Some identities for Moore-Penrose inverses of matrix products
A group of identities are established for the Moore-Penrose inverses and the weighted Moore-Penrose inverses of matrix products AB and ABC. Some consequences and applications are also presented.
Saved in:
Published in | Linear & multilinear algebra Vol. 52; no. 6; pp. 405 - 420 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis Group
01.11.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A group of identities are established for the Moore-Penrose inverses and the weighted Moore-Penrose inverses of matrix products AB and ABC. Some consequences and applications are also presented. |
---|---|
AbstractList | A group of identities are established for the Moore-Penrose inverses and the weighted Moore-Penrose inverses of matrix products AB and ABC. Some consequences and applications are also presented. |
Author | Cheng †, Shizhen Tian, Yongge |
Author_xml | – sequence: 1 givenname: Yongge surname: Tian fullname: Tian, Yongge email: ytian@mast.queensu.ca organization: Department of Mathematics and Statistics , Queen's University – sequence: 2 givenname: Shizhen surname: Cheng † fullname: Cheng †, Shizhen organization: Division of Basic Courses , Beijing Institute of Civil Engineering and Architecture |
BookMark | eNqFkN1KAzEQhYMo2FbfwIt9gdVJs9kmBREp_kFFQb1estkJRHaTkkRt396UeiWFXs3AnO9w5ozJsfMOCbmgcElBwBUwENulogBAaykZq47IiPKalZwyeUxGW0mZNbNTMo7xM-sqyviIXL_5AQvboUs2WYyF8aF49j5g-You-JiP7htDzCdvikGlYNfFKvjuS6d4Rk6M6iOe_80J-bi_e188lsuXh6fF7bLUjItUKo7YCqx1LQBnSoAwLXSCSUCATrdsWlPNaU6ksJohl1oagFZyJoySU8EmZL7z1TlRDGgabZNK1rsUlO0bCs32_2ZfERmu_sGrYAcVNoewmx1mXe5kUD8-9F2T1Kb3wQTltI0NO-AwP-iwD2zSOrFf04SITg |
CitedBy_id | crossref_primary_10_1214_12_AOS1067 crossref_primary_10_1007_s40314_020_01203_w crossref_primary_10_1007_s10114_023_1645_5 crossref_primary_10_3934_math_2021803 crossref_primary_10_1016_j_heliyon_2020_e04924 crossref_primary_10_1016_j_amc_2011_09_042 crossref_primary_10_1515_gmj_2024_2016 crossref_primary_10_1007_s43036_020_00072_8 crossref_primary_10_1216_rmjm_1187453116 crossref_primary_10_1214_20_EJS1782 crossref_primary_10_1016_j_amc_2013_05_076 crossref_primary_10_1080_03081087_2013_839672 crossref_primary_10_1007_s40314_020_01328_y crossref_primary_10_1080_00207390500226168 crossref_primary_10_1137_22M1493392 |
Cites_doi | 10.1016/0024-3795(86)90226-0 10.2748/tmj/1178229307 10.1137/0119069 10.1017/S0305004100030401 10.1016/S0096-3003(02)00796-8 10.1016/0024-3795(94)90084-1 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2004 |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2004 |
DBID | AAYXX CITATION |
DOI | 10.1080/03081080410001699334 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1563-5139 |
EndPage | 420 |
ExternalDocumentID | 10_1080_03081080410001699334 10051031 |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACAGQ ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE ADYSH AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AGROQ AHDZW AHMOU AIJEM AIYEW AJWEG AKBVH AKOOK ALCKM ALMA_UNASSIGNED_HOLDINGS ALQZU AMEWO AMPGV AQRUH AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CRFIH CS3 DGEBU DKSSO DMQIW DU5 EBS EJD E~A E~B GTTXZ H13 HZ~ H~P IPNFZ J.P KYCEM M4Z NA5 NY~ O9- P2P PQQKQ QCRFL RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ TWF UPT UT5 UU3 YQT ZGOLN ~S~ 07G 1TA AAGDL AAHIA AAIKQ AAKBW AAYXX ABEFU ACGEE ADIYS AEUMN AFFNX AGCQS AGLEN AMVHM AMXXU BCCOT BPLKW C06 CITATION DWIFK HF~ IVXBP LJTGL NUSFT TAQ TFMCV UB9 UU8 V3K V4Q |
ID | FETCH-LOGICAL-c358t-a5eeb8e6c680e7a808fb0d8390e00dcb3261c51413ae47e59c9f00b9538fa9283 |
ISSN | 0308-1087 |
IngestDate | Thu Apr 24 23:01:46 EDT 2025 Tue Jul 01 01:40:17 EDT 2025 Mon May 13 12:09:03 EDT 2019 Tue May 20 10:48:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c358t-a5eeb8e6c680e7a808fb0d8390e00dcb3261c51413ae47e59c9f00b9538fa9283 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1080_03081080410001699334 informaworld_taylorfrancis_310_1080_03081080410001699334 crossref_primary_10_1080_03081080410001699334 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-11-01 |
PublicationDateYYYYMMDD | 2004-11-01 |
PublicationDate_xml | – month: 11 year: 2004 text: 2004-11-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Linear & multilinear algebra |
PublicationYear | 2004 |
Publisher | Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis Group |
References | Tian Y (bib10) 2003; 3 bib8 bib5 bib6 bib3 Tian Y (bib9) 2002; 29 bib4 bib12 Ben-Israel A (bib1) 2003 Campbell SL (bib2) 1991 Rao CR (bib7) 1971 bib11 |
References_xml | – volume-title: Generalized Inverses: Theory and Applications year: 2003 ident: bib1 – ident: bib4 doi: 10.1016/0024-3795(86)90226-0 – ident: bib5 doi: 10.2748/tmj/1178229307 – volume: 3 start-page: 107 year: 2003 ident: bib10 publication-title: International Mathematical Journal – ident: bib3 doi: 10.1137/0119069 – volume: 29 start-page: 35 year: 2002 ident: bib9 publication-title: Image, The Bulletin of the International Linear Algebra Society – volume-title: Generalized Inverse of Matrices and Its Applications, Wiley year: 1971 ident: bib7 – ident: bib12 – volume-title: Generalized Inverses of Linear Transformations year: 1991 ident: bib2 – ident: bib6 doi: 10.1017/S0305004100030401 – ident: bib11 doi: 10.1016/S0096-3003(02)00796-8 – ident: bib8 doi: 10.1016/0024-3795(94)90084-1 |
SSID | ssj0004135 |
Score | 1.7367777 |
Snippet | A group of identities are established for the Moore-Penrose inverses and the weighted Moore-Penrose inverses of matrix products AB and ABC. Some consequences... |
SourceID | crossref informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 405 |
SubjectTerms | AMS Subject Classifications: 15A09 Drazin inverse Identity Matrix product Moore-Penrose inverse Reverse order law Weighted Moore-Penrose inverse |
Title | Some identities for Moore-Penrose inverses of matrix products |
URI | https://www.tandfonline.com/doi/abs/10.1080/03081080410001699334 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DX_RB_MT5RR58k0q6Jl36OKYyhIngxI-XkbSpG2grs4Lsr_fSJF2Hw6-X0JamKblfLnfH3S8IHXMmREvRtielAAclYKnHeSKhIZoaRiQ-18XJ_auwd0sv79l9o3FZy1p6L-RpPF1YV_IfqcIzkKuukv2DZKuPwgO4BvlCCxKG9lcyvslf1Mk4cbyoZcpgP88nyruGLjoTfZzptAtDLPui2fg_dEaW5nh9q5ul4JFqQh8NgzLD8Nnc6zNA5KRS3IOxiZY-5NnTUwWI7kjpaINJmuiQMpw6Gk9HtsbMRRSoLa1zGBh8OdyjFgezpVYlJ6zdKZXVnGHgMd8wEznVylo1CNX1JCWstuXSsh7uqza36Y8wmr6kfmmggkFlw5_zPNm-YQcET3i5BS4D6LzlTu_s8W5WJWuPW3U_7wopNdP6giHmDJU5GtuaATJYR2vWc8AdA4MN1FDZJlrtV7S7b1uoBASeAQLD1_AcILADBM5TbACBHSC20e3F-aDb8-z5GF4cMF54gikluQrjkBPVFpzwVJIELF6iCEliCZa5H4NB7AcCVqNiURylhMgI9rhURGBX7qClLM_ULsKwPEXIuQwVDWgqGU-oT1k7kjGXKo3CJgrcZAxjSx6vzzB5HvqOY3bBFDaRV_V6NeQpP7wf1Od5WJRITA0IF_YYFh9FE_FvegXfDbj3_677aGW2dg7QUjF5V4dgnxbyyALvE8qIhSA |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMcfOg_qwd_i_NmD187UJG168CDimLoNwQ28laRNQHTtWDsY_vUm_TE3mQp6KYX2tWnymnwTXj4P4JxRzi8l8WwhuJ6gYKpsxiKhD8igYXjkMLM5udN1W31y_0yraMK0DKs0c2hVgCLyvtr83GYxugqJuzCMFXNCnFyy6CEWk2VYob7rGVfHqPu5NbLMsYlziinzqt1z3zxlbnSaY5fOjDrNTRBVeYtgk9fGOBON8P0LyvFfH7QFG6Umta4LJ9qGJRnvwHpnCnRNd-HqKRlI6yWqEKyWLrLVSZKRtB-1ByapvhibCA99KVHWwID_J9awwMmme9Bv3vZuWnaZecEOMWWZzamUgkk3dBmSHmeIKYEiraWQRCgKhdZ8TqilloO5bmdJ_dBXCAlf956K-1qx7EMtTmJ5AJZueO4yJlxJMFGCsog4hHq-CJmQynfrgKsaD8ISS26yY7wFTkUvXVA5dbCnVsMCy_HL_Xi2MYMsXw5RRe6ShRZBNsnqwH6wwj-98PDvpmew2up12kH7rvtwBGsFWdKs-RxDLRuN5YlWQZk4zf38A_WL9ig |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPOkH0wbs4r33wtTM1SZs--CDqmJeNgQ72VpI2AdG1Y-tg-OlNepmbzAn6UgrtadMkTf4J5_wOwDmjnF9K4tlCcL1AwVTZjEVCH5BBw_DIYSY4udlyGx3y0KXdqSh-41Zp1tAqB0VkY7X5ufuRKj3iLgxixZwQJ1MseobFZBlWXBNnaYI4UOsrMrJIsYkziCnzyuC5H54yMznNoEunJp36JvCyuLmvyVttlIpa-PGN5Pif79mCjUKRWtd5F9qGJRnvwHpzgnMd7sLVc9KT1mtUAlgtXWKrmSQDabd1_0uG-mJs_Dv0pURZPYP9H1v9HCY73INO_e7lpmEXeRfsEFOW2pxKKZh0Q5ch6XGGmBIo0koKSYSiUGjF54RaaDmY61aW1A99hZDw9dipuK_1yj5U4iSWB2DpZucuY8KVBBMlKIuIQ6jni5AJqXy3Cris8CAsoOQmN8Z74JTs0jmVUwV7YtXPoRy_3I-n2zJIs80QlWcumWsRpOO0CmyBFV70wsO_m57Bavu2Hjzdtx6PYC3HSpoNn2OopIORPNESKBWnWS__BOJW9Mw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Some+identities+for+Moore-Penrose+inverses+of+matrix+products&rft.jtitle=Linear+%26+multilinear+algebra&rft.au=Tian%2C+Yongge&rft.au=Cheng+%E2%80%A0%2C+Shizhen&rft.date=2004-11-01&rft.pub=Taylor+%26+Francis+Group&rft.issn=0308-1087&rft.eissn=1563-5139&rft.volume=52&rft.issue=6&rft.spage=405&rft.epage=420&rft_id=info:doi/10.1080%2F03081080410001699334&rft.externalDocID=10051031 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-1087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-1087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-1087&client=summon |