Identification of Linear Error-Models with Projected Dynamical Systems

Linear error models are an integral part of several parameter identification methods for feedforward and feedback control systems and lead in connection with the L 2 -norm to a convex distance measure which has to be minimised for identification purposes. The parameters are hereby often subject to s...

Full description

Saved in:
Bibliographic Details
Published inMathematical and computer modelling of dynamical systems Vol. 10; no. 1; pp. 59 - 91
Main Authors Kuhnen, K., Krejci, P.
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 01.03.2004
Subjects
Online AccessGet full text
ISSN1387-3954
1744-5051
DOI10.1080/13873950412331318071

Cover

Abstract Linear error models are an integral part of several parameter identification methods for feedforward and feedback control systems and lead in connection with the L 2 -norm to a convex distance measure which has to be minimised for identification purposes. The parameters are hereby often subject to specific restrictions whose intersections span a convex solution set with non-differentiability points on its boundary. For solving these well conditioned problems on-line the paper formulates the solution of the bounded convex minimisation problem as a stable equilibrium set of a proper system of differential equations. The vector field of the corresponding system of differential equations is based on a projection of the negative gradient of the distance measure. A general drawback of this approach is the discontinuous right-hand side of the differential equation caused by the projection transformation. The consequence are difficulties for the verification of the existence, uniqueness and stability of a solution trajectory. Therefore the first subject of this paper is the derivation of an alternative formulation of the projected dynamical system, which exhibits, in contrast to the original formulation, a continuous right-hand side and is thus accessible to conventional analysis methods. For this purpose the multi-dimensional stop operator is used and the existence, uniqueness and stability properties of the solution trajectories are established. The second part of this paper deals with the numerical integration of the projected dynamical system which is used for an implementation of the identification method on a digital signal processor for example. To demonstrate the performance the application of this on-line identification method to the hysteretic filter synthesis with the modified Prandtl-Ishlinskii approach is presented in the last part of this paper.
AbstractList Linear error models are an integral part of several parameter identification methods for feedforward and feedback control systems and lead in connection with the L 2 -norm to a convex distance measure which has to be minimised for identification purposes. The parameters are hereby often subject to specific restrictions whose intersections span a convex solution set with non-differentiability points on its boundary. For solving these well conditioned problems on-line the paper formulates the solution of the bounded convex minimisation problem as a stable equilibrium set of a proper system of differential equations. The vector field of the corresponding system of differential equations is based on a projection of the negative gradient of the distance measure. A general drawback of this approach is the discontinuous right-hand side of the differential equation caused by the projection transformation. The consequence are difficulties for the verification of the existence, uniqueness and stability of a solution trajectory. Therefore the first subject of this paper is the derivation of an alternative formulation of the projected dynamical system, which exhibits, in contrast to the original formulation, a continuous right-hand side and is thus accessible to conventional analysis methods. For this purpose the multi-dimensional stop operator is used and the existence, uniqueness and stability properties of the solution trajectories are established. The second part of this paper deals with the numerical integration of the projected dynamical system which is used for an implementation of the identification method on a digital signal processor for example. To demonstrate the performance the application of this on-line identification method to the hysteretic filter synthesis with the modified Prandtl-Ishlinskii approach is presented in the last part of this paper.
Author Krejci, P.
Kuhnen, K.
Author_xml – sequence: 1
  givenname: K.
  surname: Kuhnen
  fullname: Kuhnen, K.
  organization: Laboratory for Process Automation , Saarland University
– sequence: 2
  givenname: P.
  surname: Krejci
  fullname: Krejci, P.
  organization: Department of Evolution Differential Equations , Mathematical Institute of the Academy of Sciences
BookMark eNqNkM1KAzEUhYNUsK2-gYt5gdFk7qTJuBGprQoVBXUd0vxgykwiSaDO2ztaV1LU1bmL853LORM08sEbhE4JPiOY43MCnEFDcU0qAAKEY0YO0Jiwui4ppmQ03IOlHDz1EZqktMG4IpTQMVreaeOzs07J7IIvgi1WzhsZi0WMIZb3QZs2FVuXX4vHGDZGZaOL697LbkDa4qlP2XTpGB1a2SZz8q1T9LJcPM9vy9XDzd38alUqoDyXklmrKsYasEoBXq9BzzQGa6EhVBrFK6MpazSfNVxxA7SuLKskU1waNqNrmKJ6l6tiSCkaK96i62TsBcHicwuxb4sBu_iBKZe_CucoXfsXfLmDnbchdnIbYqtFln0boo3SK5cE_O_9Lwn7QJHfM3wA9iSMNA
CitedBy_id crossref_primary_10_3182_20120620_3_DK_2025_00166
crossref_primary_10_1016_j_jmmm_2006_10_1053
crossref_primary_10_1109_TCST_2012_2222645
crossref_primary_10_9746_jcmsi_6_243
crossref_primary_10_1088_0964_1726_20_1_015016
crossref_primary_10_1088_0964_1726_23_3_035002
crossref_primary_10_3166_ejc_12_606_619
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2004
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2004
DBID AAYXX
CITATION
DOI 10.1080/13873950412331318071
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1744-5051
EndPage 91
ExternalDocumentID 10_1080_13873950412331318071
9609921
GroupedDBID .4S
.7F
.DC
.QJ
0YH
29M
30N
4.4
5GY
5VS
AAAKF
AAENE
ABCCY
ABDBF
ABFIM
ABHAV
ABPEM
ABTAI
ABUCO
ACGEJ
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AFKVX
AGMYJ
AGROQ
AIJEM
AJWEG
ALMA_UNASSIGNED_HOLDINGS
AQRUH
ARCSS
AVBZW
BLEHA
CAG
CCCUG
CE4
COF
CRFIH
CS3
DGEBU
DKSSO
DMQIW
DU5
EAP
EBS
EDO
EJD
EMI
EMK
EPL
EST
ESX
E~A
E~B
F5P
GROUPED_DOAJ
GTTXZ
H13
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
QCRFL
RIG
S-T
SNACF
TFL
TFT
TFW
TTHFI
TUS
TWF
UT5
UU3
~S~
1TA
AAYXX
AIYEW
AMVHM
AWYRJ
CITATION
HF~
LJTGL
NUSFT
OK1
ID FETCH-LOGICAL-c358t-a7ffc27793fcc30bb3d6d03ff3915aec82ed579d8698c8e3542f72a7c8ae765b3
ISSN 1387-3954
IngestDate Thu Apr 24 23:03:00 EDT 2025
Tue Jul 01 04:30:10 EDT 2025
Wed Dec 25 09:03:39 EST 2024
Mon May 13 12:09:44 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c358t-a7ffc27793fcc30bb3d6d03ff3915aec82ed579d8698c8e3542f72a7c8ae765b3
PageCount 33
ParticipantIDs informaworld_taylorfrancis_310_1080_13873950412331318071
crossref_primary_10_1080_13873950412331318071
crossref_citationtrail_10_1080_13873950412331318071
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 3/1/2004
2004-03-00
PublicationDateYYYYMMDD 2004-03-01
PublicationDate_xml – month: 03
  year: 2004
  text: 3/1/2004
  day: 01
PublicationDecade 2000
PublicationTitle Mathematical and computer modelling of dynamical systems
PublicationYear 2004
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
SSID ssj0021515
Score 1.6390895
Snippet Linear error models are an integral part of several parameter identification methods for feedforward and feedback control systems and lead in connection with...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 59
SubjectTerms error models
hysteresis compensation
Identification
multidimensional stop
projected dynamical systems
Title Identification of Linear Error-Models with Projected Dynamical Systems
URI https://www.tandfonline.com/doi/abs/10.1080/13873950412331318071
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELZ4XLjwXlFe8oFrShI7sXPkVSEQiANI3CrbsbVaVe0qZCXEr2ccu24CVRe4RJVV20lmPB5PZr4PoRNWSJno0qYNgvtGdUIjAUYwkpSQjBtFyybb_e4-v36iN8_Z8yxXtakuqWVfvc2tK_mJVKEN5GqrZL8h2TAoNMBvkC9cQcJw_ZKMXZWt8WG3JtwPTqOowLpVkyqyPGcjX7724CIu4F5eOg56iwLSQiufkjoFFFePIaA864OjzBn5HOkyjPHSGqP5IvR77AzZbT-0VfqPapIGHvqdIAOdZVl5u2gheEnh8J772rUxSiNwoJKOMY0_KY2zjB732-2xjqDrk_V26Y52LpjKAoERkoDNiR1JSxcs-8MmFlILE495Om-UZbSaMma_5q-enV-eD8LJ3Hp1zcncP-W0xpLHp_PG6fgwHYTblm_yuInW_aECnzkN2UJLeryNNvwBA3vz_bKDBl2FwRODncLgtsJgqzA4KAwOCoO9wuyip8HV48V15Ik0IgULro4EM0bBkxfEKEViKUmZlzExxrIDCK14qsuMFSXPC664JhlNDUsFU1xolmeS_EIr48lY7yFMhOKMG80E-N5CZNII2AJknMsUFrohPUSmr2aoPMq8JTsZDRcJpoei0OuvQ1n5z_9J-60P6ya6ZRwVzdwew_q17iG-oBdZNOH-N2_wAK3NltEhWqmrf_oIvNdaHnvdewcsso8P
linkProvider EBSCOhost
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6hMsBCeYry9MCaksRJ7IwIWhVoK4ZWYotsx16oWtSmEuLXY8dO1aJSJNhzcWLf2Xfn774DuCEp54HMDWxQu2-RDCKP6U3Q4xHGMVUiyku0e6-fdIbR02tcoQlnDlZpYmhliSLKvdoYt0lGV5C42wBTc79kqKIwDrRW-qaKfDvWrrtRcuz3FzGXOa_LmMvYUhpHVfXcD29ZOZ1WuEuXTp12HXj1vRZs8tacF7wpPr9ROf7rh_Zhz_mk6M4q0QFsyfEh1J1_ipz1z46gbat6lUvzoYlCOpTVpoJa0-lk6pm-aqMZMqld9GIzPFr-wfa81wM4dvRjGLZbg_uO5_oweEKvV-ExopQIibZkJQT2Ocd5kvtYKUMuz6SgocxjkuY0SamgEsdRqEjIiKBMkiTm-ARq48lYngLCTFBClSRMu26MxVwxvYNwP-Gh1hOFG4Cr-c-EIyk3vTJGWeC4TNdNVQO8hdS7Jen45Xm8vLRZUSZHlO1kslYiKz6KBtANUnjTgGd_F72Gnc6g1826j_3nc9i1wCEDgbuAWjGdy0vtExX8qtT6Ly6s-4g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QkBAXxlOMZw9cO9q6bdIjYqt4TjswabcqSZML0zZ1nYT49SRNOm1oDAnuddMmdmI7nz8jdIMTxnyRa9igct9C4YcuVZugy0KAiEge5hXa_bUXPwzCp2E0XKri17BKHUNLQxRR7dXauKe5rBFxtz4Qfb2kmaIAfKWUni4i346Vd6JBfeD1FiGXPq6rkEubUhKFdfHcD29ZOZxWqEuXDp20iWj9uQZr8t6el6zNP78xOf7nf_bRnvVInTujQgdoS4wPUdN6p461_dkRSk1Nr7RJPmciHRXIKkNxukUxKVzdVW00c3Ri1-mb_I6S75iO92oAy41-jAZp9-3-wbVdGFyuVqt0KZaSB1jZseQcPMYgj3MPpNTU8lRwEog8wklO4oRwIiAKA4kDijmhAscRgxPUGE_G4hQ5QDnBRApMleNGacQkVfsH82IWKC2R0EJQT3_GLUW57pQxynzLZLpuqlrIXUhNDUXHL8_D8spmZZUakaaPyVqJrPwoW4hskIJNA579XfQa7fQ7afby2Hs-R7sGNaTxbxeoURZzcakcopJdVTr_BQiy-iw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Linear+Error-Models+with+Projected+Dynamical+Systems&rft.jtitle=Mathematical+and+computer+modelling+of+dynamical+systems&rft.au=Kuhnen%2C+K.&rft.au=Krejci%2C+P.&rft.date=2004-03-01&rft.issn=1387-3954&rft.eissn=1744-5051&rft.volume=10&rft.issue=1&rft.spage=59&rft.epage=91&rft_id=info:doi/10.1080%2F13873950412331318071&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_13873950412331318071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-3954&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-3954&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-3954&client=summon