Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: A comparison
There is a worldwide need for detailed spatial information to support soil mapping, mainly in the tropics, where main agricultural areas are concentrated. In this line, satellite images are useful tools that can assist in obtaining soil information from a synoptic point of view. This study aimed at...
Saved in:
Published in | Remote sensing of environment Vol. 252; p. 112117 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
01.01.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is a worldwide need for detailed spatial information to support soil mapping, mainly in the tropics, where main agricultural areas are concentrated. In this line, satellite images are useful tools that can assist in obtaining soil information from a synoptic point of view. This study aimed at evaluating how satellite images at different resolutions (spatial, spectral and temporal) can influence the representation of soil variability over time, the percentage of bare soil areas and spatial predictions of soil properties in southeastern Brazil. We used single-date and multi-temporal images (SYSI, Synthetic Soil Images) of bare soil pixels from the Sentinel2-MultiSpectral Instrument (S2-MSI) and the Landsat-8 Operational Land Imager (L8-OLI) to conduct this research. Two SYSIs were obtained from images acquired in four years (2016–2019) for each satellite (SYSI S2-MSI and SYSI L8-OLI) and a third SYSI, named SYSI Combined, was obtained by combining the images from both satellites. The single-date images for each satellite was acquired in September, when the influence of clouds was low and bare soil pixels was predominant. Single-date images and SYSIs were compared by means of their spectral patterns and ability to predict topsoil properties (clay, sand, silt, and organic matter contents and soil color) using the Cubist algorithm. We found that the SYSIs outperformed single-date images and that the SYSI Combined and SYSI L8-OLI provided the best prediction performances. The SYSIs also had the highest percentage of areas with bare soil pixels (~30–50%) when compared to the single-date images (~20%). Our results suggest that bare soil images obtained by combining Landsat-8 and Sentinel-2 images are more important for soil mapping than spatial or spectral resolutions. Soil maps obtained via satellite images are important tools for soil survey, land planning, management and precision agriculture.
•Bare soil images proved useful for mapping topsoil properties.•SYSI images had more than twice the bare soil areas of single-date images.•SYSI Combined and SYSI L8-OLI had the best performances in predicting topsoil properties.•The use of RedEdge bands from Sentinel-2 did not provide large model performance gains. |
---|---|
AbstractList | There is a worldwide need for detailed spatial information to support soil mapping, mainly in the tropics, where main agricultural areas are concentrated. In this line, satellite images are useful tools that can assist in obtaining soil information from a synoptic point of view. This study aimed at evaluating how satellite images at different resolutions (spatial, spectral and temporal) can influence the representation of soil variability over time, the percentage of bare soil areas and spatial predictions of soil properties in southeastern Brazil. We used single-date and multi-temporal images (SYSI, Synthetic Soil Images) of bare soil pixels from the Sentinel2-MultiSpectral Instrument (S2-MSI) and the Landsat-8 Operational Land Imager (L8-OLI) to conduct this research. Two SYSIs were obtained from images acquired in four years (2016–2019) for each satellite (SYSI S2-MSI and SYSI L8-OLI) and a third SYSI, named SYSI Combined, was obtained by combining the images from both satellites. The single-date images for each satellite was acquired in September, when the influence of clouds was low and bare soil pixels was predominant. Single-date images and SYSIs were compared by means of their spectral patterns and ability to predict topsoil properties (clay, sand, silt, and organic matter contents and soil color) using the Cubist algorithm. We found that the SYSIs outperformed single-date images and that the SYSI Combined and SYSI L8-OLI provided the best prediction performances. The SYSIs also had the highest percentage of areas with bare soil pixels (~30–50%) when compared to the single-date images (~20%). Our results suggest that bare soil images obtained by combining Landsat-8 and Sentinel-2 images are more important for soil mapping than spatial or spectral resolutions. Soil maps obtained via satellite images are important tools for soil survey, land planning, management and precision agriculture. There is a worldwide need for detailed spatial information to support soil mapping, mainly in the tropics, where main agricultural areas are concentrated. In this line, satellite images are useful tools that can assist in obtaining soil information from a synoptic point of view. This study aimed at evaluating how satellite images at different resolutions (spatial, spectral and temporal) can influence the representation of soil variability over time, the percentage of bare soil areas and spatial predictions of soil properties in southeastern Brazil. We used single-date and multi-temporal images (SYSI, Synthetic Soil Images) of bare soil pixels from the Sentinel2-MultiSpectral Instrument (S2-MSI) and the Landsat-8 Operational Land Imager (L8-OLI) to conduct this research. Two SYSIs were obtained from images acquired in four years (2016–2019) for each satellite (SYSI S2-MSI and SYSI L8-OLI) and a third SYSI, named SYSI Combined, was obtained by combining the images from both satellites. The single-date images for each satellite was acquired in September, when the influence of clouds was low and bare soil pixels was predominant. Single-date images and SYSIs were compared by means of their spectral patterns and ability to predict topsoil properties (clay, sand, silt, and organic matter contents and soil color) using the Cubist algorithm. We found that the SYSIs outperformed single-date images and that the SYSI Combined and SYSI L8-OLI provided the best prediction performances. The SYSIs also had the highest percentage of areas with bare soil pixels (~30–50%) when compared to the single-date images (~20%). Our results suggest that bare soil images obtained by combining Landsat-8 and Sentinel-2 images are more important for soil mapping than spatial or spectral resolutions. Soil maps obtained via satellite images are important tools for soil survey, land planning, management and precision agriculture. •Bare soil images proved useful for mapping topsoil properties.•SYSI images had more than twice the bare soil areas of single-date images.•SYSI Combined and SYSI L8-OLI had the best performances in predicting topsoil properties.•The use of RedEdge bands from Sentinel-2 did not provide large model performance gains. |
ArticleNumber | 112117 |
Author | Amorim, Merilyn Taynara Accorsi Safanelli, José Lucas Bonfatti, Benito Roberto Rizzo, Rodnei Silvero, Nélida Elizabet Quiñonez Poppiel, Raul Roberto Mendes, Wanderson de Sousa Demattê, José Alexandre Melo Santos, Natasha Valadares dos |
Author_xml | – sequence: 1 givenname: Nélida Elizabet Quiñonez surname: Silvero fullname: Silvero, Nélida Elizabet Quiñonez email: neli.silvero@usp.br – sequence: 2 givenname: José Alexandre Melo surname: Demattê fullname: Demattê, José Alexandre Melo email: jamdemat@usp.br – sequence: 3 givenname: Merilyn Taynara Accorsi surname: Amorim fullname: Amorim, Merilyn Taynara Accorsi email: merilyn.accorsi@usp.br – sequence: 4 givenname: Natasha Valadares dos surname: Santos fullname: Santos, Natasha Valadares dos email: natasha.valadares.santos@usp.br – sequence: 5 givenname: Rodnei surname: Rizzo fullname: Rizzo, Rodnei – sequence: 6 givenname: José Lucas surname: Safanelli fullname: Safanelli, José Lucas email: jose.lucas.safanelli@usp.br – sequence: 7 givenname: Raul Roberto surname: Poppiel fullname: Poppiel, Raul Roberto email: raulpoppiel@usp.br – sequence: 8 givenname: Wanderson de Sousa surname: Mendes fullname: Mendes, Wanderson de Sousa email: wandersonsm@usp.br – sequence: 9 givenname: Benito Roberto surname: Bonfatti fullname: Bonfatti, Benito Roberto email: benito.bonfatti@uemg.br |
BookMark | eNp9kMFuGyEURVGUSnHcfkB3I2XTzTg8BmZwuoqiNolkqYska8TAo8IagwPYkv--2O4qi2x4gM69ejrX5DLEgIR8B7oACv3tepEyLhhl9Q0MYLggM5DDsqUD5ZdkRmnHW87EcEWuc15TCkIOMCP2Jfqp2evk9egnXw6NDrZ53-lQvPNGFx9DM-qMtqmXF6zfAaeWnbBVPbIuraxEwiYfq_xG_8V819w3Jm62tTfH8JV8cXrK-O3_nJO3379eH57a1Z_H54f7VWs6IUurQVjQS95JNmhjR6lx2VPLHHDUANL0znLXsyXrqeEMBZe8c86NI6KzHe3m5Me5d5vi-w5zURufDU6TDhh3WTEhGKX9IEVFbz6g67hLoW6nGJeSCWCyq9RwpkyKOSd0yvhyclKS9pMCqo721VpV--poX53t1yR8SG5TVZMOn2Z-njNYHe09JpWNx2DQ-oSmKBv9J-l_K1-efA |
CitedBy_id | crossref_primary_10_1007_s40808_024_02050_y crossref_primary_10_1109_MGRS_2023_3269979 crossref_primary_10_3390_rs16163088 crossref_primary_10_1109_MGRS_2024_3394040 crossref_primary_10_1016_j_jenvman_2022_117194 crossref_primary_10_1016_j_still_2024_106124 crossref_primary_10_3390_agronomy13071942 crossref_primary_10_1016_j_geoderma_2024_116919 crossref_primary_10_3390_agronomy14081682 crossref_primary_10_1016_j_catena_2022_106603 crossref_primary_10_3390_environments10050083 crossref_primary_10_1016_j_catena_2023_107336 crossref_primary_10_1016_j_compag_2024_108921 crossref_primary_10_1016_j_geoderma_2022_115905 crossref_primary_10_3390_rs16061066 crossref_primary_10_1016_j_rse_2025_114708 crossref_primary_10_3390_rs14102295 crossref_primary_10_3390_rs15092410 crossref_primary_10_3390_rs13245019 crossref_primary_10_3390_rs16152712 crossref_primary_10_1016_j_still_2024_106170 crossref_primary_10_47836_pjst_29_4_32 crossref_primary_10_3390_rs14122917 crossref_primary_10_1007_s10668_023_03489_2 crossref_primary_10_1016_j_still_2022_105325 crossref_primary_10_1007_s10661_022_09842_8 crossref_primary_10_1016_j_geoderma_2022_116128 crossref_primary_10_1016_j_jag_2024_104181 crossref_primary_10_1016_j_geoderma_2021_115656 crossref_primary_10_3390_rs14215571 crossref_primary_10_1016_j_geoderma_2023_116669 crossref_primary_10_1016_j_isprsjprs_2022_09_013 crossref_primary_10_1016_j_catena_2021_105842 crossref_primary_10_1016_j_geodrs_2021_e00440 crossref_primary_10_3390_su15010323 crossref_primary_10_3390_rs15235502 crossref_primary_10_1016_j_catena_2021_105723 crossref_primary_10_1016_j_geoderma_2023_116697 crossref_primary_10_1016_j_rse_2022_112914 crossref_primary_10_1016_j_geoderma_2023_116413 crossref_primary_10_1016_j_jenvman_2023_117810 crossref_primary_10_1016_j_rsase_2022_100913 crossref_primary_10_1016_j_geoderma_2021_115089 crossref_primary_10_1080_10106049_2024_2387786 crossref_primary_10_1016_j_compag_2025_110145 crossref_primary_10_1016_j_still_2023_105897 crossref_primary_10_3390_land14030657 crossref_primary_10_1016_j_catena_2022_106023 crossref_primary_10_1002_vzj2_20361 crossref_primary_10_3390_rs16152731 crossref_primary_10_1029_2024RG000836 crossref_primary_10_3390_rs14184526 crossref_primary_10_3390_rs13214195 crossref_primary_10_1016_j_ecolind_2024_112364 crossref_primary_10_1016_j_geoderma_2024_116984 crossref_primary_10_1016_j_geoderma_2024_116987 crossref_primary_10_1016_j_geodrs_2022_e00513 crossref_primary_10_1016_j_still_2024_106270 crossref_primary_10_1016_j_geoderma_2024_117151 crossref_primary_10_1080_10106049_2022_2102241 crossref_primary_10_3390_rs13245115 crossref_primary_10_3390_agriculture12071062 crossref_primary_10_1016_j_geoderma_2020_114885 crossref_primary_10_3390_rs13152934 crossref_primary_10_1016_j_geoderma_2022_115935 crossref_primary_10_1016_j_scitotenv_2023_161973 crossref_primary_10_1016_j_geoderma_2021_115116 crossref_primary_10_3390_rs13173345 crossref_primary_10_3390_rs13214439 crossref_primary_10_1007_s42974_022_00077_8 crossref_primary_10_1016_j_catena_2023_107604 crossref_primary_10_1016_j_isprsjprs_2023_07_020 crossref_primary_10_1016_j_jia_2023_09_017 crossref_primary_10_1002_saj2_20371 crossref_primary_10_1080_17538947_2023_2192005 crossref_primary_10_1016_j_iswcr_2025_01_005 crossref_primary_10_3390_su15010469 crossref_primary_10_1016_j_catena_2024_107821 crossref_primary_10_1080_2150704X_2021_1999524 crossref_primary_10_1016_j_soisec_2022_100057 |
Cites_doi | 10.18637/jss.v023.i12 10.1016/j.geoderma.2019.114018 10.1590/0103-9016-2015-0131 10.1080/00380768.2013.802643 10.3390/su11123350 10.1016/j.apm.2019.12.016 10.2343/geochemj.23.75 10.1016/j.catena.2015.07.010 10.1016/0273-1177(93)90560-X 10.1016/0034-4257(89)90035-7 10.1111/j.1365-2389.1977.tb02306.x 10.1016/j.geoderma.2012.05.023 10.1016/j.rse.2016.04.008 10.1371/journal.pone.0169748 10.1371/journal.pone.0105992 10.1016/j.geoderma.2005.07.017 10.3390/rs9121245 10.1016/S0016-7061(02)00121-0 10.1038/s41598-020-61408-1 10.3390/rs70302279 10.1080/00103624.2019.1604737 10.1346/CCMN.1992.0400515 10.3390/rs12091389 10.2136/sssaj2011.0025 10.3390/rs11050565 10.1016/j.geoderma.2010.12.018 10.1080/01431160601121469 10.3390/rs12071197 10.3390/rs11242947 10.1016/j.rse.2017.06.031 10.5721/EuJRS20144731 10.1016/j.isprsjprs.2018.11.026 10.1016/j.geomorph.2020.107305 10.1016/j.catena.2016.01.001 10.1097/00010694-193401000-00003 10.1016/j.geoderma.2019.04.028 10.3390/rs11182121 10.3390/s110707063 10.1016/S0034-4257(96)00075-2 10.1590/0103-9016-2013-0365 10.1016/S0016-7061(03)00223-4 10.3390/rs70911125 10.1016/j.rse.2019.01.006 10.1080/01431160110115834 10.1016/j.rse.2019.111425 10.2136/sssaj2003.2890 10.1111/j.1365-2389.1986.tb00382.x 10.1127/0941-2948/2013/0507 10.3390/rs11202448 10.1016/j.compag.2006.08.001 10.1016/S0034-4257(98)00030-3 10.1016/j.catena.2020.104609 10.2136/sssaj1987.03615995005100050033x 10.3390/rs11242905 10.2136/sssaj2002.7220 10.1016/j.rse.2017.10.047 10.1016/j.vibspec.2016.07.005 10.1016/j.geoderma.2019.01.025 10.1080/014311699212605 10.1590/S0100-204X2003000400011 10.1371/journal.pone.0150860 10.1016/j.rse.2018.04.031 10.1371/journal.pone.0170478 10.1016/j.scitotenv.2015.02.025 10.1016/j.scitotenv.2016.11.078 10.3390/rs10091340 10.1016/j.jag.2019.101905 10.1038/s41467-019-13276-1 10.1016/j.rse.2018.09.002 10.1007/s13593-018-0490-x 10.3390/rs12091369 10.1016/j.geoderma.2020.114480 10.1117/1.JRS.12.042803 10.1590/S0100-06832010000300027 10.3390/rs10101555 10.1590/S0100-06832013000500003 10.1029/2009JF001645 10.1007/s10661-017-6249-z 10.1080/01431160600554363 10.1016/j.geoderma.2015.07.017 10.3390/rs10101571 10.3390/rs71012635 10.1016/S0034-4257(96)00120-4 10.1016/j.rse.2016.03.025 10.1097/00010694-200504000-00003 10.1016/j.rse.2019.01.036 10.1016/j.earscirev.2016.01.012 10.1016/j.scitotenv.2020.137703 10.1016/j.scitotenv.2020.138244 10.1016/j.rse.2017.11.004 10.1109/TGRS.2019.2940826 10.1016/j.rse.2018.04.047 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright Elsevier BV Jan 2021 |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright Elsevier BV Jan 2021 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
DOI | 10.1016/j.rse.2020.112117 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Environmental Sciences Agriculture |
EISSN | 1879-0704 |
ExternalDocumentID | 10_1016_j_rse_2020_112117 S0034425720304909 |
GeographicLocations | Brazil |
GeographicLocations_xml | – name: Brazil |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 41~ 457 4G. 53G 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ VOH WH7 WUQ XOL ZCA ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K EFKBS F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
ID | FETCH-LOGICAL-c358t-a15d1a943827acdb8ae960d2f14ea118c6fd4f629260c42e54843fffbbeefd303 |
IEDL.DBID | .~1 |
ISSN | 0034-4257 |
IngestDate | Fri Jul 11 08:51:57 EDT 2025 Wed Aug 13 08:37:56 EDT 2025 Tue Jul 01 03:51:25 EDT 2025 Thu Apr 24 23:05:37 EDT 2025 Fri Feb 23 02:44:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bare soil pixels Digital soil mapping Spectral resolution Machine learning Time series Spatial resolution Remote sensing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-a15d1a943827acdb8ae960d2f14ea118c6fd4f629260c42e54843fffbbeefd303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2488251283 |
PQPubID | 2045405 |
ParticipantIDs | proquest_miscellaneous_2552006785 proquest_journals_2488251283 crossref_citationtrail_10_1016_j_rse_2020_112117 crossref_primary_10_1016_j_rse_2020_112117 elsevier_sciencedirect_doi_10_1016_j_rse_2020_112117 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Remote sensing of environment |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Shao, Cai, Fu, Hu, Liu (bb0445) 2019; 235 Olea (bb0350) 1999 Lobell, Asner (bb0280) 2002; 66 Diek, Fornallaz, Schaepman, De Jong (bb0140) 2017; 9 Zhai, Thomasson, Boggess, Sui (bb0535) 2006; 54 Ahmed, Iqbal (bb0005) 2014; 47 Bonfatti, Demattê, Marques, Poppiel, Rizzo, de Mendes, Silvero, Safanelli (bb0050) 2020; 367 Bazaglia Filho, Rizzo, Lepsch, Prado, Gomes, Mazza, Demattê (bb1010) 2013; 37 Sovdat, Kadunc, Batič, Milčinski (bb0460) 2019; 225 Siqueira, Marques, Pereira, Teixeira, Vasconcelos, Carvalho Júnior, Martins (bb0455) 2015; 135 Rosero-Vlasova, Vlassova, Pérez-Cabello, Montorio, Nadal-Romero (bb0425) 2018; 12 IUSS Working Group WRB (bb0245) 2015 Lagacherie, McBratney, Voltz (bb0270) 2007 Žížala, Minařík, Zádorová (bb0550) 2019; 11 Rizzo, Medeiros, de Mello, Marques, de Mendes, Quiñonez Silvero, Dotto, Bonfatti, Demattê (bb0410) 2020; 361 Minasny, McBratney (bb0320) 2016; 264 Campos, Demattê, Quartaroli (bb0055) 2003; 38 de Arruda, Demattê, da Chagas, Fiorio, Souza, Fongaro (bb0095) 2016; 73 Poppiel, Lacerda, Safanelli, Rizzo, Oliveira, Novais, Demattê (bb0370) 2019; 11 Kuhn, Johnson (bb0260) 2013 Forkuor, Hounkpatin, Welp, Thiel (bb0170) 2017; 12 Cherubin, Karlen, Cerri, Franco, Tormena, Davies, Cerri (bb0080) 2016; 11 Kuhn, Weston, Keefer, Coulter, Quinlan (bb0265) 2018 Pretorius, Van Huyssteen, Brown (bb0380) 2017; 189 Xiao, Shen, Tateishi, Bayaer (bb0530) 2006; 27 EMBRAPA (bb0145) 2016 R Core Team (bb0390) 2019 Janik, Soriano-Disla, Forrester, McLaughlin (bb0250) 2016; 86 Silvero, Di Raimo, Pereira, de Magalhaes, da Terra, Dassan, Salazar, Demattê (bb0450) 2020; 375 McBratney, Mendonça Santos, Minasny (bb0310) 2003; 117 Richter, Schläpfer (bb0405) 2002 Isaaks, Srivastava (bb0235) 1989 Pinheiro, Barbosa, Antunes, de Carvalho, Nummer, de Junior, da Chagas, Fernandes-Filho, Pereira (bb0355) 2019; 11 Sun, Qin, Ren, Zhang, Chen (bb0470) 2020; 58 Hengl, De Jesus, Macmillan, Batjes, Heuvelink, Ribeiro, Samuel-Rosa, Kempen, Leenaars, Walsh, Gonzalez (bb0225) 2014; 9 Gomez, Adeline, Bacha, Driessen, Gorretta, Lagacherie, Roger, Briottet (bb0195) 2018; 204 Franco, Cherubin, Pavinato, Cerri, Six, Davies, Cerri (bb0175) 2015; 515–516 Richardson, Daniels (bb0400) 1993 Ishida, Ando (bb0240) 1999; 20 Bellinaso, Demattê, Romeiro (bb0030) 2010; 34 Gorelick, Hancher, Dixon, Ilyushchenko, Thau, Moore (bb0210) 2017; 202 Viscarra Rossel, Minasny, Roudier, McBratney (bb0500) 2006; 133 Delegido, Verrelst, Alonso, Moreno (bb0115) 2011; 11 Castaldi, Palombo, Santini, Pascucci, Pignatti, Casa (bb0060) 2016; 179 Bigham, Ciolkosz, Post, Bryant, Batchily, Huete, Levine, Mays (bb1015) 1993 Vaudour, Gomez, Fouad, Lagacherie (bb0490) 2019; 223 Viscarra Rossel, Bui, De Caritat, Mckenzie (bb0505) 2010; 115 Liao, Xu, Wu, Zhu (bb0275) 2013; 59 Walkley, Black (bb0515) 1934; 37 Roberts, Wilford, Ghattas (bb0415) 2019; 10 van der Werff, van der Meer (bb0485) 2015; 7 Gallo, Demattê, Rizzo, Safanelli, Mendes, Lepsch, Sato, Romero, Lacerda (bb0185) 2018; 10 Barrett (bb0020) 2002; 108 Gomez, Lagacherie, Coulouma (bb0190) 2012; 189–190 Stockmann, Jones, Odeh, McBratney (bb0465) 2018 Odeh, McBratney (bb0345) 2005 Demattê, Galdos, Guimarães, Genú, Nanni, Zullo (bb0120) 2007; 28 González, Déjean, Martin, Baccini (bb0205) 2008; 23 Demattê, Safanelli, Poppiel, Rizzo, Silvero, de Mendes, Bonfatti, Dotto, Salazar, de Mello, da Paiva, Souza, dos Santos, Maria Nascimento, de Mello, Bellinaso, Gonzaga Neto, Amorim, de Resende, da Vieira, de Queiroz, Gallo, Sayão, da Lisboa (bb0135) 2020; 10 Hengl, Mendes de Jesus, Heuvelink, Ruiperez Gonzalez, Kilibarda, Blagoti, Shangguan, Wright, Geng, Bauer-Marschallinger, Guevara, Vargas, MacMillan, Batjes, Leenaars, Ribeiro, Wheeler, Mantel, Kempen (bb0230) 2017; 12 Poggio, Gimona (bb0360) 2017; 579 Fongaro, Demattê, Rizzo, Lucas Safanelli, Mendes, Dotto, Vicente, Franceschini, Ustin (bb0165) 2018; 10 Tziolas, Tsakiridis, Ben-Dor, Theocharis, Zalidis (bb0480) 2020; 12 Baret, Jacquemoud, Hanocq (bb0015) 1993; 13 McBratney, Field, Morgan, Huang (bb0315) 2019; 11 Schmidt, Ahn (bb0435) 2019; 50 Demattê, Bellinaso, Romero, Fongaro (bb0125) 2014; 71 Markham, Storey, Morfitt (bb0295) 2015; 7 Safanelli, Chabrillat, Ben-Dor, Demattê (bb0430) 2020; 12 Alvares, Stape, Sentelhas, de Moraes Gonçalves, Sparovek (bb0010) 2013; 22 Main-Knorn, Louis, Debaecker, Muller-Wilm, Gascon (bb0290) 2017 Helder, Markham, Morfitt, Storey, Barsi, Gascon, Clerc, LaFrance, Masek, Roy, Lewis, Pahlevan (bb0220) 2018; 10 da Chagas, de Carvalho Junior, Bhering, Calderano Filho (bb0090) 2016; 139 Castaldi, Hueni, Chabrillat, Ward, Buttafuoco, Bomans, Vreys, Brell, van Wesemael (bb0070) 2019; 147 Mulder, De Bruin, Schaepman, Mayr (bb0330) 2011; 162 Poppiel, Lacerda, Rizzo, Safanelli, Bonfatti, Silvero, Demattê (bb0375) 2020; 12 Khaledian, Miller (bb0255) 2020; 81 Castaldi, Chabrillat, Don, van Wesemael (bb0065) 2019; 11 Loiseau, Chen, Mulder, Román Dobarco, Richer-de-Forges, Lehmann, Bourennane, Saby, Martin, Vaudour, Gomez, Lagacherie, Arrouays (bb0285) 2019; 82 Viscarra Rossel, Behrens, Ben-Dor, Brown, Demattê, Shepherd, Shi, Stenberg, Stevens, Adamchuk, Aïchi, Barthès, Bartholomeus, Bayer, Bernoux, Böttcher, Brodský, Du, Chappell, Fouad, Genot, Gomez, Grunwald, Gubler, Guerrero, Hedley, Knadel, Morrás, Nocita, Ramirez-Lopez, Roudier, Campos, Sanborn, Sellitto, Sudduth, Rawlins, Walter, Winowiecki, Hong, Ji (bb0510) 2016; 155 Mathieu, Pouget, Cervelle, Escadafal (bb0300) 1998; 66 Vermote, Justice, Claverie, Franch (bb0495) 2016; 185 Rogge, Bauer, Zeidler, Mueller, Esch, Heiden (bb0420) 2018; 205 Zhang, Roy, Yan, Li, Huang, Vermote, Skakun, Roger (bb0540) 2018; 215 Nagano, Nakashima (bb0335) 1989; 23 Nagano, Nakashima, Nakayama, Osada, Senoo (bb0340) 1992; 40 Fathololoumi, Vaezi, Alavipanah, Ghorbani, Saurette, Biswas (bb0155) 2020; 721 Webster (bb0520) 1977; 28 Ben-Dor, Goldlshleger, Benyamini, Agassi, Blumberg (bb0040) 2003; 67 de Padilha, Vicente, Demattê, dos Santos Wendriner Loebmann, Vicente, Salazar, Guimarães (bb0110) 2020; 21 Poppiel, Lacerda, Demattê, Oliveira, Gallo, Safanelli (bb0365) 2019; 348 Barron, Torrent (bb0025) 1986; 37 Claverie, Ju, Masek, Dungan, Vermote, Roger, Skakun, Justice (bb0085) 2018; 219 Demattê, Fongaro, Rizzo, Safanelli (bb0130) 2018; 212 Blasch, Spengler, Itzerott, Wessolek (bb0045) 2015; 7 Zhou, Geng, Chen, Pan, Haase, Lausch (bb0545) 2020; 729 Escadafal, Girard, Courault (bb0150) 1989; 27 Gomez, Dharumarajan, Féret, Lagacherie, Ruiz, Sekhar (bb0200) 2019; 11 Mattikalli (bb0305) 1997; 59 Moeys (bb0325) 2018 de Mendes, Medeiros Neto, Demattê, Gallo, Rizzo, Safanelli, Fongaro (bb0105) 2019; 343 de Bordonal, Carvalho, Lal, Figueiredo, Oliveira, La Scala (bb0100) 2018; 38 Ben-Dor, Inbar, Chen (bb0035) 1997; 61 Ramos, Inda, Barrón, Siqueira, Marques Júnior, Teixeira (bb0395) 2020; 193 Teixeira, Donagema, Fontana, Teixeira (bb0475) 2017 Quinlan (bb0385) 1992 Grunwald, Thompson, Boettinger (bb0215) 2011; 75 Chang, Laird, Hurburgh (bb0075) 2005; 170 Fernandez, Schulze (bb0160) 1987; 51 Khaledian (10.1016/j.rse.2020.112117_bb0255) 2020; 81 Loiseau (10.1016/j.rse.2020.112117_bb0285) 2019; 82 Barrett (10.1016/j.rse.2020.112117_bb0020) 2002; 108 Janik (10.1016/j.rse.2020.112117_bb0250) 2016; 86 Richardson (10.1016/j.rse.2020.112117_bb0400) 1993 Schmidt (10.1016/j.rse.2020.112117_bb0435) 2019; 50 Odeh (10.1016/j.rse.2020.112117_bb0345) 2005 Delegido (10.1016/j.rse.2020.112117_bb0115) 2011; 11 da Chagas (10.1016/j.rse.2020.112117_bb0090) 2016; 139 Viscarra Rossel (10.1016/j.rse.2020.112117_bb0510) 2016; 155 Demattê (10.1016/j.rse.2020.112117_bb0135) 2020; 10 EMBRAPA (10.1016/j.rse.2020.112117_bb0145) 2016 Olea (10.1016/j.rse.2020.112117_bb0350) 1999 Castaldi (10.1016/j.rse.2020.112117_bb0070) 2019; 147 Ben-Dor (10.1016/j.rse.2020.112117_bb0040) 2003; 67 Lagacherie (10.1016/j.rse.2020.112117_bb0270) 2007 Bigham (10.1016/j.rse.2020.112117_bb1015) 1993 Webster (10.1016/j.rse.2020.112117_bb0520) 1977; 28 Demattê (10.1016/j.rse.2020.112117_bb0125) 2014; 71 Ben-Dor (10.1016/j.rse.2020.112117_bb0035) 1997; 61 Rosero-Vlasova (10.1016/j.rse.2020.112117_bb0425) 2018; 12 Mulder (10.1016/j.rse.2020.112117_bb0330) 2011; 162 Rizzo (10.1016/j.rse.2020.112117_bb0410) 2020; 361 van der Werff (10.1016/j.rse.2020.112117_bb0485) 2015; 7 R Core Team (10.1016/j.rse.2020.112117_bb0390) 2019 Rogge (10.1016/j.rse.2020.112117_bb0420) 2018; 205 Hengl (10.1016/j.rse.2020.112117_bb0230) 2017; 12 Shao (10.1016/j.rse.2020.112117_bb0445) 2019; 235 Sovdat (10.1016/j.rse.2020.112117_bb0460) 2019; 225 Mattikalli (10.1016/j.rse.2020.112117_bb0305) 1997; 59 Nagano (10.1016/j.rse.2020.112117_bb0335) 1989; 23 Ishida (10.1016/j.rse.2020.112117_bb0240) 1999; 20 Richter (10.1016/j.rse.2020.112117_bb0405) 2002 Xiao (10.1016/j.rse.2020.112117_bb0530) 2006; 27 Zhou (10.1016/j.rse.2020.112117_bb0545) 2020; 729 de Bordonal (10.1016/j.rse.2020.112117_bb0100) 2018; 38 Isaaks (10.1016/j.rse.2020.112117_bb0235) 1989 Main-Knorn (10.1016/j.rse.2020.112117_bb0290) 2017 Minasny (10.1016/j.rse.2020.112117_bb0320) 2016; 264 Moeys (10.1016/j.rse.2020.112117_bb0325) 2018 Gorelick (10.1016/j.rse.2020.112117_bb0210) 2017; 202 Fathololoumi (10.1016/j.rse.2020.112117_bb0155) 2020; 721 Poggio (10.1016/j.rse.2020.112117_bb0360) 2017; 579 Bonfatti (10.1016/j.rse.2020.112117_bb0050) 2020; 367 Diek (10.1016/j.rse.2020.112117_bb0140) 2017; 9 Grunwald (10.1016/j.rse.2020.112117_bb0215) 2011; 75 Fernandez (10.1016/j.rse.2020.112117_bb0160) 1987; 51 Safanelli (10.1016/j.rse.2020.112117_bb0430) 2020; 12 Tziolas (10.1016/j.rse.2020.112117_bb0480) 2020; 12 Poppiel (10.1016/j.rse.2020.112117_bb0375) 2020; 12 Ramos (10.1016/j.rse.2020.112117_bb0395) 2020; 193 Sun (10.1016/j.rse.2020.112117_bb0470) 2020; 58 IUSS Working Group WRB (10.1016/j.rse.2020.112117_bb0245) 2015 Pretorius (10.1016/j.rse.2020.112117_bb0380) 2017; 189 Demattê (10.1016/j.rse.2020.112117_bb0130) 2018; 212 Forkuor (10.1016/j.rse.2020.112117_bb0170) 2017; 12 Žížala (10.1016/j.rse.2020.112117_bb0550) 2019; 11 Hengl (10.1016/j.rse.2020.112117_bb0225) 2014; 9 Teixeira (10.1016/j.rse.2020.112117_bb0475) 2017 Gomez (10.1016/j.rse.2020.112117_bb0190) 2012; 189–190 Gomez (10.1016/j.rse.2020.112117_bb0200) 2019; 11 Gomez (10.1016/j.rse.2020.112117_bb0195) 2018; 204 Roberts (10.1016/j.rse.2020.112117_bb0415) 2019; 10 Ahmed (10.1016/j.rse.2020.112117_bb0005) 2014; 47 Escadafal (10.1016/j.rse.2020.112117_bb0150) 1989; 27 Campos (10.1016/j.rse.2020.112117_bb0055) 2003; 38 Silvero (10.1016/j.rse.2020.112117_bb0450) 2020; 375 Baret (10.1016/j.rse.2020.112117_bb0015) 1993; 13 Chang (10.1016/j.rse.2020.112117_bb0075) 2005; 170 Demattê (10.1016/j.rse.2020.112117_bb0120) 2007; 28 Viscarra Rossel (10.1016/j.rse.2020.112117_bb0505) 2010; 115 Castaldi (10.1016/j.rse.2020.112117_bb0065) 2019; 11 Barron (10.1016/j.rse.2020.112117_bb0025) 1986; 37 de Padilha (10.1016/j.rse.2020.112117_bb0110) 2020; 21 Alvares (10.1016/j.rse.2020.112117_bb0010) 2013; 22 Claverie (10.1016/j.rse.2020.112117_bb0085) 2018; 219 Kuhn (10.1016/j.rse.2020.112117_bb0265) 2018 McBratney (10.1016/j.rse.2020.112117_bb0315) 2019; 11 de Mendes (10.1016/j.rse.2020.112117_bb0105) 2019; 343 Helder (10.1016/j.rse.2020.112117_bb0220) 2018; 10 Kuhn (10.1016/j.rse.2020.112117_bb0260) 2013 Stockmann (10.1016/j.rse.2020.112117_bb0465) 2018 Castaldi (10.1016/j.rse.2020.112117_bb0060) 2016; 179 Zhang (10.1016/j.rse.2020.112117_bb0540) 2018; 215 Fongaro (10.1016/j.rse.2020.112117_bb0165) 2018; 10 Poppiel (10.1016/j.rse.2020.112117_bb0365) 2019; 348 Nagano (10.1016/j.rse.2020.112117_bb0340) 1992; 40 Liao (10.1016/j.rse.2020.112117_bb0275) 2013; 59 Vermote (10.1016/j.rse.2020.112117_bb0495) 2016; 185 Bellinaso (10.1016/j.rse.2020.112117_bb0030) 2010; 34 González (10.1016/j.rse.2020.112117_bb0205) 2008; 23 Bazaglia Filho (10.1016/j.rse.2020.112117_bb1010) 2013; 37 Quinlan (10.1016/j.rse.2020.112117_bb0385) 1992 Walkley (10.1016/j.rse.2020.112117_bb0515) 1934; 37 Cherubin (10.1016/j.rse.2020.112117_bb0080) 2016; 11 Poppiel (10.1016/j.rse.2020.112117_bb0370) 2019; 11 Lobell (10.1016/j.rse.2020.112117_bb0280) 2002; 66 McBratney (10.1016/j.rse.2020.112117_bb0310) 2003; 117 de Arruda (10.1016/j.rse.2020.112117_bb0095) 2016; 73 Markham (10.1016/j.rse.2020.112117_bb0295) 2015; 7 Gallo (10.1016/j.rse.2020.112117_bb0185) 2018; 10 Siqueira (10.1016/j.rse.2020.112117_bb0455) 2015; 135 Viscarra Rossel (10.1016/j.rse.2020.112117_bb0500) 2006; 133 Blasch (10.1016/j.rse.2020.112117_bb0045) 2015; 7 Zhai (10.1016/j.rse.2020.112117_bb0535) 2006; 54 Pinheiro (10.1016/j.rse.2020.112117_bb0355) 2019; 11 Vaudour (10.1016/j.rse.2020.112117_bb0490) 2019; 223 Mathieu (10.1016/j.rse.2020.112117_bb0300) 1998; 66 Franco (10.1016/j.rse.2020.112117_bb0175) 2015; 515–516 |
References_xml | – volume: 37 start-page: 499 year: 1986 end-page: 510 ident: bb0025 article-title: Use of the Kubelka-Munk theory to study the influence of iron oxides on soil color publication-title: J. Soil Sci. – volume: 579 start-page: 1094 year: 2017 end-page: 1110 ident: bb0360 article-title: Assimilation of optical and radar remote sensing data in 3D mapping of soil properties over large areas publication-title: Sci. Total Environ. – volume: 215 start-page: 482 year: 2018 end-page: 494 ident: bb0540 article-title: Characterization of sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences publication-title: Remote Sens. Environ. – start-page: 343 year: 1992 end-page: 348 ident: bb0385 article-title: Learning wth continuous classes publication-title: Proceedings AI’92, 5th Australian Conference on Artificial Intelligence.World Scientific. World Scientiic – volume: 50 start-page: 1293 year: 2019 end-page: 1309 ident: bb0435 article-title: A comparative review of methods of using soil colors and their patterns for wetland ecology and management publication-title: Commun. Soil Sci. Plant Anal. – volume: 721 start-page: 137703 year: 2020 ident: bb0155 article-title: Improved digital soil mapping with multitemporal remotely sensed satellite data fusion: A case study in Iran publication-title: Sci. Total Environ. – volume: 47 start-page: 557 year: 2014 end-page: 573 ident: bb0005 article-title: Evaluation of Landsat TM5 multispectral data for automated mapping of surface soil texture and organic matter in GIS publication-title: Eur. J. Remote Sens. – volume: 219 start-page: 145 year: 2018 end-page: 161 ident: bb0085 article-title: The harmonized Landsat and Sentinel-2 surface reflectance data set publication-title: Remote Sens. Environ. – volume: 59 start-page: 14 year: 1997 end-page: 28 ident: bb0305 article-title: Soil color modeling for the visible and near-infrared bands of Landsat sensors using laboratory spectral measurements publication-title: Remote Sens. Environ. – volume: 170 start-page: 244 year: 2005 end-page: 255 ident: bb0075 article-title: Influence of soil moisture on near-infrared reflectance spectroscopic measurement of soil properties publication-title: Soil Sci. – volume: 66 start-page: 17 year: 1998 end-page: 28 ident: bb0300 article-title: Relationships between satellite-based radiometric indices simulated using laboratory reflectance data and typic soil color of an arid environment publication-title: Remote Sens. Environ. – volume: 212 start-page: 161 year: 2018 end-page: 175 ident: bb0130 article-title: Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images publication-title: Remote Sens. Environ. – year: 2018 ident: bb0265 article-title: Package “Cubist” – volume: 11 start-page: 2947 year: 2019 ident: bb0550 article-title: Soil organic carbon mapping using multispectral remote sensing data: prediction ability of data with different spatial and spectral resolutions publication-title: Remote Sens. – volume: 343 start-page: 269 year: 2019 end-page: 279 ident: bb0105 article-title: Is it possible to map subsurface soil attributes by satellite spectral transfer models? publication-title: Geoderma – volume: 11 start-page: 565 year: 2019 ident: bb0200 article-title: Use of Sentinel-2 time-series images for classification and uncertainty analysis of inherent biophysical property: case of soil texture mapping publication-title: Remote Sens. – volume: 37 start-page: 1136 year: 2013 end-page: 1148 ident: bb1010 article-title: Comparison between detailed digital and conventional soil maps of an area with a complex geology publication-title: Rev. Bras. Ciência do Solo do Solo – volume: 54 start-page: 53 year: 2006 end-page: 68 ident: bb0535 article-title: Soil texture classification with artificial neural networks operating on remote sensing data publication-title: Comput. Electron. Agric. – volume: 12 start-page: 1 year: 2017 end-page: 21 ident: bb0170 article-title: High resolution mapping of soil properties using remote sensing variables in South- Western Burkina Faso: A comparison of machine learning and multiple linear regression models publication-title: PLoS One – volume: 10 start-page: 1 year: 2018 end-page: 21 ident: bb0185 article-title: Multi-temporal satellite images on topsoil attribute quantification and the relationship with soil classes and geology publication-title: Remote Sens. – year: 2019 ident: bb0390 article-title: R: A Language and Environment for Statistical Computing – volume: 12 year: 2017 ident: bb0230 article-title: SoilGrids250m: global gridded soil information based on machine learning publication-title: PLoS One – volume: 34 start-page: 861 year: 2010 end-page: 870 ident: bb0030 article-title: Soil spectral library and its use in soil classification publication-title: Rev. Bras. Ciência do Solo – volume: 21 year: 2020 ident: bb0110 article-title: Using Landsat and soil clay content to map soil organic carbon of oxisols and Ultisols near São Paulo, Brazil publication-title: Geoderma Reg. – volume: 10 start-page: 4461 year: 2020 ident: bb0135 article-title: Bare Earth’s surface spectra as a proxy for soil resource monitoring publication-title: Sci. Rep. – volume: 27 start-page: 37 year: 1989 end-page: 46 ident: bb0150 article-title: Munsell soil color and soil reflectance in the visible spectral bands of landsat MSS and TM data publication-title: Remote Sens. Environ. – volume: 264 start-page: 301 year: 2016 end-page: 311 ident: bb0320 article-title: Digital soil mapping: A brief history and some lessons publication-title: Geoderma – volume: 348 start-page: 189 year: 2019 end-page: 206 ident: bb0365 article-title: Pedology and soil class mapping from proximal and remote sensed data publication-title: Geoderma – volume: 12 start-page: 1 year: 2018 ident: bb0425 article-title: Modeling soil organic matter and texture from satellite data in areas affected by wildfires and cropland abandonment in Aragón, Northern Spain publication-title: J. Appl. Remote. Sens. – year: 2018 ident: bb0325 article-title: The Soil Texture Wizard: R Functions for Plotting, Classifying, Transforming and Exploring Soil Texture Data – volume: 40 start-page: 6013 year: 1992 end-page: 6607 ident: bb0340 article-title: Color variations associated with rapid formation of goethite from proto-ferrihydrite at pH 13 and 40 C publication-title: Clay Clay Miner. – volume: 82 start-page: 101905 year: 2019 ident: bb0285 article-title: Satellite data integration for soil clay content modelling at a national scale publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 38 start-page: 1 year: 2018 end-page: 23 ident: bb0100 article-title: Sustainability of sugarcane production in Brazil. A review publication-title: Agron. Sustain. Dev. – volume: 75 start-page: 1201 year: 2011 end-page: 1213 ident: bb0215 article-title: Digital soil mapping and modeling at continental scales: finding solutions for global issues publication-title: Soil Sci. Soc. Am. J. – volume: 23 start-page: 75 year: 1989 end-page: 83 ident: bb0335 article-title: Study of colors and degrees of weathering of granitic rocks by visible diffuse reflectance spectroscopy publication-title: Geochem. J. – volume: 37 start-page: 29 year: 1934 end-page: 38 ident: bb0515 article-title: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method publication-title: Soil Sci. – volume: 28 start-page: 3813 year: 2007 end-page: 3829 ident: bb0120 article-title: Quantification of tropical soil attributes from ETM +/LANDSAT-7 data publication-title: Int. J. Remote Sens. – volume: 28 year: 1977 ident: bb0520 article-title: Canonical correlation in pedology: how useful? publication-title: J. Soil Sci. – volume: 223 start-page: 21 year: 2019 end-page: 33 ident: bb0490 article-title: Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems publication-title: Remote Sens. Environ. – year: 1989 ident: bb0235 article-title: An Introduction to Applied Geostatistics – start-page: 109 year: 1993 end-page: 126 ident: bb0400 article-title: Stratigraphic and hydraulic influences on soil color development publication-title: Soil Color, Special Publication No. 31. Soil Science Society of America, Madison, WI – year: 2015 ident: bb0245 article-title: World Reference Base for Soil Resources – volume: 11 start-page: 2121 year: 2019 ident: bb0065 article-title: Soil organic carbon mapping using LUCAS topsoil database and Sentinel-2 data: an approach to reduce soil moisture and crop residue effects publication-title: Remote Sens. – volume: 235 year: 2019 ident: bb0445 article-title: Deep learning-based fusion of Landsat-8 and Sentinel-2 images for a harmonized surface reflectance product publication-title: Remote Sens. Environ. – start-page: 187 year: 1999 end-page: 208 ident: bb0350 article-title: Block kriging publication-title: Geostatistics for Engineers and Earth Scientists – volume: 361 start-page: 114018 year: 2020 ident: bb0410 article-title: Multi-temporal bare surface image associated with transfer functions to support soil classification and mapping in southeastern Brazil publication-title: Geoderma – volume: 51 start-page: 1277 year: 1987 ident: bb0160 article-title: Calculation of soil color from reflectance Spectra1 publication-title: Soil Sci. Soc. Am. J. – volume: 7 start-page: 12635 year: 2015 end-page: 12653 ident: bb0485 article-title: Sentinel-2 for mapping iron absorption feature parameters publication-title: Remote Sens. – start-page: 12 year: 2017 ident: bb0290 article-title: Sen2Cor for Sentinel-2 publication-title: Image and Signal Processing for Remote Sensing – volume: 11 start-page: 2448 year: 2019 ident: bb0355 article-title: Assessment of phytoecological variability by red-edge spectral indices and soil-landscape relationships publication-title: Remote Sens. – volume: 23 start-page: 1 year: 2008 end-page: 14 ident: bb0205 article-title: CCA: an R package to extend canonical correlation analysis publication-title: J. Stat. Softw. – volume: 108 start-page: 49 year: 2002 end-page: 77 ident: bb0020 article-title: Spectrophotometric color measurement in situ in well drained sandy soils publication-title: Geoderma – volume: 12 start-page: 1369 year: 2020 ident: bb0430 article-title: Multispectral models from bare soil composites for mapping topsoil properties over Europe publication-title: Remote Sens. – volume: 86 start-page: 244 year: 2016 end-page: 252 ident: bb0250 article-title: Moisture effects on diffuse reflection infrared spectra of contrasting minerals and soils: A mechanistic interpretation publication-title: Vib. Spectrosc. – volume: 7 start-page: 11125 year: 2015 end-page: 11150 ident: bb0045 article-title: Organic matter modeling at the landscape scale based on multitemporal soil pattern analysis using RapidEye data publication-title: Remote Sens. – volume: 38 start-page: 521 year: 2003 end-page: 528 ident: bb0055 article-title: Determinação do teor de hematita no solo a partir de dados de colorimetria e radiometria publication-title: Pesqui. Agropecuária Bras. – year: 2017 ident: bb0475 article-title: Manual de Métodos de Análise de Solo – volume: 20 start-page: 1549 year: 1999 end-page: 1565 ident: bb0240 article-title: Use of disjunctive cokriging to estimate soil organic matter from Landsat thematic mapper image publication-title: Int. J. Remote Sens. – volume: 66 start-page: 722 year: 2002 ident: bb0280 article-title: Moisture effects on soil reflectance publication-title: Soil Sci. Soc. Am. J. – start-page: 166 year: 2005 end-page: 175 ident: bb0345 article-title: Pedometrics publication-title: Encyclopedia of Soils in the Environment – volume: 139 start-page: 232 year: 2016 end-page: 240 ident: bb0090 article-title: Spatial prediction of soil surface texture in a semiarid region using random forest and multiple linear regressions publication-title: Catena – start-page: 115 year: 2018 end-page: 153 ident: bb0465 article-title: Pedometric treatment of soil attributes, in: pedometrics publication-title: Springer Nat. – volume: 11 start-page: 2905 year: 2019 ident: bb0370 article-title: Mapping at 30 m resolution of soil attributes at multiple depths in Midwest Brazil publication-title: Remote Sens. – volume: 202 start-page: 18 year: 2017 end-page: 27 ident: bb0210 article-title: Google earth engine: planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. – volume: 117 start-page: 3 year: 2003 end-page: 52 ident: bb0310 article-title: On digital soil mapping publication-title: Geoderma – volume: 179 start-page: 54 year: 2016 end-page: 65 ident: bb0060 article-title: Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon publication-title: Remote Sens. Environ. – volume: 27 start-page: 2411 year: 2006 end-page: 2422 ident: bb0530 article-title: Development of topsoil grain size index for monitoring desertification in arid land using remote sensing publication-title: Int. J. Remote Sens. – volume: 205 start-page: 1 year: 2018 end-page: 17 ident: bb0420 article-title: Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014) publication-title: Remote Sens. Environ. – volume: 58 start-page: 826 year: 2020 end-page: 840 ident: bb0470 article-title: Red-edge band vegetation indices for leaf area index estimation from Sentinel-2/MSI imagery publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 81 start-page: 401 year: 2020 end-page: 418 ident: bb0255 article-title: Selecting appropriate machine learning methods for digital soil mapping publication-title: Appl. Math. Model. – volume: 10 start-page: 1340 year: 2018 ident: bb0220 article-title: Observations and recommendations for the calibration of Landsat 8 OLI and sentinel 2 MSI for improved data interoperability publication-title: Remote Sens. – volume: 135 start-page: 149 year: 2015 end-page: 162 ident: bb0455 article-title: Detailed mapping unit design based on soil–landscape relation and spatial variability of magnetic susceptibility and soil color publication-title: Catena – volume: 193 start-page: 104609 year: 2020 ident: bb0395 article-title: Color in subtropical brazilian soils as determined with a Munsell chart and by diffuse reflectance spectroscopy publication-title: Catena – volume: 10 start-page: 5297 year: 2019 ident: bb0415 article-title: Exposed soil and mineral map of the Australian continent revealing the land at its barest publication-title: Nat. Commun. – volume: 189 start-page: 556 year: 2017 ident: bb0380 article-title: Soil color indicates carbon and wetlands: developing a color-proxy for soil organic carbon and wetland boundaries on sandy coastal plains in South Africa publication-title: Environ. Monit. Assess. – year: 2002 ident: bb0405 article-title: Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction publication-title: Int. J. Remote Sens. – year: 2016 ident: bb0145 article-title: Programa Nacional de Solos do Brasil (PRONASOLOS). Rio de Janeiro – volume: 10 start-page: 1555 year: 2018 ident: bb0165 article-title: Improvement of clay and sand quantification based on a novel approach with a focus on multispectral satellite images publication-title: Remote Sens. – volume: 59 start-page: 488 year: 2013 end-page: 500 ident: bb0275 article-title: Spatial estimation of surface soil texture using remote sensing data publication-title: Soil Sci. Plant Nutr. – volume: 12 start-page: 1197 year: 2020 ident: bb0375 article-title: Soil color and mineralogy mapping using proximal and remote sensing in Midwest Brazil publication-title: Remote Sens. – volume: 9 year: 2014 ident: bb0225 article-title: SoilGrids1km — global soil information based on automated mapping publication-title: PLoS One – year: 2013 ident: bb0260 article-title: Applied Predictive Modeling, Springer – volume: 367 start-page: 107305 year: 2020 ident: bb0050 article-title: Digital mapping of soil parent material in a heterogeneous tropical area publication-title: Geomorphology – volume: 12 start-page: 1389 year: 2020 ident: bb0480 article-title: Employing a multi-input deep convolutional neural network to derive soil clay content from a synergy of multi-temporal optical and radar imagery data publication-title: Remote Sens. – volume: 11 start-page: 7063 year: 2011 end-page: 7081 ident: bb0115 article-title: Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content publication-title: Sensors – volume: 375 start-page: 114480 year: 2020 ident: bb0450 article-title: Effects of water, organic matter, and iron forms in mid-IR spectra of soils: assessments from laboratory to satellite-simulated data publication-title: Geoderma – volume: 162 start-page: 1 year: 2011 end-page: 19 ident: bb0330 article-title: The use of remote sensing in soil and terrain mapping — A review publication-title: Geoderma – year: 2007 ident: bb0270 article-title: Digital Soil Mapping: An Introductory Perspective – volume: 67 start-page: 289 year: 2003 end-page: 299 ident: bb0040 article-title: The spectral reflectance properties of soil structural crusts in the 1.2- to 2.5-μm spectral region publication-title: Soil Sci. Soc. Am. J. – volume: 225 start-page: 392 year: 2019 end-page: 402 ident: bb0460 article-title: Natural color representation of Sentinel-2 data publication-title: Remote Sens. Environ. – start-page: 35 year: 1993 end-page: 49 ident: bb1015 article-title: Correlations between field and laboratory measurements of soil color, in: Soil color publication-title: Springer Nat. – volume: 155 start-page: 198 year: 2016 end-page: 230 ident: bb0510 article-title: A global spectral library to characterize the world’s soil publication-title: Earth-Sci. Rev. – volume: 73 start-page: 266 year: 2016 end-page: 273 ident: bb0095 article-title: Digital soil mapping using reference area and artificial neural networks publication-title: Sci. Agric. – volume: 147 start-page: 267 year: 2019 end-page: 282 ident: bb0070 article-title: Evaluating the capability of the sentinel 2 data for soil organic carbon prediction in croplands publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 11 year: 2016 ident: bb0080 article-title: Soil quality indexing strategies for evaluating sugarcane expansion in Brazil publication-title: PLoS One – volume: 729 year: 2020 ident: bb0545 article-title: High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms publication-title: Sci. Total Environ. – volume: 515–516 start-page: 30 year: 2015 end-page: 38 ident: bb0175 article-title: Soil carbon, nitrogen and phosphorus changes under sugarcane expansion in Brazil publication-title: Sci. Total Environ. – volume: 13 start-page: 281 year: 1993 end-page: 284 ident: bb0015 article-title: About the soil line concept in remote sensing publication-title: Adv. Sp. Res. – volume: 61 start-page: 1 year: 1997 end-page: 15 ident: bb0035 article-title: The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400 - 2500 nm) during a controled decomposition process publication-title: Remote Sens. Environ. – volume: 189–190 start-page: 176 year: 2012 end-page: 185 ident: bb0190 article-title: Regional predictions of eight common soil properties and their spatial structures from hyperspectral Vis-NIR data publication-title: Geoderma – volume: 11 start-page: 3350 year: 2019 ident: bb0315 article-title: On soil capability, capacity, and condition publication-title: Sustainability – volume: 9 start-page: 1245 year: 2017 ident: bb0140 article-title: Barest pixel composite for agricultural areas using Landsat time series publication-title: Remote Sens. – volume: 71 start-page: 509 year: 2014 end-page: 520 ident: bb0125 article-title: Morphological interpretation of reflectance Spectrum (MIRS) using libraries looking towards soil classification publication-title: Sci. Agric. – volume: 185 start-page: 46 year: 2016 end-page: 56 ident: bb0495 article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product publication-title: Remote Sens. Environ. – volume: 22 start-page: 711 year: 2013 end-page: 728 ident: bb0010 article-title: Köppen’s climate classification map for Brazil publication-title: Meteorol. Z. – volume: 115 start-page: 4031 year: 2010 ident: bb0505 article-title: Mapping iron oxides and the color of Australian soil using visible–near-infrared reflectance spectra publication-title: J. Geophys. Res. – volume: 133 start-page: 320 year: 2006 end-page: 337 ident: bb0500 article-title: Colour space models for soil science publication-title: Geoderma – volume: 7 start-page: 2279 year: 2015 end-page: 2282 ident: bb0295 article-title: Landsat-8 sensor characterization and calibration publication-title: Remote Sens. – volume: 204 start-page: 18 year: 2018 end-page: 30 ident: bb0195 article-title: Sensitivity of clay content prediction to spectral configuration of VNIR/SWIR imaging data, from multispectral to hyperspectral scenarios publication-title: Remote Sens. Environ. – volume: 23 start-page: 1 year: 2008 ident: 10.1016/j.rse.2020.112117_bb0205 article-title: CCA: an R package to extend canonical correlation analysis publication-title: J. Stat. Softw. doi: 10.18637/jss.v023.i12 – volume: 361 start-page: 114018 year: 2020 ident: 10.1016/j.rse.2020.112117_bb0410 article-title: Multi-temporal bare surface image associated with transfer functions to support soil classification and mapping in southeastern Brazil publication-title: Geoderma doi: 10.1016/j.geoderma.2019.114018 – year: 2018 ident: 10.1016/j.rse.2020.112117_bb0265 – volume: 73 start-page: 266 year: 2016 ident: 10.1016/j.rse.2020.112117_bb0095 article-title: Digital soil mapping using reference area and artificial neural networks publication-title: Sci. Agric. doi: 10.1590/0103-9016-2015-0131 – volume: 59 start-page: 488 year: 2013 ident: 10.1016/j.rse.2020.112117_bb0275 article-title: Spatial estimation of surface soil texture using remote sensing data publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.2013.802643 – volume: 11 start-page: 3350 year: 2019 ident: 10.1016/j.rse.2020.112117_bb0315 article-title: On soil capability, capacity, and condition publication-title: Sustainability doi: 10.3390/su11123350 – volume: 81 start-page: 401 year: 2020 ident: 10.1016/j.rse.2020.112117_bb0255 article-title: Selecting appropriate machine learning methods for digital soil mapping publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.12.016 – volume: 23 start-page: 75 year: 1989 ident: 10.1016/j.rse.2020.112117_bb0335 article-title: Study of colors and degrees of weathering of granitic rocks by visible diffuse reflectance spectroscopy publication-title: Geochem. J. doi: 10.2343/geochemj.23.75 – volume: 135 start-page: 149 year: 2015 ident: 10.1016/j.rse.2020.112117_bb0455 article-title: Detailed mapping unit design based on soil–landscape relation and spatial variability of magnetic susceptibility and soil color publication-title: Catena doi: 10.1016/j.catena.2015.07.010 – volume: 13 start-page: 281 year: 1993 ident: 10.1016/j.rse.2020.112117_bb0015 article-title: About the soil line concept in remote sensing publication-title: Adv. Sp. Res. doi: 10.1016/0273-1177(93)90560-X – volume: 27 start-page: 37 year: 1989 ident: 10.1016/j.rse.2020.112117_bb0150 article-title: Munsell soil color and soil reflectance in the visible spectral bands of landsat MSS and TM data publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(89)90035-7 – volume: 28 year: 1977 ident: 10.1016/j.rse.2020.112117_bb0520 article-title: Canonical correlation in pedology: how useful? publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1977.tb02306.x – volume: 189–190 start-page: 176 year: 2012 ident: 10.1016/j.rse.2020.112117_bb0190 article-title: Regional predictions of eight common soil properties and their spatial structures from hyperspectral Vis-NIR data publication-title: Geoderma doi: 10.1016/j.geoderma.2012.05.023 – volume: 185 start-page: 46 year: 2016 ident: 10.1016/j.rse.2020.112117_bb0495 article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.04.008 – volume: 12 year: 2017 ident: 10.1016/j.rse.2020.112117_bb0230 article-title: SoilGrids250m: global gridded soil information based on machine learning publication-title: PLoS One doi: 10.1371/journal.pone.0169748 – volume: 9 year: 2014 ident: 10.1016/j.rse.2020.112117_bb0225 article-title: SoilGrids1km — global soil information based on automated mapping publication-title: PLoS One doi: 10.1371/journal.pone.0105992 – volume: 133 start-page: 320 year: 2006 ident: 10.1016/j.rse.2020.112117_bb0500 article-title: Colour space models for soil science publication-title: Geoderma doi: 10.1016/j.geoderma.2005.07.017 – volume: 9 start-page: 1245 year: 2017 ident: 10.1016/j.rse.2020.112117_bb0140 article-title: Barest pixel composite for agricultural areas using Landsat time series publication-title: Remote Sens. doi: 10.3390/rs9121245 – year: 2019 ident: 10.1016/j.rse.2020.112117_bb0390 – volume: 108 start-page: 49 year: 2002 ident: 10.1016/j.rse.2020.112117_bb0020 article-title: Spectrophotometric color measurement in situ in well drained sandy soils publication-title: Geoderma doi: 10.1016/S0016-7061(02)00121-0 – volume: 10 start-page: 4461 year: 2020 ident: 10.1016/j.rse.2020.112117_bb0135 article-title: Bare Earth’s surface spectra as a proxy for soil resource monitoring publication-title: Sci. Rep. doi: 10.1038/s41598-020-61408-1 – volume: 7 start-page: 2279 year: 2015 ident: 10.1016/j.rse.2020.112117_bb0295 article-title: Landsat-8 sensor characterization and calibration publication-title: Remote Sens. doi: 10.3390/rs70302279 – start-page: 166 year: 2005 ident: 10.1016/j.rse.2020.112117_bb0345 article-title: Pedometrics – volume: 50 start-page: 1293 year: 2019 ident: 10.1016/j.rse.2020.112117_bb0435 article-title: A comparative review of methods of using soil colors and their patterns for wetland ecology and management publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103624.2019.1604737 – volume: 40 start-page: 6013 year: 1992 ident: 10.1016/j.rse.2020.112117_bb0340 article-title: Color variations associated with rapid formation of goethite from proto-ferrihydrite at pH 13 and 40 C publication-title: Clay Clay Miner. doi: 10.1346/CCMN.1992.0400515 – volume: 12 start-page: 1389 year: 2020 ident: 10.1016/j.rse.2020.112117_bb0480 article-title: Employing a multi-input deep convolutional neural network to derive soil clay content from a synergy of multi-temporal optical and radar imagery data publication-title: Remote Sens. doi: 10.3390/rs12091389 – year: 2007 ident: 10.1016/j.rse.2020.112117_bb0270 – volume: 75 start-page: 1201 year: 2011 ident: 10.1016/j.rse.2020.112117_bb0215 article-title: Digital soil mapping and modeling at continental scales: finding solutions for global issues publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2011.0025 – volume: 11 start-page: 565 year: 2019 ident: 10.1016/j.rse.2020.112117_bb0200 article-title: Use of Sentinel-2 time-series images for classification and uncertainty analysis of inherent biophysical property: case of soil texture mapping publication-title: Remote Sens. doi: 10.3390/rs11050565 – volume: 162 start-page: 1 year: 2011 ident: 10.1016/j.rse.2020.112117_bb0330 article-title: The use of remote sensing in soil and terrain mapping — A review publication-title: Geoderma doi: 10.1016/j.geoderma.2010.12.018 – volume: 28 start-page: 3813 year: 2007 ident: 10.1016/j.rse.2020.112117_bb0120 article-title: Quantification of tropical soil attributes from ETM +/LANDSAT-7 data publication-title: Int. J. Remote Sens. doi: 10.1080/01431160601121469 – year: 2017 ident: 10.1016/j.rse.2020.112117_bb0475 – volume: 12 start-page: 1197 year: 2020 ident: 10.1016/j.rse.2020.112117_bb0375 article-title: Soil color and mineralogy mapping using proximal and remote sensing in Midwest Brazil publication-title: Remote Sens. doi: 10.3390/rs12071197 – volume: 11 start-page: 2947 year: 2019 ident: 10.1016/j.rse.2020.112117_bb0550 article-title: Soil organic carbon mapping using multispectral remote sensing data: prediction ability of data with different spatial and spectral resolutions publication-title: Remote Sens. doi: 10.3390/rs11242947 – volume: 202 start-page: 18 year: 2017 ident: 10.1016/j.rse.2020.112117_bb0210 article-title: Google earth engine: planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.031 – volume: 47 start-page: 557 year: 2014 ident: 10.1016/j.rse.2020.112117_bb0005 article-title: Evaluation of Landsat TM5 multispectral data for automated mapping of surface soil texture and organic matter in GIS publication-title: Eur. J. Remote Sens. doi: 10.5721/EuJRS20144731 – volume: 147 start-page: 267 year: 2019 ident: 10.1016/j.rse.2020.112117_bb0070 article-title: Evaluating the capability of the sentinel 2 data for soil organic carbon prediction in croplands publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.11.026 – start-page: 343 year: 1992 ident: 10.1016/j.rse.2020.112117_bb0385 article-title: Learning wth continuous classes – volume: 367 start-page: 107305 year: 2020 ident: 10.1016/j.rse.2020.112117_bb0050 article-title: Digital mapping of soil parent material in a heterogeneous tropical area publication-title: Geomorphology doi: 10.1016/j.geomorph.2020.107305 – volume: 139 start-page: 232 year: 2016 ident: 10.1016/j.rse.2020.112117_bb0090 article-title: Spatial prediction of soil surface texture in a semiarid region using random forest and multiple linear regressions publication-title: Catena doi: 10.1016/j.catena.2016.01.001 – volume: 37 start-page: 29 year: 1934 ident: 10.1016/j.rse.2020.112117_bb0515 article-title: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method publication-title: Soil Sci. doi: 10.1097/00010694-193401000-00003 – year: 1989 ident: 10.1016/j.rse.2020.112117_bb0235 – volume: 348 start-page: 189 year: 2019 ident: 10.1016/j.rse.2020.112117_bb0365 article-title: Pedology and soil class mapping from proximal and remote sensed data publication-title: Geoderma doi: 10.1016/j.geoderma.2019.04.028 – volume: 11 start-page: 2121 year: 2019 ident: 10.1016/j.rse.2020.112117_bb0065 article-title: Soil organic carbon mapping using LUCAS topsoil database and Sentinel-2 data: an approach to reduce soil moisture and crop residue effects publication-title: Remote Sens. doi: 10.3390/rs11182121 – volume: 11 start-page: 7063 year: 2011 ident: 10.1016/j.rse.2020.112117_bb0115 article-title: Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content publication-title: Sensors doi: 10.3390/s110707063 – volume: 59 start-page: 14 year: 1997 ident: 10.1016/j.rse.2020.112117_bb0305 article-title: Soil color modeling for the visible and near-infrared bands of Landsat sensors using laboratory spectral measurements publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00075-2 – volume: 71 start-page: 509 year: 2014 ident: 10.1016/j.rse.2020.112117_bb0125 article-title: Morphological interpretation of reflectance Spectrum (MIRS) using libraries looking towards soil classification publication-title: Sci. Agric. doi: 10.1590/0103-9016-2013-0365 – volume: 117 start-page: 3 year: 2003 ident: 10.1016/j.rse.2020.112117_bb0310 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – volume: 7 start-page: 11125 year: 2015 ident: 10.1016/j.rse.2020.112117_bb0045 article-title: Organic matter modeling at the landscape scale based on multitemporal soil pattern analysis using RapidEye data publication-title: Remote Sens. doi: 10.3390/rs70911125 – year: 2015 ident: 10.1016/j.rse.2020.112117_bb0245 – volume: 223 start-page: 21 year: 2019 ident: 10.1016/j.rse.2020.112117_bb0490 article-title: Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.01.006 – year: 2002 ident: 10.1016/j.rse.2020.112117_bb0405 article-title: Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction publication-title: Int. J. Remote Sens. doi: 10.1080/01431160110115834 – volume: 235 year: 2019 ident: 10.1016/j.rse.2020.112117_bb0445 article-title: Deep learning-based fusion of Landsat-8 and Sentinel-2 images for a harmonized surface reflectance product publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111425 – volume: 67 start-page: 289 year: 2003 ident: 10.1016/j.rse.2020.112117_bb0040 article-title: The spectral reflectance properties of soil structural crusts in the 1.2- to 2.5-μm spectral region publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2003.2890 – volume: 37 start-page: 499 year: 1986 ident: 10.1016/j.rse.2020.112117_bb0025 article-title: Use of the Kubelka-Munk theory to study the influence of iron oxides on soil color publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1986.tb00382.x – volume: 22 start-page: 711 year: 2013 ident: 10.1016/j.rse.2020.112117_bb0010 article-title: Köppen’s climate classification map for Brazil publication-title: Meteorol. Z. doi: 10.1127/0941-2948/2013/0507 – volume: 11 start-page: 2448 year: 2019 ident: 10.1016/j.rse.2020.112117_bb0355 article-title: Assessment of phytoecological variability by red-edge spectral indices and soil-landscape relationships publication-title: Remote Sens. doi: 10.3390/rs11202448 – volume: 54 start-page: 53 year: 2006 ident: 10.1016/j.rse.2020.112117_bb0535 article-title: Soil texture classification with artificial neural networks operating on remote sensing data publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2006.08.001 – volume: 66 start-page: 17 year: 1998 ident: 10.1016/j.rse.2020.112117_bb0300 article-title: Relationships between satellite-based radiometric indices simulated using laboratory reflectance data and typic soil color of an arid environment publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(98)00030-3 – volume: 193 start-page: 104609 year: 2020 ident: 10.1016/j.rse.2020.112117_bb0395 article-title: Color in subtropical brazilian soils as determined with a Munsell chart and by diffuse reflectance spectroscopy publication-title: Catena doi: 10.1016/j.catena.2020.104609 – volume: 51 start-page: 1277 year: 1987 ident: 10.1016/j.rse.2020.112117_bb0160 article-title: Calculation of soil color from reflectance Spectra1 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1987.03615995005100050033x – volume: 11 start-page: 2905 year: 2019 ident: 10.1016/j.rse.2020.112117_bb0370 article-title: Mapping at 30 m resolution of soil attributes at multiple depths in Midwest Brazil publication-title: Remote Sens. doi: 10.3390/rs11242905 – volume: 21 year: 2020 ident: 10.1016/j.rse.2020.112117_bb0110 article-title: Using Landsat and soil clay content to map soil organic carbon of oxisols and Ultisols near São Paulo, Brazil publication-title: Geoderma Reg. – volume: 66 start-page: 722 year: 2002 ident: 10.1016/j.rse.2020.112117_bb0280 article-title: Moisture effects on soil reflectance publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2002.7220 – volume: 204 start-page: 18 year: 2018 ident: 10.1016/j.rse.2020.112117_bb0195 article-title: Sensitivity of clay content prediction to spectral configuration of VNIR/SWIR imaging data, from multispectral to hyperspectral scenarios publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.10.047 – volume: 86 start-page: 244 year: 2016 ident: 10.1016/j.rse.2020.112117_bb0250 article-title: Moisture effects on diffuse reflection infrared spectra of contrasting minerals and soils: A mechanistic interpretation publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2016.07.005 – volume: 343 start-page: 269 year: 2019 ident: 10.1016/j.rse.2020.112117_bb0105 article-title: Is it possible to map subsurface soil attributes by satellite spectral transfer models? publication-title: Geoderma doi: 10.1016/j.geoderma.2019.01.025 – volume: 20 start-page: 1549 year: 1999 ident: 10.1016/j.rse.2020.112117_bb0240 article-title: Use of disjunctive cokriging to estimate soil organic matter from Landsat thematic mapper image publication-title: Int. J. Remote Sens. doi: 10.1080/014311699212605 – volume: 38 start-page: 521 year: 2003 ident: 10.1016/j.rse.2020.112117_bb0055 article-title: Determinação do teor de hematita no solo a partir de dados de colorimetria e radiometria publication-title: Pesqui. Agropecuária Bras. doi: 10.1590/S0100-204X2003000400011 – volume: 11 year: 2016 ident: 10.1016/j.rse.2020.112117_bb0080 article-title: Soil quality indexing strategies for evaluating sugarcane expansion in Brazil publication-title: PLoS One doi: 10.1371/journal.pone.0150860 – volume: 215 start-page: 482 year: 2018 ident: 10.1016/j.rse.2020.112117_bb0540 article-title: Characterization of sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.04.031 – volume: 12 start-page: 1 year: 2017 ident: 10.1016/j.rse.2020.112117_bb0170 article-title: High resolution mapping of soil properties using remote sensing variables in South- Western Burkina Faso: A comparison of machine learning and multiple linear regression models publication-title: PLoS One doi: 10.1371/journal.pone.0170478 – volume: 515–516 start-page: 30 year: 2015 ident: 10.1016/j.rse.2020.112117_bb0175 article-title: Soil carbon, nitrogen and phosphorus changes under sugarcane expansion in Brazil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.02.025 – volume: 579 start-page: 1094 year: 2017 ident: 10.1016/j.rse.2020.112117_bb0360 article-title: Assimilation of optical and radar remote sensing data in 3D mapping of soil properties over large areas publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.11.078 – volume: 10 start-page: 1340 year: 2018 ident: 10.1016/j.rse.2020.112117_bb0220 article-title: Observations and recommendations for the calibration of Landsat 8 OLI and sentinel 2 MSI for improved data interoperability publication-title: Remote Sens. doi: 10.3390/rs10091340 – volume: 82 start-page: 101905 year: 2019 ident: 10.1016/j.rse.2020.112117_bb0285 article-title: Satellite data integration for soil clay content modelling at a national scale publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2019.101905 – volume: 10 start-page: 5297 year: 2019 ident: 10.1016/j.rse.2020.112117_bb0415 article-title: Exposed soil and mineral map of the Australian continent revealing the land at its barest publication-title: Nat. Commun. doi: 10.1038/s41467-019-13276-1 – volume: 219 start-page: 145 year: 2018 ident: 10.1016/j.rse.2020.112117_bb0085 article-title: The harmonized Landsat and Sentinel-2 surface reflectance data set publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.09.002 – volume: 38 start-page: 1 year: 2018 ident: 10.1016/j.rse.2020.112117_bb0100 article-title: Sustainability of sugarcane production in Brazil. A review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-018-0490-x – volume: 12 start-page: 1369 year: 2020 ident: 10.1016/j.rse.2020.112117_bb0430 article-title: Multispectral models from bare soil composites for mapping topsoil properties over Europe publication-title: Remote Sens. doi: 10.3390/rs12091369 – volume: 375 start-page: 114480 year: 2020 ident: 10.1016/j.rse.2020.112117_bb0450 article-title: Effects of water, organic matter, and iron forms in mid-IR spectra of soils: assessments from laboratory to satellite-simulated data publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114480 – volume: 12 start-page: 1 year: 2018 ident: 10.1016/j.rse.2020.112117_bb0425 article-title: Modeling soil organic matter and texture from satellite data in areas affected by wildfires and cropland abandonment in Aragón, Northern Spain publication-title: J. Appl. Remote. Sens. doi: 10.1117/1.JRS.12.042803 – year: 2018 ident: 10.1016/j.rse.2020.112117_bb0325 – volume: 34 start-page: 861 year: 2010 ident: 10.1016/j.rse.2020.112117_bb0030 article-title: Soil spectral library and its use in soil classification publication-title: Rev. Bras. Ciência do Solo doi: 10.1590/S0100-06832010000300027 – volume: 10 start-page: 1555 year: 2018 ident: 10.1016/j.rse.2020.112117_bb0165 article-title: Improvement of clay and sand quantification based on a novel approach with a focus on multispectral satellite images publication-title: Remote Sens. doi: 10.3390/rs10101555 – volume: 37 start-page: 1136 year: 2013 ident: 10.1016/j.rse.2020.112117_bb1010 article-title: Comparison between detailed digital and conventional soil maps of an area with a complex geology publication-title: Rev. Bras. Ciência do Solo do Solo doi: 10.1590/S0100-06832013000500003 – volume: 115 start-page: 4031 year: 2010 ident: 10.1016/j.rse.2020.112117_bb0505 article-title: Mapping iron oxides and the color of Australian soil using visible–near-infrared reflectance spectra publication-title: J. Geophys. Res. doi: 10.1029/2009JF001645 – volume: 189 start-page: 556 year: 2017 ident: 10.1016/j.rse.2020.112117_bb0380 article-title: Soil color indicates carbon and wetlands: developing a color-proxy for soil organic carbon and wetland boundaries on sandy coastal plains in South Africa publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-017-6249-z – start-page: 12 year: 2017 ident: 10.1016/j.rse.2020.112117_bb0290 article-title: Sen2Cor for Sentinel-2 – year: 2016 ident: 10.1016/j.rse.2020.112117_bb0145 – start-page: 187 year: 1999 ident: 10.1016/j.rse.2020.112117_bb0350 article-title: Block kriging – volume: 27 start-page: 2411 year: 2006 ident: 10.1016/j.rse.2020.112117_bb0530 article-title: Development of topsoil grain size index for monitoring desertification in arid land using remote sensing publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600554363 – start-page: 115 year: 2018 ident: 10.1016/j.rse.2020.112117_bb0465 article-title: Pedometric treatment of soil attributes, in: pedometrics publication-title: Springer Nat. – volume: 264 start-page: 301 year: 2016 ident: 10.1016/j.rse.2020.112117_bb0320 article-title: Digital soil mapping: A brief history and some lessons publication-title: Geoderma doi: 10.1016/j.geoderma.2015.07.017 – volume: 10 start-page: 1 year: 2018 ident: 10.1016/j.rse.2020.112117_bb0185 article-title: Multi-temporal satellite images on topsoil attribute quantification and the relationship with soil classes and geology publication-title: Remote Sens. doi: 10.3390/rs10101571 – volume: 7 start-page: 12635 year: 2015 ident: 10.1016/j.rse.2020.112117_bb0485 article-title: Sentinel-2 for mapping iron absorption feature parameters publication-title: Remote Sens. doi: 10.3390/rs71012635 – start-page: 35 year: 1993 ident: 10.1016/j.rse.2020.112117_bb1015 article-title: Correlations between field and laboratory measurements of soil color, in: Soil color publication-title: Springer Nat. – volume: 61 start-page: 1 year: 1997 ident: 10.1016/j.rse.2020.112117_bb0035 article-title: The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400 - 2500 nm) during a controled decomposition process publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00120-4 – volume: 179 start-page: 54 year: 2016 ident: 10.1016/j.rse.2020.112117_bb0060 article-title: Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.03.025 – volume: 170 start-page: 244 year: 2005 ident: 10.1016/j.rse.2020.112117_bb0075 article-title: Influence of soil moisture on near-infrared reflectance spectroscopic measurement of soil properties publication-title: Soil Sci. doi: 10.1097/00010694-200504000-00003 – volume: 225 start-page: 392 year: 2019 ident: 10.1016/j.rse.2020.112117_bb0460 article-title: Natural color representation of Sentinel-2 data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.01.036 – year: 2013 ident: 10.1016/j.rse.2020.112117_bb0260 – volume: 155 start-page: 198 year: 2016 ident: 10.1016/j.rse.2020.112117_bb0510 article-title: A global spectral library to characterize the world’s soil publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2016.01.012 – volume: 721 start-page: 137703 year: 2020 ident: 10.1016/j.rse.2020.112117_bb0155 article-title: Improved digital soil mapping with multitemporal remotely sensed satellite data fusion: A case study in Iran publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137703 – volume: 729 year: 2020 ident: 10.1016/j.rse.2020.112117_bb0545 article-title: High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138244 – volume: 205 start-page: 1 year: 2018 ident: 10.1016/j.rse.2020.112117_bb0420 article-title: Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.11.004 – volume: 58 start-page: 826 year: 2020 ident: 10.1016/j.rse.2020.112117_bb0470 article-title: Red-edge band vegetation indices for leaf area index estimation from Sentinel-2/MSI imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2940826 – start-page: 109 year: 1993 ident: 10.1016/j.rse.2020.112117_bb0400 article-title: Stratigraphic and hydraulic influences on soil color development – volume: 212 start-page: 161 year: 2018 ident: 10.1016/j.rse.2020.112117_bb0130 article-title: Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.04.047 |
SSID | ssj0015871 |
Score | 2.5992126 |
Snippet | There is a worldwide need for detailed spatial information to support soil mapping, mainly in the tropics, where main agricultural areas are concentrated. In... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112117 |
SubjectTerms | Agriculture Algorithms Bare soil pixels Brazil clay Digital soil mapping environment Image acquisition Landsat Landsat satellites Machine learning Mapping Organic matter Pixels Precision agriculture prediction Remote sensing sand Satellite imagery Satellites silt soil color soil heterogeneity Soil mapping Soil maps Soil organic matter Soil properties Soil surveys Spatial data Spatial resolution Spectra Spectral resolution Time series Topsoil Tropical environments |
Title | Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: A comparison |
URI | https://dx.doi.org/10.1016/j.rse.2020.112117 https://www.proquest.com/docview/2488251283 https://www.proquest.com/docview/2552006785 |
Volume | 252 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemIQQvCAoThTEZiScksyaxnYS3atooX3sZk_ZmOfZZdCrpaFqkvvC3c-c4RSC0B96i-JxEvvOdL_fxY-xVQHUYJqESurBaSFmCsEUOAnSpgws1aEmFwp_P9exSfrhSV3vsZKiFobTKpPt7nR61dbpznFbz-GY-pxrfQpLE5RTdq2MRH76LpPzNz12aR6aqskfNK6Qg6iGyGXO8Vh11ysxjIU0WMcv-aZv-0tLR9Jw9ZA_SmZFP-896xPagHbGD098lajiY9mg3YvcSrvnX7YjdfReBe7ePmb9Yzhf8B3rGfWPuLbet5983tk8WivzhZNI8x4sLyiFqYSHySPaJ6oHtWlRIsQLe0aPm31ATdW_5lLsdlOETdnl2-uVkJhLCgnCFqtbCZspntqZgYGmdbyoL6NH4PGQSLLoeTgcvg85r9HqczAHdG1mEEJoGIHi0fgdsv1228JRxRV10aoDKK5AOVBUmTWicbkBBcHU5ZpNhbY1L7ccJBWNhhjyza4PsMMQO07NjzF7vptz0vTduI5YDw8wfAmTQNtw27XBgrkm7tzM5ajU691XFmL3cDeO-o2CKbWG5QRpFDavQ1Ktn__fm5-x-Tvkx8XfOIdtfrzbwAg846-YoSvARuzN9_3F2_gtrivo4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemITReEBQmCoMZiScksyax87G3adpWoNvLNmlvlmOftaKSjqZF6gt_--4cpwiE9sBbFJ-TyOe78-U-fox98KgO_ciXIs9MLqQsQJgsBQF5kXvrK8glFQqfX-Tja_nlRt1sseO-FobSKqPu73R60NbxzkFczYO76ZRqfDNJOy6l6F5FRXyPJIovwRh8-rXJ80hUWXSweZkURN6HNkOS16KlVplpqKRJAmjZP43TX2o62J7TZ-xpPDTyo-67nrMtaAZs9-R3jRoORiFtB2wnApvfrgfs8VlA7l2_YO5yPp3xn-gad52519w0jv9YmS5bKDCIk01zHC8uKYmogZlIA9mECoLNUpRIsQDe0qOm31EVtYf8iNsNluFLdn16cnU8FhFiQdhMlUthEuUSU1E0sDDW1aUBdGlc6hMJBn0Pm3snfZ5W6PZYmQL6NzLz3tc1gHdo_nbZdjNv4BXjitroVAClUyAtqNKPal_bvAYF3lbFkI36tdU29h8nGIyZ7hPNvmlkhyZ26I4dQ_ZxM-Wua77xELHsGab_2EEajcND0_Z65uoovq1OUa3Rwa_Mhuz9ZhgFj6IppoH5CmkUdaxCW69e_9-b99nO-Op8oiefL76-YU9SSpYJ_3b22PZysYK3eNpZ1u_Cbr4HHFD7xg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+variability+and+quantification+based+on+Sentinel-2+and+Landsat-8+bare+soil+images%3A+A+comparison&rft.jtitle=Remote+sensing+of+environment&rft.au=Silvero%2C+N%C3%A9lida+Elizabet+Qui%C3%B1onez&rft.au=Dematt%C3%AA%2C+Jos%C3%A9+Alexandre+Melo&rft.au=Amorim%2C+Merilyn+Taynara+Accorsi&rft.au=Santos%2C+Natasha+Valadares+dos&rft.date=2021-01-01&rft.issn=0034-4257&rft.volume=252&rft.spage=112117&rft_id=info:doi/10.1016%2Fj.rse.2020.112117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2020_112117 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |