Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: A comparison

There is a worldwide need for detailed spatial information to support soil mapping, mainly in the tropics, where main agricultural areas are concentrated. In this line, satellite images are useful tools that can assist in obtaining soil information from a synoptic point of view. This study aimed at...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 252; p. 112117
Main Authors Silvero, Nélida Elizabet Quiñonez, Demattê, José Alexandre Melo, Amorim, Merilyn Taynara Accorsi, Santos, Natasha Valadares dos, Rizzo, Rodnei, Safanelli, José Lucas, Poppiel, Raul Roberto, Mendes, Wanderson de Sousa, Bonfatti, Benito Roberto
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.01.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There is a worldwide need for detailed spatial information to support soil mapping, mainly in the tropics, where main agricultural areas are concentrated. In this line, satellite images are useful tools that can assist in obtaining soil information from a synoptic point of view. This study aimed at evaluating how satellite images at different resolutions (spatial, spectral and temporal) can influence the representation of soil variability over time, the percentage of bare soil areas and spatial predictions of soil properties in southeastern Brazil. We used single-date and multi-temporal images (SYSI, Synthetic Soil Images) of bare soil pixels from the Sentinel2-MultiSpectral Instrument (S2-MSI) and the Landsat-8 Operational Land Imager (L8-OLI) to conduct this research. Two SYSIs were obtained from images acquired in four years (2016–2019) for each satellite (SYSI S2-MSI and SYSI L8-OLI) and a third SYSI, named SYSI Combined, was obtained by combining the images from both satellites. The single-date images for each satellite was acquired in September, when the influence of clouds was low and bare soil pixels was predominant. Single-date images and SYSIs were compared by means of their spectral patterns and ability to predict topsoil properties (clay, sand, silt, and organic matter contents and soil color) using the Cubist algorithm. We found that the SYSIs outperformed single-date images and that the SYSI Combined and SYSI L8-OLI provided the best prediction performances. The SYSIs also had the highest percentage of areas with bare soil pixels (~30–50%) when compared to the single-date images (~20%). Our results suggest that bare soil images obtained by combining Landsat-8 and Sentinel-2 images are more important for soil mapping than spatial or spectral resolutions. Soil maps obtained via satellite images are important tools for soil survey, land planning, management and precision agriculture. •Bare soil images proved useful for mapping topsoil properties.•SYSI images had more than twice the bare soil areas of single-date images.•SYSI Combined and SYSI L8-OLI had the best performances in predicting topsoil properties.•The use of RedEdge bands from Sentinel-2 did not provide large model performance gains.
AbstractList There is a worldwide need for detailed spatial information to support soil mapping, mainly in the tropics, where main agricultural areas are concentrated. In this line, satellite images are useful tools that can assist in obtaining soil information from a synoptic point of view. This study aimed at evaluating how satellite images at different resolutions (spatial, spectral and temporal) can influence the representation of soil variability over time, the percentage of bare soil areas and spatial predictions of soil properties in southeastern Brazil. We used single-date and multi-temporal images (SYSI, Synthetic Soil Images) of bare soil pixels from the Sentinel2-MultiSpectral Instrument (S2-MSI) and the Landsat-8 Operational Land Imager (L8-OLI) to conduct this research. Two SYSIs were obtained from images acquired in four years (2016–2019) for each satellite (SYSI S2-MSI and SYSI L8-OLI) and a third SYSI, named SYSI Combined, was obtained by combining the images from both satellites. The single-date images for each satellite was acquired in September, when the influence of clouds was low and bare soil pixels was predominant. Single-date images and SYSIs were compared by means of their spectral patterns and ability to predict topsoil properties (clay, sand, silt, and organic matter contents and soil color) using the Cubist algorithm. We found that the SYSIs outperformed single-date images and that the SYSI Combined and SYSI L8-OLI provided the best prediction performances. The SYSIs also had the highest percentage of areas with bare soil pixels (~30–50%) when compared to the single-date images (~20%). Our results suggest that bare soil images obtained by combining Landsat-8 and Sentinel-2 images are more important for soil mapping than spatial or spectral resolutions. Soil maps obtained via satellite images are important tools for soil survey, land planning, management and precision agriculture.
There is a worldwide need for detailed spatial information to support soil mapping, mainly in the tropics, where main agricultural areas are concentrated. In this line, satellite images are useful tools that can assist in obtaining soil information from a synoptic point of view. This study aimed at evaluating how satellite images at different resolutions (spatial, spectral and temporal) can influence the representation of soil variability over time, the percentage of bare soil areas and spatial predictions of soil properties in southeastern Brazil. We used single-date and multi-temporal images (SYSI, Synthetic Soil Images) of bare soil pixels from the Sentinel2-MultiSpectral Instrument (S2-MSI) and the Landsat-8 Operational Land Imager (L8-OLI) to conduct this research. Two SYSIs were obtained from images acquired in four years (2016–2019) for each satellite (SYSI S2-MSI and SYSI L8-OLI) and a third SYSI, named SYSI Combined, was obtained by combining the images from both satellites. The single-date images for each satellite was acquired in September, when the influence of clouds was low and bare soil pixels was predominant. Single-date images and SYSIs were compared by means of their spectral patterns and ability to predict topsoil properties (clay, sand, silt, and organic matter contents and soil color) using the Cubist algorithm. We found that the SYSIs outperformed single-date images and that the SYSI Combined and SYSI L8-OLI provided the best prediction performances. The SYSIs also had the highest percentage of areas with bare soil pixels (~30–50%) when compared to the single-date images (~20%). Our results suggest that bare soil images obtained by combining Landsat-8 and Sentinel-2 images are more important for soil mapping than spatial or spectral resolutions. Soil maps obtained via satellite images are important tools for soil survey, land planning, management and precision agriculture. •Bare soil images proved useful for mapping topsoil properties.•SYSI images had more than twice the bare soil areas of single-date images.•SYSI Combined and SYSI L8-OLI had the best performances in predicting topsoil properties.•The use of RedEdge bands from Sentinel-2 did not provide large model performance gains.
ArticleNumber 112117
Author Amorim, Merilyn Taynara Accorsi
Safanelli, José Lucas
Bonfatti, Benito Roberto
Rizzo, Rodnei
Silvero, Nélida Elizabet Quiñonez
Poppiel, Raul Roberto
Mendes, Wanderson de Sousa
Demattê, José Alexandre Melo
Santos, Natasha Valadares dos
Author_xml – sequence: 1
  givenname: Nélida Elizabet Quiñonez
  surname: Silvero
  fullname: Silvero, Nélida Elizabet Quiñonez
  email: neli.silvero@usp.br
– sequence: 2
  givenname: José Alexandre Melo
  surname: Demattê
  fullname: Demattê, José Alexandre Melo
  email: jamdemat@usp.br
– sequence: 3
  givenname: Merilyn Taynara Accorsi
  surname: Amorim
  fullname: Amorim, Merilyn Taynara Accorsi
  email: merilyn.accorsi@usp.br
– sequence: 4
  givenname: Natasha Valadares dos
  surname: Santos
  fullname: Santos, Natasha Valadares dos
  email: natasha.valadares.santos@usp.br
– sequence: 5
  givenname: Rodnei
  surname: Rizzo
  fullname: Rizzo, Rodnei
– sequence: 6
  givenname: José Lucas
  surname: Safanelli
  fullname: Safanelli, José Lucas
  email: jose.lucas.safanelli@usp.br
– sequence: 7
  givenname: Raul Roberto
  surname: Poppiel
  fullname: Poppiel, Raul Roberto
  email: raulpoppiel@usp.br
– sequence: 8
  givenname: Wanderson de Sousa
  surname: Mendes
  fullname: Mendes, Wanderson de Sousa
  email: wandersonsm@usp.br
– sequence: 9
  givenname: Benito Roberto
  surname: Bonfatti
  fullname: Bonfatti, Benito Roberto
  email: benito.bonfatti@uemg.br
BookMark eNp9kMFuGyEURVGUSnHcfkB3I2XTzTg8BmZwuoqiNolkqYska8TAo8IagwPYkv--2O4qi2x4gM69ejrX5DLEgIR8B7oACv3tepEyLhhl9Q0MYLggM5DDsqUD5ZdkRmnHW87EcEWuc15TCkIOMCP2Jfqp2evk9egnXw6NDrZ53-lQvPNGFx9DM-qMtqmXF6zfAaeWnbBVPbIuraxEwiYfq_xG_8V819w3Jm62tTfH8JV8cXrK-O3_nJO3379eH57a1Z_H54f7VWs6IUurQVjQS95JNmhjR6lx2VPLHHDUANL0znLXsyXrqeEMBZe8c86NI6KzHe3m5Me5d5vi-w5zURufDU6TDhh3WTEhGKX9IEVFbz6g67hLoW6nGJeSCWCyq9RwpkyKOSd0yvhyclKS9pMCqo721VpV--poX53t1yR8SG5TVZMOn2Z-njNYHe09JpWNx2DQ-oSmKBv9J-l_K1-efA
CitedBy_id crossref_primary_10_1007_s40808_024_02050_y
crossref_primary_10_1109_MGRS_2023_3269979
crossref_primary_10_3390_rs16163088
crossref_primary_10_1109_MGRS_2024_3394040
crossref_primary_10_1016_j_jenvman_2022_117194
crossref_primary_10_1016_j_still_2024_106124
crossref_primary_10_3390_agronomy13071942
crossref_primary_10_1016_j_geoderma_2024_116919
crossref_primary_10_3390_agronomy14081682
crossref_primary_10_1016_j_catena_2022_106603
crossref_primary_10_3390_environments10050083
crossref_primary_10_1016_j_catena_2023_107336
crossref_primary_10_1016_j_compag_2024_108921
crossref_primary_10_1016_j_geoderma_2022_115905
crossref_primary_10_3390_rs16061066
crossref_primary_10_1016_j_rse_2025_114708
crossref_primary_10_3390_rs14102295
crossref_primary_10_3390_rs15092410
crossref_primary_10_3390_rs13245019
crossref_primary_10_3390_rs16152712
crossref_primary_10_1016_j_still_2024_106170
crossref_primary_10_47836_pjst_29_4_32
crossref_primary_10_3390_rs14122917
crossref_primary_10_1007_s10668_023_03489_2
crossref_primary_10_1016_j_still_2022_105325
crossref_primary_10_1007_s10661_022_09842_8
crossref_primary_10_1016_j_geoderma_2022_116128
crossref_primary_10_1016_j_jag_2024_104181
crossref_primary_10_1016_j_geoderma_2021_115656
crossref_primary_10_3390_rs14215571
crossref_primary_10_1016_j_geoderma_2023_116669
crossref_primary_10_1016_j_isprsjprs_2022_09_013
crossref_primary_10_1016_j_catena_2021_105842
crossref_primary_10_1016_j_geodrs_2021_e00440
crossref_primary_10_3390_su15010323
crossref_primary_10_3390_rs15235502
crossref_primary_10_1016_j_catena_2021_105723
crossref_primary_10_1016_j_geoderma_2023_116697
crossref_primary_10_1016_j_rse_2022_112914
crossref_primary_10_1016_j_geoderma_2023_116413
crossref_primary_10_1016_j_jenvman_2023_117810
crossref_primary_10_1016_j_rsase_2022_100913
crossref_primary_10_1016_j_geoderma_2021_115089
crossref_primary_10_1080_10106049_2024_2387786
crossref_primary_10_1016_j_compag_2025_110145
crossref_primary_10_1016_j_still_2023_105897
crossref_primary_10_3390_land14030657
crossref_primary_10_1016_j_catena_2022_106023
crossref_primary_10_1002_vzj2_20361
crossref_primary_10_3390_rs16152731
crossref_primary_10_1029_2024RG000836
crossref_primary_10_3390_rs14184526
crossref_primary_10_3390_rs13214195
crossref_primary_10_1016_j_ecolind_2024_112364
crossref_primary_10_1016_j_geoderma_2024_116984
crossref_primary_10_1016_j_geoderma_2024_116987
crossref_primary_10_1016_j_geodrs_2022_e00513
crossref_primary_10_1016_j_still_2024_106270
crossref_primary_10_1016_j_geoderma_2024_117151
crossref_primary_10_1080_10106049_2022_2102241
crossref_primary_10_3390_rs13245115
crossref_primary_10_3390_agriculture12071062
crossref_primary_10_1016_j_geoderma_2020_114885
crossref_primary_10_3390_rs13152934
crossref_primary_10_1016_j_geoderma_2022_115935
crossref_primary_10_1016_j_scitotenv_2023_161973
crossref_primary_10_1016_j_geoderma_2021_115116
crossref_primary_10_3390_rs13173345
crossref_primary_10_3390_rs13214439
crossref_primary_10_1007_s42974_022_00077_8
crossref_primary_10_1016_j_catena_2023_107604
crossref_primary_10_1016_j_isprsjprs_2023_07_020
crossref_primary_10_1016_j_jia_2023_09_017
crossref_primary_10_1002_saj2_20371
crossref_primary_10_1080_17538947_2023_2192005
crossref_primary_10_1016_j_iswcr_2025_01_005
crossref_primary_10_3390_su15010469
crossref_primary_10_1016_j_catena_2024_107821
crossref_primary_10_1080_2150704X_2021_1999524
crossref_primary_10_1016_j_soisec_2022_100057
Cites_doi 10.18637/jss.v023.i12
10.1016/j.geoderma.2019.114018
10.1590/0103-9016-2015-0131
10.1080/00380768.2013.802643
10.3390/su11123350
10.1016/j.apm.2019.12.016
10.2343/geochemj.23.75
10.1016/j.catena.2015.07.010
10.1016/0273-1177(93)90560-X
10.1016/0034-4257(89)90035-7
10.1111/j.1365-2389.1977.tb02306.x
10.1016/j.geoderma.2012.05.023
10.1016/j.rse.2016.04.008
10.1371/journal.pone.0169748
10.1371/journal.pone.0105992
10.1016/j.geoderma.2005.07.017
10.3390/rs9121245
10.1016/S0016-7061(02)00121-0
10.1038/s41598-020-61408-1
10.3390/rs70302279
10.1080/00103624.2019.1604737
10.1346/CCMN.1992.0400515
10.3390/rs12091389
10.2136/sssaj2011.0025
10.3390/rs11050565
10.1016/j.geoderma.2010.12.018
10.1080/01431160601121469
10.3390/rs12071197
10.3390/rs11242947
10.1016/j.rse.2017.06.031
10.5721/EuJRS20144731
10.1016/j.isprsjprs.2018.11.026
10.1016/j.geomorph.2020.107305
10.1016/j.catena.2016.01.001
10.1097/00010694-193401000-00003
10.1016/j.geoderma.2019.04.028
10.3390/rs11182121
10.3390/s110707063
10.1016/S0034-4257(96)00075-2
10.1590/0103-9016-2013-0365
10.1016/S0016-7061(03)00223-4
10.3390/rs70911125
10.1016/j.rse.2019.01.006
10.1080/01431160110115834
10.1016/j.rse.2019.111425
10.2136/sssaj2003.2890
10.1111/j.1365-2389.1986.tb00382.x
10.1127/0941-2948/2013/0507
10.3390/rs11202448
10.1016/j.compag.2006.08.001
10.1016/S0034-4257(98)00030-3
10.1016/j.catena.2020.104609
10.2136/sssaj1987.03615995005100050033x
10.3390/rs11242905
10.2136/sssaj2002.7220
10.1016/j.rse.2017.10.047
10.1016/j.vibspec.2016.07.005
10.1016/j.geoderma.2019.01.025
10.1080/014311699212605
10.1590/S0100-204X2003000400011
10.1371/journal.pone.0150860
10.1016/j.rse.2018.04.031
10.1371/journal.pone.0170478
10.1016/j.scitotenv.2015.02.025
10.1016/j.scitotenv.2016.11.078
10.3390/rs10091340
10.1016/j.jag.2019.101905
10.1038/s41467-019-13276-1
10.1016/j.rse.2018.09.002
10.1007/s13593-018-0490-x
10.3390/rs12091369
10.1016/j.geoderma.2020.114480
10.1117/1.JRS.12.042803
10.1590/S0100-06832010000300027
10.3390/rs10101555
10.1590/S0100-06832013000500003
10.1029/2009JF001645
10.1007/s10661-017-6249-z
10.1080/01431160600554363
10.1016/j.geoderma.2015.07.017
10.3390/rs10101571
10.3390/rs71012635
10.1016/S0034-4257(96)00120-4
10.1016/j.rse.2016.03.025
10.1097/00010694-200504000-00003
10.1016/j.rse.2019.01.036
10.1016/j.earscirev.2016.01.012
10.1016/j.scitotenv.2020.137703
10.1016/j.scitotenv.2020.138244
10.1016/j.rse.2017.11.004
10.1109/TGRS.2019.2940826
10.1016/j.rse.2018.04.047
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright Elsevier BV Jan 2021
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright Elsevier BV Jan 2021
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
DOI 10.1016/j.rse.2020.112117
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
Agriculture
EISSN 1879-0704
ExternalDocumentID 10_1016_j_rse_2020_112117
S0034425720304909
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
41~
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
VOH
WH7
WUQ
XOL
ZCA
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
ID FETCH-LOGICAL-c358t-a15d1a943827acdb8ae960d2f14ea118c6fd4f629260c42e54843fffbbeefd303
IEDL.DBID .~1
ISSN 0034-4257
IngestDate Fri Jul 11 08:51:57 EDT 2025
Wed Aug 13 08:37:56 EDT 2025
Tue Jul 01 03:51:25 EDT 2025
Thu Apr 24 23:05:37 EDT 2025
Fri Feb 23 02:44:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bare soil pixels
Digital soil mapping
Spectral resolution
Machine learning
Time series
Spatial resolution
Remote sensing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-a15d1a943827acdb8ae960d2f14ea118c6fd4f629260c42e54843fffbbeefd303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2488251283
PQPubID 2045405
ParticipantIDs proquest_miscellaneous_2552006785
proquest_journals_2488251283
crossref_citationtrail_10_1016_j_rse_2020_112117
crossref_primary_10_1016_j_rse_2020_112117
elsevier_sciencedirect_doi_10_1016_j_rse_2020_112117
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Remote sensing of environment
PublicationYear 2021
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Shao, Cai, Fu, Hu, Liu (bb0445) 2019; 235
Olea (bb0350) 1999
Lobell, Asner (bb0280) 2002; 66
Diek, Fornallaz, Schaepman, De Jong (bb0140) 2017; 9
Zhai, Thomasson, Boggess, Sui (bb0535) 2006; 54
Ahmed, Iqbal (bb0005) 2014; 47
Bonfatti, Demattê, Marques, Poppiel, Rizzo, de Mendes, Silvero, Safanelli (bb0050) 2020; 367
Bazaglia Filho, Rizzo, Lepsch, Prado, Gomes, Mazza, Demattê (bb1010) 2013; 37
Sovdat, Kadunc, Batič, Milčinski (bb0460) 2019; 225
Siqueira, Marques, Pereira, Teixeira, Vasconcelos, Carvalho Júnior, Martins (bb0455) 2015; 135
Rosero-Vlasova, Vlassova, Pérez-Cabello, Montorio, Nadal-Romero (bb0425) 2018; 12
IUSS Working Group WRB (bb0245) 2015
Lagacherie, McBratney, Voltz (bb0270) 2007
Žížala, Minařík, Zádorová (bb0550) 2019; 11
Rizzo, Medeiros, de Mello, Marques, de Mendes, Quiñonez Silvero, Dotto, Bonfatti, Demattê (bb0410) 2020; 361
Minasny, McBratney (bb0320) 2016; 264
Campos, Demattê, Quartaroli (bb0055) 2003; 38
de Arruda, Demattê, da Chagas, Fiorio, Souza, Fongaro (bb0095) 2016; 73
Poppiel, Lacerda, Safanelli, Rizzo, Oliveira, Novais, Demattê (bb0370) 2019; 11
Kuhn, Johnson (bb0260) 2013
Forkuor, Hounkpatin, Welp, Thiel (bb0170) 2017; 12
Cherubin, Karlen, Cerri, Franco, Tormena, Davies, Cerri (bb0080) 2016; 11
Kuhn, Weston, Keefer, Coulter, Quinlan (bb0265) 2018
Pretorius, Van Huyssteen, Brown (bb0380) 2017; 189
Xiao, Shen, Tateishi, Bayaer (bb0530) 2006; 27
EMBRAPA (bb0145) 2016
R Core Team (bb0390) 2019
Janik, Soriano-Disla, Forrester, McLaughlin (bb0250) 2016; 86
Silvero, Di Raimo, Pereira, de Magalhaes, da Terra, Dassan, Salazar, Demattê (bb0450) 2020; 375
McBratney, Mendonça Santos, Minasny (bb0310) 2003; 117
Richter, Schläpfer (bb0405) 2002
Isaaks, Srivastava (bb0235) 1989
Pinheiro, Barbosa, Antunes, de Carvalho, Nummer, de Junior, da Chagas, Fernandes-Filho, Pereira (bb0355) 2019; 11
Sun, Qin, Ren, Zhang, Chen (bb0470) 2020; 58
Hengl, De Jesus, Macmillan, Batjes, Heuvelink, Ribeiro, Samuel-Rosa, Kempen, Leenaars, Walsh, Gonzalez (bb0225) 2014; 9
Gomez, Adeline, Bacha, Driessen, Gorretta, Lagacherie, Roger, Briottet (bb0195) 2018; 204
Franco, Cherubin, Pavinato, Cerri, Six, Davies, Cerri (bb0175) 2015; 515–516
Richardson, Daniels (bb0400) 1993
Ishida, Ando (bb0240) 1999; 20
Bellinaso, Demattê, Romeiro (bb0030) 2010; 34
Gorelick, Hancher, Dixon, Ilyushchenko, Thau, Moore (bb0210) 2017; 202
Viscarra Rossel, Minasny, Roudier, McBratney (bb0500) 2006; 133
Delegido, Verrelst, Alonso, Moreno (bb0115) 2011; 11
Castaldi, Palombo, Santini, Pascucci, Pignatti, Casa (bb0060) 2016; 179
Bigham, Ciolkosz, Post, Bryant, Batchily, Huete, Levine, Mays (bb1015) 1993
Vaudour, Gomez, Fouad, Lagacherie (bb0490) 2019; 223
Viscarra Rossel, Bui, De Caritat, Mckenzie (bb0505) 2010; 115
Liao, Xu, Wu, Zhu (bb0275) 2013; 59
Walkley, Black (bb0515) 1934; 37
Roberts, Wilford, Ghattas (bb0415) 2019; 10
van der Werff, van der Meer (bb0485) 2015; 7
Gallo, Demattê, Rizzo, Safanelli, Mendes, Lepsch, Sato, Romero, Lacerda (bb0185) 2018; 10
Barrett (bb0020) 2002; 108
Gomez, Lagacherie, Coulouma (bb0190) 2012; 189–190
Stockmann, Jones, Odeh, McBratney (bb0465) 2018
Odeh, McBratney (bb0345) 2005
Demattê, Galdos, Guimarães, Genú, Nanni, Zullo (bb0120) 2007; 28
González, Déjean, Martin, Baccini (bb0205) 2008; 23
Demattê, Safanelli, Poppiel, Rizzo, Silvero, de Mendes, Bonfatti, Dotto, Salazar, de Mello, da Paiva, Souza, dos Santos, Maria Nascimento, de Mello, Bellinaso, Gonzaga Neto, Amorim, de Resende, da Vieira, de Queiroz, Gallo, Sayão, da Lisboa (bb0135) 2020; 10
Hengl, Mendes de Jesus, Heuvelink, Ruiperez Gonzalez, Kilibarda, Blagoti, Shangguan, Wright, Geng, Bauer-Marschallinger, Guevara, Vargas, MacMillan, Batjes, Leenaars, Ribeiro, Wheeler, Mantel, Kempen (bb0230) 2017; 12
Poggio, Gimona (bb0360) 2017; 579
Fongaro, Demattê, Rizzo, Lucas Safanelli, Mendes, Dotto, Vicente, Franceschini, Ustin (bb0165) 2018; 10
Tziolas, Tsakiridis, Ben-Dor, Theocharis, Zalidis (bb0480) 2020; 12
Baret, Jacquemoud, Hanocq (bb0015) 1993; 13
McBratney, Field, Morgan, Huang (bb0315) 2019; 11
Schmidt, Ahn (bb0435) 2019; 50
Demattê, Bellinaso, Romero, Fongaro (bb0125) 2014; 71
Markham, Storey, Morfitt (bb0295) 2015; 7
Safanelli, Chabrillat, Ben-Dor, Demattê (bb0430) 2020; 12
Alvares, Stape, Sentelhas, de Moraes Gonçalves, Sparovek (bb0010) 2013; 22
Main-Knorn, Louis, Debaecker, Muller-Wilm, Gascon (bb0290) 2017
Helder, Markham, Morfitt, Storey, Barsi, Gascon, Clerc, LaFrance, Masek, Roy, Lewis, Pahlevan (bb0220) 2018; 10
da Chagas, de Carvalho Junior, Bhering, Calderano Filho (bb0090) 2016; 139
Castaldi, Hueni, Chabrillat, Ward, Buttafuoco, Bomans, Vreys, Brell, van Wesemael (bb0070) 2019; 147
Mulder, De Bruin, Schaepman, Mayr (bb0330) 2011; 162
Poppiel, Lacerda, Rizzo, Safanelli, Bonfatti, Silvero, Demattê (bb0375) 2020; 12
Khaledian, Miller (bb0255) 2020; 81
Castaldi, Chabrillat, Don, van Wesemael (bb0065) 2019; 11
Loiseau, Chen, Mulder, Román Dobarco, Richer-de-Forges, Lehmann, Bourennane, Saby, Martin, Vaudour, Gomez, Lagacherie, Arrouays (bb0285) 2019; 82
Viscarra Rossel, Behrens, Ben-Dor, Brown, Demattê, Shepherd, Shi, Stenberg, Stevens, Adamchuk, Aïchi, Barthès, Bartholomeus, Bayer, Bernoux, Böttcher, Brodský, Du, Chappell, Fouad, Genot, Gomez, Grunwald, Gubler, Guerrero, Hedley, Knadel, Morrás, Nocita, Ramirez-Lopez, Roudier, Campos, Sanborn, Sellitto, Sudduth, Rawlins, Walter, Winowiecki, Hong, Ji (bb0510) 2016; 155
Mathieu, Pouget, Cervelle, Escadafal (bb0300) 1998; 66
Vermote, Justice, Claverie, Franch (bb0495) 2016; 185
Rogge, Bauer, Zeidler, Mueller, Esch, Heiden (bb0420) 2018; 205
Zhang, Roy, Yan, Li, Huang, Vermote, Skakun, Roger (bb0540) 2018; 215
Nagano, Nakashima (bb0335) 1989; 23
Nagano, Nakashima, Nakayama, Osada, Senoo (bb0340) 1992; 40
Fathololoumi, Vaezi, Alavipanah, Ghorbani, Saurette, Biswas (bb0155) 2020; 721
Webster (bb0520) 1977; 28
Ben-Dor, Goldlshleger, Benyamini, Agassi, Blumberg (bb0040) 2003; 67
de Padilha, Vicente, Demattê, dos Santos Wendriner Loebmann, Vicente, Salazar, Guimarães (bb0110) 2020; 21
Poppiel, Lacerda, Demattê, Oliveira, Gallo, Safanelli (bb0365) 2019; 348
Barron, Torrent (bb0025) 1986; 37
Claverie, Ju, Masek, Dungan, Vermote, Roger, Skakun, Justice (bb0085) 2018; 219
Demattê, Fongaro, Rizzo, Safanelli (bb0130) 2018; 212
Blasch, Spengler, Itzerott, Wessolek (bb0045) 2015; 7
Zhou, Geng, Chen, Pan, Haase, Lausch (bb0545) 2020; 729
Escadafal, Girard, Courault (bb0150) 1989; 27
Gomez, Dharumarajan, Féret, Lagacherie, Ruiz, Sekhar (bb0200) 2019; 11
Mattikalli (bb0305) 1997; 59
Moeys (bb0325) 2018
de Mendes, Medeiros Neto, Demattê, Gallo, Rizzo, Safanelli, Fongaro (bb0105) 2019; 343
de Bordonal, Carvalho, Lal, Figueiredo, Oliveira, La Scala (bb0100) 2018; 38
Ben-Dor, Inbar, Chen (bb0035) 1997; 61
Ramos, Inda, Barrón, Siqueira, Marques Júnior, Teixeira (bb0395) 2020; 193
Teixeira, Donagema, Fontana, Teixeira (bb0475) 2017
Quinlan (bb0385) 1992
Grunwald, Thompson, Boettinger (bb0215) 2011; 75
Chang, Laird, Hurburgh (bb0075) 2005; 170
Fernandez, Schulze (bb0160) 1987; 51
Khaledian (10.1016/j.rse.2020.112117_bb0255) 2020; 81
Loiseau (10.1016/j.rse.2020.112117_bb0285) 2019; 82
Barrett (10.1016/j.rse.2020.112117_bb0020) 2002; 108
Janik (10.1016/j.rse.2020.112117_bb0250) 2016; 86
Richardson (10.1016/j.rse.2020.112117_bb0400) 1993
Schmidt (10.1016/j.rse.2020.112117_bb0435) 2019; 50
Odeh (10.1016/j.rse.2020.112117_bb0345) 2005
Delegido (10.1016/j.rse.2020.112117_bb0115) 2011; 11
da Chagas (10.1016/j.rse.2020.112117_bb0090) 2016; 139
Viscarra Rossel (10.1016/j.rse.2020.112117_bb0510) 2016; 155
Demattê (10.1016/j.rse.2020.112117_bb0135) 2020; 10
EMBRAPA (10.1016/j.rse.2020.112117_bb0145) 2016
Olea (10.1016/j.rse.2020.112117_bb0350) 1999
Castaldi (10.1016/j.rse.2020.112117_bb0070) 2019; 147
Ben-Dor (10.1016/j.rse.2020.112117_bb0040) 2003; 67
Lagacherie (10.1016/j.rse.2020.112117_bb0270) 2007
Bigham (10.1016/j.rse.2020.112117_bb1015) 1993
Webster (10.1016/j.rse.2020.112117_bb0520) 1977; 28
Demattê (10.1016/j.rse.2020.112117_bb0125) 2014; 71
Ben-Dor (10.1016/j.rse.2020.112117_bb0035) 1997; 61
Rosero-Vlasova (10.1016/j.rse.2020.112117_bb0425) 2018; 12
Mulder (10.1016/j.rse.2020.112117_bb0330) 2011; 162
Rizzo (10.1016/j.rse.2020.112117_bb0410) 2020; 361
van der Werff (10.1016/j.rse.2020.112117_bb0485) 2015; 7
R Core Team (10.1016/j.rse.2020.112117_bb0390) 2019
Rogge (10.1016/j.rse.2020.112117_bb0420) 2018; 205
Hengl (10.1016/j.rse.2020.112117_bb0230) 2017; 12
Shao (10.1016/j.rse.2020.112117_bb0445) 2019; 235
Sovdat (10.1016/j.rse.2020.112117_bb0460) 2019; 225
Mattikalli (10.1016/j.rse.2020.112117_bb0305) 1997; 59
Nagano (10.1016/j.rse.2020.112117_bb0335) 1989; 23
Ishida (10.1016/j.rse.2020.112117_bb0240) 1999; 20
Richter (10.1016/j.rse.2020.112117_bb0405) 2002
Xiao (10.1016/j.rse.2020.112117_bb0530) 2006; 27
Zhou (10.1016/j.rse.2020.112117_bb0545) 2020; 729
de Bordonal (10.1016/j.rse.2020.112117_bb0100) 2018; 38
Isaaks (10.1016/j.rse.2020.112117_bb0235) 1989
Main-Knorn (10.1016/j.rse.2020.112117_bb0290) 2017
Minasny (10.1016/j.rse.2020.112117_bb0320) 2016; 264
Moeys (10.1016/j.rse.2020.112117_bb0325) 2018
Gorelick (10.1016/j.rse.2020.112117_bb0210) 2017; 202
Fathololoumi (10.1016/j.rse.2020.112117_bb0155) 2020; 721
Poggio (10.1016/j.rse.2020.112117_bb0360) 2017; 579
Bonfatti (10.1016/j.rse.2020.112117_bb0050) 2020; 367
Diek (10.1016/j.rse.2020.112117_bb0140) 2017; 9
Grunwald (10.1016/j.rse.2020.112117_bb0215) 2011; 75
Fernandez (10.1016/j.rse.2020.112117_bb0160) 1987; 51
Safanelli (10.1016/j.rse.2020.112117_bb0430) 2020; 12
Tziolas (10.1016/j.rse.2020.112117_bb0480) 2020; 12
Poppiel (10.1016/j.rse.2020.112117_bb0375) 2020; 12
Ramos (10.1016/j.rse.2020.112117_bb0395) 2020; 193
Sun (10.1016/j.rse.2020.112117_bb0470) 2020; 58
IUSS Working Group WRB (10.1016/j.rse.2020.112117_bb0245) 2015
Pretorius (10.1016/j.rse.2020.112117_bb0380) 2017; 189
Demattê (10.1016/j.rse.2020.112117_bb0130) 2018; 212
Forkuor (10.1016/j.rse.2020.112117_bb0170) 2017; 12
Žížala (10.1016/j.rse.2020.112117_bb0550) 2019; 11
Hengl (10.1016/j.rse.2020.112117_bb0225) 2014; 9
Teixeira (10.1016/j.rse.2020.112117_bb0475) 2017
Gomez (10.1016/j.rse.2020.112117_bb0190) 2012; 189–190
Gomez (10.1016/j.rse.2020.112117_bb0200) 2019; 11
Gomez (10.1016/j.rse.2020.112117_bb0195) 2018; 204
Roberts (10.1016/j.rse.2020.112117_bb0415) 2019; 10
Ahmed (10.1016/j.rse.2020.112117_bb0005) 2014; 47
Escadafal (10.1016/j.rse.2020.112117_bb0150) 1989; 27
Campos (10.1016/j.rse.2020.112117_bb0055) 2003; 38
Silvero (10.1016/j.rse.2020.112117_bb0450) 2020; 375
Baret (10.1016/j.rse.2020.112117_bb0015) 1993; 13
Chang (10.1016/j.rse.2020.112117_bb0075) 2005; 170
Demattê (10.1016/j.rse.2020.112117_bb0120) 2007; 28
Viscarra Rossel (10.1016/j.rse.2020.112117_bb0505) 2010; 115
Castaldi (10.1016/j.rse.2020.112117_bb0065) 2019; 11
Barron (10.1016/j.rse.2020.112117_bb0025) 1986; 37
de Padilha (10.1016/j.rse.2020.112117_bb0110) 2020; 21
Alvares (10.1016/j.rse.2020.112117_bb0010) 2013; 22
Claverie (10.1016/j.rse.2020.112117_bb0085) 2018; 219
Kuhn (10.1016/j.rse.2020.112117_bb0265) 2018
McBratney (10.1016/j.rse.2020.112117_bb0315) 2019; 11
de Mendes (10.1016/j.rse.2020.112117_bb0105) 2019; 343
Helder (10.1016/j.rse.2020.112117_bb0220) 2018; 10
Kuhn (10.1016/j.rse.2020.112117_bb0260) 2013
Stockmann (10.1016/j.rse.2020.112117_bb0465) 2018
Castaldi (10.1016/j.rse.2020.112117_bb0060) 2016; 179
Zhang (10.1016/j.rse.2020.112117_bb0540) 2018; 215
Fongaro (10.1016/j.rse.2020.112117_bb0165) 2018; 10
Poppiel (10.1016/j.rse.2020.112117_bb0365) 2019; 348
Nagano (10.1016/j.rse.2020.112117_bb0340) 1992; 40
Liao (10.1016/j.rse.2020.112117_bb0275) 2013; 59
Vermote (10.1016/j.rse.2020.112117_bb0495) 2016; 185
Bellinaso (10.1016/j.rse.2020.112117_bb0030) 2010; 34
González (10.1016/j.rse.2020.112117_bb0205) 2008; 23
Bazaglia Filho (10.1016/j.rse.2020.112117_bb1010) 2013; 37
Quinlan (10.1016/j.rse.2020.112117_bb0385) 1992
Walkley (10.1016/j.rse.2020.112117_bb0515) 1934; 37
Cherubin (10.1016/j.rse.2020.112117_bb0080) 2016; 11
Poppiel (10.1016/j.rse.2020.112117_bb0370) 2019; 11
Lobell (10.1016/j.rse.2020.112117_bb0280) 2002; 66
McBratney (10.1016/j.rse.2020.112117_bb0310) 2003; 117
de Arruda (10.1016/j.rse.2020.112117_bb0095) 2016; 73
Markham (10.1016/j.rse.2020.112117_bb0295) 2015; 7
Gallo (10.1016/j.rse.2020.112117_bb0185) 2018; 10
Siqueira (10.1016/j.rse.2020.112117_bb0455) 2015; 135
Viscarra Rossel (10.1016/j.rse.2020.112117_bb0500) 2006; 133
Blasch (10.1016/j.rse.2020.112117_bb0045) 2015; 7
Zhai (10.1016/j.rse.2020.112117_bb0535) 2006; 54
Pinheiro (10.1016/j.rse.2020.112117_bb0355) 2019; 11
Vaudour (10.1016/j.rse.2020.112117_bb0490) 2019; 223
Mathieu (10.1016/j.rse.2020.112117_bb0300) 1998; 66
Franco (10.1016/j.rse.2020.112117_bb0175) 2015; 515–516
References_xml – volume: 37
  start-page: 499
  year: 1986
  end-page: 510
  ident: bb0025
  article-title: Use of the Kubelka-Munk theory to study the influence of iron oxides on soil color
  publication-title: J. Soil Sci.
– volume: 579
  start-page: 1094
  year: 2017
  end-page: 1110
  ident: bb0360
  article-title: Assimilation of optical and radar remote sensing data in 3D mapping of soil properties over large areas
  publication-title: Sci. Total Environ.
– volume: 215
  start-page: 482
  year: 2018
  end-page: 494
  ident: bb0540
  article-title: Characterization of sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences
  publication-title: Remote Sens. Environ.
– start-page: 343
  year: 1992
  end-page: 348
  ident: bb0385
  article-title: Learning wth continuous classes
  publication-title: Proceedings AI’92, 5th Australian Conference on Artificial Intelligence.World Scientific. World Scientiic
– volume: 50
  start-page: 1293
  year: 2019
  end-page: 1309
  ident: bb0435
  article-title: A comparative review of methods of using soil colors and their patterns for wetland ecology and management
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 721
  start-page: 137703
  year: 2020
  ident: bb0155
  article-title: Improved digital soil mapping with multitemporal remotely sensed satellite data fusion: A case study in Iran
  publication-title: Sci. Total Environ.
– volume: 47
  start-page: 557
  year: 2014
  end-page: 573
  ident: bb0005
  article-title: Evaluation of Landsat TM5 multispectral data for automated mapping of surface soil texture and organic matter in GIS
  publication-title: Eur. J. Remote Sens.
– volume: 219
  start-page: 145
  year: 2018
  end-page: 161
  ident: bb0085
  article-title: The harmonized Landsat and Sentinel-2 surface reflectance data set
  publication-title: Remote Sens. Environ.
– volume: 59
  start-page: 14
  year: 1997
  end-page: 28
  ident: bb0305
  article-title: Soil color modeling for the visible and near-infrared bands of Landsat sensors using laboratory spectral measurements
  publication-title: Remote Sens. Environ.
– volume: 170
  start-page: 244
  year: 2005
  end-page: 255
  ident: bb0075
  article-title: Influence of soil moisture on near-infrared reflectance spectroscopic measurement of soil properties
  publication-title: Soil Sci.
– volume: 66
  start-page: 17
  year: 1998
  end-page: 28
  ident: bb0300
  article-title: Relationships between satellite-based radiometric indices simulated using laboratory reflectance data and typic soil color of an arid environment
  publication-title: Remote Sens. Environ.
– volume: 212
  start-page: 161
  year: 2018
  end-page: 175
  ident: bb0130
  article-title: Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images
  publication-title: Remote Sens. Environ.
– year: 2018
  ident: bb0265
  article-title: Package “Cubist”
– volume: 11
  start-page: 2947
  year: 2019
  ident: bb0550
  article-title: Soil organic carbon mapping using multispectral remote sensing data: prediction ability of data with different spatial and spectral resolutions
  publication-title: Remote Sens.
– volume: 343
  start-page: 269
  year: 2019
  end-page: 279
  ident: bb0105
  article-title: Is it possible to map subsurface soil attributes by satellite spectral transfer models?
  publication-title: Geoderma
– volume: 11
  start-page: 565
  year: 2019
  ident: bb0200
  article-title: Use of Sentinel-2 time-series images for classification and uncertainty analysis of inherent biophysical property: case of soil texture mapping
  publication-title: Remote Sens.
– volume: 37
  start-page: 1136
  year: 2013
  end-page: 1148
  ident: bb1010
  article-title: Comparison between detailed digital and conventional soil maps of an area with a complex geology
  publication-title: Rev. Bras. Ciência do Solo do Solo
– volume: 54
  start-page: 53
  year: 2006
  end-page: 68
  ident: bb0535
  article-title: Soil texture classification with artificial neural networks operating on remote sensing data
  publication-title: Comput. Electron. Agric.
– volume: 12
  start-page: 1
  year: 2017
  end-page: 21
  ident: bb0170
  article-title: High resolution mapping of soil properties using remote sensing variables in South- Western Burkina Faso: A comparison of machine learning and multiple linear regression models
  publication-title: PLoS One
– volume: 10
  start-page: 1
  year: 2018
  end-page: 21
  ident: bb0185
  article-title: Multi-temporal satellite images on topsoil attribute quantification and the relationship with soil classes and geology
  publication-title: Remote Sens.
– year: 2019
  ident: bb0390
  article-title: R: A Language and Environment for Statistical Computing
– volume: 12
  year: 2017
  ident: bb0230
  article-title: SoilGrids250m: global gridded soil information based on machine learning
  publication-title: PLoS One
– volume: 34
  start-page: 861
  year: 2010
  end-page: 870
  ident: bb0030
  article-title: Soil spectral library and its use in soil classification
  publication-title: Rev. Bras. Ciência do Solo
– volume: 21
  year: 2020
  ident: bb0110
  article-title: Using Landsat and soil clay content to map soil organic carbon of oxisols and Ultisols near São Paulo, Brazil
  publication-title: Geoderma Reg.
– volume: 10
  start-page: 4461
  year: 2020
  ident: bb0135
  article-title: Bare Earth’s surface spectra as a proxy for soil resource monitoring
  publication-title: Sci. Rep.
– volume: 27
  start-page: 37
  year: 1989
  end-page: 46
  ident: bb0150
  article-title: Munsell soil color and soil reflectance in the visible spectral bands of landsat MSS and TM data
  publication-title: Remote Sens. Environ.
– volume: 264
  start-page: 301
  year: 2016
  end-page: 311
  ident: bb0320
  article-title: Digital soil mapping: A brief history and some lessons
  publication-title: Geoderma
– volume: 348
  start-page: 189
  year: 2019
  end-page: 206
  ident: bb0365
  article-title: Pedology and soil class mapping from proximal and remote sensed data
  publication-title: Geoderma
– volume: 12
  start-page: 1
  year: 2018
  ident: bb0425
  article-title: Modeling soil organic matter and texture from satellite data in areas affected by wildfires and cropland abandonment in Aragón, Northern Spain
  publication-title: J. Appl. Remote. Sens.
– year: 2018
  ident: bb0325
  article-title: The Soil Texture Wizard: R Functions for Plotting, Classifying, Transforming and Exploring Soil Texture Data
– volume: 40
  start-page: 6013
  year: 1992
  end-page: 6607
  ident: bb0340
  article-title: Color variations associated with rapid formation of goethite from proto-ferrihydrite at pH 13 and 40 C
  publication-title: Clay Clay Miner.
– volume: 82
  start-page: 101905
  year: 2019
  ident: bb0285
  article-title: Satellite data integration for soil clay content modelling at a national scale
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 38
  start-page: 1
  year: 2018
  end-page: 23
  ident: bb0100
  article-title: Sustainability of sugarcane production in Brazil. A review
  publication-title: Agron. Sustain. Dev.
– volume: 75
  start-page: 1201
  year: 2011
  end-page: 1213
  ident: bb0215
  article-title: Digital soil mapping and modeling at continental scales: finding solutions for global issues
  publication-title: Soil Sci. Soc. Am. J.
– volume: 23
  start-page: 75
  year: 1989
  end-page: 83
  ident: bb0335
  article-title: Study of colors and degrees of weathering of granitic rocks by visible diffuse reflectance spectroscopy
  publication-title: Geochem. J.
– volume: 37
  start-page: 29
  year: 1934
  end-page: 38
  ident: bb0515
  article-title: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method
  publication-title: Soil Sci.
– volume: 28
  start-page: 3813
  year: 2007
  end-page: 3829
  ident: bb0120
  article-title: Quantification of tropical soil attributes from ETM +/LANDSAT-7 data
  publication-title: Int. J. Remote Sens.
– volume: 28
  year: 1977
  ident: bb0520
  article-title: Canonical correlation in pedology: how useful?
  publication-title: J. Soil Sci.
– volume: 223
  start-page: 21
  year: 2019
  end-page: 33
  ident: bb0490
  article-title: Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems
  publication-title: Remote Sens. Environ.
– year: 1989
  ident: bb0235
  article-title: An Introduction to Applied Geostatistics
– start-page: 109
  year: 1993
  end-page: 126
  ident: bb0400
  article-title: Stratigraphic and hydraulic influences on soil color development
  publication-title: Soil Color, Special Publication No. 31. Soil Science Society of America, Madison, WI
– year: 2015
  ident: bb0245
  article-title: World Reference Base for Soil Resources
– volume: 11
  start-page: 2121
  year: 2019
  ident: bb0065
  article-title: Soil organic carbon mapping using LUCAS topsoil database and Sentinel-2 data: an approach to reduce soil moisture and crop residue effects
  publication-title: Remote Sens.
– volume: 235
  year: 2019
  ident: bb0445
  article-title: Deep learning-based fusion of Landsat-8 and Sentinel-2 images for a harmonized surface reflectance product
  publication-title: Remote Sens. Environ.
– start-page: 187
  year: 1999
  end-page: 208
  ident: bb0350
  article-title: Block kriging
  publication-title: Geostatistics for Engineers and Earth Scientists
– volume: 361
  start-page: 114018
  year: 2020
  ident: bb0410
  article-title: Multi-temporal bare surface image associated with transfer functions to support soil classification and mapping in southeastern Brazil
  publication-title: Geoderma
– volume: 51
  start-page: 1277
  year: 1987
  ident: bb0160
  article-title: Calculation of soil color from reflectance Spectra1
  publication-title: Soil Sci. Soc. Am. J.
– volume: 7
  start-page: 12635
  year: 2015
  end-page: 12653
  ident: bb0485
  article-title: Sentinel-2 for mapping iron absorption feature parameters
  publication-title: Remote Sens.
– start-page: 12
  year: 2017
  ident: bb0290
  article-title: Sen2Cor for Sentinel-2
  publication-title: Image and Signal Processing for Remote Sensing
– volume: 11
  start-page: 2448
  year: 2019
  ident: bb0355
  article-title: Assessment of phytoecological variability by red-edge spectral indices and soil-landscape relationships
  publication-title: Remote Sens.
– volume: 23
  start-page: 1
  year: 2008
  end-page: 14
  ident: bb0205
  article-title: CCA: an R package to extend canonical correlation analysis
  publication-title: J. Stat. Softw.
– volume: 108
  start-page: 49
  year: 2002
  end-page: 77
  ident: bb0020
  article-title: Spectrophotometric color measurement in situ in well drained sandy soils
  publication-title: Geoderma
– volume: 12
  start-page: 1369
  year: 2020
  ident: bb0430
  article-title: Multispectral models from bare soil composites for mapping topsoil properties over Europe
  publication-title: Remote Sens.
– volume: 86
  start-page: 244
  year: 2016
  end-page: 252
  ident: bb0250
  article-title: Moisture effects on diffuse reflection infrared spectra of contrasting minerals and soils: A mechanistic interpretation
  publication-title: Vib. Spectrosc.
– volume: 7
  start-page: 11125
  year: 2015
  end-page: 11150
  ident: bb0045
  article-title: Organic matter modeling at the landscape scale based on multitemporal soil pattern analysis using RapidEye data
  publication-title: Remote Sens.
– volume: 38
  start-page: 521
  year: 2003
  end-page: 528
  ident: bb0055
  article-title: Determinação do teor de hematita no solo a partir de dados de colorimetria e radiometria
  publication-title: Pesqui. Agropecuária Bras.
– year: 2017
  ident: bb0475
  article-title: Manual de Métodos de Análise de Solo
– volume: 20
  start-page: 1549
  year: 1999
  end-page: 1565
  ident: bb0240
  article-title: Use of disjunctive cokriging to estimate soil organic matter from Landsat thematic mapper image
  publication-title: Int. J. Remote Sens.
– volume: 66
  start-page: 722
  year: 2002
  ident: bb0280
  article-title: Moisture effects on soil reflectance
  publication-title: Soil Sci. Soc. Am. J.
– start-page: 166
  year: 2005
  end-page: 175
  ident: bb0345
  article-title: Pedometrics
  publication-title: Encyclopedia of Soils in the Environment
– volume: 139
  start-page: 232
  year: 2016
  end-page: 240
  ident: bb0090
  article-title: Spatial prediction of soil surface texture in a semiarid region using random forest and multiple linear regressions
  publication-title: Catena
– start-page: 115
  year: 2018
  end-page: 153
  ident: bb0465
  article-title: Pedometric treatment of soil attributes, in: pedometrics
  publication-title: Springer Nat.
– volume: 11
  start-page: 2905
  year: 2019
  ident: bb0370
  article-title: Mapping at 30 m resolution of soil attributes at multiple depths in Midwest Brazil
  publication-title: Remote Sens.
– volume: 202
  start-page: 18
  year: 2017
  end-page: 27
  ident: bb0210
  article-title: Google earth engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
– volume: 117
  start-page: 3
  year: 2003
  end-page: 52
  ident: bb0310
  article-title: On digital soil mapping
  publication-title: Geoderma
– volume: 179
  start-page: 54
  year: 2016
  end-page: 65
  ident: bb0060
  article-title: Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon
  publication-title: Remote Sens. Environ.
– volume: 27
  start-page: 2411
  year: 2006
  end-page: 2422
  ident: bb0530
  article-title: Development of topsoil grain size index for monitoring desertification in arid land using remote sensing
  publication-title: Int. J. Remote Sens.
– volume: 205
  start-page: 1
  year: 2018
  end-page: 17
  ident: bb0420
  article-title: Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014)
  publication-title: Remote Sens. Environ.
– volume: 58
  start-page: 826
  year: 2020
  end-page: 840
  ident: bb0470
  article-title: Red-edge band vegetation indices for leaf area index estimation from Sentinel-2/MSI imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 81
  start-page: 401
  year: 2020
  end-page: 418
  ident: bb0255
  article-title: Selecting appropriate machine learning methods for digital soil mapping
  publication-title: Appl. Math. Model.
– volume: 10
  start-page: 1340
  year: 2018
  ident: bb0220
  article-title: Observations and recommendations for the calibration of Landsat 8 OLI and sentinel 2 MSI for improved data interoperability
  publication-title: Remote Sens.
– volume: 135
  start-page: 149
  year: 2015
  end-page: 162
  ident: bb0455
  article-title: Detailed mapping unit design based on soil–landscape relation and spatial variability of magnetic susceptibility and soil color
  publication-title: Catena
– volume: 193
  start-page: 104609
  year: 2020
  ident: bb0395
  article-title: Color in subtropical brazilian soils as determined with a Munsell chart and by diffuse reflectance spectroscopy
  publication-title: Catena
– volume: 10
  start-page: 5297
  year: 2019
  ident: bb0415
  article-title: Exposed soil and mineral map of the Australian continent revealing the land at its barest
  publication-title: Nat. Commun.
– volume: 189
  start-page: 556
  year: 2017
  ident: bb0380
  article-title: Soil color indicates carbon and wetlands: developing a color-proxy for soil organic carbon and wetland boundaries on sandy coastal plains in South Africa
  publication-title: Environ. Monit. Assess.
– year: 2002
  ident: bb0405
  article-title: Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction
  publication-title: Int. J. Remote Sens.
– year: 2016
  ident: bb0145
  article-title: Programa Nacional de Solos do Brasil (PRONASOLOS). Rio de Janeiro
– volume: 10
  start-page: 1555
  year: 2018
  ident: bb0165
  article-title: Improvement of clay and sand quantification based on a novel approach with a focus on multispectral satellite images
  publication-title: Remote Sens.
– volume: 59
  start-page: 488
  year: 2013
  end-page: 500
  ident: bb0275
  article-title: Spatial estimation of surface soil texture using remote sensing data
  publication-title: Soil Sci. Plant Nutr.
– volume: 12
  start-page: 1197
  year: 2020
  ident: bb0375
  article-title: Soil color and mineralogy mapping using proximal and remote sensing in Midwest Brazil
  publication-title: Remote Sens.
– volume: 9
  year: 2014
  ident: bb0225
  article-title: SoilGrids1km — global soil information based on automated mapping
  publication-title: PLoS One
– year: 2013
  ident: bb0260
  article-title: Applied Predictive Modeling, Springer
– volume: 367
  start-page: 107305
  year: 2020
  ident: bb0050
  article-title: Digital mapping of soil parent material in a heterogeneous tropical area
  publication-title: Geomorphology
– volume: 12
  start-page: 1389
  year: 2020
  ident: bb0480
  article-title: Employing a multi-input deep convolutional neural network to derive soil clay content from a synergy of multi-temporal optical and radar imagery data
  publication-title: Remote Sens.
– volume: 11
  start-page: 7063
  year: 2011
  end-page: 7081
  ident: bb0115
  article-title: Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content
  publication-title: Sensors
– volume: 375
  start-page: 114480
  year: 2020
  ident: bb0450
  article-title: Effects of water, organic matter, and iron forms in mid-IR spectra of soils: assessments from laboratory to satellite-simulated data
  publication-title: Geoderma
– volume: 162
  start-page: 1
  year: 2011
  end-page: 19
  ident: bb0330
  article-title: The use of remote sensing in soil and terrain mapping — A review
  publication-title: Geoderma
– year: 2007
  ident: bb0270
  article-title: Digital Soil Mapping: An Introductory Perspective
– volume: 67
  start-page: 289
  year: 2003
  end-page: 299
  ident: bb0040
  article-title: The spectral reflectance properties of soil structural crusts in the 1.2- to 2.5-μm spectral region
  publication-title: Soil Sci. Soc. Am. J.
– volume: 225
  start-page: 392
  year: 2019
  end-page: 402
  ident: bb0460
  article-title: Natural color representation of Sentinel-2 data
  publication-title: Remote Sens. Environ.
– start-page: 35
  year: 1993
  end-page: 49
  ident: bb1015
  article-title: Correlations between field and laboratory measurements of soil color, in: Soil color
  publication-title: Springer Nat.
– volume: 155
  start-page: 198
  year: 2016
  end-page: 230
  ident: bb0510
  article-title: A global spectral library to characterize the world’s soil
  publication-title: Earth-Sci. Rev.
– volume: 73
  start-page: 266
  year: 2016
  end-page: 273
  ident: bb0095
  article-title: Digital soil mapping using reference area and artificial neural networks
  publication-title: Sci. Agric.
– volume: 147
  start-page: 267
  year: 2019
  end-page: 282
  ident: bb0070
  article-title: Evaluating the capability of the sentinel 2 data for soil organic carbon prediction in croplands
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 11
  year: 2016
  ident: bb0080
  article-title: Soil quality indexing strategies for evaluating sugarcane expansion in Brazil
  publication-title: PLoS One
– volume: 729
  year: 2020
  ident: bb0545
  article-title: High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms
  publication-title: Sci. Total Environ.
– volume: 515–516
  start-page: 30
  year: 2015
  end-page: 38
  ident: bb0175
  article-title: Soil carbon, nitrogen and phosphorus changes under sugarcane expansion in Brazil
  publication-title: Sci. Total Environ.
– volume: 13
  start-page: 281
  year: 1993
  end-page: 284
  ident: bb0015
  article-title: About the soil line concept in remote sensing
  publication-title: Adv. Sp. Res.
– volume: 61
  start-page: 1
  year: 1997
  end-page: 15
  ident: bb0035
  article-title: The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400 - 2500 nm) during a controled decomposition process
  publication-title: Remote Sens. Environ.
– volume: 189–190
  start-page: 176
  year: 2012
  end-page: 185
  ident: bb0190
  article-title: Regional predictions of eight common soil properties and their spatial structures from hyperspectral Vis-NIR data
  publication-title: Geoderma
– volume: 11
  start-page: 3350
  year: 2019
  ident: bb0315
  article-title: On soil capability, capacity, and condition
  publication-title: Sustainability
– volume: 9
  start-page: 1245
  year: 2017
  ident: bb0140
  article-title: Barest pixel composite for agricultural areas using Landsat time series
  publication-title: Remote Sens.
– volume: 71
  start-page: 509
  year: 2014
  end-page: 520
  ident: bb0125
  article-title: Morphological interpretation of reflectance Spectrum (MIRS) using libraries looking towards soil classification
  publication-title: Sci. Agric.
– volume: 185
  start-page: 46
  year: 2016
  end-page: 56
  ident: bb0495
  article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product
  publication-title: Remote Sens. Environ.
– volume: 22
  start-page: 711
  year: 2013
  end-page: 728
  ident: bb0010
  article-title: Köppen’s climate classification map for Brazil
  publication-title: Meteorol. Z.
– volume: 115
  start-page: 4031
  year: 2010
  ident: bb0505
  article-title: Mapping iron oxides and the color of Australian soil using visible–near-infrared reflectance spectra
  publication-title: J. Geophys. Res.
– volume: 133
  start-page: 320
  year: 2006
  end-page: 337
  ident: bb0500
  article-title: Colour space models for soil science
  publication-title: Geoderma
– volume: 7
  start-page: 2279
  year: 2015
  end-page: 2282
  ident: bb0295
  article-title: Landsat-8 sensor characterization and calibration
  publication-title: Remote Sens.
– volume: 204
  start-page: 18
  year: 2018
  end-page: 30
  ident: bb0195
  article-title: Sensitivity of clay content prediction to spectral configuration of VNIR/SWIR imaging data, from multispectral to hyperspectral scenarios
  publication-title: Remote Sens. Environ.
– volume: 23
  start-page: 1
  year: 2008
  ident: 10.1016/j.rse.2020.112117_bb0205
  article-title: CCA: an R package to extend canonical correlation analysis
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v023.i12
– volume: 361
  start-page: 114018
  year: 2020
  ident: 10.1016/j.rse.2020.112117_bb0410
  article-title: Multi-temporal bare surface image associated with transfer functions to support soil classification and mapping in southeastern Brazil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.114018
– year: 2018
  ident: 10.1016/j.rse.2020.112117_bb0265
– volume: 73
  start-page: 266
  year: 2016
  ident: 10.1016/j.rse.2020.112117_bb0095
  article-title: Digital soil mapping using reference area and artificial neural networks
  publication-title: Sci. Agric.
  doi: 10.1590/0103-9016-2015-0131
– volume: 59
  start-page: 488
  year: 2013
  ident: 10.1016/j.rse.2020.112117_bb0275
  article-title: Spatial estimation of surface soil texture using remote sensing data
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.2013.802643
– volume: 11
  start-page: 3350
  year: 2019
  ident: 10.1016/j.rse.2020.112117_bb0315
  article-title: On soil capability, capacity, and condition
  publication-title: Sustainability
  doi: 10.3390/su11123350
– volume: 81
  start-page: 401
  year: 2020
  ident: 10.1016/j.rse.2020.112117_bb0255
  article-title: Selecting appropriate machine learning methods for digital soil mapping
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.12.016
– volume: 23
  start-page: 75
  year: 1989
  ident: 10.1016/j.rse.2020.112117_bb0335
  article-title: Study of colors and degrees of weathering of granitic rocks by visible diffuse reflectance spectroscopy
  publication-title: Geochem. J.
  doi: 10.2343/geochemj.23.75
– volume: 135
  start-page: 149
  year: 2015
  ident: 10.1016/j.rse.2020.112117_bb0455
  article-title: Detailed mapping unit design based on soil–landscape relation and spatial variability of magnetic susceptibility and soil color
  publication-title: Catena
  doi: 10.1016/j.catena.2015.07.010
– volume: 13
  start-page: 281
  year: 1993
  ident: 10.1016/j.rse.2020.112117_bb0015
  article-title: About the soil line concept in remote sensing
  publication-title: Adv. Sp. Res.
  doi: 10.1016/0273-1177(93)90560-X
– volume: 27
  start-page: 37
  year: 1989
  ident: 10.1016/j.rse.2020.112117_bb0150
  article-title: Munsell soil color and soil reflectance in the visible spectral bands of landsat MSS and TM data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(89)90035-7
– volume: 28
  year: 1977
  ident: 10.1016/j.rse.2020.112117_bb0520
  article-title: Canonical correlation in pedology: how useful?
  publication-title: J. Soil Sci.
  doi: 10.1111/j.1365-2389.1977.tb02306.x
– volume: 189–190
  start-page: 176
  year: 2012
  ident: 10.1016/j.rse.2020.112117_bb0190
  article-title: Regional predictions of eight common soil properties and their spatial structures from hyperspectral Vis-NIR data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.05.023
– volume: 185
  start-page: 46
  year: 2016
  ident: 10.1016/j.rse.2020.112117_bb0495
  article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.04.008
– volume: 12
  year: 2017
  ident: 10.1016/j.rse.2020.112117_bb0230
  article-title: SoilGrids250m: global gridded soil information based on machine learning
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0169748
– volume: 9
  year: 2014
  ident: 10.1016/j.rse.2020.112117_bb0225
  article-title: SoilGrids1km — global soil information based on automated mapping
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0105992
– volume: 133
  start-page: 320
  year: 2006
  ident: 10.1016/j.rse.2020.112117_bb0500
  article-title: Colour space models for soil science
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.07.017
– volume: 9
  start-page: 1245
  year: 2017
  ident: 10.1016/j.rse.2020.112117_bb0140
  article-title: Barest pixel composite for agricultural areas using Landsat time series
  publication-title: Remote Sens.
  doi: 10.3390/rs9121245
– year: 2019
  ident: 10.1016/j.rse.2020.112117_bb0390
– volume: 108
  start-page: 49
  year: 2002
  ident: 10.1016/j.rse.2020.112117_bb0020
  article-title: Spectrophotometric color measurement in situ in well drained sandy soils
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(02)00121-0
– volume: 10
  start-page: 4461
  year: 2020
  ident: 10.1016/j.rse.2020.112117_bb0135
  article-title: Bare Earth’s surface spectra as a proxy for soil resource monitoring
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-61408-1
– volume: 7
  start-page: 2279
  year: 2015
  ident: 10.1016/j.rse.2020.112117_bb0295
  article-title: Landsat-8 sensor characterization and calibration
  publication-title: Remote Sens.
  doi: 10.3390/rs70302279
– start-page: 166
  year: 2005
  ident: 10.1016/j.rse.2020.112117_bb0345
  article-title: Pedometrics
– volume: 50
  start-page: 1293
  year: 2019
  ident: 10.1016/j.rse.2020.112117_bb0435
  article-title: A comparative review of methods of using soil colors and their patterns for wetland ecology and management
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103624.2019.1604737
– volume: 40
  start-page: 6013
  year: 1992
  ident: 10.1016/j.rse.2020.112117_bb0340
  article-title: Color variations associated with rapid formation of goethite from proto-ferrihydrite at pH 13 and 40 C
  publication-title: Clay Clay Miner.
  doi: 10.1346/CCMN.1992.0400515
– volume: 12
  start-page: 1389
  year: 2020
  ident: 10.1016/j.rse.2020.112117_bb0480
  article-title: Employing a multi-input deep convolutional neural network to derive soil clay content from a synergy of multi-temporal optical and radar imagery data
  publication-title: Remote Sens.
  doi: 10.3390/rs12091389
– year: 2007
  ident: 10.1016/j.rse.2020.112117_bb0270
– volume: 75
  start-page: 1201
  year: 2011
  ident: 10.1016/j.rse.2020.112117_bb0215
  article-title: Digital soil mapping and modeling at continental scales: finding solutions for global issues
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2011.0025
– volume: 11
  start-page: 565
  year: 2019
  ident: 10.1016/j.rse.2020.112117_bb0200
  article-title: Use of Sentinel-2 time-series images for classification and uncertainty analysis of inherent biophysical property: case of soil texture mapping
  publication-title: Remote Sens.
  doi: 10.3390/rs11050565
– volume: 162
  start-page: 1
  year: 2011
  ident: 10.1016/j.rse.2020.112117_bb0330
  article-title: The use of remote sensing in soil and terrain mapping — A review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.12.018
– volume: 28
  start-page: 3813
  year: 2007
  ident: 10.1016/j.rse.2020.112117_bb0120
  article-title: Quantification of tropical soil attributes from ETM +/LANDSAT-7 data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160601121469
– year: 2017
  ident: 10.1016/j.rse.2020.112117_bb0475
– volume: 12
  start-page: 1197
  year: 2020
  ident: 10.1016/j.rse.2020.112117_bb0375
  article-title: Soil color and mineralogy mapping using proximal and remote sensing in Midwest Brazil
  publication-title: Remote Sens.
  doi: 10.3390/rs12071197
– volume: 11
  start-page: 2947
  year: 2019
  ident: 10.1016/j.rse.2020.112117_bb0550
  article-title: Soil organic carbon mapping using multispectral remote sensing data: prediction ability of data with different spatial and spectral resolutions
  publication-title: Remote Sens.
  doi: 10.3390/rs11242947
– volume: 202
  start-page: 18
  year: 2017
  ident: 10.1016/j.rse.2020.112117_bb0210
  article-title: Google earth engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– volume: 47
  start-page: 557
  year: 2014
  ident: 10.1016/j.rse.2020.112117_bb0005
  article-title: Evaluation of Landsat TM5 multispectral data for automated mapping of surface soil texture and organic matter in GIS
  publication-title: Eur. J. Remote Sens.
  doi: 10.5721/EuJRS20144731
– volume: 147
  start-page: 267
  year: 2019
  ident: 10.1016/j.rse.2020.112117_bb0070
  article-title: Evaluating the capability of the sentinel 2 data for soil organic carbon prediction in croplands
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.11.026
– start-page: 343
  year: 1992
  ident: 10.1016/j.rse.2020.112117_bb0385
  article-title: Learning wth continuous classes
– volume: 367
  start-page: 107305
  year: 2020
  ident: 10.1016/j.rse.2020.112117_bb0050
  article-title: Digital mapping of soil parent material in a heterogeneous tropical area
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2020.107305
– volume: 139
  start-page: 232
  year: 2016
  ident: 10.1016/j.rse.2020.112117_bb0090
  article-title: Spatial prediction of soil surface texture in a semiarid region using random forest and multiple linear regressions
  publication-title: Catena
  doi: 10.1016/j.catena.2016.01.001
– volume: 37
  start-page: 29
  year: 1934
  ident: 10.1016/j.rse.2020.112117_bb0515
  article-title: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method
  publication-title: Soil Sci.
  doi: 10.1097/00010694-193401000-00003
– year: 1989
  ident: 10.1016/j.rse.2020.112117_bb0235
– volume: 348
  start-page: 189
  year: 2019
  ident: 10.1016/j.rse.2020.112117_bb0365
  article-title: Pedology and soil class mapping from proximal and remote sensed data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.04.028
– volume: 11
  start-page: 2121
  year: 2019
  ident: 10.1016/j.rse.2020.112117_bb0065
  article-title: Soil organic carbon mapping using LUCAS topsoil database and Sentinel-2 data: an approach to reduce soil moisture and crop residue effects
  publication-title: Remote Sens.
  doi: 10.3390/rs11182121
– volume: 11
  start-page: 7063
  year: 2011
  ident: 10.1016/j.rse.2020.112117_bb0115
  article-title: Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content
  publication-title: Sensors
  doi: 10.3390/s110707063
– volume: 59
  start-page: 14
  year: 1997
  ident: 10.1016/j.rse.2020.112117_bb0305
  article-title: Soil color modeling for the visible and near-infrared bands of Landsat sensors using laboratory spectral measurements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00075-2
– volume: 71
  start-page: 509
  year: 2014
  ident: 10.1016/j.rse.2020.112117_bb0125
  article-title: Morphological interpretation of reflectance Spectrum (MIRS) using libraries looking towards soil classification
  publication-title: Sci. Agric.
  doi: 10.1590/0103-9016-2013-0365
– volume: 117
  start-page: 3
  year: 2003
  ident: 10.1016/j.rse.2020.112117_bb0310
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– volume: 7
  start-page: 11125
  year: 2015
  ident: 10.1016/j.rse.2020.112117_bb0045
  article-title: Organic matter modeling at the landscape scale based on multitemporal soil pattern analysis using RapidEye data
  publication-title: Remote Sens.
  doi: 10.3390/rs70911125
– year: 2015
  ident: 10.1016/j.rse.2020.112117_bb0245
– volume: 223
  start-page: 21
  year: 2019
  ident: 10.1016/j.rse.2020.112117_bb0490
  article-title: Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.01.006
– year: 2002
  ident: 10.1016/j.rse.2020.112117_bb0405
  article-title: Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160110115834
– volume: 235
  year: 2019
  ident: 10.1016/j.rse.2020.112117_bb0445
  article-title: Deep learning-based fusion of Landsat-8 and Sentinel-2 images for a harmonized surface reflectance product
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111425
– volume: 67
  start-page: 289
  year: 2003
  ident: 10.1016/j.rse.2020.112117_bb0040
  article-title: The spectral reflectance properties of soil structural crusts in the 1.2- to 2.5-μm spectral region
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2003.2890
– volume: 37
  start-page: 499
  year: 1986
  ident: 10.1016/j.rse.2020.112117_bb0025
  article-title: Use of the Kubelka-Munk theory to study the influence of iron oxides on soil color
  publication-title: J. Soil Sci.
  doi: 10.1111/j.1365-2389.1986.tb00382.x
– volume: 22
  start-page: 711
  year: 2013
  ident: 10.1016/j.rse.2020.112117_bb0010
  article-title: Köppen’s climate classification map for Brazil
  publication-title: Meteorol. Z.
  doi: 10.1127/0941-2948/2013/0507
– volume: 11
  start-page: 2448
  year: 2019
  ident: 10.1016/j.rse.2020.112117_bb0355
  article-title: Assessment of phytoecological variability by red-edge spectral indices and soil-landscape relationships
  publication-title: Remote Sens.
  doi: 10.3390/rs11202448
– volume: 54
  start-page: 53
  year: 2006
  ident: 10.1016/j.rse.2020.112117_bb0535
  article-title: Soil texture classification with artificial neural networks operating on remote sensing data
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2006.08.001
– volume: 66
  start-page: 17
  year: 1998
  ident: 10.1016/j.rse.2020.112117_bb0300
  article-title: Relationships between satellite-based radiometric indices simulated using laboratory reflectance data and typic soil color of an arid environment
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(98)00030-3
– volume: 193
  start-page: 104609
  year: 2020
  ident: 10.1016/j.rse.2020.112117_bb0395
  article-title: Color in subtropical brazilian soils as determined with a Munsell chart and by diffuse reflectance spectroscopy
  publication-title: Catena
  doi: 10.1016/j.catena.2020.104609
– volume: 51
  start-page: 1277
  year: 1987
  ident: 10.1016/j.rse.2020.112117_bb0160
  article-title: Calculation of soil color from reflectance Spectra1
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1987.03615995005100050033x
– volume: 11
  start-page: 2905
  year: 2019
  ident: 10.1016/j.rse.2020.112117_bb0370
  article-title: Mapping at 30 m resolution of soil attributes at multiple depths in Midwest Brazil
  publication-title: Remote Sens.
  doi: 10.3390/rs11242905
– volume: 21
  year: 2020
  ident: 10.1016/j.rse.2020.112117_bb0110
  article-title: Using Landsat and soil clay content to map soil organic carbon of oxisols and Ultisols near São Paulo, Brazil
  publication-title: Geoderma Reg.
– volume: 66
  start-page: 722
  year: 2002
  ident: 10.1016/j.rse.2020.112117_bb0280
  article-title: Moisture effects on soil reflectance
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2002.7220
– volume: 204
  start-page: 18
  year: 2018
  ident: 10.1016/j.rse.2020.112117_bb0195
  article-title: Sensitivity of clay content prediction to spectral configuration of VNIR/SWIR imaging data, from multispectral to hyperspectral scenarios
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.10.047
– volume: 86
  start-page: 244
  year: 2016
  ident: 10.1016/j.rse.2020.112117_bb0250
  article-title: Moisture effects on diffuse reflection infrared spectra of contrasting minerals and soils: A mechanistic interpretation
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2016.07.005
– volume: 343
  start-page: 269
  year: 2019
  ident: 10.1016/j.rse.2020.112117_bb0105
  article-title: Is it possible to map subsurface soil attributes by satellite spectral transfer models?
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.01.025
– volume: 20
  start-page: 1549
  year: 1999
  ident: 10.1016/j.rse.2020.112117_bb0240
  article-title: Use of disjunctive cokriging to estimate soil organic matter from Landsat thematic mapper image
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311699212605
– volume: 38
  start-page: 521
  year: 2003
  ident: 10.1016/j.rse.2020.112117_bb0055
  article-title: Determinação do teor de hematita no solo a partir de dados de colorimetria e radiometria
  publication-title: Pesqui. Agropecuária Bras.
  doi: 10.1590/S0100-204X2003000400011
– volume: 11
  year: 2016
  ident: 10.1016/j.rse.2020.112117_bb0080
  article-title: Soil quality indexing strategies for evaluating sugarcane expansion in Brazil
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0150860
– volume: 215
  start-page: 482
  year: 2018
  ident: 10.1016/j.rse.2020.112117_bb0540
  article-title: Characterization of sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.031
– volume: 12
  start-page: 1
  year: 2017
  ident: 10.1016/j.rse.2020.112117_bb0170
  article-title: High resolution mapping of soil properties using remote sensing variables in South- Western Burkina Faso: A comparison of machine learning and multiple linear regression models
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0170478
– volume: 515–516
  start-page: 30
  year: 2015
  ident: 10.1016/j.rse.2020.112117_bb0175
  article-title: Soil carbon, nitrogen and phosphorus changes under sugarcane expansion in Brazil
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.02.025
– volume: 579
  start-page: 1094
  year: 2017
  ident: 10.1016/j.rse.2020.112117_bb0360
  article-title: Assimilation of optical and radar remote sensing data in 3D mapping of soil properties over large areas
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.11.078
– volume: 10
  start-page: 1340
  year: 2018
  ident: 10.1016/j.rse.2020.112117_bb0220
  article-title: Observations and recommendations for the calibration of Landsat 8 OLI and sentinel 2 MSI for improved data interoperability
  publication-title: Remote Sens.
  doi: 10.3390/rs10091340
– volume: 82
  start-page: 101905
  year: 2019
  ident: 10.1016/j.rse.2020.112117_bb0285
  article-title: Satellite data integration for soil clay content modelling at a national scale
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2019.101905
– volume: 10
  start-page: 5297
  year: 2019
  ident: 10.1016/j.rse.2020.112117_bb0415
  article-title: Exposed soil and mineral map of the Australian continent revealing the land at its barest
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13276-1
– volume: 219
  start-page: 145
  year: 2018
  ident: 10.1016/j.rse.2020.112117_bb0085
  article-title: The harmonized Landsat and Sentinel-2 surface reflectance data set
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.09.002
– volume: 38
  start-page: 1
  year: 2018
  ident: 10.1016/j.rse.2020.112117_bb0100
  article-title: Sustainability of sugarcane production in Brazil. A review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-018-0490-x
– volume: 12
  start-page: 1369
  year: 2020
  ident: 10.1016/j.rse.2020.112117_bb0430
  article-title: Multispectral models from bare soil composites for mapping topsoil properties over Europe
  publication-title: Remote Sens.
  doi: 10.3390/rs12091369
– volume: 375
  start-page: 114480
  year: 2020
  ident: 10.1016/j.rse.2020.112117_bb0450
  article-title: Effects of water, organic matter, and iron forms in mid-IR spectra of soils: assessments from laboratory to satellite-simulated data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114480
– volume: 12
  start-page: 1
  year: 2018
  ident: 10.1016/j.rse.2020.112117_bb0425
  article-title: Modeling soil organic matter and texture from satellite data in areas affected by wildfires and cropland abandonment in Aragón, Northern Spain
  publication-title: J. Appl. Remote. Sens.
  doi: 10.1117/1.JRS.12.042803
– year: 2018
  ident: 10.1016/j.rse.2020.112117_bb0325
– volume: 34
  start-page: 861
  year: 2010
  ident: 10.1016/j.rse.2020.112117_bb0030
  article-title: Soil spectral library and its use in soil classification
  publication-title: Rev. Bras. Ciência do Solo
  doi: 10.1590/S0100-06832010000300027
– volume: 10
  start-page: 1555
  year: 2018
  ident: 10.1016/j.rse.2020.112117_bb0165
  article-title: Improvement of clay and sand quantification based on a novel approach with a focus on multispectral satellite images
  publication-title: Remote Sens.
  doi: 10.3390/rs10101555
– volume: 37
  start-page: 1136
  year: 2013
  ident: 10.1016/j.rse.2020.112117_bb1010
  article-title: Comparison between detailed digital and conventional soil maps of an area with a complex geology
  publication-title: Rev. Bras. Ciência do Solo do Solo
  doi: 10.1590/S0100-06832013000500003
– volume: 115
  start-page: 4031
  year: 2010
  ident: 10.1016/j.rse.2020.112117_bb0505
  article-title: Mapping iron oxides and the color of Australian soil using visible–near-infrared reflectance spectra
  publication-title: J. Geophys. Res.
  doi: 10.1029/2009JF001645
– volume: 189
  start-page: 556
  year: 2017
  ident: 10.1016/j.rse.2020.112117_bb0380
  article-title: Soil color indicates carbon and wetlands: developing a color-proxy for soil organic carbon and wetland boundaries on sandy coastal plains in South Africa
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-017-6249-z
– start-page: 12
  year: 2017
  ident: 10.1016/j.rse.2020.112117_bb0290
  article-title: Sen2Cor for Sentinel-2
– year: 2016
  ident: 10.1016/j.rse.2020.112117_bb0145
– start-page: 187
  year: 1999
  ident: 10.1016/j.rse.2020.112117_bb0350
  article-title: Block kriging
– volume: 27
  start-page: 2411
  year: 2006
  ident: 10.1016/j.rse.2020.112117_bb0530
  article-title: Development of topsoil grain size index for monitoring desertification in arid land using remote sensing
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600554363
– start-page: 115
  year: 2018
  ident: 10.1016/j.rse.2020.112117_bb0465
  article-title: Pedometric treatment of soil attributes, in: pedometrics
  publication-title: Springer Nat.
– volume: 264
  start-page: 301
  year: 2016
  ident: 10.1016/j.rse.2020.112117_bb0320
  article-title: Digital soil mapping: A brief history and some lessons
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.07.017
– volume: 10
  start-page: 1
  year: 2018
  ident: 10.1016/j.rse.2020.112117_bb0185
  article-title: Multi-temporal satellite images on topsoil attribute quantification and the relationship with soil classes and geology
  publication-title: Remote Sens.
  doi: 10.3390/rs10101571
– volume: 7
  start-page: 12635
  year: 2015
  ident: 10.1016/j.rse.2020.112117_bb0485
  article-title: Sentinel-2 for mapping iron absorption feature parameters
  publication-title: Remote Sens.
  doi: 10.3390/rs71012635
– start-page: 35
  year: 1993
  ident: 10.1016/j.rse.2020.112117_bb1015
  article-title: Correlations between field and laboratory measurements of soil color, in: Soil color
  publication-title: Springer Nat.
– volume: 61
  start-page: 1
  year: 1997
  ident: 10.1016/j.rse.2020.112117_bb0035
  article-title: The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400 - 2500 nm) during a controled decomposition process
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00120-4
– volume: 179
  start-page: 54
  year: 2016
  ident: 10.1016/j.rse.2020.112117_bb0060
  article-title: Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.03.025
– volume: 170
  start-page: 244
  year: 2005
  ident: 10.1016/j.rse.2020.112117_bb0075
  article-title: Influence of soil moisture on near-infrared reflectance spectroscopic measurement of soil properties
  publication-title: Soil Sci.
  doi: 10.1097/00010694-200504000-00003
– volume: 225
  start-page: 392
  year: 2019
  ident: 10.1016/j.rse.2020.112117_bb0460
  article-title: Natural color representation of Sentinel-2 data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.01.036
– year: 2013
  ident: 10.1016/j.rse.2020.112117_bb0260
– volume: 155
  start-page: 198
  year: 2016
  ident: 10.1016/j.rse.2020.112117_bb0510
  article-title: A global spectral library to characterize the world’s soil
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2016.01.012
– volume: 721
  start-page: 137703
  year: 2020
  ident: 10.1016/j.rse.2020.112117_bb0155
  article-title: Improved digital soil mapping with multitemporal remotely sensed satellite data fusion: A case study in Iran
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137703
– volume: 729
  year: 2020
  ident: 10.1016/j.rse.2020.112117_bb0545
  article-title: High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138244
– volume: 205
  start-page: 1
  year: 2018
  ident: 10.1016/j.rse.2020.112117_bb0420
  article-title: Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.11.004
– volume: 58
  start-page: 826
  year: 2020
  ident: 10.1016/j.rse.2020.112117_bb0470
  article-title: Red-edge band vegetation indices for leaf area index estimation from Sentinel-2/MSI imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2940826
– start-page: 109
  year: 1993
  ident: 10.1016/j.rse.2020.112117_bb0400
  article-title: Stratigraphic and hydraulic influences on soil color development
– volume: 212
  start-page: 161
  year: 2018
  ident: 10.1016/j.rse.2020.112117_bb0130
  article-title: Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.047
SSID ssj0015871
Score 2.5992126
Snippet There is a worldwide need for detailed spatial information to support soil mapping, mainly in the tropics, where main agricultural areas are concentrated. In...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112117
SubjectTerms Agriculture
Algorithms
Bare soil pixels
Brazil
clay
Digital soil mapping
environment
Image acquisition
Landsat
Landsat satellites
Machine learning
Mapping
Organic matter
Pixels
Precision agriculture
prediction
Remote sensing
sand
Satellite imagery
Satellites
silt
soil color
soil heterogeneity
Soil mapping
Soil maps
Soil organic matter
Soil properties
Soil surveys
Spatial data
Spatial resolution
Spectra
Spectral resolution
Time series
Topsoil
Tropical environments
Title Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: A comparison
URI https://dx.doi.org/10.1016/j.rse.2020.112117
https://www.proquest.com/docview/2488251283
https://www.proquest.com/docview/2552006785
Volume 252
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemIQQvCAoThTEZiScksyaxnYS3atooX3sZk_ZmOfZZdCrpaFqkvvC3c-c4RSC0B96i-JxEvvOdL_fxY-xVQHUYJqESurBaSFmCsEUOAnSpgws1aEmFwp_P9exSfrhSV3vsZKiFobTKpPt7nR61dbpznFbz-GY-pxrfQpLE5RTdq2MRH76LpPzNz12aR6aqskfNK6Qg6iGyGXO8Vh11ysxjIU0WMcv-aZv-0tLR9Jw9ZA_SmZFP-896xPagHbGD098lajiY9mg3YvcSrvnX7YjdfReBe7ePmb9Yzhf8B3rGfWPuLbet5983tk8WivzhZNI8x4sLyiFqYSHySPaJ6oHtWlRIsQLe0aPm31ATdW_5lLsdlOETdnl2-uVkJhLCgnCFqtbCZspntqZgYGmdbyoL6NH4PGQSLLoeTgcvg85r9HqczAHdG1mEEJoGIHi0fgdsv1228JRxRV10aoDKK5AOVBUmTWicbkBBcHU5ZpNhbY1L7ccJBWNhhjyza4PsMMQO07NjzF7vptz0vTduI5YDw8wfAmTQNtw27XBgrkm7tzM5ajU691XFmL3cDeO-o2CKbWG5QRpFDavQ1Ktn__fm5-x-Tvkx8XfOIdtfrzbwAg846-YoSvARuzN9_3F2_gtrivo4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemITReEBQmCoMZiScksyax87G3adpWoNvLNmlvlmOftaKSjqZF6gt_--4cpwiE9sBbFJ-TyOe78-U-fox98KgO_ciXIs9MLqQsQJgsBQF5kXvrK8glFQqfX-Tja_nlRt1sseO-FobSKqPu73R60NbxzkFczYO76ZRqfDNJOy6l6F5FRXyPJIovwRh8-rXJ80hUWXSweZkURN6HNkOS16KlVplpqKRJAmjZP43TX2o62J7TZ-xpPDTyo-67nrMtaAZs9-R3jRoORiFtB2wnApvfrgfs8VlA7l2_YO5yPp3xn-gad52519w0jv9YmS5bKDCIk01zHC8uKYmogZlIA9mECoLNUpRIsQDe0qOm31EVtYf8iNsNluFLdn16cnU8FhFiQdhMlUthEuUSU1E0sDDW1aUBdGlc6hMJBn0Pm3snfZ5W6PZYmQL6NzLz3tc1gHdo_nbZdjNv4BXjitroVAClUyAtqNKPal_bvAYF3lbFkI36tdU29h8nGIyZ7hPNvmlkhyZ26I4dQ_ZxM-Wua77xELHsGab_2EEajcND0_Z65uoovq1OUa3Rwa_Mhuz9ZhgFj6IppoH5CmkUdaxCW69e_9-b99nO-Op8oiefL76-YU9SSpYJ_3b22PZysYK3eNpZ1u_Cbr4HHFD7xg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+variability+and+quantification+based+on+Sentinel-2+and+Landsat-8+bare+soil+images%3A+A+comparison&rft.jtitle=Remote+sensing+of+environment&rft.au=Silvero%2C+N%C3%A9lida+Elizabet+Qui%C3%B1onez&rft.au=Dematt%C3%AA%2C+Jos%C3%A9+Alexandre+Melo&rft.au=Amorim%2C+Merilyn+Taynara+Accorsi&rft.au=Santos%2C+Natasha+Valadares+dos&rft.date=2021-01-01&rft.issn=0034-4257&rft.volume=252&rft.spage=112117&rft_id=info:doi/10.1016%2Fj.rse.2020.112117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2020_112117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon