AP-GAN: Adversarial patch attack on content-based image retrieval systems
Key Smart City applications such as traffic management and public security rely heavily on the intelligent processing of video and image data, often in the form of visual retrieval tasks, such as person Re-IDentification (ReID) and vehicle re-identification. For these tasks, Deep Neural Networks (DN...
Saved in:
Published in | GeoInformatica Vol. 26; no. 2; pp. 347 - 377 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2022
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1384-6175 1573-7624 |
DOI | 10.1007/s10707-020-00418-7 |
Cover
Loading…
Abstract | Key Smart City applications such as traffic management and public security rely heavily on the intelligent processing of video and image data, often in the form of visual retrieval tasks, such as person Re-IDentification (ReID) and vehicle re-identification. For these tasks, Deep Neural Networks (DNNs) have been the dominant solution for the past decade, for their remarkable ability in learning discriminative features from images to boost retrieval performance. However, it is been discovered that DNNs are broadly vulnerable to maliciously constructed adversarial examples. By adding small perturbations to a query image, the returned retrieval results will be completely dissimilar from the query image. This poses serious challenges to vital systems in Smart City applications that depend on the DNN-based visual retrieval technology, as in the physical world, simple camouflage can be added on the subject (a few patches on the body or car), and turn the subject completely untrackable by person or vehicle Re-ID systems. To demonstrate the potential of such threats, this paper proposes a novel adversarial patch generative adversarial network (AP-GAN) to generate adversarial patches instead of modifying the entire image, which also causes the DNNs-based image retrieval models to return incorrect results. AP-GAN is trained in an unsupervised way that requires only a small amount of unlabeled data for training. Once trained, it produces query-specific perturbations for query images to form adversarial queries. Extensive experiments show that the AP-GAN achieves excellent attacking performance with various application scenarios that are based on deep features, including image retrieval, person ReID and vehicle ReID. The results of this study provide a warning that when deploying a DNNs-based image retrieval system, its security and robustness needs to be thoroughly considered. |
---|---|
AbstractList | Key Smart City applications such as traffic management and public security rely heavily on the intelligent processing of video and image data, often in the form of visual retrieval tasks, such as person Re-IDentification (ReID) and vehicle re-identification. For these tasks, Deep Neural Networks (DNNs) have been the dominant solution for the past decade, for their remarkable ability in learning discriminative features from images to boost retrieval performance. However, it is been discovered that DNNs are broadly vulnerable to maliciously constructed adversarial examples. By adding small perturbations to a query image, the returned retrieval results will be completely dissimilar from the query image. This poses serious challenges to vital systems in Smart City applications that depend on the DNN-based visual retrieval technology, as in the physical world, simple camouflage can be added on the subject (a few patches on the body or car), and turn the subject completely untrackable by person or vehicle Re-ID systems. To demonstrate the potential of such threats, this paper proposes a novel adversarial patch generative adversarial network (AP-GAN) to generate adversarial patches instead of modifying the entire image, which also causes the DNNs-based image retrieval models to return incorrect results. AP-GAN is trained in an unsupervised way that requires only a small amount of unlabeled data for training. Once trained, it produces query-specific perturbations for query images to form adversarial queries. Extensive experiments show that the AP-GAN achieves excellent attacking performance with various application scenarios that are based on deep features, including image retrieval, person ReID and vehicle ReID. The results of this study provide a warning that when deploying a DNNs-based image retrieval system, its security and robustness needs to be thoroughly considered. |
Audience | Academic |
Author | Zhang, Mingyu Wen, Ji-Rong Zhao, Guoping Liu, Jiajun Li, Yaxian |
Author_xml | – sequence: 1 givenname: Guoping surname: Zhao fullname: Zhao, Guoping organization: School of Information, Renmin University of China – sequence: 2 givenname: Mingyu surname: Zhang fullname: Zhang, Mingyu organization: School of Information, Renmin University of China – sequence: 3 givenname: Jiajun surname: Liu fullname: Liu, Jiajun email: jiajunliu@ruc.edu.cn organization: School of Information, Renmin University of China, Beijing Key Laboratory of Big Data Management and Analysis Methods – sequence: 4 givenname: Yaxian surname: Li fullname: Li, Yaxian organization: School of Information, Renmin University of China – sequence: 5 givenname: Ji-Rong surname: Wen fullname: Wen, Ji-Rong organization: School of Information, Renmin University of China, Beijing Key Laboratory of Big Data Management and Analysis Methods |
BookMark | eNp9kMFqGzEURUVIIXbSH-hqIGulT9KMpMluMG0aMGkX6VpoNE-uXHvGkeRA_r5yphDIImgh8bhHj3uW5HycRiTkC4MbBqC-JgYKFAUOFKBmmqozsmCNElRJXp-Xt9A1lUw1F2SZ0hYAmkIsyH33i951D7dVNzxjTDYGu6sONrs_lc3Zur_VNFZuGjOOmfY24VCFvd1gFTHHgM8lnV5Sxn26Ip-83SX8_P--JL-_f3tc_aDrn3f3q25NnWh0ptaynlmtWuwZOOdaL3DgkretGuQgatGLoZa1bKBHz4WH1vWKe95o61GVySW5nv89xOnpiCmb7XSMY1lpuGxqraWWp9TNnNrYHZow-ilH68oZcB9KH_ShzDsF7HW1KoCeARenlCJ640K2OZTq0YadYWBOps1s2hTT5tW0OaH8HXqIRVJ8-RgSM5RKeNxgfKvxAfUPDPKRoA |
CitedBy_id | crossref_primary_10_1145_3559758 crossref_primary_10_61186_itrc_16_2_34 crossref_primary_10_3390_electronics11091422 crossref_primary_10_1007_s11263_022_01737_y crossref_primary_10_3934_mbe_2023605 crossref_primary_10_1007_s11042_024_18370_1 |
Cites_doi | 10.1007/978-3-319-46604-0_48 10.1109/ICCV.2019.00500 10.1109/ICCV.2017.74 10.1109/CVPR.2008.4587635 10.1109/ICCV.2015.22 10.1109/CVPRW.2019.00012 10.1109/ICCV.2017.304 10.1109/CVPR.2018.00016 10.1109/CVPR.2016.70 10.1109/CVPR.2018.00854 10.1109/CVPR.2016.149 10.1109/ICCV.2017.374 10.1007/978-3-319-46493-0_38 10.1109/TPAMI.2018.2846566 10.1016/j.neucom.2019.06.113 10.1109/ICCV.2017.153 10.1109/ICME.2016.7553002 10.1109/MCOM.2017.1600267CM 10.1109/ICCV.2017.405 10.1145/3292500.3330912 10.1109/CVPR.2014.180 10.1109/CVPR.2015.7298682 10.1109/CVPR.2007.383172 10.1007/978-3-319-46448-0_1 10.1145/3240508.3240552 10.1109/CVPR.2018.00159 10.1145/3323873.3325052 10.1109/CVPR.2018.00357 10.1609/aaai.v33i01.3301873 10.1609/aaai.v33i01.33011028 10.1109/CVPR.2019.00426 10.1109/ICCV.2017.267 10.1007/s11263-017-1016-8 10.1109/TNNLS.2018.2886017 10.1109/ICCV.2019.00514 10.24963/ijcai.2018/543 10.1109/ICCV.2015.133 10.1109/CVPR.2017.19 10.1109/CVPR.2016.282 10.1109/CVPR.2017.357 10.1109/ICCV.2015.312 10.1109/ICCV.2019.00211 10.1109/CVPR.2017.17 10.1109/CVPR.2018.00175 10.1007/978-3-030-01225-0_30 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 COPYRIGHT 2022 Springer Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: COPYRIGHT 2022 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ JQ2 K7- KR7 L.G L7M L~C L~D M0N M2P P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY Q9U |
DOI | 10.1007/s10707-020-00418-7 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Computer Science |
EISSN | 1573-7624 |
EndPage | 377 |
ExternalDocumentID | A701629977 10_1007_s10707_020_00418_7 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: No.61602487 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29H 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 7XC 88I 8FE 8FG 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV LAK LK5 LLZTM M0N M2P M4Y M7R MA- MK~ ML~ N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P62 P9O PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PYCSY Q2X QOS R89 R9I RNI ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XH6 YLTOR Z45 Z7Z Z83 Z88 ZMTXR ~8M ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND 7SC 7XB 8AL 8FD 8FK ABRTQ F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c358t-aa1b1a879eb10ccc9f3ed262997d6d343b3d464650bef23f09cb72f258afe7f23 |
IEDL.DBID | U2A |
ISSN | 1384-6175 |
IngestDate | Fri Jul 25 23:57:00 EDT 2025 Tue Jun 10 21:04:10 EDT 2025 Thu Apr 24 22:59:19 EDT 2025 Tue Jul 01 02:14:22 EDT 2025 Fri Feb 21 02:46:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Adversarial patch Adversarial attack Image retrieval GAN |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-aa1b1a879eb10ccc9f3ed262997d6d343b3d464650bef23f09cb72f258afe7f23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2654886862 |
PQPubID | 105513 |
PageCount | 31 |
ParticipantIDs | proquest_journals_2654886862 gale_infotracacademiconefile_A701629977 crossref_citationtrail_10_1007_s10707_020_00418_7 crossref_primary_10_1007_s10707_020_00418_7 springer_journals_10_1007_s10707_020_00418_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal on Advances of Computer Science for Geographic Information Systems |
PublicationTitle | GeoInformatica |
PublicationTitleAbbrev | Geoinformatica |
PublicationYear | 2022 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Moosavi-Dezfooli SM, Fawzi A, Frossard P (2016) Deepfool: a simple and accurate method to fool deep neural networks. In: CVPR, pp 2574–2582 Schroff F, Kalenichenko D, Philbin J (2015) Facenet: A unified embedding for face recognition and clustering. In: CVPR, pp 815–823 Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. ICLR Liu X, Yang H, Liu Z, Song L, Chen Y, Li H (2019b) DPATCH: an adversarial patch attack on object detectors. In: Workshop AAAI, vol 2301 He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual networks. In: ECCV, pp 630–645 Liu A, Liu X, Fan J, Ma Y, Zhang A, Xie H, Tao D (2019a) Perceptual-sensitive gan for generating adversarial patches. In: AAAI, vol 33, pp 1028–1035 Kalantidis Y, Mellina C, Osindero S (2016) Cross-dimensional weighting for aggregated deep convolutional features. In: ECCV, pp 685–701 Eykholt K, Evtimov I, Fernandes E, Li B, Rahmati A, Xiao C, Prakash A, Kohno T, Song D (2018) Robust physical-world attacks on deep learning visual classification. In: CVPR, pp 1625–1634 Li J, Ji R, Liu H, Hong X, Gao Y, Tian Q (2019) Universal perturbation attack against image retrieval. In: ICCV, pp 4899–4908 Radford A, Metz L, Chintala S (2016) Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR Brown TB, Mané D, Roy A, Abadi M, Gilmer J (2017) Adversarial patch. CoRR 1712.09665 Chen L, Shang S (2019) Region-based message exploration over spatio-temporal data streams. AAAI, vol 33, pp 873–880 Radenović F, Tolias G, Chum O (2016) Cnn image retrieval learns from bow: Unsupervised fine-tuning with hard examples. In: ECCV, pp 3–20 Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2007) Object retrieval with large vocabularies and fast spatial matching. In: CVPR, pp 1–8 Subramanya A, Pillai V, Pirsiavash H (2019) Fooling network interpretation in image classification. In: ICCV, pp 2020–2029 Tolias G, Radenovic F, Chum O (2019) Targeted mismatch adversarial attack: Query with a flower to retrieve the tower. In: Proceedings of the IEEE International Conference on Computer Vision, pp 5037–5046 Moosavi-Dezfooli SM, Fawzi A, Fawzi O, Frossard P (2017) Universal adversarial perturbations. In: CVPR, pp 1765–1773 Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2008) Lost in quantization: Improving particular object retrieval in large scale image databases. In: CVPR Han P, Yang P, Zhao P, Shang S, Liu Y, Zhou J, Gao X, Kalnis P (2019) Gcn-mf: Disease-gene association identification by graph convolutional networks and matrix factorization. In: SIGKDD, pp 705–713 Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: Towards real-time object detection with region proposal networks. In: NIPS, pp 91–99 Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: Visual explanations from deep networks via gradient-based localization. In: ICCV, pp 618–626 Huang R, Zhang S, Li T, He R (2017) Beyond face rotation: Global and local perception gan for photorealistic and identity preserving frontal view synthesis. In: ICCV, pp 2439–2448 Akhtar N, Liu J, Mian A (2018) Defense against universal adversarial perturbations. In: CVPR, pp 3389–3398 Xu Y, Wu B, Shen F, Fan Y, Zhang Y, Shen HT, Liu W (2019) Exact adversarial attack to image captioning via structured output learning with latent variables. In: CVPR, pp 4135–4144 Zhang Y, Zhou D, Chen S, Gao S, Ma Y (2016) Single-image crowd counting via multi-column convolutional neural network. In: CVPR, pp 589–597 Zheng L, Zhang H, Sun S, Chandraker M, Yang Y, Tian Q (2017a) Person re-identification in the wild. In: CVPR, pp 1367–1376 Simo-Serra E, Trulls E, Ferraz L, Kokkinos I, Fua P, Moreno-Noguer F (2015) Discriminative learning of deep convolutional feature point descriptors. In: ICCV, pp 118–126 Zheng Z, Zheng L, Yang Y (2017b) Unlabeled samples generated by gan improve the person re-identification baseline in vitro. In: ICCV. IEEE Chen C, Seff A, Kornhauser A, Xiao J (2015) Deepdriving: Learning affordance for direct perception in autonomous driving. In: ICCV, pp 2722–2730 Wang J, Song Y, Leung T, Rosenberg C, Wang J, Philbin J, Chen B, Wu Y (2014) Learning fine-grained image similarity with deep ranking. In: CVPR RadenovićFToliasGChumOFine-tuning cnn image retrieval with no human annotationTPAMI20184171655166810.1109/TPAMI.2018.2846566 ShangSZhuSGuoDLuMDiscovery of probabilistic nearest neighbors in traffic-aware spatial networksWWW201720511351151 Zheng L, Shen L, Tian L, Wang S, Wang J, Tian Q (2015) Scalable person re-identification: a benchmark. In: ICCV ZhengYCapraLWolfsonOYangHUrban computing: concepts, methodologies, and applicationsACM Trans Intell Syst Technol (TIST)201453155 Thys S, Van Ranst W, Goedemé T (2019) Fooling automated surveillance cameras: adversarial patches to attack person detection. In: CVPR Workshops, pp 0–0 ZhangKNiJYangKLiangXRenJShenXSSecurity and privacy in smart city applications: Challenges and solutionsIEEE Commun Mag201755112212910.1109/MCOM.2017.1600267CM Cheng D, Gong Y, Zhou S, Wang J, Zheng N (2016) Person re-identification by multi-channel parts-based cnn with improved triplet loss function. In: CVPR, pp 1335–1344 Sun Y, Zheng L, Yang Y, Tian Q, Wang S (2018) Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline). In: ECCV, pp 480–496 Wang H, Yang Y Y, Pan Y, Han P, Li Z X, Huang HG, Zhu SZ (2020) Detecting thoracic diseases via representation learning with adaptive sampling. Neurocomputing Liu X, Liu W, Ma H, Fu H (2016) Large-scale vehicle re-identification in urban surveillance videos. In: ICME. IEEE, pp 1–6 Liu Z, Zhao Z, Larson M (2019c) Who’s afraid of adversarial queries?: The impact of image modifications on content-based image retrieval. In: ICMR. ACM, pp 306–314 Babenko A, Lempitsky V (2015) Aggregating local deep features for image retrieval. In: ICCV, pp 1269–1277 Tolias G, Sicre R, Jégou H (2016) Particular object retrieval with integral max-pooling of cnn activations. ICLR Wang Y, Chen Z, Wu F, Wang G (2018b) Person re-identification with cascaded pairwise convolutions. In: CVPR, pp 1470–1478 Zhang Y, Foroosh H, David P, Gong B (2019) CAMOU: Learning Physical vehicle camouflages to adversarially attack detectors in the wild. In: ICLR Xiao C, Li B, yan Zhu J, He W, Liu M, Song D (2018) Generating adversarial examples with adversarial networks. In: IJCAI-18, pp 3905–3911 GordoAAlmazanJRevaudJLarlusDEnd-to-end learning of deep visual representations for image retrievalIJCV20171242237254368162510.1007/s11263-017-1016-8 Noh H, Araujo A, Sim J, Weyand T, Han B (2017) Large-scale image retrieval with attentive deep local features. In: ICCV, pp 3456–3465 Kupyn O, Budzan V, Mykhailych M, Mishkin D, Matas J (2018) Deblurgan: Blind motion deblurring using conditional adversarial networks. In: CVPR Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z et al (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR, pp 4681–4690 Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R (2014) Intriguing properties of neural networks. In: ICLR Goodfellow I, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. In: ICLR Kurakin A, Goodfellow I, Bengio S (2017) Adversarial machine learning at scale. In: ICLR Wang G, Yuan Y, Chen X, Li J, Zhou X (2018a) Learning discriminative features with multiple granularities for person re-identification. In: MM. ACM, pp 274–282 YuanXHePZhuQLiXAdversarial examples: Attacks and defenses for deep learningIEEE Trans Neural Netw Learn Syst201930928052824400127410.1109/TNNLS.2018.2886017 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: NIPS, pp 2672–2680 Xie C, Wang J, Zhang Z, Zhou Y, Xie L, Yuille A (2017) Adversarial examples for semantic segmentation and object detection. In: ICCV, pp 1369–1378 Mao X, Li Q, Xie H, Lau RY, Wang Z, Paul Smolley S (2017) Least squares generative adversarial networks. In: ICCV, pp 2794–2802 Wei L, Zhang S, Gao W, Tian Q (2018) Person transfer gan to bridge domain gap for person re-identification. In: CVPR, pp 79–88 418_CR16 418_CR17 418_CR18 418_CR19 418_CR54 418_CR11 418_CR55 418_CR12 418_CR56 A Gordo (418_CR10) 2017; 124 418_CR13 418_CR57 418_CR14 418_CR15 418_CR59 418_CR50 418_CR51 418_CR1 418_CR2 418_CR49 Y Zheng (418_CR58) 2014; 5 418_CR41 418_CR42 418_CR43 418_CR44 418_CR45 418_CR46 418_CR47 418_CR48 418_CR40 X Yuan (418_CR52) 2019; 30 418_CR38 418_CR39 F Radenović (418_CR30) 2018; 41 418_CR31 418_CR32 418_CR33 418_CR34 418_CR36 418_CR37 418_CR5 418_CR27 418_CR6 418_CR28 418_CR3 418_CR29 418_CR4 418_CR9 418_CR7 S Shang (418_CR35) 2017; 20 418_CR8 418_CR20 K Zhang (418_CR53) 2017; 55 418_CR21 418_CR22 418_CR23 418_CR24 418_CR25 418_CR26 |
References_xml | – reference: Eykholt K, Evtimov I, Fernandes E, Li B, Rahmati A, Xiao C, Prakash A, Kohno T, Song D (2018) Robust physical-world attacks on deep learning visual classification. In: CVPR, pp 1625–1634 – reference: Xiao C, Li B, yan Zhu J, He W, Liu M, Song D (2018) Generating adversarial examples with adversarial networks. In: IJCAI-18, pp 3905–3911 – reference: Akhtar N, Liu J, Mian A (2018) Defense against universal adversarial perturbations. In: CVPR, pp 3389–3398 – reference: Zheng L, Shen L, Tian L, Wang S, Wang J, Tian Q (2015) Scalable person re-identification: a benchmark. In: ICCV – reference: Kalantidis Y, Mellina C, Osindero S (2016) Cross-dimensional weighting for aggregated deep convolutional features. In: ECCV, pp 685–701 – reference: Moosavi-Dezfooli SM, Fawzi A, Fawzi O, Frossard P (2017) Universal adversarial perturbations. In: CVPR, pp 1765–1773 – reference: RadenovićFToliasGChumOFine-tuning cnn image retrieval with no human annotationTPAMI20184171655166810.1109/TPAMI.2018.2846566 – reference: ZhengYCapraLWolfsonOYangHUrban computing: concepts, methodologies, and applicationsACM Trans Intell Syst Technol (TIST)201453155 – reference: Babenko A, Lempitsky V (2015) Aggregating local deep features for image retrieval. In: ICCV, pp 1269–1277 – reference: Sun Y, Zheng L, Yang Y, Tian Q, Wang S (2018) Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline). In: ECCV, pp 480–496 – reference: Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. ICLR – reference: Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: NIPS, pp 2672–2680 – reference: Moosavi-Dezfooli SM, Fawzi A, Frossard P (2016) Deepfool: a simple and accurate method to fool deep neural networks. In: CVPR, pp 2574–2582 – reference: Liu X, Liu W, Ma H, Fu H (2016) Large-scale vehicle re-identification in urban surveillance videos. In: ICME. IEEE, pp 1–6 – reference: Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z et al (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR, pp 4681–4690 – reference: Chen L, Shang S (2019) Region-based message exploration over spatio-temporal data streams. AAAI, vol 33, pp 873–880 – reference: Zhang Y, Zhou D, Chen S, Gao S, Ma Y (2016) Single-image crowd counting via multi-column convolutional neural network. In: CVPR, pp 589–597 – reference: Wang J, Song Y, Leung T, Rosenberg C, Wang J, Philbin J, Chen B, Wu Y (2014) Learning fine-grained image similarity with deep ranking. In: CVPR – reference: Liu X, Yang H, Liu Z, Song L, Chen Y, Li H (2019b) DPATCH: an adversarial patch attack on object detectors. In: Workshop AAAI, vol 2301 – reference: Xie C, Wang J, Zhang Z, Zhou Y, Xie L, Yuille A (2017) Adversarial examples for semantic segmentation and object detection. In: ICCV, pp 1369–1378 – reference: Mao X, Li Q, Xie H, Lau RY, Wang Z, Paul Smolley S (2017) Least squares generative adversarial networks. In: ICCV, pp 2794–2802 – reference: YuanXHePZhuQLiXAdversarial examples: Attacks and defenses for deep learningIEEE Trans Neural Netw Learn Syst201930928052824400127410.1109/TNNLS.2018.2886017 – reference: Wang H, Yang Y Y, Pan Y, Han P, Li Z X, Huang HG, Zhu SZ (2020) Detecting thoracic diseases via representation learning with adaptive sampling. Neurocomputing – reference: Zheng Z, Zheng L, Yang Y (2017b) Unlabeled samples generated by gan improve the person re-identification baseline in vitro. In: ICCV. IEEE – reference: Zhang Y, Foroosh H, David P, Gong B (2019) CAMOU: Learning Physical vehicle camouflages to adversarially attack detectors in the wild. In: ICLR – reference: Chen C, Seff A, Kornhauser A, Xiao J (2015) Deepdriving: Learning affordance for direct perception in autonomous driving. In: ICCV, pp 2722–2730 – reference: Liu Z, Zhao Z, Larson M (2019c) Who’s afraid of adversarial queries?: The impact of image modifications on content-based image retrieval. In: ICMR. ACM, pp 306–314 – reference: Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2007) Object retrieval with large vocabularies and fast spatial matching. In: CVPR, pp 1–8 – reference: Noh H, Araujo A, Sim J, Weyand T, Han B (2017) Large-scale image retrieval with attentive deep local features. In: ICCV, pp 3456–3465 – reference: GordoAAlmazanJRevaudJLarlusDEnd-to-end learning of deep visual representations for image retrievalIJCV20171242237254368162510.1007/s11263-017-1016-8 – reference: Huang R, Zhang S, Li T, He R (2017) Beyond face rotation: Global and local perception gan for photorealistic and identity preserving frontal view synthesis. In: ICCV, pp 2439–2448 – reference: Cheng D, Gong Y, Zhou S, Wang J, Zheng N (2016) Person re-identification by multi-channel parts-based cnn with improved triplet loss function. In: CVPR, pp 1335–1344 – reference: Schroff F, Kalenichenko D, Philbin J (2015) Facenet: A unified embedding for face recognition and clustering. In: CVPR, pp 815–823 – reference: Wang G, Yuan Y, Chen X, Li J, Zhou X (2018a) Learning discriminative features with multiple granularities for person re-identification. In: MM. ACM, pp 274–282 – reference: Kurakin A, Goodfellow I, Bengio S (2017) Adversarial machine learning at scale. In: ICLR – reference: Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R (2014) Intriguing properties of neural networks. In: ICLR – reference: Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: Towards real-time object detection with region proposal networks. In: NIPS, pp 91–99 – reference: Tolias G, Radenovic F, Chum O (2019) Targeted mismatch adversarial attack: Query with a flower to retrieve the tower. In: Proceedings of the IEEE International Conference on Computer Vision, pp 5037–5046 – reference: Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2008) Lost in quantization: Improving particular object retrieval in large scale image databases. In: CVPR – reference: Radford A, Metz L, Chintala S (2016) Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR – reference: Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: Visual explanations from deep networks via gradient-based localization. In: ICCV, pp 618–626 – reference: Xu Y, Wu B, Shen F, Fan Y, Zhang Y, Shen HT, Liu W (2019) Exact adversarial attack to image captioning via structured output learning with latent variables. In: CVPR, pp 4135–4144 – reference: Zheng L, Zhang H, Sun S, Chandraker M, Yang Y, Tian Q (2017a) Person re-identification in the wild. In: CVPR, pp 1367–1376 – reference: Tolias G, Sicre R, Jégou H (2016) Particular object retrieval with integral max-pooling of cnn activations. ICLR – reference: Brown TB, Mané D, Roy A, Abadi M, Gilmer J (2017) Adversarial patch. CoRR 1712.09665 – reference: Li J, Ji R, Liu H, Hong X, Gao Y, Tian Q (2019) Universal perturbation attack against image retrieval. In: ICCV, pp 4899–4908 – reference: Han P, Yang P, Zhao P, Shang S, Liu Y, Zhou J, Gao X, Kalnis P (2019) Gcn-mf: Disease-gene association identification by graph convolutional networks and matrix factorization. In: SIGKDD, pp 705–713 – reference: Wei L, Zhang S, Gao W, Tian Q (2018) Person transfer gan to bridge domain gap for person re-identification. In: CVPR, pp 79–88 – reference: ZhangKNiJYangKLiangXRenJShenXSSecurity and privacy in smart city applications: Challenges and solutionsIEEE Commun Mag201755112212910.1109/MCOM.2017.1600267CM – reference: Kupyn O, Budzan V, Mykhailych M, Mishkin D, Matas J (2018) Deblurgan: Blind motion deblurring using conditional adversarial networks. In: CVPR – reference: Radenović F, Tolias G, Chum O (2016) Cnn image retrieval learns from bow: Unsupervised fine-tuning with hard examples. In: ECCV, pp 3–20 – reference: Thys S, Van Ranst W, Goedemé T (2019) Fooling automated surveillance cameras: adversarial patches to attack person detection. In: CVPR Workshops, pp 0–0 – reference: Goodfellow I, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. In: ICLR – reference: Wang Y, Chen Z, Wu F, Wang G (2018b) Person re-identification with cascaded pairwise convolutions. In: CVPR, pp 1470–1478 – reference: ShangSZhuSGuoDLuMDiscovery of probabilistic nearest neighbors in traffic-aware spatial networksWWW201720511351151 – reference: He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual networks. In: ECCV, pp 630–645 – reference: Simo-Serra E, Trulls E, Ferraz L, Kokkinos I, Fua P, Moreno-Noguer F (2015) Discriminative learning of deep convolutional feature point descriptors. In: ICCV, pp 118–126 – reference: Subramanya A, Pillai V, Pirsiavash H (2019) Fooling network interpretation in image classification. In: ICCV, pp 2020–2029 – reference: Liu A, Liu X, Fan J, Ma Y, Zhang A, Xie H, Tao D (2019a) Perceptual-sensitive gan for generating adversarial patches. In: AAAI, vol 33, pp 1028–1035 – ident: 418_CR14 doi: 10.1007/978-3-319-46604-0_48 – ident: 418_CR42 – ident: 418_CR18 doi: 10.1109/ICCV.2019.00500 – ident: 418_CR34 doi: 10.1109/ICCV.2017.74 – ident: 418_CR28 doi: 10.1109/CVPR.2008.4587635 – ident: 418_CR32 – ident: 418_CR36 doi: 10.1109/ICCV.2015.22 – ident: 418_CR41 doi: 10.1109/CVPRW.2019.00012 – ident: 418_CR23 doi: 10.1109/ICCV.2017.304 – volume: 20 start-page: 1135 issue: 5 year: 2017 ident: 418_CR35 publication-title: WWW – ident: 418_CR48 doi: 10.1109/CVPR.2018.00016 – ident: 418_CR8 – ident: 418_CR55 – ident: 418_CR54 doi: 10.1109/CVPR.2016.70 – ident: 418_CR15 doi: 10.1109/CVPR.2018.00854 – volume: 5 start-page: 1 issue: 3 year: 2014 ident: 418_CR58 publication-title: ACM Trans Intell Syst Technol (TIST) – ident: 418_CR6 doi: 10.1109/CVPR.2016.149 – ident: 418_CR26 doi: 10.1109/ICCV.2017.374 – ident: 418_CR12 doi: 10.1007/978-3-319-46493-0_38 – volume: 41 start-page: 1655 issue: 7 year: 2018 ident: 418_CR30 publication-title: TPAMI doi: 10.1109/TPAMI.2018.2846566 – ident: 418_CR45 doi: 10.1016/j.neucom.2019.06.113 – ident: 418_CR50 doi: 10.1109/ICCV.2017.153 – ident: 418_CR20 doi: 10.1109/ICME.2016.7553002 – volume: 55 start-page: 122 issue: 1 year: 2017 ident: 418_CR53 publication-title: IEEE Commun Mag doi: 10.1109/MCOM.2017.1600267CM – ident: 418_CR59 doi: 10.1109/ICCV.2017.405 – ident: 418_CR11 doi: 10.1145/3292500.3330912 – ident: 418_CR46 doi: 10.1109/CVPR.2014.180 – ident: 418_CR33 doi: 10.1109/CVPR.2015.7298682 – ident: 418_CR27 doi: 10.1109/CVPR.2007.383172 – ident: 418_CR16 – ident: 418_CR37 – ident: 418_CR29 doi: 10.1007/978-3-319-46448-0_1 – ident: 418_CR44 doi: 10.1145/3240508.3240552 – ident: 418_CR3 – ident: 418_CR21 – ident: 418_CR47 doi: 10.1109/CVPR.2018.00159 – ident: 418_CR40 – ident: 418_CR22 doi: 10.1145/3323873.3325052 – ident: 418_CR1 doi: 10.1109/CVPR.2018.00357 – ident: 418_CR5 doi: 10.1609/aaai.v33i01.3301873 – ident: 418_CR19 doi: 10.1609/aaai.v33i01.33011028 – ident: 418_CR51 doi: 10.1109/CVPR.2019.00426 – ident: 418_CR13 doi: 10.1109/ICCV.2017.267 – ident: 418_CR2 – volume: 124 start-page: 237 issue: 2 year: 2017 ident: 418_CR10 publication-title: IJCV doi: 10.1007/s11263-017-1016-8 – ident: 418_CR9 – volume: 30 start-page: 2805 issue: 9 year: 2019 ident: 418_CR52 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2018.2886017 – ident: 418_CR43 doi: 10.1109/ICCV.2019.00514 – ident: 418_CR49 doi: 10.24963/ijcai.2018/543 – ident: 418_CR56 doi: 10.1109/ICCV.2015.133 – ident: 418_CR17 doi: 10.1109/CVPR.2017.19 – ident: 418_CR24 doi: 10.1109/CVPR.2016.282 – ident: 418_CR57 doi: 10.1109/CVPR.2017.357 – ident: 418_CR4 doi: 10.1109/ICCV.2015.312 – ident: 418_CR38 doi: 10.1109/ICCV.2019.00211 – ident: 418_CR31 – ident: 418_CR25 doi: 10.1109/CVPR.2017.17 – ident: 418_CR7 doi: 10.1109/CVPR.2018.00175 – ident: 418_CR39 doi: 10.1007/978-3-030-01225-0_30 |
SSID | ssj0005070 |
Score | 2.3532152 |
Snippet | Key Smart City applications such as traffic management and public security rely heavily on the intelligent processing of video and image data, often in the... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 347 |
SubjectTerms | Artificial neural networks Camouflage Computer Science Data Structures and Information Theory Generative adversarial networks Geographical Information Systems/Cartography Identification Image management Image retrieval Information Storage and Retrieval Liquors Machine learning Multimedia Information Systems Neural networks Perturbation Perturbations Queries Security Smart cities Technology application Traffic management Visual tasks |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELaADrAgnqK85AGJASzS2IkdFlRQy0OiQohK3Sw_EoGAttAw8O-5S10qQHTJkDiv8_nubN93HyEHEAJFnCeWpRE3THjJmfVFCofMC5UYn1U7-Led9KorbnpJLyy4jUJa5cQmVobaDxyukZ_ESHCuEM9wNnxjyBqFu6uBQmOe1MAEK5h81c5bnbv7aZJHJMc4YSUQDJcE2EwAz0lcposRWS0aiskfrum3gf6zU1o5oPYKWQ6RI22Ou3qVzOX9NbIYSMwfP9fJdfOOXTY7p7QiWR4ZVC06BFP7SE1ZGvdMB32KqengZxh6L0-fXsGc0PeKVQtUjo7rOo82SLfderi4YoEpgTmeqJIZ07ANo2QGljdyzmUFz32cgquRPvVccMu9SAVEYzYvYl5EmbMyLuJEmSKXcGaTLPQH_XyL0Eh4r6zNTWYETmasNBwmFSYpMlXAgK-TxkRI2oUy4shm8aKnBZBRsBoEqyvBalknR9_3DMdFNGa2PkTZaxxh8GRnAlAAvg9rVemmhDAVfw1a7k66R4ehN9JTRamT40mXTS___97t2U_bIUsxQh-qrJ1dslC-f-R7EJCUdj9o3ReCxtno priority: 102 providerName: ProQuest |
Title | AP-GAN: Adversarial patch attack on content-based image retrieval systems |
URI | https://link.springer.com/article/10.1007/s10707-020-00418-7 https://www.proquest.com/docview/2654886862 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH8a5TAuDNgQZVD5MIkDs5TGTuzslk5t2SYqhKjETpYdJypiK6gNB_77vZc6dOxL2iWWEsdJ3rdj_94DeIchUCRE4ngaCculV4I7X6V4yLzUifVZs4J_PknPpvLzdXIdQGHLdrd7uyTZWOqfwG6KfqvFhISWfc3VBmwmNHdHKZ7G-XpjR6RW2GAtCQCXBKjMn8d45o5-Ncq_rY42Tme0A9shWmT5ir278KKc78GrthIDC4q5By9DLfPZ42v4lF_wcT75wJpay0tLEsbu0eLOmK1rW9yyuzmjHerobjg5Mc9uvqNVYYumuBZKHluld16-geloePXxjIeCCbwQia65tX3Xt1plaICjoiiySpQ-TtHjKJ96IYUTXqYSgzJXVrGooqxwKq7iRNuqVHhmHzrzu3l5ACyS3mvnSptZSXMap6zAuYVNqkxXqPdd6Ld0M0XIJk5FLb6ZdR5korVBWpuG1kZ14fTpnvtVLo1_9j4hdhhSNBy5sAEvgO9HKatMrjBapU_Dnkctx0zQwKWJU5yLacK_dOF9y8X15b8_9_D_ur-FrZgQEc1mniPo1IuH8hjjlNr1YEOPxj3YzEeDwYTa8dcvQ2wHw8nFZa8R2h-KZeEf |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5VAuiKdYKOADiANYZG0ndiohtAK2u7RdcWil3owfsYpadpduUNU_xW9kJg9WgOitl1ziOMl4PDO255sP4DmGQJmUuedFJh1XUUvuYyrwUkZlchfL5gT_YFZMjtSn4_x4A372WBhKq-xtYmOo4yLQHvkbQQTnhvAM75bfObFG0elqT6HRqsVedXmBS7bV2-kHHN8XQow_Hr6f8I5VgAeZm5o7N_RDZ3SJVioLIZRJVlEUaJZ1LKJU0suoCoWRi6-SkCkrg9ciidy4VOlEhQ7Q5N9QUpY0o8x4d51SkukWlWwUQe_yDqTTQfU0bQoKwnGroeH6D0f4tzv451y2cXfj23Cri1PZqFWsO7BRze_CVkeZfnJ5D6ajz3x3NNthDaXzypEisyUa9hPm6tqFU7aYM0qER6_GyVdG9vUbGi923nB4oYKztor06j4cXYsEH8DmfDGvHgLLVIzG-8qVTtHSyWsncQnj8lSahOZlAMNeSDZ0RcuJO-PMrsstk2AtCtY2grV6AK9-P7NsS3Zc2folyd7SfMaeg-tgCfh9VBnLjjQGxfRr2HK7Hx7bTfSVXavlAF73Q7a-_f_3Prq6t2ewNTk82Lf709neY7gpCHTR5Attw2Z9_qN6gqFQ7Z82-sfgy3Ur_C--gxZp |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrQRcEE-xtAUfQBzAatZ2YqcSQgvt0qWwWiEq9eb6EauIdnfbDUL9a_w6ZhKHFSB66yWXOE4yHs-M7fnmI-QZhECZELljRSYsk0EJ5kIs4FIGqXMbyuYE_9Ok2D-UH47yozXys8PCYFplZxMbQx3mHvfItzkSnGvEM2zHlBYx3R29WZwzZJDCk9aOTqNVkYPq8gcs35avx7sw1s85H-19ebfPEsMA8yLXNbN24AZWqxIsVua9L6OoAi_ARKtQBCGFE0EWEqIYV0UuYlZ6p3jkubaxUhGLHoD5X1ewKsp6ZP3t3mT6eZVgkqkWo6wlAvHyBNlJwD2FW4QcUd1yoJn6wy3-7Rz-OaVtnN_oDrmdolY6bNXsLlmrZvfIzUSgfnJ5n4yHU_Z-ONmhDcHz0qJa0wWY-RNq69r6b3Q-o5gWDz6OoecM9OsZmDJ60TB6gbrTtqb08gE5vBYZPiS92XxWPSI0kyFo5ypbWokLKaesgAWNzWOpIxibPhl0QjI-lTBHJo1Tsyq-jII1IFjTCNaoPnn5-5lFW8DjytYvUPYGZzf07G0CKcD3YZ0sM1QQIuOvQcvNbnhMmvZLs1LSPnnVDdnq9v_f-_jq3p6SG6Ds5uN4crBBbnFEYDTJQ5ukV198r7YgLqrdk6SAlBxft87_AovFG_s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AP-GAN%3A+Adversarial+patch+attack+on+content-based+image+retrieval+systems&rft.jtitle=GeoInformatica&rft.au=Zhao%2C+Guoping&rft.au=Zhang%2C+Mingyu&rft.au=Liu%2C+Jiajun&rft.au=Li%2C+Yaxian&rft.date=2022-04-01&rft.pub=Springer+US&rft.issn=1384-6175&rft.eissn=1573-7624&rft.volume=26&rft.issue=2&rft.spage=347&rft.epage=377&rft_id=info:doi/10.1007%2Fs10707-020-00418-7&rft.externalDocID=10_1007_s10707_020_00418_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-6175&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-6175&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-6175&client=summon |