AP-GAN: Adversarial patch attack on content-based image retrieval systems

Key Smart City applications such as traffic management and public security rely heavily on the intelligent processing of video and image data, often in the form of visual retrieval tasks, such as person Re-IDentification (ReID) and vehicle re-identification. For these tasks, Deep Neural Networks (DN...

Full description

Saved in:
Bibliographic Details
Published inGeoInformatica Vol. 26; no. 2; pp. 347 - 377
Main Authors Zhao, Guoping, Zhang, Mingyu, Liu, Jiajun, Li, Yaxian, Wen, Ji-Rong
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1384-6175
1573-7624
DOI10.1007/s10707-020-00418-7

Cover

Loading…
Abstract Key Smart City applications such as traffic management and public security rely heavily on the intelligent processing of video and image data, often in the form of visual retrieval tasks, such as person Re-IDentification (ReID) and vehicle re-identification. For these tasks, Deep Neural Networks (DNNs) have been the dominant solution for the past decade, for their remarkable ability in learning discriminative features from images to boost retrieval performance. However, it is been discovered that DNNs are broadly vulnerable to maliciously constructed adversarial examples. By adding small perturbations to a query image, the returned retrieval results will be completely dissimilar from the query image. This poses serious challenges to vital systems in Smart City applications that depend on the DNN-based visual retrieval technology, as in the physical world, simple camouflage can be added on the subject (a few patches on the body or car), and turn the subject completely untrackable by person or vehicle Re-ID systems. To demonstrate the potential of such threats, this paper proposes a novel adversarial patch generative adversarial network (AP-GAN) to generate adversarial patches instead of modifying the entire image, which also causes the DNNs-based image retrieval models to return incorrect results. AP-GAN is trained in an unsupervised way that requires only a small amount of unlabeled data for training. Once trained, it produces query-specific perturbations for query images to form adversarial queries. Extensive experiments show that the AP-GAN achieves excellent attacking performance with various application scenarios that are based on deep features, including image retrieval, person ReID and vehicle ReID. The results of this study provide a warning that when deploying a DNNs-based image retrieval system, its security and robustness needs to be thoroughly considered.
AbstractList Key Smart City applications such as traffic management and public security rely heavily on the intelligent processing of video and image data, often in the form of visual retrieval tasks, such as person Re-IDentification (ReID) and vehicle re-identification. For these tasks, Deep Neural Networks (DNNs) have been the dominant solution for the past decade, for their remarkable ability in learning discriminative features from images to boost retrieval performance. However, it is been discovered that DNNs are broadly vulnerable to maliciously constructed adversarial examples. By adding small perturbations to a query image, the returned retrieval results will be completely dissimilar from the query image. This poses serious challenges to vital systems in Smart City applications that depend on the DNN-based visual retrieval technology, as in the physical world, simple camouflage can be added on the subject (a few patches on the body or car), and turn the subject completely untrackable by person or vehicle Re-ID systems. To demonstrate the potential of such threats, this paper proposes a novel adversarial patch generative adversarial network (AP-GAN) to generate adversarial patches instead of modifying the entire image, which also causes the DNNs-based image retrieval models to return incorrect results. AP-GAN is trained in an unsupervised way that requires only a small amount of unlabeled data for training. Once trained, it produces query-specific perturbations for query images to form adversarial queries. Extensive experiments show that the AP-GAN achieves excellent attacking performance with various application scenarios that are based on deep features, including image retrieval, person ReID and vehicle ReID. The results of this study provide a warning that when deploying a DNNs-based image retrieval system, its security and robustness needs to be thoroughly considered.
Audience Academic
Author Zhang, Mingyu
Wen, Ji-Rong
Zhao, Guoping
Liu, Jiajun
Li, Yaxian
Author_xml – sequence: 1
  givenname: Guoping
  surname: Zhao
  fullname: Zhao, Guoping
  organization: School of Information, Renmin University of China
– sequence: 2
  givenname: Mingyu
  surname: Zhang
  fullname: Zhang, Mingyu
  organization: School of Information, Renmin University of China
– sequence: 3
  givenname: Jiajun
  surname: Liu
  fullname: Liu, Jiajun
  email: jiajunliu@ruc.edu.cn
  organization: School of Information, Renmin University of China, Beijing Key Laboratory of Big Data Management and Analysis Methods
– sequence: 4
  givenname: Yaxian
  surname: Li
  fullname: Li, Yaxian
  organization: School of Information, Renmin University of China
– sequence: 5
  givenname: Ji-Rong
  surname: Wen
  fullname: Wen, Ji-Rong
  organization: School of Information, Renmin University of China, Beijing Key Laboratory of Big Data Management and Analysis Methods
BookMark eNp9kMFqGzEURUVIIXbSH-hqIGulT9KMpMluMG0aMGkX6VpoNE-uXHvGkeRA_r5yphDIImgh8bhHj3uW5HycRiTkC4MbBqC-JgYKFAUOFKBmmqozsmCNElRJXp-Xt9A1lUw1F2SZ0hYAmkIsyH33i951D7dVNzxjTDYGu6sONrs_lc3Zur_VNFZuGjOOmfY24VCFvd1gFTHHgM8lnV5Sxn26Ip-83SX8_P--JL-_f3tc_aDrn3f3q25NnWh0ptaynlmtWuwZOOdaL3DgkretGuQgatGLoZa1bKBHz4WH1vWKe95o61GVySW5nv89xOnpiCmb7XSMY1lpuGxqraWWp9TNnNrYHZow-ilH68oZcB9KH_ShzDsF7HW1KoCeARenlCJ640K2OZTq0YadYWBOps1s2hTT5tW0OaH8HXqIRVJ8-RgSM5RKeNxgfKvxAfUPDPKRoA
CitedBy_id crossref_primary_10_1145_3559758
crossref_primary_10_61186_itrc_16_2_34
crossref_primary_10_3390_electronics11091422
crossref_primary_10_1007_s11263_022_01737_y
crossref_primary_10_3934_mbe_2023605
crossref_primary_10_1007_s11042_024_18370_1
Cites_doi 10.1007/978-3-319-46604-0_48
10.1109/ICCV.2019.00500
10.1109/ICCV.2017.74
10.1109/CVPR.2008.4587635
10.1109/ICCV.2015.22
10.1109/CVPRW.2019.00012
10.1109/ICCV.2017.304
10.1109/CVPR.2018.00016
10.1109/CVPR.2016.70
10.1109/CVPR.2018.00854
10.1109/CVPR.2016.149
10.1109/ICCV.2017.374
10.1007/978-3-319-46493-0_38
10.1109/TPAMI.2018.2846566
10.1016/j.neucom.2019.06.113
10.1109/ICCV.2017.153
10.1109/ICME.2016.7553002
10.1109/MCOM.2017.1600267CM
10.1109/ICCV.2017.405
10.1145/3292500.3330912
10.1109/CVPR.2014.180
10.1109/CVPR.2015.7298682
10.1109/CVPR.2007.383172
10.1007/978-3-319-46448-0_1
10.1145/3240508.3240552
10.1109/CVPR.2018.00159
10.1145/3323873.3325052
10.1109/CVPR.2018.00357
10.1609/aaai.v33i01.3301873
10.1609/aaai.v33i01.33011028
10.1109/CVPR.2019.00426
10.1109/ICCV.2017.267
10.1007/s11263-017-1016-8
10.1109/TNNLS.2018.2886017
10.1109/ICCV.2019.00514
10.24963/ijcai.2018/543
10.1109/ICCV.2015.133
10.1109/CVPR.2017.19
10.1109/CVPR.2016.282
10.1109/CVPR.2017.357
10.1109/ICCV.2015.312
10.1109/ICCV.2019.00211
10.1109/CVPR.2017.17
10.1109/CVPR.2018.00175
10.1007/978-3-030-01225-0_30
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
COPYRIGHT 2022 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: COPYRIGHT 2022 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
JQ2
K7-
KR7
L.G
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
Q9U
DOI 10.1007/s10707-020-00418-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection‎ (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Computer Science
EISSN 1573-7624
EndPage 377
ExternalDocumentID A701629977
10_1007_s10707_020_00418_7
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: No.61602487
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29H
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
7XC
88I
8FE
8FG
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
LAK
LK5
LLZTM
M0N
M2P
M4Y
M7R
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P62
P9O
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOS
R89
R9I
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XH6
YLTOR
Z45
Z7Z
Z83
Z88
ZMTXR
~8M
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
7SC
7XB
8AL
8FD
8FK
ABRTQ
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c358t-aa1b1a879eb10ccc9f3ed262997d6d343b3d464650bef23f09cb72f258afe7f23
IEDL.DBID U2A
ISSN 1384-6175
IngestDate Fri Jul 25 23:57:00 EDT 2025
Tue Jun 10 21:04:10 EDT 2025
Thu Apr 24 22:59:19 EDT 2025
Tue Jul 01 02:14:22 EDT 2025
Fri Feb 21 02:46:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Adversarial patch
Adversarial attack
Image retrieval
GAN
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-aa1b1a879eb10ccc9f3ed262997d6d343b3d464650bef23f09cb72f258afe7f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2654886862
PQPubID 105513
PageCount 31
ParticipantIDs proquest_journals_2654886862
gale_infotracacademiconefile_A701629977
crossref_citationtrail_10_1007_s10707_020_00418_7
crossref_primary_10_1007_s10707_020_00418_7
springer_journals_10_1007_s10707_020_00418_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal on Advances of Computer Science for Geographic Information Systems
PublicationTitle GeoInformatica
PublicationTitleAbbrev Geoinformatica
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Moosavi-Dezfooli SM, Fawzi A, Frossard P (2016) Deepfool: a simple and accurate method to fool deep neural networks. In: CVPR, pp 2574–2582
Schroff F, Kalenichenko D, Philbin J (2015) Facenet: A unified embedding for face recognition and clustering. In: CVPR, pp 815–823
Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. ICLR
Liu X, Yang H, Liu Z, Song L, Chen Y, Li H (2019b) DPATCH: an adversarial patch attack on object detectors. In: Workshop AAAI, vol 2301
He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual networks. In: ECCV, pp 630–645
Liu A, Liu X, Fan J, Ma Y, Zhang A, Xie H, Tao D (2019a) Perceptual-sensitive gan for generating adversarial patches. In: AAAI, vol 33, pp 1028–1035
Kalantidis Y, Mellina C, Osindero S (2016) Cross-dimensional weighting for aggregated deep convolutional features. In: ECCV, pp 685–701
Eykholt K, Evtimov I, Fernandes E, Li B, Rahmati A, Xiao C, Prakash A, Kohno T, Song D (2018) Robust physical-world attacks on deep learning visual classification. In: CVPR, pp 1625–1634
Li J, Ji R, Liu H, Hong X, Gao Y, Tian Q (2019) Universal perturbation attack against image retrieval. In: ICCV, pp 4899–4908
Radford A, Metz L, Chintala S (2016) Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR
Brown TB, Mané D, Roy A, Abadi M, Gilmer J (2017) Adversarial patch. CoRR 1712.09665
Chen L, Shang S (2019) Region-based message exploration over spatio-temporal data streams. AAAI, vol 33, pp 873–880
Radenović F, Tolias G, Chum O (2016) Cnn image retrieval learns from bow: Unsupervised fine-tuning with hard examples. In: ECCV, pp 3–20
Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2007) Object retrieval with large vocabularies and fast spatial matching. In: CVPR, pp 1–8
Subramanya A, Pillai V, Pirsiavash H (2019) Fooling network interpretation in image classification. In: ICCV, pp 2020–2029
Tolias G, Radenovic F, Chum O (2019) Targeted mismatch adversarial attack: Query with a flower to retrieve the tower. In: Proceedings of the IEEE International Conference on Computer Vision, pp 5037–5046
Moosavi-Dezfooli SM, Fawzi A, Fawzi O, Frossard P (2017) Universal adversarial perturbations. In: CVPR, pp 1765–1773
Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2008) Lost in quantization: Improving particular object retrieval in large scale image databases. In: CVPR
Han P, Yang P, Zhao P, Shang S, Liu Y, Zhou J, Gao X, Kalnis P (2019) Gcn-mf: Disease-gene association identification by graph convolutional networks and matrix factorization. In: SIGKDD, pp 705–713
Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: Towards real-time object detection with region proposal networks. In: NIPS, pp 91–99
Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: Visual explanations from deep networks via gradient-based localization. In: ICCV, pp 618–626
Huang R, Zhang S, Li T, He R (2017) Beyond face rotation: Global and local perception gan for photorealistic and identity preserving frontal view synthesis. In: ICCV, pp 2439–2448
Akhtar N, Liu J, Mian A (2018) Defense against universal adversarial perturbations. In: CVPR, pp 3389–3398
Xu Y, Wu B, Shen F, Fan Y, Zhang Y, Shen HT, Liu W (2019) Exact adversarial attack to image captioning via structured output learning with latent variables. In: CVPR, pp 4135–4144
Zhang Y, Zhou D, Chen S, Gao S, Ma Y (2016) Single-image crowd counting via multi-column convolutional neural network. In: CVPR, pp 589–597
Zheng L, Zhang H, Sun S, Chandraker M, Yang Y, Tian Q (2017a) Person re-identification in the wild. In: CVPR, pp 1367–1376
Simo-Serra E, Trulls E, Ferraz L, Kokkinos I, Fua P, Moreno-Noguer F (2015) Discriminative learning of deep convolutional feature point descriptors. In: ICCV, pp 118–126
Zheng Z, Zheng L, Yang Y (2017b) Unlabeled samples generated by gan improve the person re-identification baseline in vitro. In: ICCV. IEEE
Chen C, Seff A, Kornhauser A, Xiao J (2015) Deepdriving: Learning affordance for direct perception in autonomous driving. In: ICCV, pp 2722–2730
Wang J, Song Y, Leung T, Rosenberg C, Wang J, Philbin J, Chen B, Wu Y (2014) Learning fine-grained image similarity with deep ranking. In: CVPR
RadenovićFToliasGChumOFine-tuning cnn image retrieval with no human annotationTPAMI20184171655166810.1109/TPAMI.2018.2846566
ShangSZhuSGuoDLuMDiscovery of probabilistic nearest neighbors in traffic-aware spatial networksWWW201720511351151
Zheng L, Shen L, Tian L, Wang S, Wang J, Tian Q (2015) Scalable person re-identification: a benchmark. In: ICCV
ZhengYCapraLWolfsonOYangHUrban computing: concepts, methodologies, and applicationsACM Trans Intell Syst Technol (TIST)201453155
Thys S, Van Ranst W, Goedemé T (2019) Fooling automated surveillance cameras: adversarial patches to attack person detection. In: CVPR Workshops, pp 0–0
ZhangKNiJYangKLiangXRenJShenXSSecurity and privacy in smart city applications: Challenges and solutionsIEEE Commun Mag201755112212910.1109/MCOM.2017.1600267CM
Cheng D, Gong Y, Zhou S, Wang J, Zheng N (2016) Person re-identification by multi-channel parts-based cnn with improved triplet loss function. In: CVPR, pp 1335–1344
Sun Y, Zheng L, Yang Y, Tian Q, Wang S (2018) Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline). In: ECCV, pp 480–496
Wang H, Yang Y Y, Pan Y, Han P, Li Z X, Huang HG, Zhu SZ (2020) Detecting thoracic diseases via representation learning with adaptive sampling. Neurocomputing
Liu X, Liu W, Ma H, Fu H (2016) Large-scale vehicle re-identification in urban surveillance videos. In: ICME. IEEE, pp 1–6
Liu Z, Zhao Z, Larson M (2019c) Who’s afraid of adversarial queries?: The impact of image modifications on content-based image retrieval. In: ICMR. ACM, pp 306–314
Babenko A, Lempitsky V (2015) Aggregating local deep features for image retrieval. In: ICCV, pp 1269–1277
Tolias G, Sicre R, Jégou H (2016) Particular object retrieval with integral max-pooling of cnn activations. ICLR
Wang Y, Chen Z, Wu F, Wang G (2018b) Person re-identification with cascaded pairwise convolutions. In: CVPR, pp 1470–1478
Zhang Y, Foroosh H, David P, Gong B (2019) CAMOU: Learning Physical vehicle camouflages to adversarially attack detectors in the wild. In: ICLR
Xiao C, Li B, yan Zhu J, He W, Liu M, Song D (2018) Generating adversarial examples with adversarial networks. In: IJCAI-18, pp 3905–3911
GordoAAlmazanJRevaudJLarlusDEnd-to-end learning of deep visual representations for image retrievalIJCV20171242237254368162510.1007/s11263-017-1016-8
Noh H, Araujo A, Sim J, Weyand T, Han B (2017) Large-scale image retrieval with attentive deep local features. In: ICCV, pp 3456–3465
Kupyn O, Budzan V, Mykhailych M, Mishkin D, Matas J (2018) Deblurgan: Blind motion deblurring using conditional adversarial networks. In: CVPR
Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z et al (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR, pp 4681–4690
Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R (2014) Intriguing properties of neural networks. In: ICLR
Goodfellow I, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. In: ICLR
Kurakin A, Goodfellow I, Bengio S (2017) Adversarial machine learning at scale. In: ICLR
Wang G, Yuan Y, Chen X, Li J, Zhou X (2018a) Learning discriminative features with multiple granularities for person re-identification. In: MM. ACM, pp 274–282
YuanXHePZhuQLiXAdversarial examples: Attacks and defenses for deep learningIEEE Trans Neural Netw Learn Syst201930928052824400127410.1109/TNNLS.2018.2886017
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: NIPS, pp 2672–2680
Xie C, Wang J, Zhang Z, Zhou Y, Xie L, Yuille A (2017) Adversarial examples for semantic segmentation and object detection. In: ICCV, pp 1369–1378
Mao X, Li Q, Xie H, Lau RY, Wang Z, Paul Smolley S (2017) Least squares generative adversarial networks. In: ICCV, pp 2794–2802
Wei L, Zhang S, Gao W, Tian Q (2018) Person transfer gan to bridge domain gap for person re-identification. In: CVPR, pp 79–88
418_CR16
418_CR17
418_CR18
418_CR19
418_CR54
418_CR11
418_CR55
418_CR12
418_CR56
A Gordo (418_CR10) 2017; 124
418_CR13
418_CR57
418_CR14
418_CR15
418_CR59
418_CR50
418_CR51
418_CR1
418_CR2
418_CR49
Y Zheng (418_CR58) 2014; 5
418_CR41
418_CR42
418_CR43
418_CR44
418_CR45
418_CR46
418_CR47
418_CR48
418_CR40
X Yuan (418_CR52) 2019; 30
418_CR38
418_CR39
F Radenović (418_CR30) 2018; 41
418_CR31
418_CR32
418_CR33
418_CR34
418_CR36
418_CR37
418_CR5
418_CR27
418_CR6
418_CR28
418_CR3
418_CR29
418_CR4
418_CR9
418_CR7
S Shang (418_CR35) 2017; 20
418_CR8
418_CR20
K Zhang (418_CR53) 2017; 55
418_CR21
418_CR22
418_CR23
418_CR24
418_CR25
418_CR26
References_xml – reference: Eykholt K, Evtimov I, Fernandes E, Li B, Rahmati A, Xiao C, Prakash A, Kohno T, Song D (2018) Robust physical-world attacks on deep learning visual classification. In: CVPR, pp 1625–1634
– reference: Xiao C, Li B, yan Zhu J, He W, Liu M, Song D (2018) Generating adversarial examples with adversarial networks. In: IJCAI-18, pp 3905–3911
– reference: Akhtar N, Liu J, Mian A (2018) Defense against universal adversarial perturbations. In: CVPR, pp 3389–3398
– reference: Zheng L, Shen L, Tian L, Wang S, Wang J, Tian Q (2015) Scalable person re-identification: a benchmark. In: ICCV
– reference: Kalantidis Y, Mellina C, Osindero S (2016) Cross-dimensional weighting for aggregated deep convolutional features. In: ECCV, pp 685–701
– reference: Moosavi-Dezfooli SM, Fawzi A, Fawzi O, Frossard P (2017) Universal adversarial perturbations. In: CVPR, pp 1765–1773
– reference: RadenovićFToliasGChumOFine-tuning cnn image retrieval with no human annotationTPAMI20184171655166810.1109/TPAMI.2018.2846566
– reference: ZhengYCapraLWolfsonOYangHUrban computing: concepts, methodologies, and applicationsACM Trans Intell Syst Technol (TIST)201453155
– reference: Babenko A, Lempitsky V (2015) Aggregating local deep features for image retrieval. In: ICCV, pp 1269–1277
– reference: Sun Y, Zheng L, Yang Y, Tian Q, Wang S (2018) Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline). In: ECCV, pp 480–496
– reference: Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. ICLR
– reference: Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: NIPS, pp 2672–2680
– reference: Moosavi-Dezfooli SM, Fawzi A, Frossard P (2016) Deepfool: a simple and accurate method to fool deep neural networks. In: CVPR, pp 2574–2582
– reference: Liu X, Liu W, Ma H, Fu H (2016) Large-scale vehicle re-identification in urban surveillance videos. In: ICME. IEEE, pp 1–6
– reference: Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z et al (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR, pp 4681–4690
– reference: Chen L, Shang S (2019) Region-based message exploration over spatio-temporal data streams. AAAI, vol 33, pp 873–880
– reference: Zhang Y, Zhou D, Chen S, Gao S, Ma Y (2016) Single-image crowd counting via multi-column convolutional neural network. In: CVPR, pp 589–597
– reference: Wang J, Song Y, Leung T, Rosenberg C, Wang J, Philbin J, Chen B, Wu Y (2014) Learning fine-grained image similarity with deep ranking. In: CVPR
– reference: Liu X, Yang H, Liu Z, Song L, Chen Y, Li H (2019b) DPATCH: an adversarial patch attack on object detectors. In: Workshop AAAI, vol 2301
– reference: Xie C, Wang J, Zhang Z, Zhou Y, Xie L, Yuille A (2017) Adversarial examples for semantic segmentation and object detection. In: ICCV, pp 1369–1378
– reference: Mao X, Li Q, Xie H, Lau RY, Wang Z, Paul Smolley S (2017) Least squares generative adversarial networks. In: ICCV, pp 2794–2802
– reference: YuanXHePZhuQLiXAdversarial examples: Attacks and defenses for deep learningIEEE Trans Neural Netw Learn Syst201930928052824400127410.1109/TNNLS.2018.2886017
– reference: Wang H, Yang Y Y, Pan Y, Han P, Li Z X, Huang HG, Zhu SZ (2020) Detecting thoracic diseases via representation learning with adaptive sampling. Neurocomputing
– reference: Zheng Z, Zheng L, Yang Y (2017b) Unlabeled samples generated by gan improve the person re-identification baseline in vitro. In: ICCV. IEEE
– reference: Zhang Y, Foroosh H, David P, Gong B (2019) CAMOU: Learning Physical vehicle camouflages to adversarially attack detectors in the wild. In: ICLR
– reference: Chen C, Seff A, Kornhauser A, Xiao J (2015) Deepdriving: Learning affordance for direct perception in autonomous driving. In: ICCV, pp 2722–2730
– reference: Liu Z, Zhao Z, Larson M (2019c) Who’s afraid of adversarial queries?: The impact of image modifications on content-based image retrieval. In: ICMR. ACM, pp 306–314
– reference: Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2007) Object retrieval with large vocabularies and fast spatial matching. In: CVPR, pp 1–8
– reference: Noh H, Araujo A, Sim J, Weyand T, Han B (2017) Large-scale image retrieval with attentive deep local features. In: ICCV, pp 3456–3465
– reference: GordoAAlmazanJRevaudJLarlusDEnd-to-end learning of deep visual representations for image retrievalIJCV20171242237254368162510.1007/s11263-017-1016-8
– reference: Huang R, Zhang S, Li T, He R (2017) Beyond face rotation: Global and local perception gan for photorealistic and identity preserving frontal view synthesis. In: ICCV, pp 2439–2448
– reference: Cheng D, Gong Y, Zhou S, Wang J, Zheng N (2016) Person re-identification by multi-channel parts-based cnn with improved triplet loss function. In: CVPR, pp 1335–1344
– reference: Schroff F, Kalenichenko D, Philbin J (2015) Facenet: A unified embedding for face recognition and clustering. In: CVPR, pp 815–823
– reference: Wang G, Yuan Y, Chen X, Li J, Zhou X (2018a) Learning discriminative features with multiple granularities for person re-identification. In: MM. ACM, pp 274–282
– reference: Kurakin A, Goodfellow I, Bengio S (2017) Adversarial machine learning at scale. In: ICLR
– reference: Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R (2014) Intriguing properties of neural networks. In: ICLR
– reference: Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: Towards real-time object detection with region proposal networks. In: NIPS, pp 91–99
– reference: Tolias G, Radenovic F, Chum O (2019) Targeted mismatch adversarial attack: Query with a flower to retrieve the tower. In: Proceedings of the IEEE International Conference on Computer Vision, pp 5037–5046
– reference: Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2008) Lost in quantization: Improving particular object retrieval in large scale image databases. In: CVPR
– reference: Radford A, Metz L, Chintala S (2016) Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR
– reference: Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: Visual explanations from deep networks via gradient-based localization. In: ICCV, pp 618–626
– reference: Xu Y, Wu B, Shen F, Fan Y, Zhang Y, Shen HT, Liu W (2019) Exact adversarial attack to image captioning via structured output learning with latent variables. In: CVPR, pp 4135–4144
– reference: Zheng L, Zhang H, Sun S, Chandraker M, Yang Y, Tian Q (2017a) Person re-identification in the wild. In: CVPR, pp 1367–1376
– reference: Tolias G, Sicre R, Jégou H (2016) Particular object retrieval with integral max-pooling of cnn activations. ICLR
– reference: Brown TB, Mané D, Roy A, Abadi M, Gilmer J (2017) Adversarial patch. CoRR 1712.09665
– reference: Li J, Ji R, Liu H, Hong X, Gao Y, Tian Q (2019) Universal perturbation attack against image retrieval. In: ICCV, pp 4899–4908
– reference: Han P, Yang P, Zhao P, Shang S, Liu Y, Zhou J, Gao X, Kalnis P (2019) Gcn-mf: Disease-gene association identification by graph convolutional networks and matrix factorization. In: SIGKDD, pp 705–713
– reference: Wei L, Zhang S, Gao W, Tian Q (2018) Person transfer gan to bridge domain gap for person re-identification. In: CVPR, pp 79–88
– reference: ZhangKNiJYangKLiangXRenJShenXSSecurity and privacy in smart city applications: Challenges and solutionsIEEE Commun Mag201755112212910.1109/MCOM.2017.1600267CM
– reference: Kupyn O, Budzan V, Mykhailych M, Mishkin D, Matas J (2018) Deblurgan: Blind motion deblurring using conditional adversarial networks. In: CVPR
– reference: Radenović F, Tolias G, Chum O (2016) Cnn image retrieval learns from bow: Unsupervised fine-tuning with hard examples. In: ECCV, pp 3–20
– reference: Thys S, Van Ranst W, Goedemé T (2019) Fooling automated surveillance cameras: adversarial patches to attack person detection. In: CVPR Workshops, pp 0–0
– reference: Goodfellow I, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. In: ICLR
– reference: Wang Y, Chen Z, Wu F, Wang G (2018b) Person re-identification with cascaded pairwise convolutions. In: CVPR, pp 1470–1478
– reference: ShangSZhuSGuoDLuMDiscovery of probabilistic nearest neighbors in traffic-aware spatial networksWWW201720511351151
– reference: He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual networks. In: ECCV, pp 630–645
– reference: Simo-Serra E, Trulls E, Ferraz L, Kokkinos I, Fua P, Moreno-Noguer F (2015) Discriminative learning of deep convolutional feature point descriptors. In: ICCV, pp 118–126
– reference: Subramanya A, Pillai V, Pirsiavash H (2019) Fooling network interpretation in image classification. In: ICCV, pp 2020–2029
– reference: Liu A, Liu X, Fan J, Ma Y, Zhang A, Xie H, Tao D (2019a) Perceptual-sensitive gan for generating adversarial patches. In: AAAI, vol 33, pp 1028–1035
– ident: 418_CR14
  doi: 10.1007/978-3-319-46604-0_48
– ident: 418_CR42
– ident: 418_CR18
  doi: 10.1109/ICCV.2019.00500
– ident: 418_CR34
  doi: 10.1109/ICCV.2017.74
– ident: 418_CR28
  doi: 10.1109/CVPR.2008.4587635
– ident: 418_CR32
– ident: 418_CR36
  doi: 10.1109/ICCV.2015.22
– ident: 418_CR41
  doi: 10.1109/CVPRW.2019.00012
– ident: 418_CR23
  doi: 10.1109/ICCV.2017.304
– volume: 20
  start-page: 1135
  issue: 5
  year: 2017
  ident: 418_CR35
  publication-title: WWW
– ident: 418_CR48
  doi: 10.1109/CVPR.2018.00016
– ident: 418_CR8
– ident: 418_CR55
– ident: 418_CR54
  doi: 10.1109/CVPR.2016.70
– ident: 418_CR15
  doi: 10.1109/CVPR.2018.00854
– volume: 5
  start-page: 1
  issue: 3
  year: 2014
  ident: 418_CR58
  publication-title: ACM Trans Intell Syst Technol (TIST)
– ident: 418_CR6
  doi: 10.1109/CVPR.2016.149
– ident: 418_CR26
  doi: 10.1109/ICCV.2017.374
– ident: 418_CR12
  doi: 10.1007/978-3-319-46493-0_38
– volume: 41
  start-page: 1655
  issue: 7
  year: 2018
  ident: 418_CR30
  publication-title: TPAMI
  doi: 10.1109/TPAMI.2018.2846566
– ident: 418_CR45
  doi: 10.1016/j.neucom.2019.06.113
– ident: 418_CR50
  doi: 10.1109/ICCV.2017.153
– ident: 418_CR20
  doi: 10.1109/ICME.2016.7553002
– volume: 55
  start-page: 122
  issue: 1
  year: 2017
  ident: 418_CR53
  publication-title: IEEE Commun Mag
  doi: 10.1109/MCOM.2017.1600267CM
– ident: 418_CR59
  doi: 10.1109/ICCV.2017.405
– ident: 418_CR11
  doi: 10.1145/3292500.3330912
– ident: 418_CR46
  doi: 10.1109/CVPR.2014.180
– ident: 418_CR33
  doi: 10.1109/CVPR.2015.7298682
– ident: 418_CR27
  doi: 10.1109/CVPR.2007.383172
– ident: 418_CR16
– ident: 418_CR37
– ident: 418_CR29
  doi: 10.1007/978-3-319-46448-0_1
– ident: 418_CR44
  doi: 10.1145/3240508.3240552
– ident: 418_CR3
– ident: 418_CR21
– ident: 418_CR47
  doi: 10.1109/CVPR.2018.00159
– ident: 418_CR40
– ident: 418_CR22
  doi: 10.1145/3323873.3325052
– ident: 418_CR1
  doi: 10.1109/CVPR.2018.00357
– ident: 418_CR5
  doi: 10.1609/aaai.v33i01.3301873
– ident: 418_CR19
  doi: 10.1609/aaai.v33i01.33011028
– ident: 418_CR51
  doi: 10.1109/CVPR.2019.00426
– ident: 418_CR13
  doi: 10.1109/ICCV.2017.267
– ident: 418_CR2
– volume: 124
  start-page: 237
  issue: 2
  year: 2017
  ident: 418_CR10
  publication-title: IJCV
  doi: 10.1007/s11263-017-1016-8
– ident: 418_CR9
– volume: 30
  start-page: 2805
  issue: 9
  year: 2019
  ident: 418_CR52
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2886017
– ident: 418_CR43
  doi: 10.1109/ICCV.2019.00514
– ident: 418_CR49
  doi: 10.24963/ijcai.2018/543
– ident: 418_CR56
  doi: 10.1109/ICCV.2015.133
– ident: 418_CR17
  doi: 10.1109/CVPR.2017.19
– ident: 418_CR24
  doi: 10.1109/CVPR.2016.282
– ident: 418_CR57
  doi: 10.1109/CVPR.2017.357
– ident: 418_CR4
  doi: 10.1109/ICCV.2015.312
– ident: 418_CR38
  doi: 10.1109/ICCV.2019.00211
– ident: 418_CR31
– ident: 418_CR25
  doi: 10.1109/CVPR.2017.17
– ident: 418_CR7
  doi: 10.1109/CVPR.2018.00175
– ident: 418_CR39
  doi: 10.1007/978-3-030-01225-0_30
SSID ssj0005070
Score 2.3532152
Snippet Key Smart City applications such as traffic management and public security rely heavily on the intelligent processing of video and image data, often in the...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 347
SubjectTerms Artificial neural networks
Camouflage
Computer Science
Data Structures and Information Theory
Generative adversarial networks
Geographical Information Systems/Cartography
Identification
Image management
Image retrieval
Information Storage and Retrieval
Liquors
Machine learning
Multimedia Information Systems
Neural networks
Perturbation
Perturbations
Queries
Security
Smart cities
Technology application
Traffic management
Visual tasks
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELaADrAgnqK85AGJASzS2IkdFlRQy0OiQohK3Sw_EoGAttAw8O-5S10qQHTJkDiv8_nubN93HyEHEAJFnCeWpRE3THjJmfVFCofMC5UYn1U7-Led9KorbnpJLyy4jUJa5cQmVobaDxyukZ_ESHCuEM9wNnxjyBqFu6uBQmOe1MAEK5h81c5bnbv7aZJHJMc4YSUQDJcE2EwAz0lcposRWS0aiskfrum3gf6zU1o5oPYKWQ6RI22Ou3qVzOX9NbIYSMwfP9fJdfOOXTY7p7QiWR4ZVC06BFP7SE1ZGvdMB32KqengZxh6L0-fXsGc0PeKVQtUjo7rOo82SLfderi4YoEpgTmeqJIZ07ANo2QGljdyzmUFz32cgquRPvVccMu9SAVEYzYvYl5EmbMyLuJEmSKXcGaTLPQH_XyL0Eh4r6zNTWYETmasNBwmFSYpMlXAgK-TxkRI2oUy4shm8aKnBZBRsBoEqyvBalknR9_3DMdFNGa2PkTZaxxh8GRnAlAAvg9rVemmhDAVfw1a7k66R4ehN9JTRamT40mXTS___97t2U_bIUsxQh-qrJ1dslC-f-R7EJCUdj9o3ReCxtno
  priority: 102
  providerName: ProQuest
Title AP-GAN: Adversarial patch attack on content-based image retrieval systems
URI https://link.springer.com/article/10.1007/s10707-020-00418-7
https://www.proquest.com/docview/2654886862
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH8a5TAuDNgQZVD5MIkDs5TGTuzslk5t2SYqhKjETpYdJypiK6gNB_77vZc6dOxL2iWWEsdJ3rdj_94DeIchUCRE4ngaCculV4I7X6V4yLzUifVZs4J_PknPpvLzdXIdQGHLdrd7uyTZWOqfwG6KfqvFhISWfc3VBmwmNHdHKZ7G-XpjR6RW2GAtCQCXBKjMn8d45o5-Ncq_rY42Tme0A9shWmT5ir278KKc78GrthIDC4q5By9DLfPZ42v4lF_wcT75wJpay0tLEsbu0eLOmK1rW9yyuzmjHerobjg5Mc9uvqNVYYumuBZKHluld16-geloePXxjIeCCbwQia65tX3Xt1plaICjoiiySpQ-TtHjKJ96IYUTXqYSgzJXVrGooqxwKq7iRNuqVHhmHzrzu3l5ACyS3mvnSptZSXMap6zAuYVNqkxXqPdd6Ld0M0XIJk5FLb6ZdR5korVBWpuG1kZ14fTpnvtVLo1_9j4hdhhSNBy5sAEvgO9HKatMrjBapU_Dnkctx0zQwKWJU5yLacK_dOF9y8X15b8_9_D_ur-FrZgQEc1mniPo1IuH8hjjlNr1YEOPxj3YzEeDwYTa8dcvQ2wHw8nFZa8R2h-KZeEf
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5VAuiKdYKOADiANYZG0ndiohtAK2u7RdcWil3owfsYpadpduUNU_xW9kJg9WgOitl1ziOMl4PDO255sP4DmGQJmUuedFJh1XUUvuYyrwUkZlchfL5gT_YFZMjtSn4_x4A372WBhKq-xtYmOo4yLQHvkbQQTnhvAM75bfObFG0elqT6HRqsVedXmBS7bV2-kHHN8XQow_Hr6f8I5VgAeZm5o7N_RDZ3SJVioLIZRJVlEUaJZ1LKJU0suoCoWRi6-SkCkrg9ciidy4VOlEhQ7Q5N9QUpY0o8x4d51SkukWlWwUQe_yDqTTQfU0bQoKwnGroeH6D0f4tzv451y2cXfj23Cri1PZqFWsO7BRze_CVkeZfnJ5D6ajz3x3NNthDaXzypEisyUa9hPm6tqFU7aYM0qER6_GyVdG9vUbGi923nB4oYKztor06j4cXYsEH8DmfDGvHgLLVIzG-8qVTtHSyWsncQnj8lSahOZlAMNeSDZ0RcuJO-PMrsstk2AtCtY2grV6AK9-P7NsS3Zc2folyd7SfMaeg-tgCfh9VBnLjjQGxfRr2HK7Hx7bTfSVXavlAF73Q7a-_f_3Prq6t2ewNTk82Lf709neY7gpCHTR5Attw2Z9_qN6gqFQ7Z82-sfgy3Ur_C--gxZp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrQRcEE-xtAUfQBzAatZ2YqcSQgvt0qWwWiEq9eb6EauIdnfbDUL9a_w6ZhKHFSB66yWXOE4yHs-M7fnmI-QZhECZELljRSYsk0EJ5kIs4FIGqXMbyuYE_9Ok2D-UH47yozXys8PCYFplZxMbQx3mHvfItzkSnGvEM2zHlBYx3R29WZwzZJDCk9aOTqNVkYPq8gcs35avx7sw1s85H-19ebfPEsMA8yLXNbN24AZWqxIsVua9L6OoAi_ARKtQBCGFE0EWEqIYV0UuYlZ6p3jkubaxUhGLHoD5X1ewKsp6ZP3t3mT6eZVgkqkWo6wlAvHyBNlJwD2FW4QcUd1yoJn6wy3-7Rz-OaVtnN_oDrmdolY6bNXsLlmrZvfIzUSgfnJ5n4yHU_Z-ONmhDcHz0qJa0wWY-RNq69r6b3Q-o5gWDz6OoecM9OsZmDJ60TB6gbrTtqb08gE5vBYZPiS92XxWPSI0kyFo5ypbWokLKaesgAWNzWOpIxibPhl0QjI-lTBHJo1Tsyq-jII1IFjTCNaoPnn5-5lFW8DjytYvUPYGZzf07G0CKcD3YZ0sM1QQIuOvQcvNbnhMmvZLs1LSPnnVDdnq9v_f-_jq3p6SG6Ds5uN4crBBbnFEYDTJQ5ukV198r7YgLqrdk6SAlBxft87_AovFG_s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AP-GAN%3A+Adversarial+patch+attack+on+content-based+image+retrieval+systems&rft.jtitle=GeoInformatica&rft.au=Zhao%2C+Guoping&rft.au=Zhang%2C+Mingyu&rft.au=Liu%2C+Jiajun&rft.au=Li%2C+Yaxian&rft.date=2022-04-01&rft.pub=Springer+US&rft.issn=1384-6175&rft.eissn=1573-7624&rft.volume=26&rft.issue=2&rft.spage=347&rft.epage=377&rft_id=info:doi/10.1007%2Fs10707-020-00418-7&rft.externalDocID=10_1007_s10707_020_00418_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-6175&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-6175&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-6175&client=summon