Evolution of evapotranspiration models using thermal and shortwave remote sensing data

Evapotranspiration (ET) from the land surface is an important component of the terrestrial hydrological cycle. Since the advent of Earth observation by satellites, various models have been developed to use thermal and shortwave remote sensing data for ET estimation. In this review, we provide a brie...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 237; p. 111594
Main Authors Chen, Jing M., Liu, Jane
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.02.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Evapotranspiration (ET) from the land surface is an important component of the terrestrial hydrological cycle. Since the advent of Earth observation by satellites, various models have been developed to use thermal and shortwave remote sensing data for ET estimation. In this review, we provide a brief account of the key milestones in the history of remote sensing ET model development in two categories: temperature-based and conductance-based models. Temperature-based ET models utilize land surface temperature (LST) observed through thermal remote sensing to calculate the sensible heat flux from which ET is estimated as a residual of the surface energy balance or to estimate the evaporative fraction from which ET is derived from the available energy. Models of various complexities have been developed to estimate ET from surfaces of different vegetation fractions. One-source models combine soil and vegetation into a composite surface for ET estimation, while two-source models estimate ET of soil and vegetation components separately. Image contexture-based triangular and trapezoid models are simple and effective temperature-based ET models based on spatial and/or temporal variation patterns of LST. Several effective temporal scaling schemes are available for extending instantaneous temperature-based ET estimation to daily or longer time periods. Conductance-based ET models usually use the Penman-Monteith (P-M) equation to estimate ET with shortwave remote sensing data. A key put to these models is canopy conductance to water vapor, which depends on canopy structure and leaf stomatal conductance. Shortwave remote sensing data are used to determine canopy structural parameters, and stomatal conductance can be estimated in different ways. Based on the principle of the coupling between carbon and water cycles, stomatal conductance can be reliably derived from the plant photosynthesis rate. Three types of photosynthesis models are available for deriving stomatal or canopy conductance: (1) big-leaf models for the total canopy conductance, (2) two-big-leaf models for canopy conductances for sunlit and shaded leaf groups, and (3) two-leaf models for stomatal conductances for the average sunlit and shaded leaves separately. Correspondingly, there are also big-leaf, two-big-leaf and two-leaf ET models based on these conductances. The main difference among them is the level of aggregation of conductances before the P-M equation is used for ET estimation, with big-leaf models having the highest aggregation. Since the relationship between ET and conductance is nonlinear, this aggregation causes negative bias errors, with the big-leaf models having the largest bias. It is apparent from the existing literature that two-leaf conductance-based ET models have the least bias in comparison with flux measurements. Based on this review, we make the following recommendations for future work: (1) improving key remote sensing products needed for ET mapping purposes, including soil moisture, foliage clumping index, and leaf carboxylation rate, (2) combining temperature-based and conductance-based models for regional ET estimation, (3) refining methodologies for tight coupling between carbon and water cycles, (4) fully utilizing vegetation structural and biochemical parameters that can now be reliably retrieved from shortwave remote sensing, and (5) to improve regional and global ET monitoring capacity. •Separating ET models into temperature-based and conductance-based models•Comprehensive accounts for the historical developments of models of these two types•In-depth analysis of bias errors by big-leaf, two-big-leaf and two-leaf ET conductance-based ET models•Future directions for ET research are identified.
AbstractList Evapotranspiration (ET) from the land surface is an important component of the terrestrial hydrological cycle. Since the advent of Earth observation by satellites, various models have been developed to use thermal and shortwave remote sensing data for ET estimation. In this review, we provide a brief account of the key milestones in the history of remote sensing ET model development in two categories: temperature-based and conductance-based models. Temperature-based ET models utilize land surface temperature (LST) observed through thermal remote sensing to calculate the sensible heat flux from which ET is estimated as a residual of the surface energy balance or to estimate the evaporative fraction from which ET is derived from the available energy. Models of various complexities have been developed to estimate ET from surfaces of different vegetation fractions. One-source models combine soil and vegetation into a composite surface for ET estimation, while two-source models estimate ET of soil and vegetation components separately. Image contexture-based triangular and trapezoid models are simple and effective temperature-based ET models based on spatial and/or temporal variation patterns of LST. Several effective temporal scaling schemes are available for extending instantaneous temperature-based ET estimation to daily or longer time periods. Conductance-based ET models usually use the Penman-Monteith (P-M) equation to estimate ET with shortwave remote sensing data. A key put to these models is canopy conductance to water vapor, which depends on canopy structure and leaf stomatal conductance. Shortwave remote sensing data are used to determine canopy structural parameters, and stomatal conductance can be estimated in different ways. Based on the principle of the coupling between carbon and water cycles, stomatal conductance can be reliably derived from the plant photosynthesis rate. Three types of photosynthesis models are available for deriving stomatal or canopy conductance: (1) big-leaf models for the total canopy conductance, (2) two-big-leaf models for canopy conductances for sunlit and shaded leaf groups, and (3) two-leaf models for stomatal conductances for the average sunlit and shaded leaves separately. Correspondingly, there are also big-leaf, two-big-leaf and two-leaf ET models based on these conductances. The main difference among them is the level of aggregation of conductances before the P-M equation is used for ET estimation, with big-leaf models having the highest aggregation. Since the relationship between ET and conductance is nonlinear, this aggregation causes negative bias errors, with the big-leaf models having the largest bias. It is apparent from the existing literature that two-leaf conductance-based ET models have the least bias in comparison with flux measurements. Based on this review, we make the following recommendations for future work: (1) improving key remote sensing products needed for ET mapping purposes, including soil moisture, foliage clumping index, and leaf carboxylation rate, (2) combining temperature-based and conductance-based models for regional ET estimation, (3) refining methodologies for tight coupling between carbon and water cycles, (4) fully utilizing vegetation structural and biochemical parameters that can now be reliably retrieved from shortwave remote sensing, and (5) to improve regional and global ET monitoring capacity. •Separating ET models into temperature-based and conductance-based models•Comprehensive accounts for the historical developments of models of these two types•In-depth analysis of bias errors by big-leaf, two-big-leaf and two-leaf ET conductance-based ET models•Future directions for ET research are identified.
Evapotranspiration (ET) from the land surface is an important component of the terrestrial hydrological cycle. Since the advent of Earth observation by satellites, various models have been developed to use thermal and shortwave remote sensing data for ET estimation. In this review, we provide a brief account of the key milestones in the history of remote sensing ET model development in two categories: temperature-based and conductance-based models. Temperature-based ET models utilize land surface temperature (LST) observed through thermal remote sensing to calculate the sensible heat flux from which ET is estimated as a residual of the surface energy balance or to estimate the evaporative fraction from which ET is derived from the available energy. Models of various complexities have been developed to estimate ET from surfaces of different vegetation fractions. One-source models combine soil and vegetation into a composite surface for ET estimation, while two-source models estimate ET of soil and vegetation components separately. Image contexture-based triangular and trapezoid models are simple and effective temperature-based ET models based on spatial and/or temporal variation patterns of LST. Several effective temporal scaling schemes are available for extending instantaneous temperature-based ET estimation to daily or longer time periods. Conductance-based ET models usually use the Penman-Monteith (P-M) equation to estimate ET with shortwave remote sensing data. A key put to these models is canopy conductance to water vapor, which depends on canopy structure and leaf stomatal conductance. Shortwave remote sensing data are used to determine canopy structural parameters, and stomatal conductance can be estimated in different ways. Based on the principle of the coupling between carbon and water cycles, stomatal conductance can be reliably derived from the plant photosynthesis rate. Three types of photosynthesis models are available for deriving stomatal or canopy conductance: (1) big-leaf models for the total canopy conductance, (2) two-big-leaf models for canopy conductances for sunlit and shaded leaf groups, and (3) two-leaf models for stomatal conductances for the average sunlit and shaded leaves separately. Correspondingly, there are also big-leaf, two-big-leaf and two-leaf ET models based on these conductances. The main difference among them is the level of aggregation of conductances before the P-M equation is used for ET estimation, with big-leaf models having the highest aggregation. Since the relationship between ET and conductance is nonlinear, this aggregation causes negative bias errors, with the big-leaf models having the largest bias. It is apparent from the existing literature that two-leaf conductance-based ET models have the least bias in comparison with flux measurements. Based on this review, we make the following recommendations for future work: (1) improving key remote sensing products needed for ET mapping purposes, including soil moisture, foliage clumping index, and leaf carboxylation rate, (2) combining temperature-based and conductance-based models for regional ET estimation, (3) refining methodologies for tight coupling between carbon and water cycles, (4) fully utilizing vegetation structural and biochemical parameters that can now be reliably retrieved from shortwave remote sensing, and (5) to improve regional and global ET monitoring capacity.
ArticleNumber 111594
Author Chen, Jing M.
Liu, Jane
Author_xml – sequence: 1
  givenname: Jing M.
  surname: Chen
  fullname: Chen, Jing M.
  email: chenj@geog.utoronto.ca
– sequence: 2
  givenname: Jane
  surname: Liu
  fullname: Liu, Jane
  email: janejj.liu@utoronto.ca
BookMark eNp9kE1LAzEQQINUsK3-AG8LXrxsTXaTJsGTlPoBBS_qNaTZWZuym9Qku-K_d9t68tDTwPDeMLwJGjnvAKFrgmcEk_nddhYizApM5IwQwiQ9Q2MiuMwxx3SExhiXNKcF4xdoEuMWY8IEJ2P0sex90yXrXebrDHq98yloF3c26MO29RU0MeuidZ9Z2kBodZNpV2Vx40P61j1kAVqfIIvgDlClk75E57VuIlz9zSl6f1y-LZ7z1evTy-JhlZuSiZRrIyjwOZFSr-V6LWpaykKUc1ExWUIttTFC11hUnDGzhkJTwsEUpmaYkIKbcopuj3d3wX91EJNqbTTQNNqB76IqSiE4x1LQAb35h259F9zw3UCxopxjyvFAkSNlgo8xQK12wbY6_CiC1b602qqhtNqXVsfSg8P_OcamQ70hpW1OmvdHc0gMvYWgorHgDFQ2gEmq8vaE_QtqeJt4
CitedBy_id crossref_primary_10_5194_essd_16_1283_2024
crossref_primary_10_1016_j_rse_2022_113105
crossref_primary_10_1016_j_jhydrol_2023_129459
crossref_primary_10_1016_j_jhydrol_2022_128887
crossref_primary_10_3390_rs13071344
crossref_primary_10_3390_rs14081914
crossref_primary_10_1109_TGRS_2024_3514359
crossref_primary_10_1016_j_rse_2023_113989
crossref_primary_10_1016_j_scitotenv_2023_161919
crossref_primary_10_1029_2023JG007678
crossref_primary_10_3389_fpls_2023_1164078
crossref_primary_10_1016_j_ejrh_2023_101574
crossref_primary_10_1109_TGRS_2023_3324481
crossref_primary_10_1111_1752_1688_13155
crossref_primary_10_1029_2022WR034132
crossref_primary_10_2166_wcc_2022_111
crossref_primary_10_1016_j_isprsjprs_2023_08_004
crossref_primary_10_1080_01431161_2025_2466766
crossref_primary_10_1016_j_isprsjprs_2023_01_004
crossref_primary_10_1109_TGRS_2024_3381696
crossref_primary_10_1016_j_agwat_2021_107390
crossref_primary_10_3390_land14020283
crossref_primary_10_3390_rs16030509
crossref_primary_10_1016_j_acags_2024_100206
crossref_primary_10_1016_j_agwat_2021_107434
crossref_primary_10_1016_j_jhydrol_2022_128807
crossref_primary_10_1016_j_scitotenv_2022_157823
crossref_primary_10_1016_j_rse_2023_113981
crossref_primary_10_1016_j_agrformet_2021_108734
crossref_primary_10_3390_rs13183720
crossref_primary_10_3390_rs13183686
crossref_primary_10_3390_rs14184624
crossref_primary_10_1016_j_jhydrol_2021_127422
crossref_primary_10_1016_j_fcr_2021_108419
crossref_primary_10_1016_j_rse_2024_113998
crossref_primary_10_1007_s12145_025_01786_0
crossref_primary_10_1109_TGRS_2023_3247806
crossref_primary_10_1016_j_agrformet_2023_109702
crossref_primary_10_3390_w14213469
crossref_primary_10_1016_j_agrformet_2023_109701
crossref_primary_10_3390_ijerph20042795
crossref_primary_10_3390_rs13234848
crossref_primary_10_1016_j_jhydrol_2020_125827
crossref_primary_10_1109_TGRS_2020_3030900
crossref_primary_10_1029_2022GL102706
crossref_primary_10_1029_2023WR035251
crossref_primary_10_1007_s00271_024_00963_1
crossref_primary_10_1016_j_agrformet_2024_110117
crossref_primary_10_1002_ird_2890
crossref_primary_10_37394_232015_2023_19_98
crossref_primary_10_3389_ffgc_2023_1106773
crossref_primary_10_1016_j_ecolind_2022_109661
crossref_primary_10_1016_j_jhydrol_2021_127179
crossref_primary_10_1016_j_agrformet_2023_109357
crossref_primary_10_1016_j_agrformet_2024_109955
crossref_primary_10_1016_j_jhydrol_2024_132201
crossref_primary_10_1029_2021WR029691
crossref_primary_10_1029_2024WR037582
crossref_primary_10_1016_j_atmosres_2025_107972
crossref_primary_10_1016_j_advwatres_2020_103667
crossref_primary_10_1016_j_jhydrol_2021_126805
crossref_primary_10_1038_s41559_023_02187_6
crossref_primary_10_1016_j_agrformet_2024_109960
crossref_primary_10_5194_hess_26_6207_2022
crossref_primary_10_1111_pce_14892
crossref_primary_10_3390_rs14164094
crossref_primary_10_1016_j_rse_2025_114657
crossref_primary_10_3390_rs13030343
crossref_primary_10_1016_j_scitotenv_2024_171816
crossref_primary_10_1029_2021WR031069
crossref_primary_10_1016_j_agwat_2021_106763
crossref_primary_10_3389_feart_2020_00092
crossref_primary_10_1016_j_agwat_2023_108466
crossref_primary_10_1029_2021JG006363
crossref_primary_10_1016_j_rse_2023_113519
crossref_primary_10_1016_j_agrformet_2023_109408
crossref_primary_10_3390_rs17030395
crossref_primary_10_1016_j_jhydrol_2022_128678
crossref_primary_10_1109_JSTARS_2024_3492033
crossref_primary_10_1016_j_jhydrol_2022_127982
crossref_primary_10_1038_s44221_023_00181_7
crossref_primary_10_1016_j_agrformet_2023_109520
crossref_primary_10_2166_ws_2021_142
crossref_primary_10_1029_2022RG000777
crossref_primary_10_1016_j_rse_2024_114066
crossref_primary_10_1038_s43017_022_00298_5
crossref_primary_10_3390_s21217196
crossref_primary_10_1016_j_gloplacha_2020_103226
crossref_primary_10_47280_RevFacAgron_LUZ__v42_n1_XI
crossref_primary_10_3390_hydrology11030039
crossref_primary_10_1016_j_rse_2022_113212
crossref_primary_10_1016_j_rse_2024_114586
crossref_primary_10_3390_rs16193699
crossref_primary_10_3390_rs13244976
crossref_primary_10_1016_j_rse_2022_113306
crossref_primary_10_1016_j_agrformet_2021_108769
crossref_primary_10_1029_2021WR030747
crossref_primary_10_1002_hyp_14070
crossref_primary_10_1016_j_jhydrol_2022_128204
crossref_primary_10_1080_15481603_2020_1857625
crossref_primary_10_1016_j_agrformet_2021_108806
crossref_primary_10_2166_wcc_2024_724
crossref_primary_10_1016_j_jhydrol_2022_128444
crossref_primary_10_1016_j_agrformet_2022_108882
crossref_primary_10_1016_j_agwat_2023_108609
crossref_primary_10_5194_hess_29_485_2025
crossref_primary_10_1016_j_rse_2024_114080
crossref_primary_10_3390_rs13245148
crossref_primary_10_1016_j_agrformet_2022_109215
crossref_primary_10_1093_aobpla_plad039
crossref_primary_10_1016_j_agrformet_2022_108887
crossref_primary_10_1016_j_jhydrol_2025_133076
crossref_primary_10_1016_j_agwat_2023_108324
crossref_primary_10_1155_2022_2076633
crossref_primary_10_1016_j_rse_2022_113261
crossref_primary_10_1016_j_srs_2024_100152
crossref_primary_10_1109_TGRS_2023_3348526
crossref_primary_10_3390_su15065422
crossref_primary_10_1007_s00271_022_00783_1
crossref_primary_10_1007_s11056_021_09869_8
crossref_primary_10_1016_j_rse_2020_111887
crossref_primary_10_1016_j_rse_2023_113544
crossref_primary_10_1016_j_agwat_2024_109017
crossref_primary_10_1029_2022MS003224
crossref_primary_10_3390_rs15112887
crossref_primary_10_1016_j_rse_2021_112566
crossref_primary_10_1117_1_JRS_17_034503
crossref_primary_10_1029_2020JG005917
crossref_primary_10_1016_j_rse_2021_112602
crossref_primary_10_3390_rs16111927
crossref_primary_10_1016_j_rse_2021_112606
crossref_primary_10_1016_j_agrformet_2024_109961
crossref_primary_10_1016_j_isprsjprs_2023_10_004
crossref_primary_10_3390_rs16122143
crossref_primary_10_1002_wwp2_12255
crossref_primary_10_1016_j_rse_2024_114481
crossref_primary_10_1029_2023JD039246
crossref_primary_10_1016_j_agrformet_2023_109595
crossref_primary_10_1080_2150704X_2025_2466760
crossref_primary_10_5194_hess_25_4417_2021
crossref_primary_10_1016_j_compag_2024_108992
crossref_primary_10_1109_MGRS_2024_3421268
crossref_primary_10_1016_j_isprsjprs_2022_09_016
crossref_primary_10_1016_j_jhydrol_2022_128855
crossref_primary_10_3390_land11060808
crossref_primary_10_1016_j_rse_2020_112113
crossref_primary_10_1111_gcb_15958
crossref_primary_10_3390_rs14092035
crossref_primary_10_3390_rs14102482
crossref_primary_10_3390_rs16101777
crossref_primary_10_1016_j_jhydrol_2023_130224
crossref_primary_10_1016_j_jhydrol_2022_128346
crossref_primary_10_1186_s13717_024_00488_7
crossref_primary_10_1002_hyp_14527
crossref_primary_10_1016_j_agrformet_2021_108421
crossref_primary_10_1016_j_jag_2021_102579
crossref_primary_10_1175_JHM_D_20_0224_1
crossref_primary_10_1016_j_jhydrol_2024_131436
crossref_primary_10_1016_j_agrformet_2022_108984
crossref_primary_10_3390_rs15235465
crossref_primary_10_1016_j_agwat_2024_108864
crossref_primary_10_1016_j_jag_2021_102329
crossref_primary_10_1016_j_fcr_2024_109507
crossref_primary_10_1088_1748_9326_ac3532
crossref_primary_10_3390_land11111903
crossref_primary_10_1016_j_jhydrol_2021_126205
crossref_primary_10_3390_w13233424
crossref_primary_10_3390_rs14174142
crossref_primary_10_1016_j_jhydrol_2022_127786
crossref_primary_10_1016_j_rsase_2022_100704
crossref_primary_10_1016_j_jhydrol_2025_132798
crossref_primary_10_1111_1365_2745_13957
crossref_primary_10_1080_20964471_2024_2423431
crossref_primary_10_1016_j_agwat_2024_108735
crossref_primary_10_1029_2021EA001818
crossref_primary_10_35633_inmateh_70_47
crossref_primary_10_1109_TGRS_2024_3501411
crossref_primary_10_1016_j_compag_2024_109223
crossref_primary_10_3390_f12101296
crossref_primary_10_5194_hess_27_4505_2023
crossref_primary_10_1016_j_rse_2024_114544
crossref_primary_10_1007_s12273_024_1158_x
Cites_doi 10.1016/j.rse.2005.03.004
10.1016/S0022-1694(98)00253-4
10.1007/BF00386231
10.1016/0034-4257(94)90090-6
10.1109/JPROC.2010.2043918
10.1007/BF00866416
10.1093/treephys/17.8-9.589
10.3390/s8106165
10.1016/0034-4257(76)90044-4
10.1016/j.rse.2008.09.014
10.1038/nature11983
10.1016/j.agrformet.2008.05.016
10.1016/S0168-1923(98)00109-9
10.1016/S0034-4257(02)00074-3
10.1016/j.jhydrol.2004.08.029
10.1016/j.rse.2007.07.018
10.1016/j.agrformet.2015.09.017
10.1016/j.rse.2019.111296
10.1016/S0034-4257(01)00274-7
10.1016/j.agrformet.2018.04.010
10.1016/j.rse.2012.02.003
10.1016/j.jhydrol.2009.02.013
10.1016/j.agrformet.2009.06.014
10.1029/2010GL043622
10.1109/JPROC.2010.2043032
10.1111/gcb.13599
10.3390/s90503801
10.1029/92JD00255
10.2134/agronj1974.00021962006600030033x
10.1016/j.rse.2007.02.008
10.1029/2007JG000635
10.1098/rspa.1948.0037
10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2
10.2134/agronj1972.00021962006400050016x
10.1029/2007WR006562
10.1029/2009WR008125
10.1016/j.rse.2015.12.018
10.1002/2017JG003978
10.1029/94JD02961
10.1016/0034-4257(96)00039-9
10.1175/1520-0469(1995)052<1096:DOSFFT>2.0.CO;2
10.1016/0034-4257(85)90044-6
10.1007/s10795-005-5186-0
10.1016/j.rse.2014.08.002
10.1002/qj.49709942209
10.1016/j.agrformet.2011.09.010
10.1016/0034-4257(95)00139-R
10.5194/hess-6-85-2002
10.1016/j.rse.2015.06.020
10.1016/0034-4257(93)90096-G
10.1016/S0034-4257(97)00108-9
10.5194/hess-15-967-2011
10.1111/j.1365-2486.1996.tb00069.x
10.1016/j.rse.2009.10.012
10.1029/2006JD007506
10.1111/j.1365-3040.1995.tb00370.x
10.1016/j.agrformet.2017.09.012
10.1046/j.1365-3040.2003.01035.x
10.1016/0168-1923(86)90069-9
10.1111/gcb.13787
10.1016/0168-1923(90)90033-3
10.1016/j.agrformet.2013.10.002
10.1093/treephys/14.7-8-9.1069
10.1111/j.1365-3040.1992.tb00992.x
10.1016/S0034-4257(02)00093-7
10.1016/0034-4257(94)90022-1
10.1016/S0034-4257(99)00049-8
10.1016/S0168-1923(98)00061-6
10.1016/j.rse.2012.12.008
10.1016/0034-4257(92)90102-P
10.1016/j.rse.2017.01.021
10.1016/S0168-1923(99)00005-2
10.1016/j.rse.2005.05.003
10.1029/95WR03097
10.1029/2000WR900033
10.1016/0002-1571(74)90019-3
10.1002/qj.49710544304
10.1023/A:1002071421362
10.1029/WR013i006p00915
10.1016/j.rse.2019.111344
10.3390/s7081612
10.1016/j.rse.2011.02.019
10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
10.1016/j.agrformet.2006.04.006
10.1016/j.rse.2005.07.003
10.1016/0002-1571(71)90034-3
10.1016/j.rse.2007.06.025
10.1016/S0034-4257(96)00215-5
10.1016/0168-1923(95)02259-Z
10.1016/j.rse.2007.02.017
10.1511/2008.74.390
10.1139/x01-228
10.1016/j.rse.2006.07.006
10.1016/0034-4257(89)90027-8
10.1016/j.isprsjprs.2010.03.002
10.1061/(ASCE)0733-9437(2007)133:4(380)
10.1029/2010JG001407
10.1177/0309133309338997
10.1016/j.rse.2013.07.001
10.1038/nature09396
10.1016/S1464-1909(99)00128-8
10.1016/j.agrformet.2009.05.016
10.1016/j.rse.2007.04.015
10.1029/2011GB004053
10.1016/j.jhydrol.2012.08.005
10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2
10.1016/0168-1923(95)02292-9
10.1007/BF00709229
10.1016/S0304-3800(99)00156-8
10.1080/014311697217026
10.1080/01431169008955028
10.1016/0034-4257(80)90045-0
10.1098/rstb.1976.0035
10.1029/2012JG002084
10.1016/0034-4257(93)90092-C
10.1029/1999GL006049
10.1016/0168-1923(95)02265-Y
10.1016/j.rse.2010.01.022
10.1007/s00271-008-0122-3
10.1029/WR026i012p02937
10.1002/qj.49712152704
10.1016/0034-4257(90)90090-9
10.1007/s10712-008-9037-z
10.1016/j.rse.2008.11.007
10.1175/1520-0450(1989)028<0276:EORSRT>2.0.CO;2
10.1016/0034-4257(88)90106-X
10.1029/2000WR900255
10.1109/TGRS.2017.2715361
10.1016/S0168-1923(00)00197-0
10.1016/0034-4257(91)90069-I
10.1016/j.jhydrol.2016.01.035
10.1007/BF02579393
10.1016/j.rse.2006.07.007
10.1109/36.58983
10.1016/S0168-1923(99)00124-0
10.1175/BAMS-84-8-1013
10.1016/0168-1923(89)90017-8
10.1007/BF00121475
10.1029/2002WR001680
10.1016/0034-4257(85)90039-2
10.1016/S0034-4257(01)00283-8
10.1002/2017GL072621
10.1002/qj.49709339809
10.1002/jgrg.20056
10.1016/j.rse.2012.02.015
10.1029/2002JD002062
10.1016/j.rse.2018.12.031
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright Elsevier BV Feb 2020
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright Elsevier BV Feb 2020
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
DOI 10.1016/j.rse.2019.111594
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
ExternalDocumentID 10_1016_j_rse_2019_111594
S0034425719306145
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
41~
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
VOH
WH7
WUQ
XOL
ZCA
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
ID FETCH-LOGICAL-c358t-ac84e76199ab9bb8f43928368d593ef9acc8af08d755cbe2a417ec2cf501127c3
IEDL.DBID .~1
ISSN 0034-4257
IngestDate Fri Jul 11 02:35:01 EDT 2025
Wed Aug 13 05:54:59 EDT 2025
Tue Jul 01 03:51:22 EDT 2025
Thu Apr 24 22:52:42 EDT 2025
Fri Feb 23 02:48:23 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-ac84e76199ab9bb8f43928368d593ef9acc8af08d755cbe2a417ec2cf501127c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2352360470
PQPubID 2045405
ParticipantIDs proquest_miscellaneous_2388770984
proquest_journals_2352360470
crossref_primary_10_1016_j_rse_2019_111594
crossref_citationtrail_10_1016_j_rse_2019_111594
elsevier_sciencedirect_doi_10_1016_j_rse_2019_111594
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Remote sensing of environment
PublicationYear 2020
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Chávez, Neale, Prueger, Kustas (bb0135) 2008; 27
Su (bb0715) 2002; 6
Leuning (bb0420) 1995; 18
Sobrino, Coll, Caselles (bb0690) 1991; 38
Mu, Zhao, Running (bb0540) 2011; 115
Jasechko, Sharp, Gibson, Birks, Yi, Fawcett (bb0335) 2013; 496
Yang, Shang, Guan, Jiang (bb0815) 2013; 118
Yuan, Liu, Yu, Bonnefond, Chen, Davis, Desai, Goldstein, Gianelle, Rossi (bb0825) 2010; 114
Penman (bb0585) 1948; 193
Anderson, Norman, Mecikalski, Otkin, Kustas (bb0020) 2007; 112
Qualls, Brutsaert (bb0625) 1996; 32
Entekhabi, Njoku, O’Neill, Kellogg, Crow, Edelstein (bb0230) 2010; 98
Coll, Caselles, Valor, Niclos, Sanchez, Galve (bb0195) 2007; 110
Jiang, Ryu, Fang, Myneni, Claverie, Zhu (bb0350) 2017; 23
Soer (bb0700) 1980; 9
McCabe, Wood (bb0485) 2006; 105
Chen, Menges, Leblanc (bb0160) 2005; 97
Sellers, Berry, Collatz, Field, Hall (bb0680) 1992; 42
Kustas, Choudhury, Moran, Reginato, Jackson, Gay, Weaver (bb0400) 1989; 44
Van Niel, McVicar, Roderick, Van Dijk, Beringer, Hutley, Van Gorsel (bb0780) 2012; 468
Houborg, Anderson, Norman, Wilson, Meyers (bb0305) 2009; 149
Chen, Black (bb0145) 1992; 15
Goodrich, Scott, Qic, Goff, Unkrich (bb0270) 2000; 105
Stewart (bb8540) 1977; 13
Lefsky (bb0410) 2010; 37
Stone, Horton (bb0710) 1974; 66
Norman, Becker (bb0565) 1995; 77
.
Zhang, Tian, Su, Sun, Chen, Xia (bb0840) 2008; 8
Brown (bb0090) 1974; 14
Loranty, M. M., Mackay, D. S., Ewers, B. E., Traver, E., Gruger, E. L., 2010. Contribution of competition for light to within-species variability in stomatal conductance. Water Resour. Res., Vol. 46, W05516, do
Kalma, McVicar, McCabe (bb0365) 2008; 29
Croft, H., Chen, J. M., Luo, X., Bartlett, P., Chen, B., Staebler, R. M., 2017. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Glob. Chang. Biol., 23(9): 1365–1386, DOI:10.111/geb.13599.
Yang, Su, Zhang, Tian, Li (bb0820) 2015; 168
Liu, Liu, Chen (bb0455) 2012; 117
Tang, Li (bb0735) 2017; 55
Sandholt, Andersen (bb0670) 1993; 46
Bartholie, Namken, Wiegand (bb0050) 1972; 64
Li, Tang, Wan, Bi, Zhou, Tang, Yan, Zhang (bb9000) 2009; 9
Monteith (bb0525) 1977; 12
Farquhar, von Caemmerer, Berry (bb0240) 1980; 149
Kimball, Thornton, White, Running (bb0380) 1997; 12
Chen, Ju, Ciais, Viovy, Liu, Liu (bb0175) 2019
Huang, Band, Hales (bb0315) 2009; 45
Gash (bb8000) 1979; 105
Pisek, Chen, Lacaze, Sonnentag, Alikas (bb0600) 2010; 65
Sobrino, Gomez, Jimenez-Munoz, Olioso (bb0695) 2007; 110
Raupach (bb0630) 1994; 71
Zhang, Kang, Li, Zhang (bb0835) 2008; 148
Merlin, Olivera-Guerra, Hssaine, Amazirh, Rafi, Ezzahar, Gentinec, Khabbab, Gascoina, Er-Raki (bb0495) 2018; 256
Luo, Croft, Chen, Bartlett, Staebler, Froelich (bb0475) 2017; 248
Shuttleworth (bb0685) 1975; 8
Bausch (bb0065) 1993; 46
Katerji, Rana (bb0370) 2006; 138
Bastiaanssen, Menenti, Feddes, Holtslag (bb0060) 1998; 213
Lhomme, Chehbouni (bb0430) 1999; 94
Li, Becker, Stoll, Wan (bb0435) 1999; 69
Carlson, Buffum (bb0120) 1989; 29
Wei, Yoshimura, Wang, Miralles, Jasechko, Lee (bb0805) 2017
Tang, Li, Sun (bb0755) 2013; 138
Kustas, Perry, Doraiswamy, Moran (bb0405) 1994; 49
Miernecki, Wigneron, Lopez-Baeza, Kerr, Jeu (bb0500) 2014; 154
Norman, Kustas, Prueger, Diak (bb0575) 2000; 36
Dyer (bb0225) 1967; 93
Sprintsin, Chen, Desai, Gough (bb0705) 2012; 117
Gillies, Carlson, Cui, Kustas, Humes (bb0260) 1997; 18
Moran, Rahman, Washburne, Goodrich, Weltz, Kustas (bb0530) 1994; 80
Kustas, Daughtry (bb0390) 1990; 49
Huete (bb0320) 1988; 25
Ball, Woodrow, Berry (bb0045) 1987
Jung (bb0360) 2010; 467
Nishida, Nemani, Running, Glassy (bb0555) 2003; 108
Myneni, Smith, Lotsch, Friedl, Morisette, Votava, Running, Hoffman, Knyazikhin, Privette (bb0545) 2002; 83
Grelle, Lindroth, Molder (bb0280) 1999; 98–99
Brutsaert, Sugita (bb0100) 1992; 97
Ryu, Baldocchi, Black, Detto, Law, Leuning (bb0660) 2012; 152
Businger, Wyngaard, Izumi, Bradley (bb0110) 1971; 28
Dai, Dickinson, Wang (bb0215) 2004; 17
Goward, Cruickshanks, Hope (bb9125) 1985; 18
Luo, Chen, Liu, Black, Croft, Staefler, He, Arain, Chen, Mo, Gonsamo, McCaughey (bb0480) 2018
Baldrige, Hook, Grove, Rivera (bb0040) 2009; 113
Jiang, Islam (bb0340) 1999; 26
Sun, Mahrt (bb0730) 1995; 52
Wan, Zhang, Zhang, Li (bb0790) 2002; 83
Gokmen, Vekerdy, Verhoef, Verhoef, Baelaan, van der Tol (bb0265) 2012; 121
He, Chen, Liu, Zheng, Wang, Joiner, Chou, Chen, Liu, Liu (bb0290) 2019; 232
Nemani, Running (bb0550) 1989; 28
Houborg, Anderson, Daughtry (bb0310) 2009; 113
Mu, Heinsch, Zhao, Running (bb0535) 2007; 111
Pereira, Valente, David, Jackson, Minunno, Gash (bb0590) 2016; 534
Price (bb0615) 1984; 79
Chen, Liu, Cihlar, Guolden (bb0150) 1999; 124
Norman, Kustas, Humes (bb0570) 1995; 77
Brutsaert (bb0095) 1982
Jiang, Islam (bb0345) 2001; 37
Garratt, Hicks (bb0250) 1973; 99
Wang, Guicai Li, Ding, Guo, Tang, Wang, Huang, Liu, Chen (bb0800) 2016
Chen, Mo, Pisek, Deng, Ishozawa, Chan (bb0165) 2012; 26
Bonan (bb0080) 1995; 100
Guerschman, Van Dijk, Mattersdorf, Beringer, Hutley, Leuning, Pipunic, Sherman (bb0285) 2009; 369
Reginato, Jackson, Pinter (bb0635) 1985; 18
Boegh, Soegaard, Thomsen (bb0075) 2002; 79
Fisher, Tu, Baldocchi (bb0245) 2008; 112
Dai, Zeng, Dickinson (bb0210) 2003
Sánchez, Kustas, Caselles, Anderson (bb0665) 2008; 112
Minacapilli, Consoli, Vanella, Ciraolo, Motisi (bb0505) 2016; 174
Monteith (bb0520) 1973
Jarvis (bb0330) 1976; 273
Kustas, Norman (bb0395) 1999; 94
Sun (bb0725) 1999; 92
Zhang, Sun, Wang, Xu, Zhu, Tian (bb0830) 2005; 48
Tang, Li, Tang (bb0750) 2010; 114
Rutter, Kershaw, Robins, Morton (bb0650) 1971; 9
Zhang, Peña-Arancibia, McVicar, Chiew, Vaze, Liu, Lu, Zheng, Wang, Liu, Miralles, Pan (bb0845) 2016; 6
Heilman, Kanemasu, Rosenberg, Blad (bb0295) 1976; 5
Leuning, Zhang, Rajaud, Cleugh, Tu (bb0425) 2008; 44
Monin, Obukhov (bb0515) 1954; 24
Baldocchi, Valentini, Running, Oechel, Dahlman (bb0035) 1996; 2
Esau (bb0235) 1977
Ryu (bb0655) 2011; 25
Cleugh, Leuning, Mu, Running (bb0185) 2007; 106
Tatem, Goetz, Hay (bb0760) 2008; 96
Carlson (bb0115) 2007; 7
Tang, Li (bb0745) 2017; 122
Zhang, Kong, Gan, Chiew, McVicar, Zhang, Yang (bb0850) 2019; 222
Carlson, Capehart, Gillies (bb0125) 1995; 54
Jiménez (bb0355) 2011; 116
Chen, Liu, Chen, He, Luo (bb0170) 2016; 216
Norman (bb0560) 1982
Kerr, Waldteufel, Wigneron, Delwart, Cabot, Boutin (bb0375) 2010; 98
Priestley, Taylor (bb0620) 1972; 100
Roerink, Su, Menenti (bb0640) 2000; 25
Clothier, Clawson, Pinter, Moran, Reginato, Jackson (bb0190) 1986; 37
Wang, Leuning (bb0795) 1998; 91
Hopwood (bb0300) 1995; 121
Chen, J. M., 2009. Methods for simulating the spatiotemporal dynamics of the terrestrial ecosystem carbon cycle. Chapter in “Advanced Topics in Human Activity and Changes in Ecosystems” ed. by Dr. G. Yu et al., China High Education Press.
Anderson, Norman, Diak, Kustas, Mecikalski (bb0015) 1997; 60
Kustas, Anderson (bb0385) 2009; 149
Merlin, Chirouze, Olioso, Jarlan, Chehbouni, Boulet (bb0490) 2014; 184
Norman, Anderson, Kustas, French, Mecikalski, Torn (bb0580) 2003
Miralles, De Jeu, Gash, Holmes, Dolman (bb0510) 2011; 15
Verstraeten, Veroustraete, Feyen (bb0785) 2005; 96
Garrigues, Lacaze, Baret, Morisette, Weiss, Nickeson, Yang (bb0255) 2008; 113
Granier, Biron, Kostner, Gay, Najjiar (bb0275) 1996; 53
Arain, Black, Barr, Jarvis, Massheder, Verseghy, Nesic (bb0025) 2002; 32
Sandholt, Rasmussen, Andersen (bb0675) 2002; 79
Thunnissen, Nieuwenhuis (bb0765) 1990; 31
Courault (bb0851) 2005; 19
Valor, Caselles (bb0775) 1996; 57
Leuning (bb0415) 1990; 17
Jackson, Idso, Reginato, Pinter (bb0325) 1980
Bastiaanssen (bb0055) 1995
Caselles, Artigao, Hurtado, Coll, Brasa (bb0130) 1998; 63
Chen, Chen, Ju, Geng (bb0155) 2005; 305
Tang, Li (bb0740) 2017; 44
Allen, Tasumi, Trezza (bb0010) 2007; 133
Wei, Fang, Schaaf, He, Chen (bb0810) 2019
Colliander, Jackson (bb0200) 2017; 197
Allen, Pereira, Raes, Smith (bb0005) 1998
Baldocchi (bb0030) 1994; 14
Businger (bb0105) 1966
Loheide, Gorelick (bb0460) 2005; 98
Price (bb4345) 1990; 28
Liu, Chen, Cihlar (bb0450) 2003; 39
Petropoulos, Carlson, Wooster, Islam (bb0595) 2009; 33
Choudhury, Ahmed, Idso, Reginato, Daughtry (bb0180) 1994; 50
Running, Hunt (bb0645) 1993
Li, Tang, Wu, Ren, Yan, Wan, Trigo, Sobrino (bb0440) 2013; 113
Long, Singh (bb0465) 2012; 121
Sugita, Brutsaert (bb0720) 1990; 26
Tuzet, Perrier, Leuning (bb0770) 2003; 26
Becker, Li (bb0070) 1990; 11
Monteith (10.1016/j.rse.2019.111594_bb0525) 1977; 12
Chen (10.1016/j.rse.2019.111594_bb0155) 2005; 305
Huete (10.1016/j.rse.2019.111594_bb0320) 1988; 25
Brown (10.1016/j.rse.2019.111594_bb0090) 1974; 14
Stone (10.1016/j.rse.2019.111594_bb0710) 1974; 66
Anderson (10.1016/j.rse.2019.111594_bb0015) 1997; 60
Nishida (10.1016/j.rse.2019.111594_bb0555) 2003; 108
Carlson (10.1016/j.rse.2019.111594_bb0120) 1989; 29
Coll (10.1016/j.rse.2019.111594_bb0195) 2007; 110
Valor (10.1016/j.rse.2019.111594_bb0775) 1996; 57
Carlson (10.1016/j.rse.2019.111594_bb0115) 2007; 7
Norman (10.1016/j.rse.2019.111594_bb0565) 1995; 77
Bastiaanssen (10.1016/j.rse.2019.111594_bb0060) 1998; 213
Tang (10.1016/j.rse.2019.111594_bb0740) 2017; 44
Dyer (10.1016/j.rse.2019.111594_bb0225) 1967; 93
Minacapilli (10.1016/j.rse.2019.111594_bb0505) 2016; 174
Monteith (10.1016/j.rse.2019.111594_bb0520) 1973
Price (10.1016/j.rse.2019.111594_bb4345) 1990; 28
Merlin (10.1016/j.rse.2019.111594_bb0495) 2018; 256
Houborg (10.1016/j.rse.2019.111594_bb0305) 2009; 149
Gash (10.1016/j.rse.2019.111594_bb8000) 1979; 105
Kimball (10.1016/j.rse.2019.111594_bb0380) 1997; 12
Luo (10.1016/j.rse.2019.111594_bb0480) 2018
Li (10.1016/j.rse.2019.111594_bb0435) 1999; 69
Roerink (10.1016/j.rse.2019.111594_bb0640) 2000; 25
Zhang (10.1016/j.rse.2019.111594_bb0830) 2005; 48
Jiang (10.1016/j.rse.2019.111594_bb0345) 2001; 37
10.1016/j.rse.2019.111594_bb0205
Brutsaert (10.1016/j.rse.2019.111594_bb0100) 1992; 97
Gokmen (10.1016/j.rse.2019.111594_bb0265) 2012; 121
Liu (10.1016/j.rse.2019.111594_bb0455) 2012; 117
Jackson (10.1016/j.rse.2019.111594_bb0325) 1980
Fisher (10.1016/j.rse.2019.111594_bb0245) 2008; 112
Mu (10.1016/j.rse.2019.111594_bb0540) 2011; 115
Sandholt (10.1016/j.rse.2019.111594_bb0675) 2002; 79
Chávez (10.1016/j.rse.2019.111594_bb0135) 2008; 27
Goodrich (10.1016/j.rse.2019.111594_bb0270) 2000; 105
Jarvis (10.1016/j.rse.2019.111594_bb0330) 1976; 273
Choudhury (10.1016/j.rse.2019.111594_bb0180) 1994; 50
Businger (10.1016/j.rse.2019.111594_bb0110) 1971; 28
Chen (10.1016/j.rse.2019.111594_bb0170) 2016; 216
Hopwood (10.1016/j.rse.2019.111594_bb0300) 1995; 121
Sánchez (10.1016/j.rse.2019.111594_bb0665) 2008; 112
Zhang (10.1016/j.rse.2019.111594_bb0850) 2019; 222
Baldocchi (10.1016/j.rse.2019.111594_bb0030) 1994; 14
Entekhabi (10.1016/j.rse.2019.111594_bb0230) 2010; 98
Norman (10.1016/j.rse.2019.111594_bb0560) 1982
Tang (10.1016/j.rse.2019.111594_bb0735) 2017; 55
Carlson (10.1016/j.rse.2019.111594_bb0125) 1995; 54
Lhomme (10.1016/j.rse.2019.111594_bb0430) 1999; 94
Running (10.1016/j.rse.2019.111594_bb0645) 1993
Anderson (10.1016/j.rse.2019.111594_bb0020) 2007; 112
Tang (10.1016/j.rse.2019.111594_bb0755) 2013; 138
Arain (10.1016/j.rse.2019.111594_bb0025) 2002; 32
Long (10.1016/j.rse.2019.111594_bb0465) 2012; 121
Thunnissen (10.1016/j.rse.2019.111594_bb0765) 1990; 31
Jasechko (10.1016/j.rse.2019.111594_bb0335) 2013; 496
Baldrige (10.1016/j.rse.2019.111594_bb0040) 2009; 113
Rutter (10.1016/j.rse.2019.111594_bb0650) 1971; 9
Brutsaert (10.1016/j.rse.2019.111594_bb0095) 1982
Miernecki (10.1016/j.rse.2019.111594_bb0500) 2014; 154
Chen (10.1016/j.rse.2019.111594_bb0160) 2005; 97
Chen (10.1016/j.rse.2019.111594_bb0165) 2012; 26
Wang (10.1016/j.rse.2019.111594_bb0800) 2016
Chen (10.1016/j.rse.2019.111594_bb0145) 1992; 15
Yang (10.1016/j.rse.2019.111594_bb0820) 2015; 168
10.1016/j.rse.2019.111594_bb0470
Yang (10.1016/j.rse.2019.111594_bb0815) 2013; 118
Ryu (10.1016/j.rse.2019.111594_bb0660) 2012; 152
Pisek (10.1016/j.rse.2019.111594_bb0600) 2010; 65
Lefsky (10.1016/j.rse.2019.111594_bb0410) 2010; 37
Chen (10.1016/j.rse.2019.111594_bb0175) 2019
Loheide (10.1016/j.rse.2019.111594_bb0460) 2005; 98
Leuning (10.1016/j.rse.2019.111594_bb0415) 1990; 17
Cleugh (10.1016/j.rse.2019.111594_bb0185) 2007; 106
Boegh (10.1016/j.rse.2019.111594_bb0075) 2002; 79
Wei (10.1016/j.rse.2019.111594_bb0810) 2019
Van Niel (10.1016/j.rse.2019.111594_bb0780) 2012; 468
Dai (10.1016/j.rse.2019.111594_bb0210) 2003
Wang (10.1016/j.rse.2019.111594_bb0795) 1998; 91
Norman (10.1016/j.rse.2019.111594_bb0570) 1995; 77
Businger (10.1016/j.rse.2019.111594_bb0105) 1966
Clothier (10.1016/j.rse.2019.111594_bb0190) 1986; 37
Kustas (10.1016/j.rse.2019.111594_bb0385) 2009; 149
Kustas (10.1016/j.rse.2019.111594_bb0395) 1999; 94
Petropoulos (10.1016/j.rse.2019.111594_bb0595) 2009; 33
Reginato (10.1016/j.rse.2019.111594_bb0635) 1985; 18
Kerr (10.1016/j.rse.2019.111594_bb0375) 2010; 98
Wan (10.1016/j.rse.2019.111594_bb0790) 2002; 83
Qualls (10.1016/j.rse.2019.111594_bb0625) 1996; 32
Kustas (10.1016/j.rse.2019.111594_bb0400) 1989; 44
Moran (10.1016/j.rse.2019.111594_bb0530) 1994; 80
Jiang (10.1016/j.rse.2019.111594_bb0340) 1999; 26
Merlin (10.1016/j.rse.2019.111594_bb0490) 2014; 184
Farquhar (10.1016/j.rse.2019.111594_bb0240) 1980; 149
Jiménez (10.1016/j.rse.2019.111594_bb0355) 2011; 116
Liu (10.1016/j.rse.2019.111594_bb0450) 2003; 39
Kustas (10.1016/j.rse.2019.111594_bb0405) 1994; 49
He (10.1016/j.rse.2019.111594_bb0290) 2019; 232
Nemani (10.1016/j.rse.2019.111594_bb0550) 1989; 28
Caselles (10.1016/j.rse.2019.111594_bb0130) 1998; 63
Chen (10.1016/j.rse.2019.111594_bb0150) 1999; 124
Raupach (10.1016/j.rse.2019.111594_bb0630) 1994; 71
Tuzet (10.1016/j.rse.2019.111594_bb0770) 2003; 26
Bartholie (10.1016/j.rse.2019.111594_bb0050) 1972; 64
Grelle (10.1016/j.rse.2019.111594_bb0280) 1999; 98–99
Zhang (10.1016/j.rse.2019.111594_bb0845) 2016; 6
Mu (10.1016/j.rse.2019.111594_bb0535) 2007; 111
Li (10.1016/j.rse.2019.111594_bb9000) 2009; 9
Sandholt (10.1016/j.rse.2019.111594_bb0670) 1993; 46
Tatem (10.1016/j.rse.2019.111594_bb0760) 2008; 96
Myneni (10.1016/j.rse.2019.111594_bb0545) 2002; 83
Jung (10.1016/j.rse.2019.111594_bb0360) 2010; 467
Gillies (10.1016/j.rse.2019.111594_bb0260) 1997; 18
Price (10.1016/j.rse.2019.111594_bb0615) 1984; 79
Garratt (10.1016/j.rse.2019.111594_bb0250) 1973; 99
Dai (10.1016/j.rse.2019.111594_bb0215) 2004; 17
Norman (10.1016/j.rse.2019.111594_bb0580) 2003
Becker (10.1016/j.rse.2019.111594_bb0070) 1990; 11
Granier (10.1016/j.rse.2019.111594_bb0275) 1996; 53
Heilman (10.1016/j.rse.2019.111594_bb0295) 1976; 5
Ball (10.1016/j.rse.2019.111594_bb0045) 1987
Tang (10.1016/j.rse.2019.111594_bb0745) 2017; 122
Wei (10.1016/j.rse.2019.111594_bb0805) 2017
Sun (10.1016/j.rse.2019.111594_bb0730) 1995; 52
Ryu (10.1016/j.rse.2019.111594_bb0655) 2011; 25
Luo (10.1016/j.rse.2019.111594_bb0475) 2017; 248
Bausch (10.1016/j.rse.2019.111594_bb0065) 1993; 46
Allen (10.1016/j.rse.2019.111594_bb0010) 2007; 133
Garrigues (10.1016/j.rse.2019.111594_bb0255) 2008; 113
Houborg (10.1016/j.rse.2019.111594_bb0310) 2009; 113
Leuning (10.1016/j.rse.2019.111594_bb0425) 2008; 44
10.1016/j.rse.2019.111594_bb0140
Sellers (10.1016/j.rse.2019.111594_bb0680) 1992; 42
Jiang (10.1016/j.rse.2019.111594_bb0350) 2017; 23
Goward (10.1016/j.rse.2019.111594_bb9125) 1985; 18
Li (10.1016/j.rse.2019.111594_bb0440) 2013; 113
Priestley (10.1016/j.rse.2019.111594_bb0620) 1972; 100
Sugita (10.1016/j.rse.2019.111594_bb0720) 1990; 26
Sobrino (10.1016/j.rse.2019.111594_bb0695) 2007; 110
Leuning (10.1016/j.rse.2019.111594_bb0420) 1995; 18
Su (10.1016/j.rse.2019.111594_bb0715) 2002; 6
Yuan (10.1016/j.rse.2019.111594_bb0825) 2010; 114
Baldocchi (10.1016/j.rse.2019.111594_bb0035) 1996; 2
Zhang (10.1016/j.rse.2019.111594_bb0835) 2008; 148
Allen (10.1016/j.rse.2019.111594_bb0005) 1998
Penman (10.1016/j.rse.2019.111594_bb0585) 1948; 193
Norman (10.1016/j.rse.2019.111594_bb0575) 2000; 36
Soer (10.1016/j.rse.2019.111594_bb0700) 1980; 9
Colliander (10.1016/j.rse.2019.111594_bb0200) 2017; 197
Katerji (10.1016/j.rse.2019.111594_bb0370) 2006; 138
Miralles (10.1016/j.rse.2019.111594_bb0510) 2011; 15
Esau (10.1016/j.rse.2019.111594_bb0235) 1977
Monin (10.1016/j.rse.2019.111594_bb0515) 1954; 24
Sprintsin (10.1016/j.rse.2019.111594_bb0705) 2012; 117
Sun (10.1016/j.rse.2019.111594_bb0725) 1999; 92
Bonan (10.1016/j.rse.2019.111594_bb0080) 1995; 100
Shuttleworth (10.1016/j.rse.2019.111594_bb0685) 1975; 8
Kalma (10.1016/j.rse.2019.111594_bb0365) 2008; 29
Kustas (10.1016/j.rse.2019.111594_bb0390) 1990; 49
Tang (10.1016/j.rse.2019.111594_bb0750) 2010; 114
Courault (10.1016/j.rse.2019.111594_bb0851) 2005; 19
Verstraeten (10.1016/j.rse.2019.111594_bb0785) 2005; 96
Sobrino (10.1016/j.rse.2019.111594_bb0690) 1991; 38
Guerschman (10.1016/j.rse.2019.111594_bb0285) 2009; 369
Huang (10.1016/j.rse.2019.111594_bb0315) 2009; 45
McCabe (10.1016/j.rse.2019.111594_bb0485) 2006; 105
Stewart (10.1016/j.rse.2019.111594_bb8540) 1977; 13
Pereira (10.1016/j.rse.2019.111594_bb0590) 2016; 534
Bastiaanssen (10.1016/j.rse.2019.111594_bb0055) 1995
Zhang (10.1016/j.rse.2019.111594_bb0840) 2008; 8
References_xml – start-page: 300
  year: 1998
  ident: bb0005
  article-title: Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements – FAO Irrigation and Drainage Paper 56
– volume: 26
  start-page: 2773
  year: 1999
  end-page: 2776
  ident: bb0340
  article-title: A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations
  publication-title: Geophys. Res. Lett.
– volume: 168
  start-page: 54
  year: 2015
  end-page: 65
  ident: bb0820
  article-title: An enhanced two-source evapotranspiration model for land (ETEML): algorithm and evluation
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 27
  year: 1980
  end-page: 45
  ident: bb0700
  article-title: Estimation of regional evapotranspiration and oil moisture conditions using remotely sensed crop surface temperatures
  publication-title: Remote Sens. Environ.
– volume: 32
  start-page: 645
  year: 1996
  end-page: 652
  ident: bb0625
  article-title: Effect of vegetation density on the parameterization of scalar roughness to estimate spatially distributed sensible heat fluxes
  publication-title: Water Resour. Res.
– volume: 8
  start-page: 81
  year: 1975
  end-page: 99
  ident: bb0685
  article-title: The concept of intrinsic surface resistance: energy budgets at a partially wet surface
  publication-title: Boundary-Layer Meteorol
– volume: 48
  start-page: 225
  year: 2005
  end-page: 244
  ident: bb0830
  article-title: An operational two-layer remote sensing model to estimate surface flux in regional scale: physical background
  publication-title: Sci. China Ser. D
– volume: 213
  start-page: 198
  year: 1998
  end-page: 212
  ident: bb0060
  article-title: A remote sensing surface energy balance algorithm for land (SEBAL) - 1. Formulation
  publication-title: J. Hydrol.
– volume: 46
  start-page: 213
  year: 1993
  end-page: 222
  ident: bb0065
  article-title: Soil background effects on reflectance-based crop coefficients for corn
  publication-title: Remote Sens. Environ.
– volume: 79
  start-page: 329
  year: 2002
  end-page: 343
  ident: bb0075
  article-title: Evaluating evapotranspiration rates and surface conditions using Landat TM to estimate atmospheric and surface resistance
  publication-title: Remote Sens. Environ.
– volume: 96
  start-page: 256
  year: 2005
  end-page: 276
  ident: bb0785
  article-title: Estimating evapotranspiration of European forests from NOAA-imagery at stellite overpass time: towards an operational processing chain for integrated optical and thermal sensor data products
  publication-title: Remote Sens. Environ.
– volume: 97
  start-page: 447
  year: 2005
  end-page: 457
  ident: bb0160
  article-title: Global derivation of the vegetation clumping index from multi-angular satellite data
  publication-title: Remote Sens. Environ.
– volume: 5
  start-page: 137
  year: 1976
  end-page: 145
  ident: bb0295
  article-title: Thermal scanner measurement of canopy temperaturesto estimate evapotranspiration
  publication-title: Remate Sensing Environment
– reference: Loranty, M. M., Mackay, D. S., Ewers, B. E., Traver, E., Gruger, E. L., 2010. Contribution of competition for light to within-species variability in stomatal conductance. Water Resour. Res., Vol. 46, W05516, do:
– volume: 91
  start-page: 89
  year: 1998
  end-page: 111
  ident: bb0795
  article-title: A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I
  publication-title: Agric. For. Meteorol.
– volume: 98
  start-page: 704
  year: 2010
  end-page: 716
  ident: bb0230
  article-title: The Soil Moisture Active Passive (SMAP) mission
  publication-title: Proc. IEEE
– reference: Croft, H., Chen, J. M., Luo, X., Bartlett, P., Chen, B., Staebler, R. M., 2017. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Glob. Chang. Biol., 23(9): 1365–1386, DOI:10.111/geb.13599.
– volume: 9
  start-page: 3801
  year: 2009
  end-page: 3853
  ident: bb9000
  article-title: A review of current methodologies for regional evapotranspiration estimation from remotely sensed data
  publication-title: Sensors
– volume: 37
  year: 2010
  ident: bb0410
  article-title: A global forest canopy height map from themoderate resolution imaging spectroradiometer and the Geoscience Laser Altimeter System
  publication-title: Geophys. Res. Lett.
– volume: 19
  start-page: 223
  year: 2005
  end-page: 249
  ident: bb0851
  article-title: Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical modeling approaches.
  publication-title: Irrigation and Drainage System
– volume: 44
  start-page: 2319
  year: 2017
  end-page: 2326
  ident: bb0740
  article-title: An improved constant evaporative fraction method for estimating daily evapotranspiration from remotely sensed instantaneous observations
  publication-title: Geophys. Res. Lett.
– volume: 138
  start-page: 142
  year: 2006
  end-page: 155
  ident: bb0370
  article-title: Modelling evapotranspiration of six irrigated crops under Mediterranean climate conditions
  publication-title: Agric. For. Meteorol.
– volume: 24
  start-page: 163
  year: 1954
  end-page: 187
  ident: bb0515
  article-title: Dimensionless characteristics of turbulence in the surface layer
  publication-title: Akad. Nauk. SSSR Geofiz. Inst. Tr.
– volume: 114
  start-page: 540
  year: 2010
  end-page: 551
  ident: bb0750
  article-title: An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: implementation and validation
  publication-title: Remote Sens. Environ.
– volume: 31
  start-page: 211
  year: 1990
  end-page: 225
  ident: bb0765
  article-title: A simplied method to estimate regional 24-h evapotranspiration from thermal infrared data
  publication-title: Remote Sens. Environ.
– volume: 50
  start-page: 1
  year: 1994
  end-page: 17
  ident: bb0180
  article-title: Relations between evaporation coefficients and vegetation indices studies by model simulations
  publication-title: Remote Sens. Environ.
– volume: 44
  year: 2008
  ident: bb0425
  article-title: A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation
  publication-title: Water Resour. Res.
– start-page: 1013
  year: 2003
  end-page: 1023
  ident: bb0210
  article-title: The common land model
  publication-title: Bulletin of American Meteorological Society
– volume: 154
  start-page: 89
  year: 2014
  end-page: 101
  ident: bb0500
  article-title: Comparison of SMOS and SMAP soil moisture retrieval approaches using tower-based radiometer data over a vineyard field
  publication-title: Remote Sens. Environ.
– reference: Chen, J. M., 2009. Methods for simulating the spatiotemporal dynamics of the terrestrial ecosystem carbon cycle. Chapter in “Advanced Topics in Human Activity and Changes in Ecosystems” ed. by Dr. G. Yu et al., China High Education Press.
– volume: 18
  start-page: 137
  year: 1985
  end-page: 146
  ident: bb9125
  article-title: Observed relation between thermal emission and reflected spectral radiance of a complex vegetated landscape
  publication-title: Remote Sensing of Environment
– volume: 97
  start-page: 18377
  year: 1992
  end-page: 18382
  ident: bb0100
  article-title: Application of self-preservation in the diurnal evolution of the surface energy budget to determine daily evaporation
  publication-title: J. Geophys. Res.
– volume: 93
  start-page: 501
  year: 1967
  end-page: 508
  ident: bb0225
  article-title: The turbulent transport of heat and water vapour in an unstable atmosphere
  publication-title: Quart. 1. Roy. Meteorol. Soc.
– volume: 66
  start-page: 450
  year: 1974
  end-page: 454
  ident: bb0710
  article-title: Estimating evapotranspiration using canopy temperatures: field evaluation
  publication-title: Agron. J.
– volume: 114
  start-page: 1416
  year: 2010
  end-page: 1431
  ident: bb0825
  article-title: Global estimates of evapotranspiration and grass primary production based on MODIS and global meteorology data
  publication-title: Remote Sens. Environ.
– volume: 113
  start-page: 711
  year: 2009
  end-page: 715
  ident: bb0040
  article-title: The ASTER spectral library version 2.0
  publication-title: Remote Sens. Environ.
– start-page: 221
  year: 1987
  end-page: 224
  ident: bb0045
  article-title: A model predicting Stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions
  publication-title: Providence, Rhode Island, USA, August 10--15, 1986
– volume: 197
  start-page: 215
  year: 2017
  end-page: 231
  ident: bb0200
  article-title: Valdiation of SMAP surface soil moisture products with core validation sites
  publication-title: Remote Sens. Environ.
– volume: 149
  start-page: 78
  year: 1980
  end-page: 90
  ident: bb0240
  article-title: A biochemical model of photosynthetic CO2 assimilation in leaves of C 3 species
  publication-title: Planta
– volume: 98
  start-page: 182
  year: 2005
  end-page: 200
  ident: bb0460
  article-title: A local-scale, high-resolution evapotranspiration mapping algorithm (ETMA) with hydroecological applications at riparian meadow restoration sites
  publication-title: Remote Sens. Environ.
– start-page: 141
  year: 1993
  end-page: 158
  ident: bb0645
  article-title: Generalization of a forest ecosystem process model for other biomes, BIOME--BGC, and an application for global-scale models
  publication-title: Scaling Physiologic Processes: Leaf to Globe
– volume: 44
  start-page: 197
  year: 1989
  end-page: 216
  ident: bb0400
  article-title: Determination of sensible heat flux over sparse canopy using thermal infrared data
  publication-title: Agric. For. Meteorol.
– volume: 69
  start-page: 197
  year: 1999
  end-page: 214
  ident: bb0435
  article-title: Evaluation of six methods for extracting relative emissivity spectra from thermal infrared images
  publication-title: Remote Sens. Environ.
– volume: 94
  start-page: 269
  year: 1999
  end-page: 273
  ident: bb0430
  article-title: Comments on dual-source vegetation-atmosphere transfer models
  publication-title: Agric. For. Meteorol.
– volume: 49
  start-page: 275
  year: 1994
  end-page: 286
  ident: bb0405
  article-title: Using satellite remote-sensing to extrapolate evapotranspiration estimates in time and space over a semiarid rangeland basin
  publication-title: Remote Sens. Environ.
– volume: 33
  start-page: 224
  year: 2009
  end-page: 250
  ident: bb0595
  article-title: A review of Ts/Vi remote sensing based methods for the retrieval of land surface energy fluxes and soil surface moisture
  publication-title: Prog. Phys. Geogr.
– volume: 38
  start-page: 19
  year: 1991
  end-page: 34
  ident: bb0690
  article-title: Atmospheric correction fro land surface temperature using NOAA-11 AVHRR channels 4 and 5
  publication-title: Remote Sens. Environ.
– volume: 148
  start-page: 1629
  year: 2008
  end-page: 1640
  ident: bb0835
  article-title: Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest China
  publication-title: Agric. For. Meteorol.
– start-page: 305
  year: 1966
  end-page: 322
  ident: bb0105
  article-title: Transfer of momentum and heat in the planetary boundary layer
  publication-title: Proceedings of the Symposium on Arctic Heat Budget and Atmospheric Circulation
– volume: 54
  start-page: 161
  year: 1995
  end-page: 167
  ident: bb0125
  article-title: A new look at the simplified method for remote-sensing of daily evapotranspiration
  publication-title: Remote Sens. Environ.
– start-page: 10:4259
  year: 2019
  ident: bb0175
  article-title: Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink
  publication-title: Nat. Commun.
– volume: 149
  start-page: 1875
  year: 2009
  end-page: 1895
  ident: bb0305
  article-title: Intercomarison of a “bottom-up” and “top-down” modeling paradigm for estimating carbon and energy fluxes over a variety of vegetative regions across the US
  publication-title: Agric. For. Meteorol.
– volume: 45
  year: 2009
  ident: bb0315
  article-title: Ecosystem processes at the watershed scale: extending optimality theory from plot to catchment
  publication-title: Water Resour. Res.
– volume: 65
  start-page: 341
  year: 2010
  end-page: 346
  ident: bb0600
  article-title: Expanding global mapping of foliage clumping index with multi-angular POLDER 3 measurements: evaluation and topographic compensation
  publication-title: ISPRS Journal of Photgrammetry and Remote Sensing
– volume: 105
  start-page: 43
  year: 1979
  end-page: 55
  ident: bb8000
  article-title: An analytical model of rainfall interception by forests
  publication-title: Quart. J. R. Met. Soc
– volume: 52
  start-page: 1096
  year: 1995
  end-page: 1104
  ident: bb0730
  article-title: Determination of surface fluxes from the surface radiative temperature
  publication-title: J. Atmos. Sci.
– volume: 117
  year: 2012
  ident: bb0705
  article-title: Evaluation of leaf-to-canopy upscaling methodologies against carbon flux data in North America
  publication-title: Journal of Geophysical Research-Biogeosciences
– volume: 14
  start-page: 199
  year: 1974
  end-page: 209
  ident: bb0090
  article-title: Calculations of evapotranspiration from crop surface temperature
  publication-title: Agri. MeteoroI.
– volume: 98–99
  start-page: 563
  year: 1999
  end-page: 578
  ident: bb0280
  article-title: Seasonal variation of boreal forest surface conductance and evaporation
  publication-title: Agric. For. Meteorol.
– volume: 15
  start-page: 421
  year: 1992
  end-page: 429
  ident: bb0145
  article-title: Defining leaf area index for non-flat leaves
  publication-title: Plant, Cell and Environment
– volume: 98
  start-page: 666
  year: 2010
  end-page: 687
  ident: bb0375
  article-title: The SMOS mission: new tool for monitoring key elements of the global water cycle
  publication-title: Proc. IEEE
– volume: 8
  start-page: 6165
  year: 2008
  end-page: 6187
  ident: bb0840
  article-title: Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval
  publication-title: Sensors
– volume: 248
  start-page: 156
  year: 2017
  end-page: 168
  ident: bb0475
  article-title: Incorporating leaf chlorophyll content into a terrestrial biosphere model for estimating carbon and water fluxes at a forest site
  publication-title: Agric. For. Meteorol.
– volume: 222
  start-page: 165
  year: 2019
  end-page: 182
  ident: bb0850
  article-title: Coupled estimation of 500m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017
  publication-title: Remote Sens. Environ.
– volume: 17
  start-page: 2281
  year: 2004
  end-page: 2299
  ident: bb0215
  article-title: A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance
  publication-title: J. Clim.
– volume: 28
  start-page: 181
  year: 1971
  end-page: 189
  ident: bb0110
  article-title: Flux profile relationships in the atmospheric surface layer. 1
  publication-title: Atmos. Sci.
– volume: 116
  start-page: 1
  year: 2011
  end-page: 27
  ident: bb0355
  article-title: Global intercomparison of 12 land surface heat flux estimates
  publication-title: Journal of Geophysical Research: Atmospheres
– start-page: 88
  year: 1977
  ident: bb0235
  article-title: Anatomy of Seed Plants
– volume: 193
  start-page: 120
  year: 1948
  end-page: 145
  ident: bb0585
  article-title: Natural evaporation from open water, bare soil and grass
  publication-title: Proceedings of the Royal Society A (London)
– volume: 32
  start-page: 878
  year: 2002
  end-page: 891
  ident: bb0025
  article-title: Effects of seasonal and interannual climate variability on net ecosystem productivity of boreal deciduous and conifer forests
  publication-title: Can. J. For. Res.
– volume: 2
  start-page: 159
  year: 1996
  end-page: 168
  ident: bb0035
  article-title: Strategies for measuring and modelling CO2 and water vapor fluxes over terrestrial ecosystems
  publication-title: Glob. Chang. Biol.
– volume: 42
  start-page: 187
  year: 1992
  end-page: 216
  ident: bb0680
  article-title: Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme
  publication-title: Remote Sens. Environ.
– year: 1995
  ident: bb0055
  article-title: Regionalization of surface flux densities and moisture indicators in composite terrain: a remote sensing approach under clear skies in Mediterranean climates
– volume: 138
  start-page: 102
  year: 2013
  end-page: 118
  ident: bb0755
  article-title: Temporal upscaling of instantaneous evapotranspiration: an intercomparison of four methods using eddy covariance measurements and MODIS data
  publication-title: Remote Sens. Environ.
– volume: 96
  start-page: 390
  year: 2008
  end-page: 398
  ident: bb0760
  article-title: Fifty years of earth-observation satellites
  publication-title: Am. Sci.
– volume: 55
  start-page: 5818
  year: 2017
  end-page: 5832
  ident: bb0735
  article-title: An end-member-based two-source approach for estimating land surface evapotranspiration from remote sensing data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 113
  start-page: 14
  year: 2013
  end-page: 37
  ident: bb0440
  article-title: Satellite-derived land surface temperature: current status and perspectives
  publication-title: Remote Sens. Environ.
– volume: 232
  year: 2019
  ident: bb0290
  article-title: Diverse photosynthetic capacity of global ecosystems mapped by satellite chlorophyll fluorescence measurements
  publication-title: Remote Sens. Environ.
– volume: 25
  year: 2011
  ident: bb0655
  article-title: Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales
  publication-title: Glob. Biogeochem. Cycles
– volume: 83
  start-page: 214
  year: 2002
  end-page: 231
  ident: bb0545
  article-title: Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data
  publication-title: Remote Sens. Environ.
– volume: 46
  start-page: 164
  year: 1993
  end-page: 172
  ident: bb0670
  article-title: Derivation of actual evapotranspiration in the Senegalese Sahel, using Noaa-Avhrr data during the 1987 growingseason
  publication-title: Remote Sens. Environ.
– volume: 92
  start-page: 407
  year: 1999
  end-page: 427
  ident: bb0725
  article-title: Diurnal variations of the thermal roughness height over a grassland
  publication-title: Bound.-Layer Meteorol.
– volume: 108
  start-page: 4270
  year: 2003
  ident: bb0555
  article-title: An operational remote sensing algorithm of land surface evaporation
  publication-title: J. Geophys. Res.-Atmos.
– start-page: 1
  year: 2017
  end-page: 10
  ident: bb0805
  article-title: Revisiting the contribution of transpiration to global terrestrial evapotranspiration
  publication-title: Geophys. Res. Lett.
– volume: 26
  start-page: 2937
  year: 1990
  end-page: 2944
  ident: bb0720
  article-title: Regional surface fluxes from remotely sensed skin temperature and lower boundary layer measurements
  publication-title: Water Resour. Res.
– volume: 23
  start-page: 4133
  year: 2017
  end-page: 4146
  ident: bb0350
  article-title: Inconcistencies of interannual variability and trends in long-term satellite leaf area index products
  publication-title: Glob. Chang. Biol.
– volume: 112
  start-page: 1130
  year: 2008
  end-page: 1143
  ident: bb0665
  article-title: Modelling surface energy fluxes over maize using a two-source patch model and radiometric soil and canopy temperature observations
  publication-title: Remote Sens. Environ.
– volume: 106
  start-page: 285
  year: 2007
  end-page: 304
  ident: bb0185
  article-title: Regional evaporation estimates from flux tower and MODIS satellite data
  publication-title: Remote Sens. Environ.
– volume: 18
  start-page: 3145
  year: 1997
  end-page: 3166
  ident: bb0260
  article-title: A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature
  publication-title: Int. J. Remote Sens.
– volume: 496
  start-page: 347
  year: 2013
  end-page: 350
  ident: bb0335
  article-title: Terrestrial water fluxes dominated by transpiration
  publication-title: Nature
– year: 2018
  ident: bb0480
  article-title: Compare big-leaf, two-big-leaf and two-leaf upscaling schemes for evapotranspiration estimation using coupled carbon-water modeling
  publication-title: Journal of Geophysical Research-Biogeosciences
– volume: 113
  start-page: 259
  year: 2009
  end-page: 274
  ident: bb0310
  article-title: Utility of an image-based canopy reflectance modeling tool for remote estimation of LAI and leaf chlorophyll content at the field scale
  publication-title: Remote Sens. Environ.
– volume: 26
  year: 2012
  ident: bb0165
  article-title: Effects of foliage clumping on global terrestrial gross primary productivity
  publication-title: Glob. Biogeochem. Cycles
– volume: 305
  start-page: 15
  year: 2005
  end-page: 39
  ident: bb0155
  article-title: Distributed hydrological model for mapping evapotranspiration in a forested watershed
  publication-title: J. Hydrol.
– volume: 216
  start-page: 82
  year: 2016
  end-page: 92
  ident: bb0170
  article-title: Effects of foliage clumping on the estimation of evapotranspiration over forests
  publication-title: Agric. For. Meteorol.
– volume: 53
  start-page: 115
  year: 1996
  end-page: 122
  ident: bb0275
  article-title: Comparison of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance from Scots Pine
  publication-title: Theor. Appl. Climatol.
– volume: 79
  start-page: 213
  year: 2002
  end-page: 224
  ident: bb0675
  article-title: A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status
  publication-title: Remote Sens. Environ.
– volume: 112
  year: 2007
  ident: bb0020
  article-title: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation
  publication-title: J. Geophys. Res.
– volume: 39
  start-page: 1189
  year: 2003
  end-page: 1200
  ident: bb0450
  article-title: Mapping evapotranspiration based on remote sensing: an application to Canada’s landmass
  publication-title: Water Resour. Res.
– volume: 71
  start-page: 211
  year: 1994
  end-page: 216
  ident: bb0630
  article-title: Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index
  publication-title: Bound.-Layer Meteorol.
– volume: 28
  start-page: 940
  year: 1990
  end-page: 948
  ident: bb4345
  article-title: Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Trans
  publication-title: Geosci. Remote Sens
– volume: 83
  start-page: 163
  year: 2002
  end-page: 180
  ident: bb0790
  article-title: Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiaometer data
  publication-title: Remote Sens. Environ.
– volume: 29
  start-page: 197
  year: 1989
  end-page: 207
  ident: bb0120
  article-title: On estimating total daily evapotranspiration from remote sensing temperature measurements
  publication-title: Remote Sens. Environ.
– volume: 37
  start-page: 329
  year: 2001
  end-page: 340
  ident: bb0345
  article-title: Estimation of surface evaporation map over southern Great Plains using remote sensing data
  publication-title: Water Resour. Res.
– volume: 152
  start-page: 212
  year: 2012
  end-page: 222
  ident: bb0660
  article-title: On the temporal upscaling of evapotranspiration from instantaneous remote sensing measurements to 8-day mean daily-sums
  publication-title: Agric. For. Meteorol.
– volume: 534
  start-page: 606
  year: 2016
  end-page: 615
  ident: bb0590
  article-title: Rainfall interception modelling: is the wet bulb approach adequate to estimate mean evaporation rate from wet/saturated canopies in all forest types?
  publication-title: J. Hydrol.
– volume: 100
  start-page: 81
  year: 1972
  end-page: 92
  ident: bb0620
  article-title: On the assessment of surface heat flux and evaporation using large-scale parameters
  publication-title: Mon. Weather Rev.
– volume: 18
  start-page: 339
  year: 1995
  end-page: 355
  ident: bb0420
  article-title: A critical appraisal of a combined stomatal-photosynthesis model for C3 plants
  publication-title: Plant Cell and Environment
– year: 2016
  ident: bb0800
  article-title: A combined GLAS and MODIS estimation of the global distribution of mean forest canopy height
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 589
  year: 1997
  end-page: 599
  ident: bb0380
  article-title: Simulating forest productivity and surface-atmophere carbon exchange in the BOREAS study region
  publication-title: Tree Physiol.
– year: 1973
  ident: bb0520
  article-title: Principles of Environmental Physics
– volume: 467
  start-page: 951
  year: 2010
  end-page: 954
  ident: bb0360
  article-title: Recent decline in the global land evapotranspiration trend due to limited moisture supply
  publication-title: Nature
– volume: 28
  start-page: 276
  year: 1989
  end-page: 284
  ident: bb0550
  article-title: Estimation of regional surfaceresistance to evapotranspiration from NDVI and thermal-IR AVHRR data
  publication-title: J. Appl. Meteorol.
– volume: 99
  start-page: 680
  year: 1973
  end-page: 687
  ident: bb0250
  article-title: Momentum, heat and water vapor transfer to and from natural surfaces
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 17
  start-page: 159
  year: 1990
  end-page: 175
  ident: bb0415
  article-title: Modelling stomatal behaviour and photosynthesis of Eucalyptus grandis
  publication-title: Aust. J. Plant Physiol.
– volume: 121
  start-page: 370
  year: 2012
  end-page: 388
  ident: bb0465
  article-title: A Two-source Trapezoid Model for Evapotranspiration (TTME) from satellite imagery
  publication-title: Remote Sens. Environ.
– volume: 124
  start-page: 99
  year: 1999
  end-page: 119
  ident: bb0150
  article-title: Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications
  publication-title: Ecol. Model.
– volume: 111
  start-page: 519
  year: 2007
  end-page: 536
  ident: bb0535
  article-title: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data
  publication-title: Remote Sens. Environ.
– volume: 18
  start-page: 75
  year: 1985
  end-page: 89
  ident: bb0635
  article-title: Evapotranspiration calculated from multipspectral and ground station meteorological data
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 369
  year: 1990
  end-page: 393
  ident: bb0070
  article-title: Toward a local split window method over land surface
  publication-title: Int. J. Remote Sens.
– year: 1982
  ident: bb0095
  article-title: Evaporation into the Atmosphere
– volume: 27
  start-page: 67
  year: 2008
  end-page: 81
  ident: bb0135
  article-title: Daily evapotranspiration estimates from extrapolating instantaneous airborne remote sensing ET values
  publication-title: Irrig. Sci.
– volume: 112
  start-page: 901
  year: 2008
  end-page: 919
  ident: bb0245
  article-title: Global estimates of the land-amosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites
  publication-title: Remote Sens. Environ.
– volume: 149
  start-page: 2071
  year: 2009
  end-page: 2081
  ident: bb0385
  article-title: Advances in thermal infrared remote sensing for land surface modeling
  publication-title: Agric. For. Meteorol.
– volume: 77
  start-page: 153
  year: 1995
  end-page: 166
  ident: bb0565
  article-title: Terminology in thermal infrared remote sensing of natural surfaces
  publication-title: Agric. For. Meteorol.
– volume: 6
  year: 2016
  ident: bb0845
  article-title: Multi-decadal trends in global terrestrial evapotranspiration and its components
  publication-title: Sci. Rep.
– volume: 133
  start-page: 380
  year: 2007
  end-page: 394
  ident: bb0010
  article-title: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Model
  publication-title: Journal of Irrigation and Drainage Engineering-ASCE
– volume: 184
  start-page: 188
  year: 2014
  end-page: 203
  ident: bb0490
  article-title: An image-based four-source surface energy balance model to estimate crop evapotranspiration from solar reflectance/thermal emission data (SEB-4S)
  publication-title: Agric. For. Meteorol.
– volume: 122
  start-page: 10
  year: 2017
  end-page: 177
  ident: bb0745
  article-title: Estimating daily evapotranspiration from remotely sensed instantaneous observations with simplified derivations of a theoretical model
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 117
  year: 2012
  ident: bb0455
  article-title: Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 49
  start-page: 205
  year: 1990
  end-page: 223
  ident: bb0390
  article-title: Estimation of the soil heat flux/net radiation ratio from spectral data
  publication-title: Agric. For. Meteorol.
– volume: 113
  year: 2008
  ident: bb0255
  article-title: Validation and intercomparison of global Leaf Area Index products derived from remote sensing data
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 14
  start-page: 1069
  year: 1994
  end-page: 1079
  ident: bb0030
  article-title: An analytical solution for coupled leaf photosynthesis and stomatal conductance models
  publication-title: Tree Physiol.
– volume: 13
  start-page: 915
  year: 1977
  end-page: 921
  ident: bb8540
  article-title: Evaporation from the wet canopy of a pine forest
  publication-title: Water Resour. Res.
– volume: 105
  start-page: 281
  year: 2000
  end-page: 309
  ident: bb0270
  article-title: Seasonal estimates of riparian evapotranspiration using remote and in situ measurements
  publication-title: Agric. For. Meteorol.
– volume: 64
  start-page: 603
  year: 1972
  end-page: 608
  ident: bb0050
  article-title: Aerial thermal scanner to determine temperatures of soils and of crop canopies differing in water stress
  publication-title: Agron. J.
– volume: 110
  start-page: 162
  year: 2007
  end-page: 175
  ident: bb0195
  article-title: Temperature and emissivity separation from ASTER data for low spectral contrast surfaces
  publication-title: Remote Sens. Environ.
– volume: 26
  start-page: 1097
  year: 2003
  end-page: 1116
  ident: bb0770
  article-title: A coupled model of stomatal conductance, photosynthesis and transpiration
  publication-title: Plant Cell Environ.
– volume: 63
  start-page: 1
  year: 1998
  end-page: 10
  ident: bb0130
  article-title: Mapping actual evapotranspiraation by combining Landat TM and NOAA-AVHRR images, application to the Barrax area, Albacete, Spain
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 367
  year: 1971
  end-page: 384
  ident: bb0650
  article-title: A predictive model of rainfall interception in forests, 1. Derivation of the model from observations in a plantation of Corsican pine
  publication-title: Agric. Meteorol.
– volume: 110
  start-page: 139
  year: 2007
  end-page: 148
  ident: bb0695
  article-title: Application of a simple algorithm to estimate daily evoptranspiration from NOAA-AVHEE images for the Iberrian Pennisula
  publication-title: Remote Sens. Environ.
– volume: 118
  start-page: 590
  year: 2013
  end-page: 605
  ident: bb0815
  article-title: A novel algorithm to assess gross primary productivity for terrestrial ecosystems from MODIS imagery
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 115
  start-page: 1781
  year: 2011
  end-page: 1800
  ident: bb0540
  article-title: Improvements to a MODIS global terrestrial evapotranspiration algorithm
  publication-title: Remote Sens. Environ.
– volume: 25
  start-page: 147
  year: 2000
  end-page: 157
  ident: bb0640
  article-title: S-SEBI: a simple remote sensing algorithm to estimate the surface energy balance
  publication-title: Physics and Chemistry of the Earth. Part B: Hydrology, Oceans and Atmosphere
– volume: 256
  start-page: 501
  year: 2018
  end-page: 515
  ident: bb0495
  article-title: A phenomenological model of soil evaporative efficiency using surface soil moisture and temperature data
  publication-title: Agric. For. Meteorol.
– start-page: 39
  year: 2003
  ident: bb0580
  article-title: Remote sensing of surface energy fluxes at 101-m pixel resolutions
  publication-title: Water Resour. Res.
– volume: 94
  start-page: 13
  year: 1999
  end-page: 29
  ident: bb0395
  article-title: Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover
  publication-title: Agric. For. Meteorol.
– volume: 57
  start-page: 167
  year: 1996
  end-page: 184
  ident: bb0775
  article-title: Mapping land surface emissivity from NDVI: application to European, African and South American Areas
  publication-title: Remote Sens. Environ.
– volume: 36
  start-page: 2263
  year: 2000
  end-page: 2274
  ident: bb0575
  article-title: Surface flux estimation using radiometric temperature: a dual temperature difference method to minimize measurement error
  publication-title: Water Resour. Res.
– volume: 273
  start-page: 593
  year: 1976
  end-page: 610
  ident: bb0330
  article-title: Interpretation of variations in leaf water potential and stomatal conductance found in canopies in field
  publication-title: Philos. Trans. R. Soc. Landa, Ser. B.
– volume: 29
  start-page: 421
  year: 2008
  end-page: 469
  ident: bb0365
  article-title: Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data
  publication-title: Surv. Geophys.
– volume: 79
  start-page: 5039
  year: 1984
  end-page: 5044
  ident: bb0615
  article-title: Land surface temperature measurements from the split Z. Wan et al./Remote Sensing of Environment 83 (2002) 163–180 179 window channels of the NOAA-7 AVHRR
  publication-title: J. Geophys. Res.
– volume: 468
  start-page: 35
  year: 2012
  end-page: 46
  ident: bb0780
  article-title: Upscaling latent heat flux for thermal remote sensing studies: comparison of alternative approaches and correction of bias
  publication-title: J. Hydrol.
– volume: 369
  start-page: 107
  year: 2009
  end-page: 119
  ident: bb0285
  article-title: Scaling of potential evapotranspiration with MODIS data reproduces flux observations and catchment water balance observations across Australia
  publication-title: J. Hydrol.
– volume: 121
  start-page: 1549
  year: 1995
  end-page: 1574
  ident: bb0300
  article-title: Surface transfer of heat and momentum over an inhomogeneous vegetated land
  publication-title: Quart. J. Roy. Meteorol. Soc.
– volume: 77
  start-page: 263
  year: 1995
  end-page: 293
  ident: bb0570
  article-title: A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature
  publication-title: Agric. For. Meteorol.
– reference: .
– volume: 105
  start-page: 271
  year: 2006
  end-page: 285
  ident: bb0485
  article-title: Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors
  publication-title: Remote Sens. Environ.
– year: 2019
  ident: bb0810
  article-title: Global 500 m clumping index product derived from MODIS BRDF data (2001–2017)
  publication-title: Remote Sens. Environ.
– start-page: 390
  year: 1980
  end-page: 397
  ident: bb0325
  article-title: Remotely sensed crop temperatures and reflectances as inputs to irrigation scheduling
  publication-title: Irrigation and Drainage: Today’s Challenges
– volume: 6
  start-page: 85
  year: 2002
  end-page: 99
  ident: bb0715
  article-title: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 7
  start-page: 1612
  year: 2007
  end-page: 1623
  ident: bb0115
  article-title: An overview of the “triangle method for estimating surface evapotranspiration and soil moisture from satellite imagery”
  publication-title: Sensors
– volume: 121
  start-page: 262
  year: 2012
  end-page: 274
  ident: bb0265
  article-title: Integration of soil moisture in SEBS for improving evapotranspiration estimation under water stress conditions
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 379
  year: 1977
  end-page: 383
  ident: bb0525
  article-title: Resistance of a partially wet canopy: whose equation fails
  publication-title: Bound.-Layer Meteorol.
– volume: 60
  start-page: 195
  year: 1997
  end-page: 216
  ident: bb0015
  article-title: A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing
  publication-title: Remote Sens. Environ.
– volume: 100
  start-page: 2817
  year: 1995
  end-page: 2831
  ident: bb0080
  article-title: Land–atmosphere CO2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model
  publication-title: J. Geophys. Res.
– volume: 15
  start-page: 967
  year: 2011
  end-page: 981
  ident: bb0510
  article-title: Magnitude and variability of land evaporation and its components at the global scale
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 80
  start-page: 87
  year: 1994
  end-page: 109
  ident: bb0530
  article-title: Combining the Penman–Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland
  publication-title: Agric. For. Meteorol.
– start-page: 65
  year: 1982
  end-page: 99
  ident: bb0560
  article-title: Simulation of microclimates
  publication-title: Biometeorology in Integrated Pest Management
– volume: 25
  start-page: 295
  year: 1988
  end-page: 309
  ident: bb0320
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
– volume: 37
  start-page: 319
  year: 1986
  end-page: 329
  ident: bb0190
  article-title: Estimation of soil heat flux from net radiation during the growth of alfalfa
  publication-title: Agric. For. Meteorol.
– volume: 174
  start-page: 10
  year: 2016
  end-page: 23
  ident: bb0505
  article-title: A time domain triangle method approach to estimate actual evapotranspiration: application in a Mediterranean region using MODIS and MSG-SEVIRI products
  publication-title: Remote Sens. Environ.
– volume: 96
  start-page: 256
  year: 2005
  ident: 10.1016/j.rse.2019.111594_bb0785
  article-title: Estimating evapotranspiration of European forests from NOAA-imagery at stellite overpass time: towards an operational processing chain for integrated optical and thermal sensor data products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.03.004
– volume: 213
  start-page: 198
  year: 1998
  ident: 10.1016/j.rse.2019.111594_bb0060
  article-title: A remote sensing surface energy balance algorithm for land (SEBAL) - 1. Formulation
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(98)00253-4
– volume: 149
  start-page: 78
  issue: 1
  year: 1980
  ident: 10.1016/j.rse.2019.111594_bb0240
  article-title: A biochemical model of photosynthetic CO2 assimilation in leaves of C 3 species
  publication-title: Planta
  doi: 10.1007/BF00386231
– volume: 6
  year: 2016
  ident: 10.1016/j.rse.2019.111594_bb0845
  article-title: Multi-decadal trends in global terrestrial evapotranspiration and its components
  publication-title: Sci. Rep.
– volume: 50
  start-page: 1
  year: 1994
  ident: 10.1016/j.rse.2019.111594_bb0180
  article-title: Relations between evaporation coefficients and vegetation indices studies by model simulations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(94)90090-6
– volume: 98
  start-page: 704
  issue: 5
  year: 2010
  ident: 10.1016/j.rse.2019.111594_bb0230
  article-title: The Soil Moisture Active Passive (SMAP) mission
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2010.2043918
– volume: 53
  start-page: 115
  year: 1996
  ident: 10.1016/j.rse.2019.111594_bb0275
  article-title: Comparison of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance from Scots Pine
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/BF00866416
– volume: 12
  start-page: 589
  year: 1997
  ident: 10.1016/j.rse.2019.111594_bb0380
  article-title: Simulating forest productivity and surface-atmophere carbon exchange in the BOREAS study region
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/17.8-9.589
– volume: 8
  start-page: 6165
  year: 2008
  ident: 10.1016/j.rse.2019.111594_bb0840
  article-title: Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval
  publication-title: Sensors
  doi: 10.3390/s8106165
– volume: 5
  start-page: 137
  year: 1976
  ident: 10.1016/j.rse.2019.111594_bb0295
  article-title: Thermal scanner measurement of canopy temperaturesto estimate evapotranspiration
  publication-title: Remate Sensing Environment
  doi: 10.1016/0034-4257(76)90044-4
– volume: 113
  start-page: 259
  year: 2009
  ident: 10.1016/j.rse.2019.111594_bb0310
  article-title: Utility of an image-based canopy reflectance modeling tool for remote estimation of LAI and leaf chlorophyll content at the field scale
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.09.014
– volume: 496
  start-page: 347
  issue: 7445
  year: 2013
  ident: 10.1016/j.rse.2019.111594_bb0335
  article-title: Terrestrial water fluxes dominated by transpiration
  publication-title: Nature
  doi: 10.1038/nature11983
– volume: 148
  start-page: 1629
  year: 2008
  ident: 10.1016/j.rse.2019.111594_bb0835
  article-title: Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest China
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2008.05.016
– volume: 94
  start-page: 269
  year: 1999
  ident: 10.1016/j.rse.2019.111594_bb0430
  article-title: Comments on dual-source vegetation-atmosphere transfer models
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(98)00109-9
– volume: 83
  start-page: 214
  year: 2002
  ident: 10.1016/j.rse.2019.111594_bb0545
  article-title: Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00074-3
– volume: 305
  start-page: 15
  year: 2005
  ident: 10.1016/j.rse.2019.111594_bb0155
  article-title: Distributed hydrological model for mapping evapotranspiration in a forested watershed
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2004.08.029
– start-page: 65
  year: 1982
  ident: 10.1016/j.rse.2019.111594_bb0560
  article-title: Simulation of microclimates
– volume: 112
  start-page: 1130
  year: 2008
  ident: 10.1016/j.rse.2019.111594_bb0665
  article-title: Modelling surface energy fluxes over maize using a two-source patch model and radiometric soil and canopy temperature observations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.07.018
– volume: 216
  start-page: 82
  year: 2016
  ident: 10.1016/j.rse.2019.111594_bb0170
  article-title: Effects of foliage clumping on the estimation of evapotranspiration over forests
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.09.017
– year: 2019
  ident: 10.1016/j.rse.2019.111594_bb0810
  article-title: Global 500 m clumping index product derived from MODIS BRDF data (2001–2017)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111296
– volume: 79
  start-page: 213
  year: 2002
  ident: 10.1016/j.rse.2019.111594_bb0675
  article-title: A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00274-7
– volume: 256
  start-page: 501
  year: 2018
  ident: 10.1016/j.rse.2019.111594_bb0495
  article-title: A phenomenological model of soil evaporative efficiency using surface soil moisture and temperature data
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2018.04.010
– volume: 121
  start-page: 262
  year: 2012
  ident: 10.1016/j.rse.2019.111594_bb0265
  article-title: Integration of soil moisture in SEBS for improving evapotranspiration estimation under water stress conditions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.02.003
– volume: 369
  start-page: 107
  year: 2009
  ident: 10.1016/j.rse.2019.111594_bb0285
  article-title: Scaling of potential evapotranspiration with MODIS data reproduces flux observations and catchment water balance observations across Australia
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.02.013
– volume: 149
  start-page: 1875
  year: 2009
  ident: 10.1016/j.rse.2019.111594_bb0305
  article-title: Intercomarison of a “bottom-up” and “top-down” modeling paradigm for estimating carbon and energy fluxes over a variety of vegetative regions across the US
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2009.06.014
– volume: 37
  year: 2010
  ident: 10.1016/j.rse.2019.111594_bb0410
  article-title: A global forest canopy height map from themoderate resolution imaging spectroradiometer and the Geoscience Laser Altimeter System
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2010GL043622
– volume: 98
  start-page: 666
  issue: 5
  year: 2010
  ident: 10.1016/j.rse.2019.111594_bb0375
  article-title: The SMOS mission: new tool for monitoring key elements of the global water cycle
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2010.2043032
– ident: 10.1016/j.rse.2019.111594_bb0205
  doi: 10.1111/gcb.13599
– volume: 9
  start-page: 3801
  year: 2009
  ident: 10.1016/j.rse.2019.111594_bb9000
  article-title: A review of current methodologies for regional evapotranspiration estimation from remotely sensed data
  publication-title: Sensors
  doi: 10.3390/s90503801
– volume: 97
  start-page: 18377
  issue: D17
  year: 1992
  ident: 10.1016/j.rse.2019.111594_bb0100
  article-title: Application of self-preservation in the diurnal evolution of the surface energy budget to determine daily evaporation
  publication-title: J. Geophys. Res.
  doi: 10.1029/92JD00255
– volume: 66
  start-page: 450
  year: 1974
  ident: 10.1016/j.rse.2019.111594_bb0710
  article-title: Estimating evapotranspiration using canopy temperatures: field evaluation
  publication-title: Agron. J.
  doi: 10.2134/agronj1974.00021962006600030033x
– volume: 110
  start-page: 162
  issue: 2
  year: 2007
  ident: 10.1016/j.rse.2019.111594_bb0195
  article-title: Temperature and emissivity separation from ASTER data for low spectral contrast surfaces
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.02.008
– volume: 113
  year: 2008
  ident: 10.1016/j.rse.2019.111594_bb0255
  article-title: Validation and intercomparison of global Leaf Area Index products derived from remote sensing data
  publication-title: Journal of Geophysical Research: Biogeosciences
  doi: 10.1029/2007JG000635
– volume: 193
  start-page: 120
  year: 1948
  ident: 10.1016/j.rse.2019.111594_bb0585
  article-title: Natural evaporation from open water, bare soil and grass
  publication-title: Proceedings of the Royal Society A (London)
  doi: 10.1098/rspa.1948.0037
– year: 2016
  ident: 10.1016/j.rse.2019.111594_bb0800
  article-title: A combined GLAS and MODIS estimation of the global distribution of mean forest canopy height
  publication-title: Remote Sens. Environ.
– volume: 28
  start-page: 181
  year: 1971
  ident: 10.1016/j.rse.2019.111594_bb0110
  article-title: Flux profile relationships in the atmospheric surface layer. 1
  publication-title: Atmos. Sci.
  doi: 10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2
– volume: 48
  start-page: 225
  issue: S1
  year: 2005
  ident: 10.1016/j.rse.2019.111594_bb0830
  article-title: An operational two-layer remote sensing model to estimate surface flux in regional scale: physical background
  publication-title: Sci. China Ser. D
– start-page: 10:4259
  year: 2019
  ident: 10.1016/j.rse.2019.111594_bb0175
  article-title: Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink
  publication-title: Nat. Commun.
– volume: 64
  start-page: 603
  year: 1972
  ident: 10.1016/j.rse.2019.111594_bb0050
  article-title: Aerial thermal scanner to determine temperatures of soils and of crop canopies differing in water stress
  publication-title: Agron. J.
  doi: 10.2134/agronj1972.00021962006400050016x
– volume: 44
  year: 2008
  ident: 10.1016/j.rse.2019.111594_bb0425
  article-title: A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation
  publication-title: Water Resour. Res.
  doi: 10.1029/2007WR006562
– ident: 10.1016/j.rse.2019.111594_bb0470
  doi: 10.1029/2009WR008125
– volume: 174
  start-page: 10
  year: 2016
  ident: 10.1016/j.rse.2019.111594_bb0505
  article-title: A time domain triangle method approach to estimate actual evapotranspiration: application in a Mediterranean region using MODIS and MSG-SEVIRI products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.12.018
– year: 2018
  ident: 10.1016/j.rse.2019.111594_bb0480
  article-title: Compare big-leaf, two-big-leaf and two-leaf upscaling schemes for evapotranspiration estimation using coupled carbon-water modeling
  publication-title: Journal of Geophysical Research-Biogeosciences
  doi: 10.1002/2017JG003978
– volume: 100
  start-page: 2817
  year: 1995
  ident: 10.1016/j.rse.2019.111594_bb0080
  article-title: Land–atmosphere CO2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model
  publication-title: J. Geophys. Res.
  doi: 10.1029/94JD02961
– volume: 57
  start-page: 167
  year: 1996
  ident: 10.1016/j.rse.2019.111594_bb0775
  article-title: Mapping land surface emissivity from NDVI: application to European, African and South American Areas
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(96)00039-9
– volume: 52
  start-page: 1096
  year: 1995
  ident: 10.1016/j.rse.2019.111594_bb0730
  article-title: Determination of surface fluxes from the surface radiative temperature
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1995)052<1096:DOSFFT>2.0.CO;2
– volume: 18
  start-page: 137
  year: 1985
  ident: 10.1016/j.rse.2019.111594_bb9125
  article-title: Observed relation between thermal emission and reflected spectral radiance of a complex vegetated landscape
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(85)90044-6
– volume: 19
  start-page: 223
  year: 2005
  ident: 10.1016/j.rse.2019.111594_bb0851
  article-title: Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical modeling approaches.
  publication-title: Irrigation and Drainage System
  doi: 10.1007/s10795-005-5186-0
– volume: 154
  start-page: 89
  year: 2014
  ident: 10.1016/j.rse.2019.111594_bb0500
  article-title: Comparison of SMOS and SMAP soil moisture retrieval approaches using tower-based radiometer data over a vineyard field
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.08.002
– volume: 99
  start-page: 680
  year: 1973
  ident: 10.1016/j.rse.2019.111594_bb0250
  article-title: Momentum, heat and water vapor transfer to and from natural surfaces
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.49709942209
– volume: 152
  start-page: 212
  year: 2012
  ident: 10.1016/j.rse.2019.111594_bb0660
  article-title: On the temporal upscaling of evapotranspiration from instantaneous remote sensing measurements to 8-day mean daily-sums
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2011.09.010
– start-page: 39
  year: 2003
  ident: 10.1016/j.rse.2019.111594_bb0580
  article-title: Remote sensing of surface energy fluxes at 101-m pixel resolutions
  publication-title: Water Resour. Res.
– volume: 54
  start-page: 161
  year: 1995
  ident: 10.1016/j.rse.2019.111594_bb0125
  article-title: A new look at the simplified method for remote-sensing of daily evapotranspiration
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(95)00139-R
– volume: 6
  start-page: 85
  year: 2002
  ident: 10.1016/j.rse.2019.111594_bb0715
  article-title: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-6-85-2002
– volume: 168
  start-page: 54
  year: 2015
  ident: 10.1016/j.rse.2019.111594_bb0820
  article-title: An enhanced two-source evapotranspiration model for land (ETEML): algorithm and evluation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.06.020
– start-page: 300
  year: 1998
  ident: 10.1016/j.rse.2019.111594_bb0005
– start-page: 221
  year: 1987
  ident: 10.1016/j.rse.2019.111594_bb0045
  article-title: A model predicting Stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions
– volume: 46
  start-page: 213
  year: 1993
  ident: 10.1016/j.rse.2019.111594_bb0065
  article-title: Soil background effects on reflectance-based crop coefficients for corn
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(93)90096-G
– volume: 63
  start-page: 1
  year: 1998
  ident: 10.1016/j.rse.2019.111594_bb0130
  article-title: Mapping actual evapotranspiraation by combining Landat TM and NOAA-AVHRR images, application to the Barrax area, Albacete, Spain
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(97)00108-9
– volume: 15
  start-page: 967
  issue: 3
  year: 2011
  ident: 10.1016/j.rse.2019.111594_bb0510
  article-title: Magnitude and variability of land evaporation and its components at the global scale
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-15-967-2011
– volume: 2
  start-page: 159
  year: 1996
  ident: 10.1016/j.rse.2019.111594_bb0035
  article-title: Strategies for measuring and modelling CO2 and water vapor fluxes over terrestrial ecosystems
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.1996.tb00069.x
– volume: 114
  start-page: 540
  year: 2010
  ident: 10.1016/j.rse.2019.111594_bb0750
  article-title: An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: implementation and validation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.10.012
– volume: 112
  year: 2007
  ident: 10.1016/j.rse.2019.111594_bb0020
  article-title: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation
  publication-title: J. Geophys. Res.
  doi: 10.1029/2006JD007506
– volume: 18
  start-page: 339
  year: 1995
  ident: 10.1016/j.rse.2019.111594_bb0420
  article-title: A critical appraisal of a combined stomatal-photosynthesis model for C3 plants
  publication-title: Plant Cell and Environment
  doi: 10.1111/j.1365-3040.1995.tb00370.x
– volume: 248
  start-page: 156
  year: 2017
  ident: 10.1016/j.rse.2019.111594_bb0475
  article-title: Incorporating leaf chlorophyll content into a terrestrial biosphere model for estimating carbon and water fluxes at a forest site
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2017.09.012
– volume: 26
  start-page: 1097
  year: 2003
  ident: 10.1016/j.rse.2019.111594_bb0770
  article-title: A coupled model of stomatal conductance, photosynthesis and transpiration
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.1365-3040.2003.01035.x
– volume: 37
  start-page: 319
  year: 1986
  ident: 10.1016/j.rse.2019.111594_bb0190
  article-title: Estimation of soil heat flux from net radiation during the growth of alfalfa
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(86)90069-9
– volume: 23
  start-page: 4133
  year: 2017
  ident: 10.1016/j.rse.2019.111594_bb0350
  article-title: Inconcistencies of interannual variability and trends in long-term satellite leaf area index products
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13787
– volume: 49
  start-page: 205
  year: 1990
  ident: 10.1016/j.rse.2019.111594_bb0390
  article-title: Estimation of the soil heat flux/net radiation ratio from spectral data
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(90)90033-3
– volume: 184
  start-page: 188
  year: 2014
  ident: 10.1016/j.rse.2019.111594_bb0490
  article-title: An image-based four-source surface energy balance model to estimate crop evapotranspiration from solar reflectance/thermal emission data (SEB-4S)
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2013.10.002
– volume: 14
  start-page: 1069
  year: 1994
  ident: 10.1016/j.rse.2019.111594_bb0030
  article-title: An analytical solution for coupled leaf photosynthesis and stomatal conductance models
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/14.7-8-9.1069
– volume: 15
  start-page: 421
  year: 1992
  ident: 10.1016/j.rse.2019.111594_bb0145
  article-title: Defining leaf area index for non-flat leaves
  publication-title: Plant, Cell and Environment
  doi: 10.1111/j.1365-3040.1992.tb00992.x
– volume: 83
  start-page: 163
  year: 2002
  ident: 10.1016/j.rse.2019.111594_bb0790
  article-title: Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiaometer data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00093-7
– start-page: 305
  year: 1966
  ident: 10.1016/j.rse.2019.111594_bb0105
  article-title: Transfer of momentum and heat in the planetary boundary layer
– volume: 79
  start-page: 5039
  year: 1984
  ident: 10.1016/j.rse.2019.111594_bb0615
  article-title: Land surface temperature measurements from the split Z. Wan et al./Remote Sensing of Environment 83 (2002) 163–180 179 window channels of the NOAA-7 AVHRR
  publication-title: J. Geophys. Res.
– volume: 49
  start-page: 275
  year: 1994
  ident: 10.1016/j.rse.2019.111594_bb0405
  article-title: Using satellite remote-sensing to extrapolate evapotranspiration estimates in time and space over a semiarid rangeland basin
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(94)90022-1
– volume: 69
  start-page: 197
  year: 1999
  ident: 10.1016/j.rse.2019.111594_bb0435
  article-title: Evaluation of six methods for extracting relative emissivity spectra from thermal infrared images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(99)00049-8
– volume: 91
  start-page: 89
  issue: 1–2
  year: 1998
  ident: 10.1016/j.rse.2019.111594_bb0795
  article-title: A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(98)00061-6
– year: 1995
  ident: 10.1016/j.rse.2019.111594_bb0055
– volume: 113
  start-page: 14
  year: 2013
  ident: 10.1016/j.rse.2019.111594_bb0440
  article-title: Satellite-derived land surface temperature: current status and perspectives
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.008
– volume: 42
  start-page: 187
  issue: 3
  year: 1992
  ident: 10.1016/j.rse.2019.111594_bb0680
  article-title: Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(92)90102-P
– volume: 197
  start-page: 215
  year: 2017
  ident: 10.1016/j.rse.2019.111594_bb0200
  article-title: Valdiation of SMAP surface soil moisture products with core validation sites
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.01.021
– volume: 45
  year: 2009
  ident: 10.1016/j.rse.2019.111594_bb0315
  article-title: Ecosystem processes at the watershed scale: extending optimality theory from plot to catchment
  publication-title: Water Resour. Res.
– volume: 94
  start-page: 13
  issue: 1
  year: 1999
  ident: 10.1016/j.rse.2019.111594_bb0395
  article-title: Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(99)00005-2
– volume: 97
  start-page: 447
  year: 2005
  ident: 10.1016/j.rse.2019.111594_bb0160
  article-title: Global derivation of the vegetation clumping index from multi-angular satellite data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.05.003
– volume: 32
  start-page: 645
  issue: 3
  year: 1996
  ident: 10.1016/j.rse.2019.111594_bb0625
  article-title: Effect of vegetation density on the parameterization of scalar roughness to estimate spatially distributed sensible heat fluxes
  publication-title: Water Resour. Res.
  doi: 10.1029/95WR03097
– volume: 36
  start-page: 2263
  year: 2000
  ident: 10.1016/j.rse.2019.111594_bb0575
  article-title: Surface flux estimation using radiometric temperature: a dual temperature difference method to minimize measurement error
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900033
– volume: 14
  start-page: 199
  year: 1974
  ident: 10.1016/j.rse.2019.111594_bb0090
  article-title: Calculations of evapotranspiration from crop surface temperature
  publication-title: Agri. MeteoroI.
  doi: 10.1016/0002-1571(74)90019-3
– volume: 105
  start-page: 43
  year: 1979
  ident: 10.1016/j.rse.2019.111594_bb8000
  article-title: An analytical model of rainfall interception by forests
  publication-title: Quart. J. R. Met. Soc
  doi: 10.1002/qj.49710544304
– volume: 92
  start-page: 407
  year: 1999
  ident: 10.1016/j.rse.2019.111594_bb0725
  article-title: Diurnal variations of the thermal roughness height over a grassland
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1023/A:1002071421362
– volume: 13
  start-page: 915
  year: 1977
  ident: 10.1016/j.rse.2019.111594_bb8540
  article-title: Evaporation from the wet canopy of a pine forest
  publication-title: Water Resour. Res.
  doi: 10.1029/WR013i006p00915
– volume: 232
  year: 2019
  ident: 10.1016/j.rse.2019.111594_bb0290
  article-title: Diverse photosynthetic capacity of global ecosystems mapped by satellite chlorophyll fluorescence measurements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111344
– volume: 7
  start-page: 1612
  year: 2007
  ident: 10.1016/j.rse.2019.111594_bb0115
  article-title: An overview of the “triangle method for estimating surface evapotranspiration and soil moisture from satellite imagery”
  publication-title: Sensors
  doi: 10.3390/s7081612
– volume: 115
  start-page: 1781
  year: 2011
  ident: 10.1016/j.rse.2019.111594_bb0540
  article-title: Improvements to a MODIS global terrestrial evapotranspiration algorithm
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.02.019
– volume: 100
  start-page: 81
  year: 1972
  ident: 10.1016/j.rse.2019.111594_bb0620
  article-title: On the assessment of surface heat flux and evaporation using large-scale parameters
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
– volume: 138
  start-page: 142
  year: 2006
  ident: 10.1016/j.rse.2019.111594_bb0370
  article-title: Modelling evapotranspiration of six irrigated crops under Mediterranean climate conditions
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2006.04.006
– volume: 98
  start-page: 182
  year: 2005
  ident: 10.1016/j.rse.2019.111594_bb0460
  article-title: A local-scale, high-resolution evapotranspiration mapping algorithm (ETMA) with hydroecological applications at riparian meadow restoration sites
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.07.003
– volume: 9
  start-page: 367
  year: 1971
  ident: 10.1016/j.rse.2019.111594_bb0650
  article-title: A predictive model of rainfall interception in forests, 1. Derivation of the model from observations in a plantation of Corsican pine
  publication-title: Agric. Meteorol.
  doi: 10.1016/0002-1571(71)90034-3
– volume: 112
  start-page: 901
  year: 2008
  ident: 10.1016/j.rse.2019.111594_bb0245
  article-title: Global estimates of the land-amosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.06.025
– volume: 60
  start-page: 195
  year: 1997
  ident: 10.1016/j.rse.2019.111594_bb0015
  article-title: A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00215-5
– volume: 116
  start-page: 1
  issue: 2
  year: 2011
  ident: 10.1016/j.rse.2019.111594_bb0355
  article-title: Global intercomparison of 12 land surface heat flux estimates
  publication-title: Journal of Geophysical Research: Atmospheres
– year: 1982
  ident: 10.1016/j.rse.2019.111594_bb0095
– volume: 77
  start-page: 153
  year: 1995
  ident: 10.1016/j.rse.2019.111594_bb0565
  article-title: Terminology in thermal infrared remote sensing of natural surfaces
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(95)02259-Z
– volume: 110
  start-page: 139
  year: 2007
  ident: 10.1016/j.rse.2019.111594_bb0695
  article-title: Application of a simple algorithm to estimate daily evoptranspiration from NOAA-AVHEE images for the Iberrian Pennisula
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.02.017
– volume: 96
  start-page: 390
  issue: 5
  year: 2008
  ident: 10.1016/j.rse.2019.111594_bb0760
  article-title: Fifty years of earth-observation satellites
  publication-title: Am. Sci.
  doi: 10.1511/2008.74.390
– volume: 32
  start-page: 878
  year: 2002
  ident: 10.1016/j.rse.2019.111594_bb0025
  article-title: Effects of seasonal and interannual climate variability on net ecosystem productivity of boreal deciduous and conifer forests
  publication-title: Can. J. For. Res.
  doi: 10.1139/x01-228
– volume: 105
  start-page: 271
  year: 2006
  ident: 10.1016/j.rse.2019.111594_bb0485
  article-title: Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.07.006
– volume: 29
  start-page: 197
  year: 1989
  ident: 10.1016/j.rse.2019.111594_bb0120
  article-title: On estimating total daily evapotranspiration from remote sensing temperature measurements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(89)90027-8
– volume: 65
  start-page: 341
  year: 2010
  ident: 10.1016/j.rse.2019.111594_bb0600
  article-title: Expanding global mapping of foliage clumping index with multi-angular POLDER 3 measurements: evaluation and topographic compensation
  publication-title: ISPRS Journal of Photgrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2010.03.002
– volume: 122
  start-page: 10
  issue: 19
  year: 2017
  ident: 10.1016/j.rse.2019.111594_bb0745
  article-title: Estimating daily evapotranspiration from remotely sensed instantaneous observations with simplified derivations of a theoretical model
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 133
  start-page: 380
  year: 2007
  ident: 10.1016/j.rse.2019.111594_bb0010
  article-title: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Model
  publication-title: Journal of Irrigation and Drainage Engineering-ASCE
  doi: 10.1061/(ASCE)0733-9437(2007)133:4(380)
– volume: 117
  year: 2012
  ident: 10.1016/j.rse.2019.111594_bb0705
  article-title: Evaluation of leaf-to-canopy upscaling methodologies against carbon flux data in North America
  publication-title: Journal of Geophysical Research-Biogeosciences
  doi: 10.1029/2010JG001407
– volume: 33
  start-page: 224
  year: 2009
  ident: 10.1016/j.rse.2019.111594_bb0595
  article-title: A review of Ts/Vi remote sensing based methods for the retrieval of land surface energy fluxes and soil surface moisture
  publication-title: Prog. Phys. Geogr.
  doi: 10.1177/0309133309338997
– volume: 138
  start-page: 102
  year: 2013
  ident: 10.1016/j.rse.2019.111594_bb0755
  article-title: Temporal upscaling of instantaneous evapotranspiration: an intercomparison of four methods using eddy covariance measurements and MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.07.001
– volume: 467
  start-page: 951
  issue: 7318
  year: 2010
  ident: 10.1016/j.rse.2019.111594_bb0360
  article-title: Recent decline in the global land evapotranspiration trend due to limited moisture supply
  publication-title: Nature
  doi: 10.1038/nature09396
– volume: 25
  start-page: 147
  year: 2000
  ident: 10.1016/j.rse.2019.111594_bb0640
  article-title: S-SEBI: a simple remote sensing algorithm to estimate the surface energy balance
  publication-title: Physics and Chemistry of the Earth. Part B: Hydrology, Oceans and Atmosphere
  doi: 10.1016/S1464-1909(99)00128-8
– volume: 149
  start-page: 2071
  issue: 12
  year: 2009
  ident: 10.1016/j.rse.2019.111594_bb0385
  article-title: Advances in thermal infrared remote sensing for land surface modeling
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2009.05.016
– volume: 111
  start-page: 519
  year: 2007
  ident: 10.1016/j.rse.2019.111594_bb0535
  article-title: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.04.015
– volume: 25
  issue: 4
  year: 2011
  ident: 10.1016/j.rse.2019.111594_bb0655
  article-title: Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2011GB004053
– volume: 468
  start-page: 35
  year: 2012
  ident: 10.1016/j.rse.2019.111594_bb0780
  article-title: Upscaling latent heat flux for thermal remote sensing studies: comparison of alternative approaches and correction of bias
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.08.005
– volume: 17
  start-page: 2281
  issue: 12
  year: 2004
  ident: 10.1016/j.rse.2019.111594_bb0215
  article-title: A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2
– volume: 80
  start-page: 87
  year: 1994
  ident: 10.1016/j.rse.2019.111594_bb0530
  article-title: Combining the Penman–Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(95)02292-9
– volume: 17
  start-page: 159
  year: 1990
  ident: 10.1016/j.rse.2019.111594_bb0415
  article-title: Modelling stomatal behaviour and photosynthesis of Eucalyptus grandis
  publication-title: Aust. J. Plant Physiol.
– volume: 71
  start-page: 211
  year: 1994
  ident: 10.1016/j.rse.2019.111594_bb0630
  article-title: Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1007/BF00709229
– volume: 124
  start-page: 99
  year: 1999
  ident: 10.1016/j.rse.2019.111594_bb0150
  article-title: Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(99)00156-8
– volume: 18
  start-page: 3145
  year: 1997
  ident: 10.1016/j.rse.2019.111594_bb0260
  article-title: A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311697217026
– volume: 26
  issue: GB1019
  year: 2012
  ident: 10.1016/j.rse.2019.111594_bb0165
  article-title: Effects of foliage clumping on global terrestrial gross primary productivity
  publication-title: Glob. Biogeochem. Cycles
– volume: 11
  start-page: 369
  issue: 3
  year: 1990
  ident: 10.1016/j.rse.2019.111594_bb0070
  article-title: Toward a local split window method over land surface
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169008955028
– year: 1973
  ident: 10.1016/j.rse.2019.111594_bb0520
– volume: 9
  start-page: 27
  year: 1980
  ident: 10.1016/j.rse.2019.111594_bb0700
  article-title: Estimation of regional evapotranspiration and oil moisture conditions using remotely sensed crop surface temperatures
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(80)90045-0
– volume: 273
  start-page: 593
  issue: 927
  year: 1976
  ident: 10.1016/j.rse.2019.111594_bb0330
  article-title: Interpretation of variations in leaf water potential and stomatal conductance found in canopies in field
  publication-title: Philos. Trans. R. Soc. Landa, Ser. B.
  doi: 10.1098/rstb.1976.0035
– volume: 117
  year: 2012
  ident: 10.1016/j.rse.2019.111594_bb0455
  article-title: Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data
  publication-title: Journal of Geophysical Research: Biogeosciences
  doi: 10.1029/2012JG002084
– volume: 46
  start-page: 164
  year: 1993
  ident: 10.1016/j.rse.2019.111594_bb0670
  article-title: Derivation of actual evapotranspiration in the Senegalese Sahel, using Noaa-Avhrr data during the 1987 growingseason
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(93)90092-C
– volume: 26
  start-page: 2773
  year: 1999
  ident: 10.1016/j.rse.2019.111594_bb0340
  article-title: A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/1999GL006049
– volume: 24
  start-page: 163
  year: 1954
  ident: 10.1016/j.rse.2019.111594_bb0515
  article-title: Dimensionless characteristics of turbulence in the surface layer
  publication-title: Akad. Nauk. SSSR Geofiz. Inst. Tr.
– volume: 77
  start-page: 263
  year: 1995
  ident: 10.1016/j.rse.2019.111594_bb0570
  article-title: A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(95)02265-Y
– start-page: 390
  year: 1980
  ident: 10.1016/j.rse.2019.111594_bb0325
  article-title: Remotely sensed crop temperatures and reflectances as inputs to irrigation scheduling
– volume: 114
  start-page: 1416
  year: 2010
  ident: 10.1016/j.rse.2019.111594_bb0825
  article-title: Global estimates of evapotranspiration and grass primary production based on MODIS and global meteorology data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.01.022
– volume: 27
  start-page: 67
  year: 2008
  ident: 10.1016/j.rse.2019.111594_bb0135
  article-title: Daily evapotranspiration estimates from extrapolating instantaneous airborne remote sensing ET values
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-008-0122-3
– volume: 26
  start-page: 2937
  issue: 12
  year: 1990
  ident: 10.1016/j.rse.2019.111594_bb0720
  article-title: Regional surface fluxes from remotely sensed skin temperature and lower boundary layer measurements
  publication-title: Water Resour. Res.
  doi: 10.1029/WR026i012p02937
– volume: 121
  start-page: 1549
  year: 1995
  ident: 10.1016/j.rse.2019.111594_bb0300
  article-title: Surface transfer of heat and momentum over an inhomogeneous vegetated land
  publication-title: Quart. J. Roy. Meteorol. Soc.
  doi: 10.1002/qj.49712152704
– volume: 31
  start-page: 211
  year: 1990
  ident: 10.1016/j.rse.2019.111594_bb0765
  article-title: A simplied method to estimate regional 24-h evapotranspiration from thermal infrared data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(90)90090-9
– volume: 29
  start-page: 421
  year: 2008
  ident: 10.1016/j.rse.2019.111594_bb0365
  article-title: Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-008-9037-z
– volume: 113
  start-page: 711
  year: 2009
  ident: 10.1016/j.rse.2019.111594_bb0040
  article-title: The ASTER spectral library version 2.0
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.11.007
– volume: 28
  start-page: 276
  year: 1989
  ident: 10.1016/j.rse.2019.111594_bb0550
  article-title: Estimation of regional surfaceresistance to evapotranspiration from NDVI and thermal-IR AVHRR data
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1989)028<0276:EORSRT>2.0.CO;2
– volume: 25
  start-page: 295
  year: 1988
  ident: 10.1016/j.rse.2019.111594_bb0320
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90106-X
– volume: 37
  start-page: 329
  year: 2001
  ident: 10.1016/j.rse.2019.111594_bb0345
  article-title: Estimation of surface evaporation map over southern Great Plains using remote sensing data
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900255
– volume: 55
  start-page: 5818
  issue: 10
  year: 2017
  ident: 10.1016/j.rse.2019.111594_bb0735
  article-title: An end-member-based two-source approach for estimating land surface evapotranspiration from remote sensing data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2715361
– volume: 105
  start-page: 281
  year: 2000
  ident: 10.1016/j.rse.2019.111594_bb0270
  article-title: Seasonal estimates of riparian evapotranspiration using remote and in situ measurements
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(00)00197-0
– start-page: 88
  year: 1977
  ident: 10.1016/j.rse.2019.111594_bb0235
– volume: 38
  start-page: 19
  year: 1991
  ident: 10.1016/j.rse.2019.111594_bb0690
  article-title: Atmospheric correction fro land surface temperature using NOAA-11 AVHRR channels 4 and 5
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(91)90069-I
– volume: 534
  start-page: 606
  year: 2016
  ident: 10.1016/j.rse.2019.111594_bb0590
  article-title: Rainfall interception modelling: is the wet bulb approach adequate to estimate mean evaporation rate from wet/saturated canopies in all forest types?
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.01.035
– volume: 8
  start-page: 81
  year: 1975
  ident: 10.1016/j.rse.2019.111594_bb0685
  article-title: The concept of intrinsic surface resistance: energy budgets at a partially wet surface
  publication-title: Boundary-Layer Meteorol
  doi: 10.1007/BF02579393
– ident: 10.1016/j.rse.2019.111594_bb0140
– volume: 106
  start-page: 285
  year: 2007
  ident: 10.1016/j.rse.2019.111594_bb0185
  article-title: Regional evaporation estimates from flux tower and MODIS satellite data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.07.007
– start-page: 1
  year: 2017
  ident: 10.1016/j.rse.2019.111594_bb0805
  article-title: Revisiting the contribution of transpiration to global terrestrial evapotranspiration
  publication-title: Geophys. Res. Lett.
– volume: 28
  start-page: 940
  year: 1990
  ident: 10.1016/j.rse.2019.111594_bb4345
  article-title: Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Trans
  publication-title: Geosci. Remote Sens
  doi: 10.1109/36.58983
– volume: 98–99
  start-page: 563
  year: 1999
  ident: 10.1016/j.rse.2019.111594_bb0280
  article-title: Seasonal variation of boreal forest surface conductance and evaporation
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(99)00124-0
– start-page: 141
  year: 1993
  ident: 10.1016/j.rse.2019.111594_bb0645
  article-title: Generalization of a forest ecosystem process model for other biomes, BIOME--BGC, and an application for global-scale models
– start-page: 1013
  year: 2003
  ident: 10.1016/j.rse.2019.111594_bb0210
  article-title: The common land model
  publication-title: Bulletin of American Meteorological Society
  doi: 10.1175/BAMS-84-8-1013
– volume: 44
  start-page: 197
  year: 1989
  ident: 10.1016/j.rse.2019.111594_bb0400
  article-title: Determination of sensible heat flux over sparse canopy using thermal infrared data
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(89)90017-8
– volume: 12
  start-page: 379
  year: 1977
  ident: 10.1016/j.rse.2019.111594_bb0525
  article-title: Resistance of a partially wet canopy: whose equation fails
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1007/BF00121475
– volume: 39
  start-page: 1189
  year: 2003
  ident: 10.1016/j.rse.2019.111594_bb0450
  article-title: Mapping evapotranspiration based on remote sensing: an application to Canada’s landmass
  publication-title: Water Resour. Res.
  doi: 10.1029/2002WR001680
– volume: 18
  start-page: 75
  year: 1985
  ident: 10.1016/j.rse.2019.111594_bb0635
  article-title: Evapotranspiration calculated from multipspectral and ground station meteorological data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(85)90039-2
– volume: 79
  start-page: 329
  year: 2002
  ident: 10.1016/j.rse.2019.111594_bb0075
  article-title: Evaluating evapotranspiration rates and surface conditions using Landat TM to estimate atmospheric and surface resistance
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00283-8
– volume: 44
  start-page: 2319
  issue: 5
  year: 2017
  ident: 10.1016/j.rse.2019.111594_bb0740
  article-title: An improved constant evaporative fraction method for estimating daily evapotranspiration from remotely sensed instantaneous observations
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL072621
– volume: 93
  start-page: 501
  year: 1967
  ident: 10.1016/j.rse.2019.111594_bb0225
  article-title: The turbulent transport of heat and water vapour in an unstable atmosphere
  publication-title: Quart. 1. Roy. Meteorol. Soc.
  doi: 10.1002/qj.49709339809
– volume: 118
  start-page: 590
  year: 2013
  ident: 10.1016/j.rse.2019.111594_bb0815
  article-title: A novel algorithm to assess gross primary productivity for terrestrial ecosystems from MODIS imagery
  publication-title: Journal of Geophysical Research: Biogeosciences
  doi: 10.1002/jgrg.20056
– volume: 121
  start-page: 370
  year: 2012
  ident: 10.1016/j.rse.2019.111594_bb0465
  article-title: A Two-source Trapezoid Model for Evapotranspiration (TTME) from satellite imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.02.015
– volume: 108
  start-page: 4270
  issue: D9
  year: 2003
  ident: 10.1016/j.rse.2019.111594_bb0555
  article-title: An operational remote sensing algorithm of land surface evaporation
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1029/2002JD002062
– volume: 222
  start-page: 165
  year: 2019
  ident: 10.1016/j.rse.2019.111594_bb0850
  article-title: Coupled estimation of 500m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.12.031
SSID ssj0015871
Score 2.6569629
Snippet Evapotranspiration (ET) from the land surface is an important component of the terrestrial hydrological cycle. Since the advent of Earth observation by...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111594
SubjectTerms Agglomeration
Bias
Canopies
canopy
Carbon
Carbon cycle
Carboxylation
Conductance
Coupling
Detection
Earth observations (from space)
Energy balance
Enthalpy
equations
Evapotranspiration
Evapotranspiration estimates
Evapotranspiration models
Foliage
Heat flux
Herbivores
Hydrologic cycle
Hydrology
Land surface temperature
Leaves
Mathematical models
monitoring
Photosynthesis
Plant photosynthesis
Remote sensing
Resistance
Satellite observation
satellites
Sensible heat
Sensible heat flux
Soil mapping
Soil moisture
Soil temperature
soil water
Soils
spatial data
Stomata
Stomatal conductance
Surface energy
Surface energy balance
Surface properties
Surface temperature
temporal variation
Temporal variations
Vegetation
Water vapor
Title Evolution of evapotranspiration models using thermal and shortwave remote sensing data
URI https://dx.doi.org/10.1016/j.rse.2019.111594
https://www.proquest.com/docview/2352360470
https://www.proquest.com/docview/2388770984
Volume 237
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED4h0DReEOuGKAPkSXualJHGdu08oqpdt2k8jYk3y3acUQRp1ZQiXvbbuUucTps0HvaQl_icRL7z-XP83R3Ae47LRo5XUiiLGxQhXaId54kVdCqDrb6gAOdvF8PppfhyJa-2YNTFwhCtMvr-1qc33jreOYujebaYzSjGlwuyOIQgtK2hQHMhFFn5x18bmsdAatVWzeMiIenuZLPheC1rypQ5yMlxyFz8a236y0s3S89kH_YiZmTn7We9gq1Q9eBg_DtEDRvjHK178DLWNb9-7MGLT03h3sfX8GO8jkbG5iULa7uYr5q85rPWBFhTEqdmxIP_yQgV3uFTbVWw-hoR-oNdB7YMqNfAauK8oxCRS9_A5WT8fTRNYk2FxHOpV4n1WgT6dZFblzunSwQkiDCGupA5D2Vuvde2THWhpPQuZFYMVPCZLyU6gkx5fgDb1bwKh8Ay5ZS3ToTUESwJDsGT89whgByUIrN9SLvRND4mHKe6F7emY5bdGFSAIQWYVgF9-LDpsmizbTwnLDoVmT9MxuBq8Fy3406dJs7X2mSIQ_kwFSrtw7tNM840Oj6xVZjfkww6ZJXmWhz935vfwm5Gu_WG830M26vlfThBSLNyp43NnsLO-eev04sn5nD1eA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQuCBYqFgoYCS5IodnYXjsHDgi2bOnj1KLejO04dBFkV5vtVnvhT_EHmUmcRSDRA1IPucR2Es2M5xF_MwPwgqPZyPFKCmUxQBHSJdpxnlhBpzI46gtKcD46Ho5PxcczebYBP7tcGIJVRt3f6vRGW8c7u5Gau7PJhHJ8uSCJQxeEwpoOWXkQVpcYt9Vv9t8jk19m2d7o5N04ia0FEs-lXiTWaxEogs-ty53TJdplNLRDXcichzK33mtbprpQUnoXMisGKvjMlxL3Q6Y8x-fegJsC1QW1TXj9Y40rGUit2jZ9XCT0ed1RagMqm9dUmnOQk6aSufiXMfzLLDS2bu8u3IlOKnvb0uEebISqB9uj3zlxOBiVQt2DrdhI_XzVg1sfmk7Bq_vwabSMUs2mJQtLO5sumkLqk1bmWNODp2YEvP_CyA39jk-1VcHqcwwJLu0ysHlAQQqsJpA9TiI06wM4vRZKb8NmNa3CQ2CZcspbJ0LqyA8KDr0157lDj3VQisz2Ie2oaXyscE6NNr6ZDsr21SADDDHAtAzow6v1kllb3uOqyaJjkflDRg2an6uW7XTsNFFB1CZDx5cPU6HSPjxfD-PWpvMaW4XpBc1BC6DSXItH__fmZ7A1Pjk6NIf7xweP4XZGvwoawPkObC7mF-EJ-lML97SRXwafr3vD_AKUbjHd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+evapotranspiration+models+using+thermal+and+shortwave+remote+sensing+data&rft.jtitle=Remote+sensing+of+environment&rft.au=Chen%2C+Jing+M&rft.au=Liu%2C+Jane&rft.date=2020-02-01&rft.issn=0034-4257&rft.volume=237+p.111594-&rft_id=info:doi/10.1016%2Fj.rse.2019.111594&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon