Wang, Liu, Miralles, Pan (bb0845) 2016; 6 Heilman, Kanemasu, Rosenberg, Blad (bb0295) 1976; 5 Leuning, Zhang, Rajaud, Cleugh, Tu (bb0425) 2008; 44 Monin, Obukhov (bb0515) 1954; 24 Baldocchi, Valentini, Running, Oechel, Dahlman (bb0035) 1996; 2 Esau (bb0235) 1977 Ryu (bb0655) 2011; 25 Cleugh, Leuning, Mu, Running (bb0185) 2007; 106 Tatem, Goetz, Hay (bb0760) 2008; 96 Carlson (bb0115) 2007; 7 Tang, Li (bb0745) 2017; 122 Zhang, Kong, Gan, Chiew, McVicar, Zhang, Yang (bb0850) 2019; 222 Carlson, Capehart, Gillies (bb0125) 1995; 54 Jiménez (bb0355) 2011; 116 Chen, Liu, Chen, He, Luo (bb0170) 2016; 216 Norman (bb0560) 1982 Kerr, Waldteufel, Wigneron, Delwart, Cabot, Boutin (bb0375) 2010; 98 Priestley, Taylor (bb0620) 1972; 100 Roerink, Su, Menenti (bb0640) 2000; 25 Clothier, Clawson, Pinter, Moran, Reginato, Jackson (bb0190) 1986; 37 Wang, Leuning (bb0795) 1998; 91 Hopwood (bb0300) 1995; 121 Chen, J. M., 2009. Methods for simulating the spatiotemporal dynamics of the terrestrial ecosystem carbon cycle. Chapter in “Advanced Topics in Human Activity and Changes in Ecosystems” ed. by Dr. G. Yu et al., China High Education Press. Anderson, Norman, Diak, Kustas, Mecikalski (bb0015) 1997; 60 Kustas, Anderson (bb0385) 2009; 149 Merlin, Chirouze, Olioso, Jarlan, Chehbouni, Boulet (bb0490) 2014; 184 Norman, Anderson, Kustas, French, Mecikalski, Torn (bb0580) 2003 Miralles, De Jeu, Gash, Holmes, Dolman (bb0510) 2011; 15 Verstraeten, Veroustraete, Feyen (bb0785) 2005; 96 Garrigues, Lacaze, Baret, Morisette, Weiss, Nickeson, Yang (bb0255) 2008; 113 Granier, Biron, Kostner, Gay, Najjiar (bb0275) 1996; 53 Arain, Black, Barr, Jarvis, Massheder, Verseghy, Nesic (bb0025) 2002; 32 Sandholt, Rasmussen, Andersen (bb0675) 2002; 79 Thunnissen, Nieuwenhuis (bb0765) 1990; 31 Courault (bb0851) 2005; 19 Valor, Caselles (bb0775) 1996; 57 Leuning (bb0415) 1990; 17 Jackson, Idso, Reginato, Pinter (bb0325) 1980 Bastiaanssen (bb0055) 1995 Caselles, Artigao, Hurtado, Coll, Brasa (bb0130) 1998; 63 Chen, Chen, Ju, Geng (bb0155) 2005; 305 Tang, Li (bb0740) 2017; 44 Allen, Tasumi, Trezza (bb0010) 2007; 133 Wei, Fang, Schaaf, He, Chen (bb0810) 2019 Colliander, Jackson (bb0200) 2017; 197 Allen, Pereira, Raes, Smith (bb0005) 1998 Baldocchi (bb0030) 1994; 14 Businger (bb0105) 1966 Loheide, Gorelick (bb0460) 2005; 98 Price (bb4345) 1990; 28 Liu, Chen, Cihlar (bb0450) 2003; 39 Petropoulos, Carlson, Wooster, Islam (bb0595) 2009; 33 Choudhury, Ahmed, Idso, Reginato, Daughtry (bb0180) 1994; 50 Running, Hunt (bb0645) 1993 Li, Tang, Wu, Ren, Yan, Wan, Trigo, Sobrino (bb0440) 2013; 113 Long, Singh (bb0465) 2012; 121 Sugita, Brutsaert (bb0720) 1990; 26 Tuzet, Perrier, Leuning (bb0770) 2003; 26 Becker, Li (bb0070) 1990; 11 Monteith (10.1016/j.rse.2019.111594_bb0525) 1977; 12 Chen (10.1016/j.rse.2019.111594_bb0155) 2005; 305 Huete (10.1016/j.rse.2019.111594_bb0320) 1988; 25 Brown (10.1016/j.rse.2019.111594_bb0090) 1974; 14 Stone (10.1016/j.rse.2019.111594_bb0710) 1974; 66 Anderson (10.1016/j.rse.2019.111594_bb0015) 1997; 60 Nishida (10.1016/j.rse.2019.111594_bb0555) 2003; 108 Carlson (10.1016/j.rse.2019.111594_bb0120) 1989; 29 Coll (10.1016/j.rse.2019.111594_bb0195) 2007; 110 Valor (10.1016/j.rse.2019.111594_bb0775) 1996; 57 Carlson (10.1016/j.rse.2019.111594_bb0115) 2007; 7 Norman (10.1016/j.rse.2019.111594_bb0565) 1995; 77 Bastiaanssen (10.1016/j.rse.2019.111594_bb0060) 1998; 213 Tang (10.1016/j.rse.2019.111594_bb0740) 2017; 44 Dyer (10.1016/j.rse.2019.111594_bb0225) 1967; 93 Minacapilli (10.1016/j.rse.2019.111594_bb0505) 2016; 174 Monteith (10.1016/j.rse.2019.111594_bb0520) 1973 Price (10.1016/j.rse.2019.111594_bb4345) 1990; 28 Merlin (10.1016/j.rse.2019.111594_bb0495) 2018; 256 Houborg (10.1016/j.rse.2019.111594_bb0305) 2009; 149 Gash (10.1016/j.rse.2019.111594_bb8000) 1979; 105 Kimball (10.1016/j.rse.2019.111594_bb0380) 1997; 12 Luo (10.1016/j.rse.2019.111594_bb0480) 2018 Li (10.1016/j.rse.2019.111594_bb0435) 1999; 69 Roerink (10.1016/j.rse.2019.111594_bb0640) 2000; 25 Zhang (10.1016/j.rse.2019.111594_bb0830) 2005; 48 Jiang (10.1016/j.rse.2019.111594_bb0345) 2001; 37 10.1016/j.rse.2019.111594_bb0205 Brutsaert (10.1016/j.rse.2019.111594_bb0100) 1992; 97 Gokmen (10.1016/j.rse.2019.111594_bb0265) 2012; 121 Liu (10.1016/j.rse.2019.111594_bb0455) 2012; 117 Jackson (10.1016/j.rse.2019.111594_bb0325) 1980 Fisher (10.1016/j.rse.2019.111594_bb0245) 2008; 112 Mu (10.1016/j.rse.2019.111594_bb0540) 2011; 115 Sandholt (10.1016/j.rse.2019.111594_bb0675) 2002; 79 Chávez (10.1016/j.rse.2019.111594_bb0135) 2008; 27 Goodrich (10.1016/j.rse.2019.111594_bb0270) 2000; 105 Jarvis (10.1016/j.rse.2019.111594_bb0330) 1976; 273 Choudhury (10.1016/j.rse.2019.111594_bb0180) 1994; 50 Businger (10.1016/j.rse.2019.111594_bb0110) 1971; 28 Chen (10.1016/j.rse.2019.111594_bb0170) 2016; 216 Hopwood (10.1016/j.rse.2019.111594_bb0300) 1995; 121 Sánchez (10.1016/j.rse.2019.111594_bb0665) 2008; 112 Zhang (10.1016/j.rse.2019.111594_bb0850) 2019; 222 Baldocchi (10.1016/j.rse.2019.111594_bb0030) 1994; 14 Entekhabi (10.1016/j.rse.2019.111594_bb0230) 2010; 98 Norman (10.1016/j.rse.2019.111594_bb0560) 1982 Tang (10.1016/j.rse.2019.111594_bb0735) 2017; 55 Carlson (10.1016/j.rse.2019.111594_bb0125) 1995; 54 Lhomme (10.1016/j.rse.2019.111594_bb0430) 1999; 94 Running (10.1016/j.rse.2019.111594_bb0645) 1993 Anderson (10.1016/j.rse.2019.111594_bb0020) 2007; 112 Tang (10.1016/j.rse.2019.111594_bb0755) 2013; 138 Arain (10.1016/j.rse.2019.111594_bb0025) 2002; 32 Long (10.1016/j.rse.2019.111594_bb0465) 2012; 121 Thunnissen (10.1016/j.rse.2019.111594_bb0765) 1990; 31 Jasechko (10.1016/j.rse.2019.111594_bb0335) 2013; 496 Baldrige (10.1016/j.rse.2019.111594_bb0040) 2009; 113 Rutter (10.1016/j.rse.2019.111594_bb0650) 1971; 9 Brutsaert (10.1016/j.rse.2019.111594_bb0095) 1982 Miernecki (10.1016/j.rse.2019.111594_bb0500) 2014; 154 Chen (10.1016/j.rse.2019.111594_bb0160) 2005; 97 Chen (10.1016/j.rse.2019.111594_bb0165) 2012; 26 Wang (10.1016/j.rse.2019.111594_bb0800) 2016 Chen (10.1016/j.rse.2019.111594_bb0145) 1992; 15 Yang (10.1016/j.rse.2019.111594_bb0820) 2015; 168 10.1016/j.rse.2019.111594_bb0470 Yang (10.1016/j.rse.2019.111594_bb0815) 2013; 118 Ryu (10.1016/j.rse.2019.111594_bb0660) 2012; 152 Pisek (10.1016/j.rse.2019.111594_bb0600) 2010; 65 Lefsky (10.1016/j.rse.2019.111594_bb0410) 2010; 37 Chen (10.1016/j.rse.2019.111594_bb0175) 2019 Loheide (10.1016/j.rse.2019.111594_bb0460) 2005; 98 Leuning (10.1016/j.rse.2019.111594_bb0415) 1990; 17 Cleugh (10.1016/j.rse.2019.111594_bb0185) 2007; 106 Boegh (10.1016/j.rse.2019.111594_bb0075) 2002; 79 Wei (10.1016/j.rse.2019.111594_bb0810) 2019 Van Niel (10.1016/j.rse.2019.111594_bb0780) 2012; 468 Dai (10.1016/j.rse.2019.111594_bb0210) 2003 Wang (10.1016/j.rse.2019.111594_bb0795) 1998; 91 Norman (10.1016/j.rse.2019.111594_bb0570) 1995; 77 Businger (10.1016/j.rse.2019.111594_bb0105) 1966 Clothier (10.1016/j.rse.2019.111594_bb0190) 1986; 37 Kustas (10.1016/j.rse.2019.111594_bb0385) 2009; 149 Kustas (10.1016/j.rse.2019.111594_bb0395) 1999; 94 Petropoulos (10.1016/j.rse.2019.111594_bb0595) 2009; 33 Reginato (10.1016/j.rse.2019.111594_bb0635) 1985; 18 Kerr (10.1016/j.rse.2019.111594_bb0375) 2010; 98 Wan (10.1016/j.rse.2019.111594_bb0790) 2002; 83 Qualls (10.1016/j.rse.2019.111594_bb0625) 1996; 32 Kustas (10.1016/j.rse.2019.111594_bb0400) 1989; 44 Moran (10.1016/j.rse.2019.111594_bb0530) 1994; 80 Jiang (10.1016/j.rse.2019.111594_bb0340) 1999; 26 Merlin (10.1016/j.rse.2019.111594_bb0490) 2014; 184 Farquhar (10.1016/j.rse.2019.111594_bb0240) 1980; 149 Jiménez (10.1016/j.rse.2019.111594_bb0355) 2011; 116 Liu (10.1016/j.rse.2019.111594_bb0450) 2003; 39 Kustas (10.1016/j.rse.2019.111594_bb0405) 1994; 49 He (10.1016/j.rse.2019.111594_bb0290) 2019; 232 Nemani (10.1016/j.rse.2019.111594_bb0550) 1989; 28 Caselles (10.1016/j.rse.2019.111594_bb0130) 1998; 63 Chen (10.1016/j.rse.2019.111594_bb0150) 1999; 124 Raupach (10.1016/j.rse.2019.111594_bb0630) 1994; 71 Tuzet (10.1016/j.rse.2019.111594_bb0770) 2003; 26 Bartholie (10.1016/j.rse.2019.111594_bb0050) 1972; 64 Grelle (10.1016/j.rse.2019.111594_bb0280) 1999; 98–99 Zhang (10.1016/j.rse.2019.111594_bb0845) 2016; 6 Mu (10.1016/j.rse.2019.111594_bb0535) 2007; 111 Li (10.1016/j.rse.2019.111594_bb9000) 2009; 9 Sandholt (10.1016/j.rse.2019.111594_bb0670) 1993; 46 Tatem (10.1016/j.rse.2019.111594_bb0760) 2008; 96 Myneni (10.1016/j.rse.2019.111594_bb0545) 2002; 83 Jung (10.1016/j.rse.2019.111594_bb0360) 2010; 467 Gillies (10.1016/j.rse.2019.111594_bb0260) 1997; 18 Price (10.1016/j.rse.2019.111594_bb0615) 1984; 79 Garratt (10.1016/j.rse.2019.111594_bb0250) 1973; 99 Dai (10.1016/j.rse.2019.111594_bb0215) 2004; 17 Norman (10.1016/j.rse.2019.111594_bb0580) 2003 Becker (10.1016/j.rse.2019.111594_bb0070) 1990; 11 Granier (10.1016/j.rse.2019.111594_bb0275) 1996; 53 Heilman (10.1016/j.rse.2019.111594_bb0295) 1976; 5 Ball (10.1016/j.rse.2019.111594_bb0045) 1987 Tang (10.1016/j.rse.2019.111594_bb0745) 2017; 122 Wei (10.1016/j.rse.2019.111594_bb0805) 2017 Sun (10.1016/j.rse.2019.111594_bb0730) 1995; 52 Ryu (10.1016/j.rse.2019.111594_bb0655) 2011; 25 Luo (10.1016/j.rse.2019.111594_bb0475) 2017; 248 Bausch (10.1016/j.rse.2019.111594_bb0065) 1993; 46 Allen (10.1016/j.rse.2019.111594_bb0010) 2007; 133 Garrigues (10.1016/j.rse.2019.111594_bb0255) 2008; 113 Houborg (10.1016/j.rse.2019.111594_bb0310) 2009; 113 Leuning (10.1016/j.rse.2019.111594_bb0425) 2008; 44 10.1016/j.rse.2019.111594_bb0140 Sellers (10.1016/j.rse.2019.111594_bb0680) 1992; 42 Jiang (10.1016/j.rse.2019.111594_bb0350) 2017; 23 Goward (10.1016/j.rse.2019.111594_bb9125) 1985; 18 Li (10.1016/j.rse.2019.111594_bb0440) 2013; 113 Priestley (10.1016/j.rse.2019.111594_bb0620) 1972; 100 Sugita (10.1016/j.rse.2019.111594_bb0720) 1990; 26 Sobrino (10.1016/j.rse.2019.111594_bb0695) 2007; 110 Leuning (10.1016/j.rse.2019.111594_bb0420) 1995; 18 Su (10.1016/j.rse.2019.111594_bb0715) 2002; 6 Yuan (10.1016/j.rse.2019.111594_bb0825) 2010; 114 Baldocchi (10.1016/j.rse.2019.111594_bb0035) 1996; 2 Zhang (10.1016/j.rse.2019.111594_bb0835) 2008; 148 Allen (10.1016/j.rse.2019.111594_bb0005) 1998 Penman (10.1016/j.rse.2019.111594_bb0585) 1948; 193 Norman (10.1016/j.rse.2019.111594_bb0575) 2000; 36 Soer (10.1016/j.rse.2019.111594_bb0700) 1980; 9 Colliander (10.1016/j.rse.2019.111594_bb0200) 2017; 197 Katerji (10.1016/j.rse.2019.111594_bb0370) 2006; 138 Miralles (10.1016/j.rse.2019.111594_bb0510) 2011; 15 Esau (10.1016/j.rse.2019.111594_bb0235) 1977 Monin (10.1016/j.rse.2019.111594_bb0515) 1954; 24 Sprintsin (10.1016/j.rse.2019.111594_bb0705) 2012; 117 Sun (10.1016/j.rse.2019.111594_bb0725) 1999; 92 Bonan (10.1016/j.rse.2019.111594_bb0080) 1995; 100 Shuttleworth (10.1016/j.rse.2019.111594_bb0685) 1975; 8 Kalma (10.1016/j.rse.2019.111594_bb0365) 2008; 29 Kustas (10.1016/j.rse.2019.111594_bb0390) 1990; 49 Tang (10.1016/j.rse.2019.111594_bb0750) 2010; 114 Courault (10.1016/j.rse.2019.111594_bb0851) 2005; 19 Verstraeten (10.1016/j.rse.2019.111594_bb0785) 2005; 96 Sobrino (10.1016/j.rse.2019.111594_bb0690) 1991; 38 Guerschman (10.1016/j.rse.2019.111594_bb0285) 2009; 369 Huang (10.1016/j.rse.2019.111594_bb0315) 2009; 45 McCabe (10.1016/j.rse.2019.111594_bb0485) 2006; 105 Stewart (10.1016/j.rse.2019.111594_bb8540) 1977; 13 Pereira (10.1016/j.rse.2019.111594_bb0590) 2016; 534 Bastiaanssen (10.1016/j.rse.2019.111594_bb0055) 1995 Zhang (10.1016/j.rse.2019.111594_bb0840) 2008; 8 |
References_xml | – start-page: 300 year: 1998 ident: bb0005 article-title: Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements – FAO Irrigation and Drainage Paper 56 – volume: 26 start-page: 2773 year: 1999 end-page: 2776 ident: bb0340 article-title: A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations publication-title: Geophys. Res. Lett. – volume: 168 start-page: 54 year: 2015 end-page: 65 ident: bb0820 article-title: An enhanced two-source evapotranspiration model for land (ETEML): algorithm and evluation publication-title: Remote Sens. Environ. – volume: 9 start-page: 27 year: 1980 end-page: 45 ident: bb0700 article-title: Estimation of regional evapotranspiration and oil moisture conditions using remotely sensed crop surface temperatures publication-title: Remote Sens. Environ. – volume: 32 start-page: 645 year: 1996 end-page: 652 ident: bb0625 article-title: Effect of vegetation density on the parameterization of scalar roughness to estimate spatially distributed sensible heat fluxes publication-title: Water Resour. Res. – volume: 8 start-page: 81 year: 1975 end-page: 99 ident: bb0685 article-title: The concept of intrinsic surface resistance: energy budgets at a partially wet surface publication-title: Boundary-Layer Meteorol – volume: 48 start-page: 225 year: 2005 end-page: 244 ident: bb0830 article-title: An operational two-layer remote sensing model to estimate surface flux in regional scale: physical background publication-title: Sci. China Ser. D – volume: 213 start-page: 198 year: 1998 end-page: 212 ident: bb0060 article-title: A remote sensing surface energy balance algorithm for land (SEBAL) - 1. Formulation publication-title: J. Hydrol. – volume: 46 start-page: 213 year: 1993 end-page: 222 ident: bb0065 article-title: Soil background effects on reflectance-based crop coefficients for corn publication-title: Remote Sens. Environ. – volume: 79 start-page: 329 year: 2002 end-page: 343 ident: bb0075 article-title: Evaluating evapotranspiration rates and surface conditions using Landat TM to estimate atmospheric and surface resistance publication-title: Remote Sens. Environ. – volume: 96 start-page: 256 year: 2005 end-page: 276 ident: bb0785 article-title: Estimating evapotranspiration of European forests from NOAA-imagery at stellite overpass time: towards an operational processing chain for integrated optical and thermal sensor data products publication-title: Remote Sens. Environ. – volume: 97 start-page: 447 year: 2005 end-page: 457 ident: bb0160 article-title: Global derivation of the vegetation clumping index from multi-angular satellite data publication-title: Remote Sens. Environ. – volume: 5 start-page: 137 year: 1976 end-page: 145 ident: bb0295 article-title: Thermal scanner measurement of canopy temperaturesto estimate evapotranspiration publication-title: Remate Sensing Environment – reference: Loranty, M. M., Mackay, D. S., Ewers, B. E., Traver, E., Gruger, E. L., 2010. Contribution of competition for light to within-species variability in stomatal conductance. Water Resour. Res., Vol. 46, W05516, do: – volume: 91 start-page: 89 year: 1998 end-page: 111 ident: bb0795 article-title: A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I publication-title: Agric. For. Meteorol. – volume: 98 start-page: 704 year: 2010 end-page: 716 ident: bb0230 article-title: The Soil Moisture Active Passive (SMAP) mission publication-title: Proc. IEEE – reference: Croft, H., Chen, J. M., Luo, X., Bartlett, P., Chen, B., Staebler, R. M., 2017. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Glob. Chang. Biol., 23(9): 1365–1386, DOI:10.111/geb.13599. – volume: 9 start-page: 3801 year: 2009 end-page: 3853 ident: bb9000 article-title: A review of current methodologies for regional evapotranspiration estimation from remotely sensed data publication-title: Sensors – volume: 37 year: 2010 ident: bb0410 article-title: A global forest canopy height map from themoderate resolution imaging spectroradiometer and the Geoscience Laser Altimeter System publication-title: Geophys. Res. Lett. – volume: 19 start-page: 223 year: 2005 end-page: 249 ident: bb0851 article-title: Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical modeling approaches. publication-title: Irrigation and Drainage System – volume: 44 start-page: 2319 year: 2017 end-page: 2326 ident: bb0740 article-title: An improved constant evaporative fraction method for estimating daily evapotranspiration from remotely sensed instantaneous observations publication-title: Geophys. Res. Lett. – volume: 138 start-page: 142 year: 2006 end-page: 155 ident: bb0370 article-title: Modelling evapotranspiration of six irrigated crops under Mediterranean climate conditions publication-title: Agric. For. Meteorol. – volume: 24 start-page: 163 year: 1954 end-page: 187 ident: bb0515 article-title: Dimensionless characteristics of turbulence in the surface layer publication-title: Akad. Nauk. SSSR Geofiz. Inst. Tr. – volume: 114 start-page: 540 year: 2010 end-page: 551 ident: bb0750 article-title: An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: implementation and validation publication-title: Remote Sens. Environ. – volume: 31 start-page: 211 year: 1990 end-page: 225 ident: bb0765 article-title: A simplied method to estimate regional 24-h evapotranspiration from thermal infrared data publication-title: Remote Sens. Environ. – volume: 50 start-page: 1 year: 1994 end-page: 17 ident: bb0180 article-title: Relations between evaporation coefficients and vegetation indices studies by model simulations publication-title: Remote Sens. Environ. – volume: 44 year: 2008 ident: bb0425 article-title: A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation publication-title: Water Resour. Res. – start-page: 1013 year: 2003 end-page: 1023 ident: bb0210 article-title: The common land model publication-title: Bulletin of American Meteorological Society – volume: 154 start-page: 89 year: 2014 end-page: 101 ident: bb0500 article-title: Comparison of SMOS and SMAP soil moisture retrieval approaches using tower-based radiometer data over a vineyard field publication-title: Remote Sens. Environ. – reference: Chen, J. M., 2009. Methods for simulating the spatiotemporal dynamics of the terrestrial ecosystem carbon cycle. Chapter in “Advanced Topics in Human Activity and Changes in Ecosystems” ed. by Dr. G. Yu et al., China High Education Press. – volume: 18 start-page: 137 year: 1985 end-page: 146 ident: bb9125 article-title: Observed relation between thermal emission and reflected spectral radiance of a complex vegetated landscape publication-title: Remote Sensing of Environment – volume: 97 start-page: 18377 year: 1992 end-page: 18382 ident: bb0100 article-title: Application of self-preservation in the diurnal evolution of the surface energy budget to determine daily evaporation publication-title: J. Geophys. Res. – volume: 93 start-page: 501 year: 1967 end-page: 508 ident: bb0225 article-title: The turbulent transport of heat and water vapour in an unstable atmosphere publication-title: Quart. 1. Roy. Meteorol. Soc. – volume: 66 start-page: 450 year: 1974 end-page: 454 ident: bb0710 article-title: Estimating evapotranspiration using canopy temperatures: field evaluation publication-title: Agron. J. – volume: 114 start-page: 1416 year: 2010 end-page: 1431 ident: bb0825 article-title: Global estimates of evapotranspiration and grass primary production based on MODIS and global meteorology data publication-title: Remote Sens. Environ. – volume: 113 start-page: 711 year: 2009 end-page: 715 ident: bb0040 article-title: The ASTER spectral library version 2.0 publication-title: Remote Sens. Environ. – start-page: 221 year: 1987 end-page: 224 ident: bb0045 article-title: A model predicting Stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions publication-title: Providence, Rhode Island, USA, August 10--15, 1986 – volume: 197 start-page: 215 year: 2017 end-page: 231 ident: bb0200 article-title: Valdiation of SMAP surface soil moisture products with core validation sites publication-title: Remote Sens. Environ. – volume: 149 start-page: 78 year: 1980 end-page: 90 ident: bb0240 article-title: A biochemical model of photosynthetic CO2 assimilation in leaves of C 3 species publication-title: Planta – volume: 98 start-page: 182 year: 2005 end-page: 200 ident: bb0460 article-title: A local-scale, high-resolution evapotranspiration mapping algorithm (ETMA) with hydroecological applications at riparian meadow restoration sites publication-title: Remote Sens. Environ. – start-page: 141 year: 1993 end-page: 158 ident: bb0645 article-title: Generalization of a forest ecosystem process model for other biomes, BIOME--BGC, and an application for global-scale models publication-title: Scaling Physiologic Processes: Leaf to Globe – volume: 44 start-page: 197 year: 1989 end-page: 216 ident: bb0400 article-title: Determination of sensible heat flux over sparse canopy using thermal infrared data publication-title: Agric. For. Meteorol. – volume: 69 start-page: 197 year: 1999 end-page: 214 ident: bb0435 article-title: Evaluation of six methods for extracting relative emissivity spectra from thermal infrared images publication-title: Remote Sens. Environ. – volume: 94 start-page: 269 year: 1999 end-page: 273 ident: bb0430 article-title: Comments on dual-source vegetation-atmosphere transfer models publication-title: Agric. For. Meteorol. – volume: 49 start-page: 275 year: 1994 end-page: 286 ident: bb0405 article-title: Using satellite remote-sensing to extrapolate evapotranspiration estimates in time and space over a semiarid rangeland basin publication-title: Remote Sens. Environ. – volume: 33 start-page: 224 year: 2009 end-page: 250 ident: bb0595 article-title: A review of Ts/Vi remote sensing based methods for the retrieval of land surface energy fluxes and soil surface moisture publication-title: Prog. Phys. Geogr. – volume: 38 start-page: 19 year: 1991 end-page: 34 ident: bb0690 article-title: Atmospheric correction fro land surface temperature using NOAA-11 AVHRR channels 4 and 5 publication-title: Remote Sens. Environ. – volume: 148 start-page: 1629 year: 2008 end-page: 1640 ident: bb0835 article-title: Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest China publication-title: Agric. For. Meteorol. – start-page: 305 year: 1966 end-page: 322 ident: bb0105 article-title: Transfer of momentum and heat in the planetary boundary layer publication-title: Proceedings of the Symposium on Arctic Heat Budget and Atmospheric Circulation – volume: 54 start-page: 161 year: 1995 end-page: 167 ident: bb0125 article-title: A new look at the simplified method for remote-sensing of daily evapotranspiration publication-title: Remote Sens. Environ. – start-page: 10:4259 year: 2019 ident: bb0175 article-title: Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink publication-title: Nat. Commun. – volume: 149 start-page: 1875 year: 2009 end-page: 1895 ident: bb0305 article-title: Intercomarison of a “bottom-up” and “top-down” modeling paradigm for estimating carbon and energy fluxes over a variety of vegetative regions across the US publication-title: Agric. For. Meteorol. – volume: 45 year: 2009 ident: bb0315 article-title: Ecosystem processes at the watershed scale: extending optimality theory from plot to catchment publication-title: Water Resour. Res. – volume: 65 start-page: 341 year: 2010 end-page: 346 ident: bb0600 article-title: Expanding global mapping of foliage clumping index with multi-angular POLDER 3 measurements: evaluation and topographic compensation publication-title: ISPRS Journal of Photgrammetry and Remote Sensing – volume: 105 start-page: 43 year: 1979 end-page: 55 ident: bb8000 article-title: An analytical model of rainfall interception by forests publication-title: Quart. J. R. Met. Soc – volume: 52 start-page: 1096 year: 1995 end-page: 1104 ident: bb0730 article-title: Determination of surface fluxes from the surface radiative temperature publication-title: J. Atmos. Sci. – volume: 117 year: 2012 ident: bb0705 article-title: Evaluation of leaf-to-canopy upscaling methodologies against carbon flux data in North America publication-title: Journal of Geophysical Research-Biogeosciences – volume: 14 start-page: 199 year: 1974 end-page: 209 ident: bb0090 article-title: Calculations of evapotranspiration from crop surface temperature publication-title: Agri. MeteoroI. – volume: 98–99 start-page: 563 year: 1999 end-page: 578 ident: bb0280 article-title: Seasonal variation of boreal forest surface conductance and evaporation publication-title: Agric. For. Meteorol. – volume: 15 start-page: 421 year: 1992 end-page: 429 ident: bb0145 article-title: Defining leaf area index for non-flat leaves publication-title: Plant, Cell and Environment – volume: 98 start-page: 666 year: 2010 end-page: 687 ident: bb0375 article-title: The SMOS mission: new tool for monitoring key elements of the global water cycle publication-title: Proc. IEEE – volume: 8 start-page: 6165 year: 2008 end-page: 6187 ident: bb0840 article-title: Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval publication-title: Sensors – volume: 248 start-page: 156 year: 2017 end-page: 168 ident: bb0475 article-title: Incorporating leaf chlorophyll content into a terrestrial biosphere model for estimating carbon and water fluxes at a forest site publication-title: Agric. For. Meteorol. – volume: 222 start-page: 165 year: 2019 end-page: 182 ident: bb0850 article-title: Coupled estimation of 500m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017 publication-title: Remote Sens. Environ. – volume: 17 start-page: 2281 year: 2004 end-page: 2299 ident: bb0215 article-title: A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance publication-title: J. Clim. – volume: 28 start-page: 181 year: 1971 end-page: 189 ident: bb0110 article-title: Flux profile relationships in the atmospheric surface layer. 1 publication-title: Atmos. Sci. – volume: 116 start-page: 1 year: 2011 end-page: 27 ident: bb0355 article-title: Global intercomparison of 12 land surface heat flux estimates publication-title: Journal of Geophysical Research: Atmospheres – start-page: 88 year: 1977 ident: bb0235 article-title: Anatomy of Seed Plants – volume: 193 start-page: 120 year: 1948 end-page: 145 ident: bb0585 article-title: Natural evaporation from open water, bare soil and grass publication-title: Proceedings of the Royal Society A (London) – volume: 32 start-page: 878 year: 2002 end-page: 891 ident: bb0025 article-title: Effects of seasonal and interannual climate variability on net ecosystem productivity of boreal deciduous and conifer forests publication-title: Can. J. For. Res. – volume: 2 start-page: 159 year: 1996 end-page: 168 ident: bb0035 article-title: Strategies for measuring and modelling CO2 and water vapor fluxes over terrestrial ecosystems publication-title: Glob. Chang. Biol. – volume: 42 start-page: 187 year: 1992 end-page: 216 ident: bb0680 article-title: Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme publication-title: Remote Sens. Environ. – year: 1995 ident: bb0055 article-title: Regionalization of surface flux densities and moisture indicators in composite terrain: a remote sensing approach under clear skies in Mediterranean climates – volume: 138 start-page: 102 year: 2013 end-page: 118 ident: bb0755 article-title: Temporal upscaling of instantaneous evapotranspiration: an intercomparison of four methods using eddy covariance measurements and MODIS data publication-title: Remote Sens. Environ. – volume: 96 start-page: 390 year: 2008 end-page: 398 ident: bb0760 article-title: Fifty years of earth-observation satellites publication-title: Am. Sci. – volume: 55 start-page: 5818 year: 2017 end-page: 5832 ident: bb0735 article-title: An end-member-based two-source approach for estimating land surface evapotranspiration from remote sensing data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 113 start-page: 14 year: 2013 end-page: 37 ident: bb0440 article-title: Satellite-derived land surface temperature: current status and perspectives publication-title: Remote Sens. Environ. – volume: 232 year: 2019 ident: bb0290 article-title: Diverse photosynthetic capacity of global ecosystems mapped by satellite chlorophyll fluorescence measurements publication-title: Remote Sens. Environ. – volume: 25 year: 2011 ident: bb0655 article-title: Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales publication-title: Glob. Biogeochem. Cycles – volume: 83 start-page: 214 year: 2002 end-page: 231 ident: bb0545 article-title: Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data publication-title: Remote Sens. Environ. – volume: 46 start-page: 164 year: 1993 end-page: 172 ident: bb0670 article-title: Derivation of actual evapotranspiration in the Senegalese Sahel, using Noaa-Avhrr data during the 1987 growingseason publication-title: Remote Sens. Environ. – volume: 92 start-page: 407 year: 1999 end-page: 427 ident: bb0725 article-title: Diurnal variations of the thermal roughness height over a grassland publication-title: Bound.-Layer Meteorol. – volume: 108 start-page: 4270 year: 2003 ident: bb0555 article-title: An operational remote sensing algorithm of land surface evaporation publication-title: J. Geophys. Res.-Atmos. – start-page: 1 year: 2017 end-page: 10 ident: bb0805 article-title: Revisiting the contribution of transpiration to global terrestrial evapotranspiration publication-title: Geophys. Res. Lett. – volume: 26 start-page: 2937 year: 1990 end-page: 2944 ident: bb0720 article-title: Regional surface fluxes from remotely sensed skin temperature and lower boundary layer measurements publication-title: Water Resour. Res. – volume: 23 start-page: 4133 year: 2017 end-page: 4146 ident: bb0350 article-title: Inconcistencies of interannual variability and trends in long-term satellite leaf area index products publication-title: Glob. Chang. Biol. – volume: 112 start-page: 1130 year: 2008 end-page: 1143 ident: bb0665 article-title: Modelling surface energy fluxes over maize using a two-source patch model and radiometric soil and canopy temperature observations publication-title: Remote Sens. Environ. – volume: 106 start-page: 285 year: 2007 end-page: 304 ident: bb0185 article-title: Regional evaporation estimates from flux tower and MODIS satellite data publication-title: Remote Sens. Environ. – volume: 18 start-page: 3145 year: 1997 end-page: 3166 ident: bb0260 article-title: A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature publication-title: Int. J. Remote Sens. – volume: 496 start-page: 347 year: 2013 end-page: 350 ident: bb0335 article-title: Terrestrial water fluxes dominated by transpiration publication-title: Nature – year: 2018 ident: bb0480 article-title: Compare big-leaf, two-big-leaf and two-leaf upscaling schemes for evapotranspiration estimation using coupled carbon-water modeling publication-title: Journal of Geophysical Research-Biogeosciences – volume: 113 start-page: 259 year: 2009 end-page: 274 ident: bb0310 article-title: Utility of an image-based canopy reflectance modeling tool for remote estimation of LAI and leaf chlorophyll content at the field scale publication-title: Remote Sens. Environ. – volume: 26 year: 2012 ident: bb0165 article-title: Effects of foliage clumping on global terrestrial gross primary productivity publication-title: Glob. Biogeochem. Cycles – volume: 305 start-page: 15 year: 2005 end-page: 39 ident: bb0155 article-title: Distributed hydrological model for mapping evapotranspiration in a forested watershed publication-title: J. Hydrol. – volume: 216 start-page: 82 year: 2016 end-page: 92 ident: bb0170 article-title: Effects of foliage clumping on the estimation of evapotranspiration over forests publication-title: Agric. For. Meteorol. – volume: 53 start-page: 115 year: 1996 end-page: 122 ident: bb0275 article-title: Comparison of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance from Scots Pine publication-title: Theor. Appl. Climatol. – volume: 79 start-page: 213 year: 2002 end-page: 224 ident: bb0675 article-title: A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status publication-title: Remote Sens. Environ. – volume: 112 year: 2007 ident: bb0020 article-title: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation publication-title: J. Geophys. Res. – volume: 39 start-page: 1189 year: 2003 end-page: 1200 ident: bb0450 article-title: Mapping evapotranspiration based on remote sensing: an application to Canada’s landmass publication-title: Water Resour. Res. – volume: 71 start-page: 211 year: 1994 end-page: 216 ident: bb0630 article-title: Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index publication-title: Bound.-Layer Meteorol. – volume: 28 start-page: 940 year: 1990 end-page: 948 ident: bb4345 article-title: Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Trans publication-title: Geosci. Remote Sens – volume: 83 start-page: 163 year: 2002 end-page: 180 ident: bb0790 article-title: Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiaometer data publication-title: Remote Sens. Environ. – volume: 29 start-page: 197 year: 1989 end-page: 207 ident: bb0120 article-title: On estimating total daily evapotranspiration from remote sensing temperature measurements publication-title: Remote Sens. Environ. – volume: 37 start-page: 329 year: 2001 end-page: 340 ident: bb0345 article-title: Estimation of surface evaporation map over southern Great Plains using remote sensing data publication-title: Water Resour. Res. – volume: 152 start-page: 212 year: 2012 end-page: 222 ident: bb0660 article-title: On the temporal upscaling of evapotranspiration from instantaneous remote sensing measurements to 8-day mean daily-sums publication-title: Agric. For. Meteorol. – volume: 534 start-page: 606 year: 2016 end-page: 615 ident: bb0590 article-title: Rainfall interception modelling: is the wet bulb approach adequate to estimate mean evaporation rate from wet/saturated canopies in all forest types? publication-title: J. Hydrol. – volume: 100 start-page: 81 year: 1972 end-page: 92 ident: bb0620 article-title: On the assessment of surface heat flux and evaporation using large-scale parameters publication-title: Mon. Weather Rev. – volume: 18 start-page: 339 year: 1995 end-page: 355 ident: bb0420 article-title: A critical appraisal of a combined stomatal-photosynthesis model for C3 plants publication-title: Plant Cell and Environment – year: 2016 ident: bb0800 article-title: A combined GLAS and MODIS estimation of the global distribution of mean forest canopy height publication-title: Remote Sens. Environ. – volume: 12 start-page: 589 year: 1997 end-page: 599 ident: bb0380 article-title: Simulating forest productivity and surface-atmophere carbon exchange in the BOREAS study region publication-title: Tree Physiol. – year: 1973 ident: bb0520 article-title: Principles of Environmental Physics – volume: 467 start-page: 951 year: 2010 end-page: 954 ident: bb0360 article-title: Recent decline in the global land evapotranspiration trend due to limited moisture supply publication-title: Nature – volume: 28 start-page: 276 year: 1989 end-page: 284 ident: bb0550 article-title: Estimation of regional surfaceresistance to evapotranspiration from NDVI and thermal-IR AVHRR data publication-title: J. Appl. Meteorol. – volume: 99 start-page: 680 year: 1973 end-page: 687 ident: bb0250 article-title: Momentum, heat and water vapor transfer to and from natural surfaces publication-title: Q. J. R. Meteorol. Soc. – volume: 17 start-page: 159 year: 1990 end-page: 175 ident: bb0415 article-title: Modelling stomatal behaviour and photosynthesis of Eucalyptus grandis publication-title: Aust. J. Plant Physiol. – volume: 121 start-page: 370 year: 2012 end-page: 388 ident: bb0465 article-title: A Two-source Trapezoid Model for Evapotranspiration (TTME) from satellite imagery publication-title: Remote Sens. Environ. – volume: 124 start-page: 99 year: 1999 end-page: 119 ident: bb0150 article-title: Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications publication-title: Ecol. Model. – volume: 111 start-page: 519 year: 2007 end-page: 536 ident: bb0535 article-title: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data publication-title: Remote Sens. Environ. – volume: 18 start-page: 75 year: 1985 end-page: 89 ident: bb0635 article-title: Evapotranspiration calculated from multipspectral and ground station meteorological data publication-title: Remote Sens. Environ. – volume: 11 start-page: 369 year: 1990 end-page: 393 ident: bb0070 article-title: Toward a local split window method over land surface publication-title: Int. J. Remote Sens. – year: 1982 ident: bb0095 article-title: Evaporation into the Atmosphere – volume: 27 start-page: 67 year: 2008 end-page: 81 ident: bb0135 article-title: Daily evapotranspiration estimates from extrapolating instantaneous airborne remote sensing ET values publication-title: Irrig. Sci. – volume: 112 start-page: 901 year: 2008 end-page: 919 ident: bb0245 article-title: Global estimates of the land-amosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites publication-title: Remote Sens. Environ. – volume: 149 start-page: 2071 year: 2009 end-page: 2081 ident: bb0385 article-title: Advances in thermal infrared remote sensing for land surface modeling publication-title: Agric. For. Meteorol. – volume: 77 start-page: 153 year: 1995 end-page: 166 ident: bb0565 article-title: Terminology in thermal infrared remote sensing of natural surfaces publication-title: Agric. For. Meteorol. – volume: 6 year: 2016 ident: bb0845 article-title: Multi-decadal trends in global terrestrial evapotranspiration and its components publication-title: Sci. Rep. – volume: 133 start-page: 380 year: 2007 end-page: 394 ident: bb0010 article-title: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Model publication-title: Journal of Irrigation and Drainage Engineering-ASCE – volume: 184 start-page: 188 year: 2014 end-page: 203 ident: bb0490 article-title: An image-based four-source surface energy balance model to estimate crop evapotranspiration from solar reflectance/thermal emission data (SEB-4S) publication-title: Agric. For. Meteorol. – volume: 122 start-page: 10 year: 2017 end-page: 177 ident: bb0745 article-title: Estimating daily evapotranspiration from remotely sensed instantaneous observations with simplified derivations of a theoretical model publication-title: Journal of Geophysical Research: Atmospheres – volume: 117 year: 2012 ident: bb0455 article-title: Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data publication-title: Journal of Geophysical Research: Biogeosciences – volume: 49 start-page: 205 year: 1990 end-page: 223 ident: bb0390 article-title: Estimation of the soil heat flux/net radiation ratio from spectral data publication-title: Agric. For. Meteorol. – volume: 113 year: 2008 ident: bb0255 article-title: Validation and intercomparison of global Leaf Area Index products derived from remote sensing data publication-title: Journal of Geophysical Research: Biogeosciences – volume: 14 start-page: 1069 year: 1994 end-page: 1079 ident: bb0030 article-title: An analytical solution for coupled leaf photosynthesis and stomatal conductance models publication-title: Tree Physiol. – volume: 13 start-page: 915 year: 1977 end-page: 921 ident: bb8540 article-title: Evaporation from the wet canopy of a pine forest publication-title: Water Resour. Res. – volume: 105 start-page: 281 year: 2000 end-page: 309 ident: bb0270 article-title: Seasonal estimates of riparian evapotranspiration using remote and in situ measurements publication-title: Agric. For. Meteorol. – volume: 64 start-page: 603 year: 1972 end-page: 608 ident: bb0050 article-title: Aerial thermal scanner to determine temperatures of soils and of crop canopies differing in water stress publication-title: Agron. J. – volume: 110 start-page: 162 year: 2007 end-page: 175 ident: bb0195 article-title: Temperature and emissivity separation from ASTER data for low spectral contrast surfaces publication-title: Remote Sens. Environ. – volume: 26 start-page: 1097 year: 2003 end-page: 1116 ident: bb0770 article-title: A coupled model of stomatal conductance, photosynthesis and transpiration publication-title: Plant Cell Environ. – volume: 63 start-page: 1 year: 1998 end-page: 10 ident: bb0130 article-title: Mapping actual evapotranspiraation by combining Landat TM and NOAA-AVHRR images, application to the Barrax area, Albacete, Spain publication-title: Remote Sens. Environ. – volume: 9 start-page: 367 year: 1971 end-page: 384 ident: bb0650 article-title: A predictive model of rainfall interception in forests, 1. Derivation of the model from observations in a plantation of Corsican pine publication-title: Agric. Meteorol. – volume: 110 start-page: 139 year: 2007 end-page: 148 ident: bb0695 article-title: Application of a simple algorithm to estimate daily evoptranspiration from NOAA-AVHEE images for the Iberrian Pennisula publication-title: Remote Sens. Environ. – volume: 118 start-page: 590 year: 2013 end-page: 605 ident: bb0815 article-title: A novel algorithm to assess gross primary productivity for terrestrial ecosystems from MODIS imagery publication-title: Journal of Geophysical Research: Biogeosciences – volume: 115 start-page: 1781 year: 2011 end-page: 1800 ident: bb0540 article-title: Improvements to a MODIS global terrestrial evapotranspiration algorithm publication-title: Remote Sens. Environ. – volume: 25 start-page: 147 year: 2000 end-page: 157 ident: bb0640 article-title: S-SEBI: a simple remote sensing algorithm to estimate the surface energy balance publication-title: Physics and Chemistry of the Earth. Part B: Hydrology, Oceans and Atmosphere – volume: 256 start-page: 501 year: 2018 end-page: 515 ident: bb0495 article-title: A phenomenological model of soil evaporative efficiency using surface soil moisture and temperature data publication-title: Agric. For. Meteorol. – start-page: 39 year: 2003 ident: bb0580 article-title: Remote sensing of surface energy fluxes at 101-m pixel resolutions publication-title: Water Resour. Res. – volume: 94 start-page: 13 year: 1999 end-page: 29 ident: bb0395 article-title: Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover publication-title: Agric. For. Meteorol. – volume: 57 start-page: 167 year: 1996 end-page: 184 ident: bb0775 article-title: Mapping land surface emissivity from NDVI: application to European, African and South American Areas publication-title: Remote Sens. Environ. – volume: 36 start-page: 2263 year: 2000 end-page: 2274 ident: bb0575 article-title: Surface flux estimation using radiometric temperature: a dual temperature difference method to minimize measurement error publication-title: Water Resour. Res. – volume: 273 start-page: 593 year: 1976 end-page: 610 ident: bb0330 article-title: Interpretation of variations in leaf water potential and stomatal conductance found in canopies in field publication-title: Philos. Trans. R. Soc. Landa, Ser. B. – volume: 29 start-page: 421 year: 2008 end-page: 469 ident: bb0365 article-title: Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data publication-title: Surv. Geophys. – volume: 79 start-page: 5039 year: 1984 end-page: 5044 ident: bb0615 article-title: Land surface temperature measurements from the split Z. Wan et al./Remote Sensing of Environment 83 (2002) 163–180 179 window channels of the NOAA-7 AVHRR publication-title: J. Geophys. Res. – volume: 468 start-page: 35 year: 2012 end-page: 46 ident: bb0780 article-title: Upscaling latent heat flux for thermal remote sensing studies: comparison of alternative approaches and correction of bias publication-title: J. Hydrol. – volume: 369 start-page: 107 year: 2009 end-page: 119 ident: bb0285 article-title: Scaling of potential evapotranspiration with MODIS data reproduces flux observations and catchment water balance observations across Australia publication-title: J. Hydrol. – volume: 121 start-page: 1549 year: 1995 end-page: 1574 ident: bb0300 article-title: Surface transfer of heat and momentum over an inhomogeneous vegetated land publication-title: Quart. J. Roy. Meteorol. Soc. – volume: 77 start-page: 263 year: 1995 end-page: 293 ident: bb0570 article-title: A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature publication-title: Agric. For. Meteorol. – reference: . – volume: 105 start-page: 271 year: 2006 end-page: 285 ident: bb0485 article-title: Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors publication-title: Remote Sens. Environ. – year: 2019 ident: bb0810 article-title: Global 500 m clumping index product derived from MODIS BRDF data (2001–2017) publication-title: Remote Sens. Environ. – start-page: 390 year: 1980 end-page: 397 ident: bb0325 article-title: Remotely sensed crop temperatures and reflectances as inputs to irrigation scheduling publication-title: Irrigation and Drainage: Today’s Challenges – volume: 6 start-page: 85 year: 2002 end-page: 99 ident: bb0715 article-title: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes publication-title: Hydrol. Earth Syst. Sci. – volume: 7 start-page: 1612 year: 2007 end-page: 1623 ident: bb0115 article-title: An overview of the “triangle method for estimating surface evapotranspiration and soil moisture from satellite imagery” publication-title: Sensors – volume: 121 start-page: 262 year: 2012 end-page: 274 ident: bb0265 article-title: Integration of soil moisture in SEBS for improving evapotranspiration estimation under water stress conditions publication-title: Remote Sens. Environ. – volume: 12 start-page: 379 year: 1977 end-page: 383 ident: bb0525 article-title: Resistance of a partially wet canopy: whose equation fails publication-title: Bound.-Layer Meteorol. – volume: 60 start-page: 195 year: 1997 end-page: 216 ident: bb0015 article-title: A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing publication-title: Remote Sens. Environ. – volume: 100 start-page: 2817 year: 1995 end-page: 2831 ident: bb0080 article-title: Land–atmosphere CO2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model publication-title: J. Geophys. Res. – volume: 15 start-page: 967 year: 2011 end-page: 981 ident: bb0510 article-title: Magnitude and variability of land evaporation and its components at the global scale publication-title: Hydrol. Earth Syst. Sci. – volume: 80 start-page: 87 year: 1994 end-page: 109 ident: bb0530 article-title: Combining the Penman–Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland publication-title: Agric. For. Meteorol. – start-page: 65 year: 1982 end-page: 99 ident: bb0560 article-title: Simulation of microclimates publication-title: Biometeorology in Integrated Pest Management – volume: 25 start-page: 295 year: 1988 end-page: 309 ident: bb0320 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. – volume: 37 start-page: 319 year: 1986 end-page: 329 ident: bb0190 article-title: Estimation of soil heat flux from net radiation during the growth of alfalfa publication-title: Agric. For. Meteorol. – volume: 174 start-page: 10 year: 2016 end-page: 23 ident: bb0505 article-title: A time domain triangle method approach to estimate actual evapotranspiration: application in a Mediterranean region using MODIS and MSG-SEVIRI products publication-title: Remote Sens. Environ. – volume: 96 start-page: 256 year: 2005 ident: 10.1016/j.rse.2019.111594_bb0785 article-title: Estimating evapotranspiration of European forests from NOAA-imagery at stellite overpass time: towards an operational processing chain for integrated optical and thermal sensor data products publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.03.004 – volume: 213 start-page: 198 year: 1998 ident: 10.1016/j.rse.2019.111594_bb0060 article-title: A remote sensing surface energy balance algorithm for land (SEBAL) - 1. Formulation publication-title: J. Hydrol. doi: 10.1016/S0022-1694(98)00253-4 – volume: 149 start-page: 78 issue: 1 year: 1980 ident: 10.1016/j.rse.2019.111594_bb0240 article-title: A biochemical model of photosynthetic CO2 assimilation in leaves of C 3 species publication-title: Planta doi: 10.1007/BF00386231 – volume: 6 year: 2016 ident: 10.1016/j.rse.2019.111594_bb0845 article-title: Multi-decadal trends in global terrestrial evapotranspiration and its components publication-title: Sci. Rep. – volume: 50 start-page: 1 year: 1994 ident: 10.1016/j.rse.2019.111594_bb0180 article-title: Relations between evaporation coefficients and vegetation indices studies by model simulations publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(94)90090-6 – volume: 98 start-page: 704 issue: 5 year: 2010 ident: 10.1016/j.rse.2019.111594_bb0230 article-title: The Soil Moisture Active Passive (SMAP) mission publication-title: Proc. IEEE doi: 10.1109/JPROC.2010.2043918 – volume: 53 start-page: 115 year: 1996 ident: 10.1016/j.rse.2019.111594_bb0275 article-title: Comparison of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance from Scots Pine publication-title: Theor. Appl. Climatol. doi: 10.1007/BF00866416 – volume: 12 start-page: 589 year: 1997 ident: 10.1016/j.rse.2019.111594_bb0380 article-title: Simulating forest productivity and surface-atmophere carbon exchange in the BOREAS study region publication-title: Tree Physiol. doi: 10.1093/treephys/17.8-9.589 – volume: 8 start-page: 6165 year: 2008 ident: 10.1016/j.rse.2019.111594_bb0840 article-title: Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval publication-title: Sensors doi: 10.3390/s8106165 – volume: 5 start-page: 137 year: 1976 ident: 10.1016/j.rse.2019.111594_bb0295 article-title: Thermal scanner measurement of canopy temperaturesto estimate evapotranspiration publication-title: Remate Sensing Environment doi: 10.1016/0034-4257(76)90044-4 – volume: 113 start-page: 259 year: 2009 ident: 10.1016/j.rse.2019.111594_bb0310 article-title: Utility of an image-based canopy reflectance modeling tool for remote estimation of LAI and leaf chlorophyll content at the field scale publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.09.014 – volume: 496 start-page: 347 issue: 7445 year: 2013 ident: 10.1016/j.rse.2019.111594_bb0335 article-title: Terrestrial water fluxes dominated by transpiration publication-title: Nature doi: 10.1038/nature11983 – volume: 148 start-page: 1629 year: 2008 ident: 10.1016/j.rse.2019.111594_bb0835 article-title: Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest China publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2008.05.016 – volume: 94 start-page: 269 year: 1999 ident: 10.1016/j.rse.2019.111594_bb0430 article-title: Comments on dual-source vegetation-atmosphere transfer models publication-title: Agric. For. Meteorol. doi: 10.1016/S0168-1923(98)00109-9 – volume: 83 start-page: 214 year: 2002 ident: 10.1016/j.rse.2019.111594_bb0545 article-title: Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00074-3 – volume: 305 start-page: 15 year: 2005 ident: 10.1016/j.rse.2019.111594_bb0155 article-title: Distributed hydrological model for mapping evapotranspiration in a forested watershed publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2004.08.029 – start-page: 65 year: 1982 ident: 10.1016/j.rse.2019.111594_bb0560 article-title: Simulation of microclimates – volume: 112 start-page: 1130 year: 2008 ident: 10.1016/j.rse.2019.111594_bb0665 article-title: Modelling surface energy fluxes over maize using a two-source patch model and radiometric soil and canopy temperature observations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.07.018 – volume: 216 start-page: 82 year: 2016 ident: 10.1016/j.rse.2019.111594_bb0170 article-title: Effects of foliage clumping on the estimation of evapotranspiration over forests publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.09.017 – year: 2019 ident: 10.1016/j.rse.2019.111594_bb0810 article-title: Global 500 m clumping index product derived from MODIS BRDF data (2001–2017) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111296 – volume: 79 start-page: 213 year: 2002 ident: 10.1016/j.rse.2019.111594_bb0675 article-title: A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00274-7 – volume: 256 start-page: 501 year: 2018 ident: 10.1016/j.rse.2019.111594_bb0495 article-title: A phenomenological model of soil evaporative efficiency using surface soil moisture and temperature data publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2018.04.010 – volume: 121 start-page: 262 year: 2012 ident: 10.1016/j.rse.2019.111594_bb0265 article-title: Integration of soil moisture in SEBS for improving evapotranspiration estimation under water stress conditions publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.02.003 – volume: 369 start-page: 107 year: 2009 ident: 10.1016/j.rse.2019.111594_bb0285 article-title: Scaling of potential evapotranspiration with MODIS data reproduces flux observations and catchment water balance observations across Australia publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.02.013 – volume: 149 start-page: 1875 year: 2009 ident: 10.1016/j.rse.2019.111594_bb0305 article-title: Intercomarison of a “bottom-up” and “top-down” modeling paradigm for estimating carbon and energy fluxes over a variety of vegetative regions across the US publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2009.06.014 – volume: 37 year: 2010 ident: 10.1016/j.rse.2019.111594_bb0410 article-title: A global forest canopy height map from themoderate resolution imaging spectroradiometer and the Geoscience Laser Altimeter System publication-title: Geophys. Res. Lett. doi: 10.1029/2010GL043622 – volume: 98 start-page: 666 issue: 5 year: 2010 ident: 10.1016/j.rse.2019.111594_bb0375 article-title: The SMOS mission: new tool for monitoring key elements of the global water cycle publication-title: Proc. IEEE doi: 10.1109/JPROC.2010.2043032 – ident: 10.1016/j.rse.2019.111594_bb0205 doi: 10.1111/gcb.13599 – volume: 9 start-page: 3801 year: 2009 ident: 10.1016/j.rse.2019.111594_bb9000 article-title: A review of current methodologies for regional evapotranspiration estimation from remotely sensed data publication-title: Sensors doi: 10.3390/s90503801 – volume: 97 start-page: 18377 issue: D17 year: 1992 ident: 10.1016/j.rse.2019.111594_bb0100 article-title: Application of self-preservation in the diurnal evolution of the surface energy budget to determine daily evaporation publication-title: J. Geophys. Res. doi: 10.1029/92JD00255 – volume: 66 start-page: 450 year: 1974 ident: 10.1016/j.rse.2019.111594_bb0710 article-title: Estimating evapotranspiration using canopy temperatures: field evaluation publication-title: Agron. J. doi: 10.2134/agronj1974.00021962006600030033x – volume: 110 start-page: 162 issue: 2 year: 2007 ident: 10.1016/j.rse.2019.111594_bb0195 article-title: Temperature and emissivity separation from ASTER data for low spectral contrast surfaces publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.02.008 – volume: 113 year: 2008 ident: 10.1016/j.rse.2019.111594_bb0255 article-title: Validation and intercomparison of global Leaf Area Index products derived from remote sensing data publication-title: Journal of Geophysical Research: Biogeosciences doi: 10.1029/2007JG000635 – volume: 193 start-page: 120 year: 1948 ident: 10.1016/j.rse.2019.111594_bb0585 article-title: Natural evaporation from open water, bare soil and grass publication-title: Proceedings of the Royal Society A (London) doi: 10.1098/rspa.1948.0037 – year: 2016 ident: 10.1016/j.rse.2019.111594_bb0800 article-title: A combined GLAS and MODIS estimation of the global distribution of mean forest canopy height publication-title: Remote Sens. Environ. – volume: 28 start-page: 181 year: 1971 ident: 10.1016/j.rse.2019.111594_bb0110 article-title: Flux profile relationships in the atmospheric surface layer. 1 publication-title: Atmos. Sci. doi: 10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2 – volume: 48 start-page: 225 issue: S1 year: 2005 ident: 10.1016/j.rse.2019.111594_bb0830 article-title: An operational two-layer remote sensing model to estimate surface flux in regional scale: physical background publication-title: Sci. China Ser. D – start-page: 10:4259 year: 2019 ident: 10.1016/j.rse.2019.111594_bb0175 article-title: Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink publication-title: Nat. Commun. – volume: 64 start-page: 603 year: 1972 ident: 10.1016/j.rse.2019.111594_bb0050 article-title: Aerial thermal scanner to determine temperatures of soils and of crop canopies differing in water stress publication-title: Agron. J. doi: 10.2134/agronj1972.00021962006400050016x – volume: 44 year: 2008 ident: 10.1016/j.rse.2019.111594_bb0425 article-title: A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation publication-title: Water Resour. Res. doi: 10.1029/2007WR006562 – ident: 10.1016/j.rse.2019.111594_bb0470 doi: 10.1029/2009WR008125 – volume: 174 start-page: 10 year: 2016 ident: 10.1016/j.rse.2019.111594_bb0505 article-title: A time domain triangle method approach to estimate actual evapotranspiration: application in a Mediterranean region using MODIS and MSG-SEVIRI products publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.12.018 – year: 2018 ident: 10.1016/j.rse.2019.111594_bb0480 article-title: Compare big-leaf, two-big-leaf and two-leaf upscaling schemes for evapotranspiration estimation using coupled carbon-water modeling publication-title: Journal of Geophysical Research-Biogeosciences doi: 10.1002/2017JG003978 – volume: 100 start-page: 2817 year: 1995 ident: 10.1016/j.rse.2019.111594_bb0080 article-title: Land–atmosphere CO2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model publication-title: J. Geophys. Res. doi: 10.1029/94JD02961 – volume: 57 start-page: 167 year: 1996 ident: 10.1016/j.rse.2019.111594_bb0775 article-title: Mapping land surface emissivity from NDVI: application to European, African and South American Areas publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(96)00039-9 – volume: 52 start-page: 1096 year: 1995 ident: 10.1016/j.rse.2019.111594_bb0730 article-title: Determination of surface fluxes from the surface radiative temperature publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1995)052<1096:DOSFFT>2.0.CO;2 – volume: 18 start-page: 137 year: 1985 ident: 10.1016/j.rse.2019.111594_bb9125 article-title: Observed relation between thermal emission and reflected spectral radiance of a complex vegetated landscape publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(85)90044-6 – volume: 19 start-page: 223 year: 2005 ident: 10.1016/j.rse.2019.111594_bb0851 article-title: Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical modeling approaches. publication-title: Irrigation and Drainage System doi: 10.1007/s10795-005-5186-0 – volume: 154 start-page: 89 year: 2014 ident: 10.1016/j.rse.2019.111594_bb0500 article-title: Comparison of SMOS and SMAP soil moisture retrieval approaches using tower-based radiometer data over a vineyard field publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.08.002 – volume: 99 start-page: 680 year: 1973 ident: 10.1016/j.rse.2019.111594_bb0250 article-title: Momentum, heat and water vapor transfer to and from natural surfaces publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.49709942209 – volume: 152 start-page: 212 year: 2012 ident: 10.1016/j.rse.2019.111594_bb0660 article-title: On the temporal upscaling of evapotranspiration from instantaneous remote sensing measurements to 8-day mean daily-sums publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2011.09.010 – start-page: 39 year: 2003 ident: 10.1016/j.rse.2019.111594_bb0580 article-title: Remote sensing of surface energy fluxes at 101-m pixel resolutions publication-title: Water Resour. Res. – volume: 54 start-page: 161 year: 1995 ident: 10.1016/j.rse.2019.111594_bb0125 article-title: A new look at the simplified method for remote-sensing of daily evapotranspiration publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(95)00139-R – volume: 6 start-page: 85 year: 2002 ident: 10.1016/j.rse.2019.111594_bb0715 article-title: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-6-85-2002 – volume: 168 start-page: 54 year: 2015 ident: 10.1016/j.rse.2019.111594_bb0820 article-title: An enhanced two-source evapotranspiration model for land (ETEML): algorithm and evluation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.06.020 – start-page: 300 year: 1998 ident: 10.1016/j.rse.2019.111594_bb0005 – start-page: 221 year: 1987 ident: 10.1016/j.rse.2019.111594_bb0045 article-title: A model predicting Stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions – volume: 46 start-page: 213 year: 1993 ident: 10.1016/j.rse.2019.111594_bb0065 article-title: Soil background effects on reflectance-based crop coefficients for corn publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(93)90096-G – volume: 63 start-page: 1 year: 1998 ident: 10.1016/j.rse.2019.111594_bb0130 article-title: Mapping actual evapotranspiraation by combining Landat TM and NOAA-AVHRR images, application to the Barrax area, Albacete, Spain publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(97)00108-9 – volume: 15 start-page: 967 issue: 3 year: 2011 ident: 10.1016/j.rse.2019.111594_bb0510 article-title: Magnitude and variability of land evaporation and its components at the global scale publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-15-967-2011 – volume: 2 start-page: 159 year: 1996 ident: 10.1016/j.rse.2019.111594_bb0035 article-title: Strategies for measuring and modelling CO2 and water vapor fluxes over terrestrial ecosystems publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.1996.tb00069.x – volume: 114 start-page: 540 year: 2010 ident: 10.1016/j.rse.2019.111594_bb0750 article-title: An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: implementation and validation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.10.012 – volume: 112 year: 2007 ident: 10.1016/j.rse.2019.111594_bb0020 article-title: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation publication-title: J. Geophys. Res. doi: 10.1029/2006JD007506 – volume: 18 start-page: 339 year: 1995 ident: 10.1016/j.rse.2019.111594_bb0420 article-title: A critical appraisal of a combined stomatal-photosynthesis model for C3 plants publication-title: Plant Cell and Environment doi: 10.1111/j.1365-3040.1995.tb00370.x – volume: 248 start-page: 156 year: 2017 ident: 10.1016/j.rse.2019.111594_bb0475 article-title: Incorporating leaf chlorophyll content into a terrestrial biosphere model for estimating carbon and water fluxes at a forest site publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2017.09.012 – volume: 26 start-page: 1097 year: 2003 ident: 10.1016/j.rse.2019.111594_bb0770 article-title: A coupled model of stomatal conductance, photosynthesis and transpiration publication-title: Plant Cell Environ. doi: 10.1046/j.1365-3040.2003.01035.x – volume: 37 start-page: 319 year: 1986 ident: 10.1016/j.rse.2019.111594_bb0190 article-title: Estimation of soil heat flux from net radiation during the growth of alfalfa publication-title: Agric. For. Meteorol. doi: 10.1016/0168-1923(86)90069-9 – volume: 23 start-page: 4133 year: 2017 ident: 10.1016/j.rse.2019.111594_bb0350 article-title: Inconcistencies of interannual variability and trends in long-term satellite leaf area index products publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13787 – volume: 49 start-page: 205 year: 1990 ident: 10.1016/j.rse.2019.111594_bb0390 article-title: Estimation of the soil heat flux/net radiation ratio from spectral data publication-title: Agric. For. Meteorol. doi: 10.1016/0168-1923(90)90033-3 – volume: 184 start-page: 188 year: 2014 ident: 10.1016/j.rse.2019.111594_bb0490 article-title: An image-based four-source surface energy balance model to estimate crop evapotranspiration from solar reflectance/thermal emission data (SEB-4S) publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2013.10.002 – volume: 14 start-page: 1069 year: 1994 ident: 10.1016/j.rse.2019.111594_bb0030 article-title: An analytical solution for coupled leaf photosynthesis and stomatal conductance models publication-title: Tree Physiol. doi: 10.1093/treephys/14.7-8-9.1069 – volume: 15 start-page: 421 year: 1992 ident: 10.1016/j.rse.2019.111594_bb0145 article-title: Defining leaf area index for non-flat leaves publication-title: Plant, Cell and Environment doi: 10.1111/j.1365-3040.1992.tb00992.x – volume: 83 start-page: 163 year: 2002 ident: 10.1016/j.rse.2019.111594_bb0790 article-title: Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiaometer data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00093-7 – start-page: 305 year: 1966 ident: 10.1016/j.rse.2019.111594_bb0105 article-title: Transfer of momentum and heat in the planetary boundary layer – volume: 79 start-page: 5039 year: 1984 ident: 10.1016/j.rse.2019.111594_bb0615 article-title: Land surface temperature measurements from the split Z. Wan et al./Remote Sensing of Environment 83 (2002) 163–180 179 window channels of the NOAA-7 AVHRR publication-title: J. Geophys. Res. – volume: 49 start-page: 275 year: 1994 ident: 10.1016/j.rse.2019.111594_bb0405 article-title: Using satellite remote-sensing to extrapolate evapotranspiration estimates in time and space over a semiarid rangeland basin publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(94)90022-1 – volume: 69 start-page: 197 year: 1999 ident: 10.1016/j.rse.2019.111594_bb0435 article-title: Evaluation of six methods for extracting relative emissivity spectra from thermal infrared images publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(99)00049-8 – volume: 91 start-page: 89 issue: 1–2 year: 1998 ident: 10.1016/j.rse.2019.111594_bb0795 article-title: A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I publication-title: Agric. For. Meteorol. doi: 10.1016/S0168-1923(98)00061-6 – year: 1995 ident: 10.1016/j.rse.2019.111594_bb0055 – volume: 113 start-page: 14 year: 2013 ident: 10.1016/j.rse.2019.111594_bb0440 article-title: Satellite-derived land surface temperature: current status and perspectives publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.008 – volume: 42 start-page: 187 issue: 3 year: 1992 ident: 10.1016/j.rse.2019.111594_bb0680 article-title: Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(92)90102-P – volume: 197 start-page: 215 year: 2017 ident: 10.1016/j.rse.2019.111594_bb0200 article-title: Valdiation of SMAP surface soil moisture products with core validation sites publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.01.021 – volume: 45 year: 2009 ident: 10.1016/j.rse.2019.111594_bb0315 article-title: Ecosystem processes at the watershed scale: extending optimality theory from plot to catchment publication-title: Water Resour. Res. – volume: 94 start-page: 13 issue: 1 year: 1999 ident: 10.1016/j.rse.2019.111594_bb0395 article-title: Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover publication-title: Agric. For. Meteorol. doi: 10.1016/S0168-1923(99)00005-2 – volume: 97 start-page: 447 year: 2005 ident: 10.1016/j.rse.2019.111594_bb0160 article-title: Global derivation of the vegetation clumping index from multi-angular satellite data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.05.003 – volume: 32 start-page: 645 issue: 3 year: 1996 ident: 10.1016/j.rse.2019.111594_bb0625 article-title: Effect of vegetation density on the parameterization of scalar roughness to estimate spatially distributed sensible heat fluxes publication-title: Water Resour. Res. doi: 10.1029/95WR03097 – volume: 36 start-page: 2263 year: 2000 ident: 10.1016/j.rse.2019.111594_bb0575 article-title: Surface flux estimation using radiometric temperature: a dual temperature difference method to minimize measurement error publication-title: Water Resour. Res. doi: 10.1029/2000WR900033 – volume: 14 start-page: 199 year: 1974 ident: 10.1016/j.rse.2019.111594_bb0090 article-title: Calculations of evapotranspiration from crop surface temperature publication-title: Agri. MeteoroI. doi: 10.1016/0002-1571(74)90019-3 – volume: 105 start-page: 43 year: 1979 ident: 10.1016/j.rse.2019.111594_bb8000 article-title: An analytical model of rainfall interception by forests publication-title: Quart. J. R. Met. Soc doi: 10.1002/qj.49710544304 – volume: 92 start-page: 407 year: 1999 ident: 10.1016/j.rse.2019.111594_bb0725 article-title: Diurnal variations of the thermal roughness height over a grassland publication-title: Bound.-Layer Meteorol. doi: 10.1023/A:1002071421362 – volume: 13 start-page: 915 year: 1977 ident: 10.1016/j.rse.2019.111594_bb8540 article-title: Evaporation from the wet canopy of a pine forest publication-title: Water Resour. Res. doi: 10.1029/WR013i006p00915 – volume: 232 year: 2019 ident: 10.1016/j.rse.2019.111594_bb0290 article-title: Diverse photosynthetic capacity of global ecosystems mapped by satellite chlorophyll fluorescence measurements publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111344 – volume: 7 start-page: 1612 year: 2007 ident: 10.1016/j.rse.2019.111594_bb0115 article-title: An overview of the “triangle method for estimating surface evapotranspiration and soil moisture from satellite imagery” publication-title: Sensors doi: 10.3390/s7081612 – volume: 115 start-page: 1781 year: 2011 ident: 10.1016/j.rse.2019.111594_bb0540 article-title: Improvements to a MODIS global terrestrial evapotranspiration algorithm publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.02.019 – volume: 100 start-page: 81 year: 1972 ident: 10.1016/j.rse.2019.111594_bb0620 article-title: On the assessment of surface heat flux and evaporation using large-scale parameters publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2 – volume: 138 start-page: 142 year: 2006 ident: 10.1016/j.rse.2019.111594_bb0370 article-title: Modelling evapotranspiration of six irrigated crops under Mediterranean climate conditions publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2006.04.006 – volume: 98 start-page: 182 year: 2005 ident: 10.1016/j.rse.2019.111594_bb0460 article-title: A local-scale, high-resolution evapotranspiration mapping algorithm (ETMA) with hydroecological applications at riparian meadow restoration sites publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.07.003 – volume: 9 start-page: 367 year: 1971 ident: 10.1016/j.rse.2019.111594_bb0650 article-title: A predictive model of rainfall interception in forests, 1. Derivation of the model from observations in a plantation of Corsican pine publication-title: Agric. Meteorol. doi: 10.1016/0002-1571(71)90034-3 – volume: 112 start-page: 901 year: 2008 ident: 10.1016/j.rse.2019.111594_bb0245 article-title: Global estimates of the land-amosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.06.025 – volume: 60 start-page: 195 year: 1997 ident: 10.1016/j.rse.2019.111594_bb0015 article-title: A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00215-5 – volume: 116 start-page: 1 issue: 2 year: 2011 ident: 10.1016/j.rse.2019.111594_bb0355 article-title: Global intercomparison of 12 land surface heat flux estimates publication-title: Journal of Geophysical Research: Atmospheres – year: 1982 ident: 10.1016/j.rse.2019.111594_bb0095 – volume: 77 start-page: 153 year: 1995 ident: 10.1016/j.rse.2019.111594_bb0565 article-title: Terminology in thermal infrared remote sensing of natural surfaces publication-title: Agric. For. Meteorol. doi: 10.1016/0168-1923(95)02259-Z – volume: 110 start-page: 139 year: 2007 ident: 10.1016/j.rse.2019.111594_bb0695 article-title: Application of a simple algorithm to estimate daily evoptranspiration from NOAA-AVHEE images for the Iberrian Pennisula publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.02.017 – volume: 96 start-page: 390 issue: 5 year: 2008 ident: 10.1016/j.rse.2019.111594_bb0760 article-title: Fifty years of earth-observation satellites publication-title: Am. Sci. doi: 10.1511/2008.74.390 – volume: 32 start-page: 878 year: 2002 ident: 10.1016/j.rse.2019.111594_bb0025 article-title: Effects of seasonal and interannual climate variability on net ecosystem productivity of boreal deciduous and conifer forests publication-title: Can. J. For. Res. doi: 10.1139/x01-228 – volume: 105 start-page: 271 year: 2006 ident: 10.1016/j.rse.2019.111594_bb0485 article-title: Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.07.006 – volume: 29 start-page: 197 year: 1989 ident: 10.1016/j.rse.2019.111594_bb0120 article-title: On estimating total daily evapotranspiration from remote sensing temperature measurements publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(89)90027-8 – volume: 65 start-page: 341 year: 2010 ident: 10.1016/j.rse.2019.111594_bb0600 article-title: Expanding global mapping of foliage clumping index with multi-angular POLDER 3 measurements: evaluation and topographic compensation publication-title: ISPRS Journal of Photgrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2010.03.002 – volume: 122 start-page: 10 issue: 19 year: 2017 ident: 10.1016/j.rse.2019.111594_bb0745 article-title: Estimating daily evapotranspiration from remotely sensed instantaneous observations with simplified derivations of a theoretical model publication-title: Journal of Geophysical Research: Atmospheres – volume: 133 start-page: 380 year: 2007 ident: 10.1016/j.rse.2019.111594_bb0010 article-title: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Model publication-title: Journal of Irrigation and Drainage Engineering-ASCE doi: 10.1061/(ASCE)0733-9437(2007)133:4(380) – volume: 117 year: 2012 ident: 10.1016/j.rse.2019.111594_bb0705 article-title: Evaluation of leaf-to-canopy upscaling methodologies against carbon flux data in North America publication-title: Journal of Geophysical Research-Biogeosciences doi: 10.1029/2010JG001407 – volume: 33 start-page: 224 year: 2009 ident: 10.1016/j.rse.2019.111594_bb0595 article-title: A review of Ts/Vi remote sensing based methods for the retrieval of land surface energy fluxes and soil surface moisture publication-title: Prog. Phys. Geogr. doi: 10.1177/0309133309338997 – volume: 138 start-page: 102 year: 2013 ident: 10.1016/j.rse.2019.111594_bb0755 article-title: Temporal upscaling of instantaneous evapotranspiration: an intercomparison of four methods using eddy covariance measurements and MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.07.001 – volume: 467 start-page: 951 issue: 7318 year: 2010 ident: 10.1016/j.rse.2019.111594_bb0360 article-title: Recent decline in the global land evapotranspiration trend due to limited moisture supply publication-title: Nature doi: 10.1038/nature09396 – volume: 25 start-page: 147 year: 2000 ident: 10.1016/j.rse.2019.111594_bb0640 article-title: S-SEBI: a simple remote sensing algorithm to estimate the surface energy balance publication-title: Physics and Chemistry of the Earth. Part B: Hydrology, Oceans and Atmosphere doi: 10.1016/S1464-1909(99)00128-8 – volume: 149 start-page: 2071 issue: 12 year: 2009 ident: 10.1016/j.rse.2019.111594_bb0385 article-title: Advances in thermal infrared remote sensing for land surface modeling publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2009.05.016 – volume: 111 start-page: 519 year: 2007 ident: 10.1016/j.rse.2019.111594_bb0535 article-title: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.04.015 – volume: 25 issue: 4 year: 2011 ident: 10.1016/j.rse.2019.111594_bb0655 article-title: Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2011GB004053 – volume: 468 start-page: 35 year: 2012 ident: 10.1016/j.rse.2019.111594_bb0780 article-title: Upscaling latent heat flux for thermal remote sensing studies: comparison of alternative approaches and correction of bias publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.08.005 – volume: 17 start-page: 2281 issue: 12 year: 2004 ident: 10.1016/j.rse.2019.111594_bb0215 article-title: A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance publication-title: J. Clim. doi: 10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2 – volume: 80 start-page: 87 year: 1994 ident: 10.1016/j.rse.2019.111594_bb0530 article-title: Combining the Penman–Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland publication-title: Agric. For. Meteorol. doi: 10.1016/0168-1923(95)02292-9 – volume: 17 start-page: 159 year: 1990 ident: 10.1016/j.rse.2019.111594_bb0415 article-title: Modelling stomatal behaviour and photosynthesis of Eucalyptus grandis publication-title: Aust. J. Plant Physiol. – volume: 71 start-page: 211 year: 1994 ident: 10.1016/j.rse.2019.111594_bb0630 article-title: Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index publication-title: Bound.-Layer Meteorol. doi: 10.1007/BF00709229 – volume: 124 start-page: 99 year: 1999 ident: 10.1016/j.rse.2019.111594_bb0150 article-title: Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications publication-title: Ecol. Model. doi: 10.1016/S0304-3800(99)00156-8 – volume: 18 start-page: 3145 year: 1997 ident: 10.1016/j.rse.2019.111594_bb0260 article-title: A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature publication-title: Int. J. Remote Sens. doi: 10.1080/014311697217026 – volume: 26 issue: GB1019 year: 2012 ident: 10.1016/j.rse.2019.111594_bb0165 article-title: Effects of foliage clumping on global terrestrial gross primary productivity publication-title: Glob. Biogeochem. Cycles – volume: 11 start-page: 369 issue: 3 year: 1990 ident: 10.1016/j.rse.2019.111594_bb0070 article-title: Toward a local split window method over land surface publication-title: Int. J. Remote Sens. doi: 10.1080/01431169008955028 – year: 1973 ident: 10.1016/j.rse.2019.111594_bb0520 – volume: 9 start-page: 27 year: 1980 ident: 10.1016/j.rse.2019.111594_bb0700 article-title: Estimation of regional evapotranspiration and oil moisture conditions using remotely sensed crop surface temperatures publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(80)90045-0 – volume: 273 start-page: 593 issue: 927 year: 1976 ident: 10.1016/j.rse.2019.111594_bb0330 article-title: Interpretation of variations in leaf water potential and stomatal conductance found in canopies in field publication-title: Philos. Trans. R. Soc. Landa, Ser. B. doi: 10.1098/rstb.1976.0035 – volume: 117 year: 2012 ident: 10.1016/j.rse.2019.111594_bb0455 article-title: Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data publication-title: Journal of Geophysical Research: Biogeosciences doi: 10.1029/2012JG002084 – volume: 46 start-page: 164 year: 1993 ident: 10.1016/j.rse.2019.111594_bb0670 article-title: Derivation of actual evapotranspiration in the Senegalese Sahel, using Noaa-Avhrr data during the 1987 growingseason publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(93)90092-C – volume: 26 start-page: 2773 year: 1999 ident: 10.1016/j.rse.2019.111594_bb0340 article-title: A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations publication-title: Geophys. Res. Lett. doi: 10.1029/1999GL006049 – volume: 24 start-page: 163 year: 1954 ident: 10.1016/j.rse.2019.111594_bb0515 article-title: Dimensionless characteristics of turbulence in the surface layer publication-title: Akad. Nauk. SSSR Geofiz. Inst. Tr. – volume: 77 start-page: 263 year: 1995 ident: 10.1016/j.rse.2019.111594_bb0570 article-title: A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature publication-title: Agric. For. Meteorol. doi: 10.1016/0168-1923(95)02265-Y – start-page: 390 year: 1980 ident: 10.1016/j.rse.2019.111594_bb0325 article-title: Remotely sensed crop temperatures and reflectances as inputs to irrigation scheduling – volume: 114 start-page: 1416 year: 2010 ident: 10.1016/j.rse.2019.111594_bb0825 article-title: Global estimates of evapotranspiration and grass primary production based on MODIS and global meteorology data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.01.022 – volume: 27 start-page: 67 year: 2008 ident: 10.1016/j.rse.2019.111594_bb0135 article-title: Daily evapotranspiration estimates from extrapolating instantaneous airborne remote sensing ET values publication-title: Irrig. Sci. doi: 10.1007/s00271-008-0122-3 – volume: 26 start-page: 2937 issue: 12 year: 1990 ident: 10.1016/j.rse.2019.111594_bb0720 article-title: Regional surface fluxes from remotely sensed skin temperature and lower boundary layer measurements publication-title: Water Resour. Res. doi: 10.1029/WR026i012p02937 – volume: 121 start-page: 1549 year: 1995 ident: 10.1016/j.rse.2019.111594_bb0300 article-title: Surface transfer of heat and momentum over an inhomogeneous vegetated land publication-title: Quart. J. Roy. Meteorol. Soc. doi: 10.1002/qj.49712152704 – volume: 31 start-page: 211 year: 1990 ident: 10.1016/j.rse.2019.111594_bb0765 article-title: A simplied method to estimate regional 24-h evapotranspiration from thermal infrared data publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(90)90090-9 – volume: 29 start-page: 421 year: 2008 ident: 10.1016/j.rse.2019.111594_bb0365 article-title: Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data publication-title: Surv. Geophys. doi: 10.1007/s10712-008-9037-z – volume: 113 start-page: 711 year: 2009 ident: 10.1016/j.rse.2019.111594_bb0040 article-title: The ASTER spectral library version 2.0 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.11.007 – volume: 28 start-page: 276 year: 1989 ident: 10.1016/j.rse.2019.111594_bb0550 article-title: Estimation of regional surfaceresistance to evapotranspiration from NDVI and thermal-IR AVHRR data publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(1989)028<0276:EORSRT>2.0.CO;2 – volume: 25 start-page: 295 year: 1988 ident: 10.1016/j.rse.2019.111594_bb0320 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90106-X – volume: 37 start-page: 329 year: 2001 ident: 10.1016/j.rse.2019.111594_bb0345 article-title: Estimation of surface evaporation map over southern Great Plains using remote sensing data publication-title: Water Resour. Res. doi: 10.1029/2000WR900255 – volume: 55 start-page: 5818 issue: 10 year: 2017 ident: 10.1016/j.rse.2019.111594_bb0735 article-title: An end-member-based two-source approach for estimating land surface evapotranspiration from remote sensing data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2715361 – volume: 105 start-page: 281 year: 2000 ident: 10.1016/j.rse.2019.111594_bb0270 article-title: Seasonal estimates of riparian evapotranspiration using remote and in situ measurements publication-title: Agric. For. Meteorol. doi: 10.1016/S0168-1923(00)00197-0 – start-page: 88 year: 1977 ident: 10.1016/j.rse.2019.111594_bb0235 – volume: 38 start-page: 19 year: 1991 ident: 10.1016/j.rse.2019.111594_bb0690 article-title: Atmospheric correction fro land surface temperature using NOAA-11 AVHRR channels 4 and 5 publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(91)90069-I – volume: 534 start-page: 606 year: 2016 ident: 10.1016/j.rse.2019.111594_bb0590 article-title: Rainfall interception modelling: is the wet bulb approach adequate to estimate mean evaporation rate from wet/saturated canopies in all forest types? publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.01.035 – volume: 8 start-page: 81 year: 1975 ident: 10.1016/j.rse.2019.111594_bb0685 article-title: The concept of intrinsic surface resistance: energy budgets at a partially wet surface publication-title: Boundary-Layer Meteorol doi: 10.1007/BF02579393 – ident: 10.1016/j.rse.2019.111594_bb0140 – volume: 106 start-page: 285 year: 2007 ident: 10.1016/j.rse.2019.111594_bb0185 article-title: Regional evaporation estimates from flux tower and MODIS satellite data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.07.007 – start-page: 1 year: 2017 ident: 10.1016/j.rse.2019.111594_bb0805 article-title: Revisiting the contribution of transpiration to global terrestrial evapotranspiration publication-title: Geophys. Res. Lett. – volume: 28 start-page: 940 year: 1990 ident: 10.1016/j.rse.2019.111594_bb4345 article-title: Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Trans publication-title: Geosci. Remote Sens doi: 10.1109/36.58983 – volume: 98–99 start-page: 563 year: 1999 ident: 10.1016/j.rse.2019.111594_bb0280 article-title: Seasonal variation of boreal forest surface conductance and evaporation publication-title: Agric. For. Meteorol. doi: 10.1016/S0168-1923(99)00124-0 – start-page: 141 year: 1993 ident: 10.1016/j.rse.2019.111594_bb0645 article-title: Generalization of a forest ecosystem process model for other biomes, BIOME--BGC, and an application for global-scale models – start-page: 1013 year: 2003 ident: 10.1016/j.rse.2019.111594_bb0210 article-title: The common land model publication-title: Bulletin of American Meteorological Society doi: 10.1175/BAMS-84-8-1013 – volume: 44 start-page: 197 year: 1989 ident: 10.1016/j.rse.2019.111594_bb0400 article-title: Determination of sensible heat flux over sparse canopy using thermal infrared data publication-title: Agric. For. Meteorol. doi: 10.1016/0168-1923(89)90017-8 – volume: 12 start-page: 379 year: 1977 ident: 10.1016/j.rse.2019.111594_bb0525 article-title: Resistance of a partially wet canopy: whose equation fails publication-title: Bound.-Layer Meteorol. doi: 10.1007/BF00121475 – volume: 39 start-page: 1189 year: 2003 ident: 10.1016/j.rse.2019.111594_bb0450 article-title: Mapping evapotranspiration based on remote sensing: an application to Canada’s landmass publication-title: Water Resour. Res. doi: 10.1029/2002WR001680 – volume: 18 start-page: 75 year: 1985 ident: 10.1016/j.rse.2019.111594_bb0635 article-title: Evapotranspiration calculated from multipspectral and ground station meteorological data publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(85)90039-2 – volume: 79 start-page: 329 year: 2002 ident: 10.1016/j.rse.2019.111594_bb0075 article-title: Evaluating evapotranspiration rates and surface conditions using Landat TM to estimate atmospheric and surface resistance publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00283-8 – volume: 44 start-page: 2319 issue: 5 year: 2017 ident: 10.1016/j.rse.2019.111594_bb0740 article-title: An improved constant evaporative fraction method for estimating daily evapotranspiration from remotely sensed instantaneous observations publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL072621 – volume: 93 start-page: 501 year: 1967 ident: 10.1016/j.rse.2019.111594_bb0225 article-title: The turbulent transport of heat and water vapour in an unstable atmosphere publication-title: Quart. 1. Roy. Meteorol. Soc. doi: 10.1002/qj.49709339809 – volume: 118 start-page: 590 year: 2013 ident: 10.1016/j.rse.2019.111594_bb0815 article-title: A novel algorithm to assess gross primary productivity for terrestrial ecosystems from MODIS imagery publication-title: Journal of Geophysical Research: Biogeosciences doi: 10.1002/jgrg.20056 – volume: 121 start-page: 370 year: 2012 ident: 10.1016/j.rse.2019.111594_bb0465 article-title: A Two-source Trapezoid Model for Evapotranspiration (TTME) from satellite imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.02.015 – volume: 108 start-page: 4270 issue: D9 year: 2003 ident: 10.1016/j.rse.2019.111594_bb0555 article-title: An operational remote sensing algorithm of land surface evaporation publication-title: J. Geophys. Res.-Atmos. doi: 10.1029/2002JD002062 – volume: 222 start-page: 165 year: 2019 ident: 10.1016/j.rse.2019.111594_bb0850 article-title: Coupled estimation of 500m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.12.031 |
SSID | ssj0015871 |
Score | 2.6569629 |
Snippet | Evapotranspiration (ET) from the land surface is an important component of the terrestrial hydrological cycle. Since the advent of Earth observation by... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 111594 |
SubjectTerms | Agglomeration Bias Canopies canopy Carbon Carbon cycle Carboxylation Conductance Coupling Detection Earth observations (from space) Energy balance Enthalpy equations Evapotranspiration Evapotranspiration estimates Evapotranspiration models Foliage Heat flux Herbivores Hydrologic cycle Hydrology Land surface temperature Leaves Mathematical models monitoring Photosynthesis Plant photosynthesis Remote sensing Resistance Satellite observation satellites Sensible heat Sensible heat flux Soil mapping Soil moisture Soil temperature soil water Soils spatial data Stomata Stomatal conductance Surface energy Surface energy balance Surface properties Surface temperature temporal variation Temporal variations Vegetation Water vapor |
Title | Evolution of evapotranspiration models using thermal and shortwave remote sensing data |
URI | https://dx.doi.org/10.1016/j.rse.2019.111594 https://www.proquest.com/docview/2352360470 https://www.proquest.com/docview/2388770984 |
Volume | 237 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED4h0DReEOuGKAPkSXualJHGdu08oqpdt2k8jYk3y3acUQRp1ZQiXvbbuUucTps0HvaQl_icRL7z-XP83R3Ae47LRo5XUiiLGxQhXaId54kVdCqDrb6gAOdvF8PppfhyJa-2YNTFwhCtMvr-1qc33jreOYujebaYzSjGlwuyOIQgtK2hQHMhFFn5x18bmsdAatVWzeMiIenuZLPheC1rypQ5yMlxyFz8a236y0s3S89kH_YiZmTn7We9gq1Q9eBg_DtEDRvjHK178DLWNb9-7MGLT03h3sfX8GO8jkbG5iULa7uYr5q85rPWBFhTEqdmxIP_yQgV3uFTbVWw-hoR-oNdB7YMqNfAauK8oxCRS9_A5WT8fTRNYk2FxHOpV4n1WgT6dZFblzunSwQkiDCGupA5D2Vuvde2THWhpPQuZFYMVPCZLyU6gkx5fgDb1bwKh8Ay5ZS3ToTUESwJDsGT89whgByUIrN9SLvRND4mHKe6F7emY5bdGFSAIQWYVgF9-LDpsmizbTwnLDoVmT9MxuBq8Fy3406dJs7X2mSIQ_kwFSrtw7tNM840Oj6xVZjfkww6ZJXmWhz935vfwm5Gu_WG830M26vlfThBSLNyp43NnsLO-eev04sn5nD1eA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQuCBYqFgoYCS5IodnYXjsHDgi2bOnj1KLejO04dBFkV5vtVnvhT_EHmUmcRSDRA1IPucR2Es2M5xF_MwPwgqPZyPFKCmUxQBHSJdpxnlhBpzI46gtKcD46Ho5PxcczebYBP7tcGIJVRt3f6vRGW8c7u5Gau7PJhHJ8uSCJQxeEwpoOWXkQVpcYt9Vv9t8jk19m2d7o5N04ia0FEs-lXiTWaxEogs-ty53TJdplNLRDXcichzK33mtbprpQUnoXMisGKvjMlxL3Q6Y8x-fegJsC1QW1TXj9Y40rGUit2jZ9XCT0ed1RagMqm9dUmnOQk6aSufiXMfzLLDS2bu8u3IlOKnvb0uEebISqB9uj3zlxOBiVQt2DrdhI_XzVg1sfmk7Bq_vwabSMUs2mJQtLO5sumkLqk1bmWNODp2YEvP_CyA39jk-1VcHqcwwJLu0ysHlAQQqsJpA9TiI06wM4vRZKb8NmNa3CQ2CZcspbJ0LqyA8KDr0157lDj3VQisz2Ie2oaXyscE6NNr6ZDsr21SADDDHAtAzow6v1kllb3uOqyaJjkflDRg2an6uW7XTsNFFB1CZDx5cPU6HSPjxfD-PWpvMaW4XpBc1BC6DSXItH__fmZ7A1Pjk6NIf7xweP4XZGvwoawPkObC7mF-EJ-lML97SRXwafr3vD_AKUbjHd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+evapotranspiration+models+using+thermal+and+shortwave+remote+sensing+data&rft.jtitle=Remote+sensing+of+environment&rft.au=Chen%2C+Jing+M&rft.au=Liu%2C+Jane&rft.date=2020-02-01&rft.issn=0034-4257&rft.volume=237+p.111594-&rft_id=info:doi/10.1016%2Fj.rse.2019.111594&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |