Assessing Wheat Frost Risk with the Support of GIS: An Approach Coupling a Growing Season Meteorological Index and a Hybrid Fuzzy Neural Network Model

Crop frost, one kind of agro-meteorological disaster, often causes significant loss to agriculture. Thus, evaluating the risk of wheat frost aids scientific response to such disasters, which will ultimately promote food security. Therefore, this paper aims to propose an integrated risk assessment mo...

Full description

Saved in:
Bibliographic Details
Published inSustainability Vol. 8; no. 12; p. 1308
Main Authors Yue, Yaojie, Zhou, Yao, Wang, Jing’ai, Ye, Xinyue
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 13.12.2016
Subjects
Online AccessGet full text
ISSN2071-1050
2071-1050
DOI10.3390/su8121308

Cover

Abstract Crop frost, one kind of agro-meteorological disaster, often causes significant loss to agriculture. Thus, evaluating the risk of wheat frost aids scientific response to such disasters, which will ultimately promote food security. Therefore, this paper aims to propose an integrated risk assessment model of wheat frost, based on meteorological data and a hybrid fuzzy neural network model, taking China as an example. With the support of a geographic information system (GIS), a comprehensive method was put forward. Firstly, threshold temperatures of wheat frost at three growth stages were proposed, referring to phenology in different wheat growing areas and the meteorological standard of Degree of Crop Frost Damage (QX/T 88-2008). Secondly, a vulnerability curve illustrating the relationship between frost hazard intensity and wheat yield loss was worked out using hybrid fuzzy neural network model. Finally, the wheat frost risk was assessed in China. Results show that our proposed threshold temperatures are more suitable than using 0 °C in revealing the spatial pattern of frost occurrence, and hybrid fuzzy neural network model can further improve the accuracy of the vulnerability curve of wheat subject to frost with limited historical hazard records. Both these advantages ensure the precision of wheat frost risk assessment. In China, frost widely distributes in 85.00% of the total winter wheat planting area, but mainly to the north of 35°N; the southern boundary of wheat frost has moved northward, potentially because of the warming climate. There is a significant trend that suggests high risk areas will enlarge and gradually expand to the south, with the risk levels increasing from a return period of 2 years to 20 years. Among all wheat frost risk levels, the regions with loss rate ranges from 35.00% to 45.00% account for the largest area proportion, ranging from 58.60% to 63.27%. We argue that for wheat and other frost-affected crops, it is necessary to take the risk level, physical exposure, and growth stages of crops into consideration together for frost disaster risk prevention planning.
AbstractList Crop frost, one kind of agro-meteorological disaster, often causes significant loss to agriculture. Thus, evaluating the risk of wheat frost aids scientific response to such disasters, which will ultimately promote food security. Therefore, this paper aims to propose an integrated risk assessment model of wheat frost, based on meteorological data and a hybrid fuzzy neural network model, taking China as an example. With the support of a geographic information system (GIS), a comprehensive method was put forward. Firstly, threshold temperatures of wheat frost at three growth stages were proposed, referring to phenology in different wheat growing areas and the meteorological standard of Degree of Crop Frost Damage (QX/T 88-2008). Secondly, a vulnerability curve illustrating the relationship between frost hazard intensity and wheat yield loss was worked out using hybrid fuzzy neural network model. Finally, the wheat frost risk was assessed in China. Results show that our proposed threshold temperatures are more suitable than using 0 °C in revealing the spatial pattern of frost occurrence, and hybrid fuzzy neural network model can further improve the accuracy of the vulnerability curve of wheat subject to frost with limited historical hazard records. Both these advantages ensure the precision of wheat frost risk assessment. In China, frost widely distributes in 85.00% of the total winter wheat planting area, but mainly to the north of 35°N; the southern boundary of wheat frost has moved northward, potentially because of the warming climate. There is a significant trend that suggests high risk areas will enlarge and gradually expand to the south, with the risk levels increasing from a return period of 2 years to 20 years. Among all wheat frost risk levels, the regions with loss rate ranges from 35.00% to 45.00% account for the largest area proportion, ranging from 58.60% to 63.27%. We argue that for wheat and other frost-affected crops, it is necessary to take the risk level, physical exposure, and growth stages of crops into consideration together for frost disaster risk prevention planning.
Crop frost, one kind of agro-meteorological disaster, often causes significant loss to agriculture. Thus, evaluating the risk of wheat frost aids scientific response to such disasters, which will ultimately promote food security. Therefore, this paper aims to propose an integrated risk assessment model of wheat frost, based on meteorological data and a hybrid fuzzy neural network model, taking China as an example. With the support of a geographic information system (GIS), a comprehensive method was put forward. Firstly, threshold temperatures of wheat frost at three growth stages were proposed, referring to phenology in different wheat growing areas and the meteorological standard of Degree of Crop Frost Damage (QX/T 88-2008). Secondly, a vulnerability curve illustrating the relationship between frost hazard intensity and wheat yield loss was worked out using hybrid fuzzy neural network model. Finally, the wheat frost risk was assessed in China. Results show that our proposed threshold temperatures are more suitable than using 0 degree C in revealing the spatial pattern of frost occurrence, and hybrid fuzzy neural network model can further improve the accuracy of the vulnerability curve of wheat subject to frost with limited historical hazard records. Both these advantages ensure the precision of wheat frost risk assessment. In China, frost widely distributes in 85.00% of the total winter wheat planting area, but mainly to the north of 35 degree N; the southern boundary of wheat frost has moved northward, potentially because of the warming climate. There is a significant trend that suggests high risk areas will enlarge and gradually expand to the south, with the risk levels increasing from a return period of 2 years to 20 years. Among all wheat frost risk levels, the regions with loss rate ranges from 35.00% to 45.00% account for the largest area proportion, ranging from 58.60% to 63.27%. We argue that for wheat and other frost-affected crops, it is necessary to take the risk level, physical exposure, and growth stages of crops into consideration together for frost disaster risk prevention planning.
Author Zhou, Yao
Wang, Jing’ai
Yue, Yaojie
Ye, Xinyue
Author_xml – sequence: 1
  givenname: Yaojie
  orcidid: 0000-0001-5198-1281
  surname: Yue
  fullname: Yue, Yaojie
– sequence: 2
  givenname: Yao
  surname: Zhou
  fullname: Zhou, Yao
– sequence: 3
  givenname: Jing’ai
  surname: Wang
  fullname: Wang, Jing’ai
– sequence: 4
  givenname: Xinyue
  orcidid: 0000-0001-8838-9476
  surname: Ye
  fullname: Ye, Xinyue
BookMark eNqF0c1qGzEQB3BRUmjq5tA3GOglPbiRVpZWm5sxtWPIB8QJOS6KdjZWspE2khbXeZA-b2VSSgmB6KIB_Ubwn_lM9px3SMhXRn9wXtGjOChWME7VB7Jf0JKNGRV077_6EzmI8Z7mwzmrmNwnv6cxYozW3cHNGnWCefAxwaWND7CxaQ1pjbAa-t6HBL6FxXJ1DFMH074PXps1zPzQd7t2DYvgN7tqhTp6B2eY0Aff-TtrdAdL1-Av0K7J8mR7G2wD8-H5eQvnOIT8fo5p48MDnPkGuy_kY6u7iAd_7xG5nv-8mp2MTy8Wy9n0dGy4UGmsmpKyshRKl7KQFTeyVZrmuIa2VdMqNjGCqbJhlZ6YRlLBysIYrlFySeWt4SNy-PJvTvM0YEz1o40Gu0479EOsC05FwaUoxLuUKak4o3mqmX57Re_9EFwOkpXIalKoMqvvL8rkkceAbd0H-6jDtma03u2z_rfPbI9eWWOTTta7FLTt3uj4A8nXook
CitedBy_id crossref_primary_10_1007_s00024_020_02652_4
crossref_primary_10_3390_ijms232214099
crossref_primary_10_3390_rs13020273
crossref_primary_10_1016_j_stress_2024_100597
crossref_primary_10_3390_ijms242115892
crossref_primary_10_3390_heritage7060140
crossref_primary_10_3390_su131810295
crossref_primary_10_3390_plants12244170
crossref_primary_10_3390_plants12233954
crossref_primary_10_1007_s00484_023_02534_z
crossref_primary_10_1016_j_plaphy_2023_107646
crossref_primary_10_1111_ppl_14069
crossref_primary_10_15407_dopovidi2024_03_069
crossref_primary_10_1016_j_agrformet_2018_06_006
crossref_primary_10_1002_joc_7313
crossref_primary_10_1016_j_jag_2019_101971
crossref_primary_10_3389_fpls_2023_1221466
crossref_primary_10_1007_s13351_020_9140_8
crossref_primary_10_1016_j_agee_2019_106793
crossref_primary_10_1016_j_agrformet_2021_108376
crossref_primary_10_3390_agriculture11070607
crossref_primary_10_3390_agronomy14102438
crossref_primary_10_3389_fpls_2021_676884
crossref_primary_10_2139_ssrn_4095572
crossref_primary_10_62810_jnsr_v2iSpecial_Issue_135
Cites_doi 10.5194/nhess-13-2599-2013
10.1023/A:1005420400462
10.1641/B580311
10.1016/S0165-0114(98)00293-0
10.1093/jxb/erv163
10.1007/978-3-642-58132-8
10.1002/joc.4109
10.1016/j.jenvman.2009.05.011
10.1016/j.ijar.2003.06.001
10.1007/978-3-642-71745-1
10.1007/s00477-010-0426-8
10.1007/s00484-009-0213-8
10.1016/S1474-7065(02)00145-6
10.1073/pnas.1231335100
10.1007/s11069-013-0894-5
10.1007/s11069-015-1793-8
10.3390/su8030218
10.1175/1520-0477-83.9.1327
10.1177/030913259602000407
10.1007/s12571-015-0458-5
10.1007/s11069-012-0374-3
10.1111/j.1439-037X.2008.00320.x
10.1007/BF00865525
10.1111/j.1365-2486.2012.02724.x
10.2307/2403090
10.1016/S0304-4238(99)00150-8
10.1002/joc.1405
10.1175/1520-0442(2001)014<1959:CODAET>2.0.CO;2
10.5194/nhess-14-2375-2014
10.1073/pnas.1231334100
10.1117/12.825791
10.1596/0-8213-5930-4
10.1007/s11442-013-1034-6
10.1029/2008GL033955
10.1016/j.eja.2007.01.001
ContentType Journal Article
Copyright Copyright MDPI AG 2016
Copyright_xml – notice: Copyright MDPI AG 2016
DBID AAYXX
CITATION
4U-
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
7ST
7U6
C1K
7S9
L.6
DOI 10.3390/su8121308
DatabaseName CrossRef
University Readers
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Publicly Available Content Database
University Readers
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef
Environment Abstracts
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
Geography
EISSN 2071-1050
EndPage 1308
ExternalDocumentID 4301326721
10_3390_su8121308
GeographicLocations China
China, People's Rep
GeographicLocations_xml – name: China
– name: China, People's Rep
GroupedDBID 29Q
2WC
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
AAYXX
ACHQT
ADBBV
ADMLS
AENEX
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
E3Z
ECGQY
FRS
GX1
KQ8
ML.
MODMG
M~E
OK1
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
4U-
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
7ST
7U6
C1K
ESTFP
PUEGO
7S9
L.6
ID FETCH-LOGICAL-c358t-8d7017758a762693c6f8a0207c0f9df814c5187d19a4cd605172cc3ae63606bc3
IEDL.DBID BENPR
ISSN 2071-1050
IngestDate Fri Sep 05 05:09:43 EDT 2025
Mon Sep 08 07:07:23 EDT 2025
Mon Jun 30 11:17:18 EDT 2025
Tue Jul 01 01:22:38 EDT 2025
Thu Apr 24 23:01:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-8d7017758a762693c6f8a0207c0f9df814c5187d19a4cd605172cc3ae63606bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5198-1281
0000-0001-8838-9476
OpenAccessLink https://www.proquest.com/docview/1858314287?pq-origsite=%requestingapplication%
PQID 1858314287
PQPubID 2032327
PageCount 1
ParticipantIDs proquest_miscellaneous_2305236525
proquest_miscellaneous_1868310916
proquest_journals_1858314287
crossref_primary_10_3390_su8121308
crossref_citationtrail_10_3390_su8121308
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20161213
PublicationDateYYYYMMDD 2016-12-13
PublicationDate_xml – month: 12
  year: 2016
  text: 20161213
  day: 13
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sustainability
PublicationYear 2016
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Varazanashvili (ref_14) 2012; 64
Dai (ref_5) 2013; 23
Cannell (ref_7) 1986; 23
Laughlin (ref_15) 1990; 42
Lin (ref_56) 2009; 24
Eccel (ref_11) 2009; 53
Turner (ref_39) 2003; 100
ref_57
Huang (ref_60) 2006; 15
ref_12
ref_55
ref_54
Li (ref_10) 2005; 14
ref_53
Zheng (ref_26) 2015; 66
ref_52
Brooks (ref_33) 2003; 38
ref_51
ref_18
Fuller (ref_46) 2007; 26
Liu (ref_40) 2003; 12
Liu (ref_50) 2002; 32
Huang (ref_59) 2004; 35
Yue (ref_35) 2015; 78
ref_61
Gu (ref_6) 2008; 58
Bonsal (ref_3) 2001; 14
Qi (ref_45) 2015; 7
ref_24
ref_23
ref_67
ref_22
Sullivan (ref_34) 2011; 25
Yan (ref_48) 2005; 4
ref_21
ref_20
ref_64
ref_29
Feng (ref_44) 1999; 25
Rahimi (ref_17) 2007; 27
Liu (ref_49) 2002; 3
Easterling (ref_4) 2002; 83
ref_36
Zhong (ref_43) 2008; 194
Potop (ref_27) 2014; 71
Xu (ref_62) 2009; 90
ref_31
ref_30
Huang (ref_58) 1999; 107
Crimp (ref_19) 2015; 35
Zheng (ref_25) 2012; 18
Karimi (ref_63) 2000; 24
Gobin (ref_8) 2013; 13
Li (ref_9) 2005; 14
Turner (ref_38) 2003; 100
Heino (ref_2) 1999; 42
ref_37
Zinoni (ref_16) 2002; 27
Cutter (ref_32) 1996; 20
Zhang (ref_65) 2006; 14
Zhong (ref_66) 2007; 18
ref_47
Zhong (ref_28) 2007; 15
Papagiannaki (ref_1) 2014; 14
ref_42
ref_41
Rodrigo (ref_13) 2000; 85
References_xml – ident: ref_51
– volume: 13
  start-page: 2599
  year: 2013
  ident: ref_8
  article-title: Preface “Weather related hazards and risks in agriculture”
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-13-2599-2013
– volume: 42
  start-page: 151
  year: 1999
  ident: ref_2
  article-title: Progress in the study of climate extremes in northern and central Europe
  publication-title: Clim. Chang.
  doi: 10.1023/A:1005420400462
– volume: 58
  start-page: 253
  year: 2008
  ident: ref_6
  article-title: The 2007 eastern US spring freezes: Increased cold damage in a warming world?
  publication-title: Bioscience
  doi: 10.1641/B580311
– volume: 107
  start-page: 131
  year: 1999
  ident: ref_58
  article-title: Estimating the relationship between isoseismal area and earthquake magnitude by hybrid fuzzy-neural-network method
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(98)00293-0
– volume: 66
  start-page: 3611
  year: 2015
  ident: ref_26
  article-title: Frost trends and their estimated impact on yield in the Australian wheat belt
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv163
– ident: ref_42
– ident: ref_61
– ident: ref_23
– ident: ref_18
  doi: 10.1007/978-3-642-58132-8
– volume: 35
  start-page: 2092
  year: 2015
  ident: ref_19
  article-title: Bayesian space-time model to analyse frost risk for agriculture in Southeast Australia
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.4109
– volume: 90
  start-page: 3290
  year: 2009
  ident: ref_62
  article-title: The study of a method of regional environmental risk assessment
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2009.05.011
– ident: ref_31
– volume: 35
  start-page: 137
  year: 2004
  ident: ref_59
  article-title: A diffusion-neural-network for learning from small samples
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2003.06.001
– ident: ref_52
– ident: ref_30
  doi: 10.1007/978-3-642-71745-1
– volume: 25
  start-page: 627
  year: 2011
  ident: ref_34
  article-title: Quantifying water vulnerability: A multi-dimensional approach
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-010-0426-8
– volume: 12
  start-page: 82
  year: 2003
  ident: ref_40
  article-title: Regional distribution of main agrometeorological disaster and disaster mitigation strategies in China
  publication-title: J. Nat. Disasters
– volume: 53
  start-page: 273
  year: 2009
  ident: ref_11
  article-title: Risk of spring frost to apple production under future climate scenarios: The role of phenological acclimation
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s00484-009-0213-8
– volume: 27
  start-page: 1091
  year: 2002
  ident: ref_16
  article-title: Characterisation of Emilia-Romagna region in relation with late frost risk
  publication-title: Phys. Chem. Earth
  doi: 10.1016/S1474-7065(02)00145-6
– ident: ref_41
– volume: 100
  start-page: 8074
  year: 2003
  ident: ref_38
  article-title: A framework for vulnerability analysis in sustainability science
  publication-title: Proc. Nat. Acad. Sci. USA
  doi: 10.1073/pnas.1231335100
– volume: 32
  start-page: 1031
  year: 2002
  ident: ref_50
  article-title: The space analysis of land use pattern change of recent China
  publication-title: Sci. China (Ser. D)
– volume: 15
  start-page: 1
  year: 2006
  ident: ref_60
  article-title: Information matrix method for risk analysis of natural disaster
  publication-title: J. Nat. Disasters
– ident: ref_20
– volume: 71
  start-page: 1
  year: 2014
  ident: ref_27
  article-title: Risk occurrences of damaging frosts during the growing season of vegetables in the Elbe River lowland, the Czech Republic
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-013-0894-5
– ident: ref_53
– volume: 14
  start-page: 321
  year: 2006
  ident: ref_65
  article-title: Risk assessment and influence of winter late frost on winter yield
  publication-title: J. Basic Sci. Eng.
– volume: 14
  start-page: 51
  year: 2005
  ident: ref_9
  article-title: Cause analysis of frost dam to winter wheat in Huang-Huai-Hai plain during 2004–2005
  publication-title: J. Nat. Disasters
– ident: ref_24
– volume: 78
  start-page: 1629
  year: 2015
  ident: ref_35
  article-title: An EPIC model-based vulnerability assessment of wheat subject to drought
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-015-1793-8
– volume: 18
  start-page: 102
  year: 2007
  ident: ref_66
  article-title: Risk assessment of frost damage in wheat
  publication-title: J. Appl. Meteorol. Sci.
– ident: ref_47
– ident: ref_55
  doi: 10.3390/su8030218
– volume: 83
  start-page: 1327
  year: 2002
  ident: ref_4
  article-title: Recent changes in frost days and the frost-free season in the United States
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477-83.9.1327
– volume: 20
  start-page: 529
  year: 1996
  ident: ref_32
  article-title: Vulnerability to environmental hazards
  publication-title: Prog. Hum. Geogr.
  doi: 10.1177/030913259602000407
– volume: 7
  start-page: 621
  year: 2015
  ident: ref_45
  article-title: Provincial food security in China: A quantitative risk assessment based on local food supply and demand trends
  publication-title: Food Secur.
  doi: 10.1007/s12571-015-0458-5
– volume: 64
  start-page: 2021
  year: 2012
  ident: ref_14
  article-title: Vulnerability, hazards and multiple risk assessment for Georgia
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-012-0374-3
– ident: ref_37
– volume: 194
  start-page: 343
  year: 2008
  ident: ref_43
  article-title: Changes in Frost Resistance of Wheat Young Ears with Development During Jointing Stage
  publication-title: J. Agron. Crop Sci.
  doi: 10.1111/j.1439-037X.2008.00320.x
– ident: ref_21
– volume: 24
  start-page: 167
  year: 2000
  ident: ref_63
  article-title: Prediction of Water Activity Coefficient in TEG-Water System Using Diffusion Neural Network (DNN)
  publication-title: Chem. Biochem. Eng. Q.
– volume: 14
  start-page: 72
  year: 2005
  ident: ref_10
  article-title: Current situation and prospect of research on frost of winter wheat
  publication-title: J. Nat. Disasters
– volume: 42
  start-page: 41
  year: 1990
  ident: ref_15
  article-title: Frost Risk Mapping for Landscape Planning—A Methodology
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/BF00865525
– volume: 18
  start-page: 2899
  year: 2012
  ident: ref_25
  article-title: Breeding for the future: What are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties?
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2012.02724.x
– ident: ref_29
– volume: 23
  start-page: 177
  year: 1986
  ident: ref_7
  article-title: Climatic warming, spring budburst and frost damage on trees
  publication-title: J. Appl. Ecol.
  doi: 10.2307/2403090
– volume: 15
  start-page: 17
  year: 2007
  ident: ref_28
  article-title: Occurrence of frost temperature in Huanghuai wheat production zone after wheat elongation
  publication-title: Chin. J. Eco-Agric.
– volume: 85
  start-page: 155
  year: 2000
  ident: ref_13
  article-title: Spring frosts in deciduous fruit trees—Morphological damage and flower hardiness
  publication-title: Sci. Hortic.
  doi: 10.1016/S0304-4238(99)00150-8
– ident: ref_64
– volume: 27
  start-page: 349
  year: 2007
  ident: ref_17
  article-title: Risk analysis of first and last frost occurrences in the Central Alborz Region, Iran
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.1405
– volume: 14
  start-page: 1959
  year: 2001
  ident: ref_3
  article-title: Characteristics of daily and extreme temperature over Canada
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(2001)014<1959:CODAET>2.0.CO;2
– volume: 14
  start-page: 2375
  year: 2014
  ident: ref_1
  article-title: Agricultural losses related to frost events: Use of the 850 hPa level temperature as an explanatory variable of the damage cost
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-14-2375-2014
– ident: ref_36
– ident: ref_22
– volume: 25
  start-page: 333
  year: 1999
  ident: ref_44
  article-title: Climatological study on frost damage of winter wheat in China
  publication-title: Acta Agron. Sin.
– volume: 100
  start-page: 8080
  year: 2003
  ident: ref_39
  article-title: Illustrating the coupled human-environment system for vulnerability analysis: Three case studies
  publication-title: Proc. Nat. Acad. Sci. USA
  doi: 10.1073/pnas.1231334100
– ident: ref_57
– ident: ref_67
  doi: 10.1117/12.825791
– volume: 4
  start-page: 40
  year: 2005
  ident: ref_48
  article-title: The frequency of late frost injury and its preventing method in wheat planted area in Huanghuai
  publication-title: Meteorol. J. Henan
– ident: ref_54
  doi: 10.1596/0-8213-5930-4
– volume: 24
  start-page: 45
  year: 2009
  ident: ref_56
  article-title: Frost Hazard Risk Assessment of Winter Wheat: Based on the Meteorological Indicator at Different Growing Stages
  publication-title: J. Catastrophol.
– volume: 23
  start-page: 641
  year: 2013
  ident: ref_5
  article-title: The decreasing spring frost risks during the flowering period for woody plants in temperate area of eastern China over past 50 years
  publication-title: J. Geogr. Sci.
  doi: 10.1007/s11442-013-1034-6
– ident: ref_12
  doi: 10.1029/2008GL033955
– volume: 38
  start-page: 1
  year: 2003
  ident: ref_33
  article-title: Vulnerability, risk and adaptation: A conceptual framework
  publication-title: Tyndall Cent. Clim. Chang. Res. Work. Pap.
– volume: 26
  start-page: 435
  year: 2007
  ident: ref_46
  article-title: The freezing characteristics of wheat at ear emergence
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2007.01.001
– volume: 3
  start-page: 3
  year: 2002
  ident: ref_49
  article-title: The establishment of land-use spatial-temporal database and its relative studies in China
  publication-title: Geo-Inform. Sci.
SSID ssj0000331916
Score 2.270363
Snippet Crop frost, one kind of agro-meteorological disaster, often causes significant loss to agriculture. Thus, evaluating the risk of wheat frost aids scientific...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1308
SubjectTerms Agricultural production
China
climate
Climate change
Crops
developmental stages
Disasters
Emergency preparedness
Food security
frost
frost injury
Fuzzy logic
Geographic information systems
Geography
grain yield
growing season
meteorological data
Neural networks
phenology
planning
planting
risk
Risk assessment
Sustainability
temperature
Wheat
Winter
winter wheat
Title Assessing Wheat Frost Risk with the Support of GIS: An Approach Coupling a Growing Season Meteorological Index and a Hybrid Fuzzy Neural Network Model
URI https://www.proquest.com/docview/1858314287
https://www.proquest.com/docview/1868310916
https://www.proquest.com/docview/2305236525
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB71cSgXVAoVgVINiEMvFlk_1uteUKjyaKVGqA8pN2u9uwZEZZcmOaQ_pL-3M_Y6BQm4RdqRcpidxzfr-T6Aj1RzjHChDlLpsoDwF8dc6QKrU6GtzgjM8bzjfCon1_HZLJn5gdvcf1bZ5cQmUdva8Iz8E9UVFTE9WPr59lfAqlH8uuolNDZhm1Kwonu-_WU4_XqxnrL0I7piQraUQhHhe97pZhYzlpP8vRD9mYeb4jLahee-K8RB68YXsOGqPdjplobne7A_fFpII0MfkXSw41XMv69ewkP7gkvFCJsci81KB178mP9EnrciNXvIMp7UcmNd4vj08hgHFQ48rzie1Ete0P2GGscEz_nXpdPUkeM59db1XZco8ZQ5FlFXliwnK176wtHy_n6FzPVB59P243JkpbWbV3A9Gl6dTAKvuxCYKFGLQNmU4pSAhKZMKbPIyFJpaitT0y8zWyoRm0So1IpMx8ZKZvkKjYm0Y-4xWZhoH7aqunKvAYUrklRnJgmtjUvGkqpfFKpIw5Jyi4x7cNQ5ITeelJy1MW5yAifsr3ztrx58WJvetkwcfzM66DyZ-2Cc509Xpwfv18cURvw2oitXL9lGqoYkVf7bhtAawXaZhMmb___NW3hGfVWjbySiA9ha3C3dO-pdFsWhv6CHsDmeiUcbj_Fu
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9BAuFRQqQgsMCCQuFrHXXttICIWSNKFNhPqQejPr3XVBreySh6r0h_Az-I3M-JGCBNx6s7Qj-zDvWc_3AbyknKNd6yknlDZ2qP9in8usY1ToKqNiauZ43jGeyOGJ_-k0OF2Dn80uDP9W2cTEMlCbQvOM_A3llUgwPFj4_vK7w6xRfLvaUGhUZrFvl1fUss3ejT6Sfl953qB_vDt0alYBR4sgmjuRCckKqUxWFAdkLLTMIkVFU6i7WWyyyPV14EahcWPlayMZw8rTWijLyFoy1YLeewfWfd5obcH6h_7k8-FqqtMVZNKurCCMhIi7vEPOqGlMX_l74vsz7pfJbHAPNuoqFHuV2dyHNZtvQrtZUp5twlb_ZgGOBOsIQAftmjX96_IB_KhujCn5YRnTsVwhwcNvs3Pk-S5ScYlMG0olPhYZ7o2O3mIvx16NY467xYIXgs9Q4d60uOKnI6uoA8Ax1fLFtAnMOGJMR1S5IcnhkpfMcLC4vl4iY4vQ-aT6mR2Z2e3iIZzcika2oJUXuX0E6No0CFWsA88YP-PeNeqmaZSGXkaxTPodeN0oIdE1CDpzcVwk1AyxvpKVvjrwYiV6WSF__E1op9FkUjv_LLkx1Q48Xx2T2_JdjMptsWAZGZWgrPLfMtQdBp6QgRc8_v9nnkF7eDw-SA5Gk_1tuEs1Xcmt5IodaM2nC_uE6qZ5-rQ2VoQvt-0fvwBckSvT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFD7BJRFejKLERdSj0cSXhm2nnbYmxqywy67IhoAkvNXpzBQIpMW9hCw_xB_jr_OcXhZN1DfeNpmT7sO5n5nzfQBvKOdo13rKCaWNHeq_2Ocy6xgVusqomJo5nnfsj-Tg2P98Epwswc9mF4afVTYxsQzUptA8I9-ivBIJhgcLt7L6WcTBTv_j1XeHGaT4prWh06hMZM_Or6l9m3wY7pCu33pev_d1e-DUDAOOFkE0dSITkkVSyawoJshYaJlFigqoUHey2GSR6-vAjULjxsrXRjKelae1UJZRtmSqBX33HiyHlBX9Fix_6o0ODhcTno4g83ZlBWckRNzhfXJGUGMqy9-T4J85oExs_YfwoK5IsVuZ0CNYsvkarDQLy5M1WO_dLsORYB0N6GClZlA_mz-GH9XtMSVCLOM7luskeHg-uUCe9SIVmsgUolTuY5Hh7vDoPXZz7NaY5rhdzHg5-BQV7o6La_51ZBV1A7hPdX0xboI0DhnfEVVuSHIw54Uz7M9ububIOCN0PqoetiOzvF0-geM70cg6tPIit08BXZsGoYp14BnjZ9zHRp00jdLQyyiuSb8N7xolJLoGRGdejsuEGiPWV7LQVxteL0SvKhSQvwltNppM6kAwSW7Ntg2vFsfkwnwvo3JbzFhGRiVAq_y3DHWKgSdk4AUb__-bl3Cf_CL5MhztPYNVKu9KmiVXbEJrOp7Z51RCTdMXta0ifLtr9_gFC5cv_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+Wheat+Frost+Risk+with+the+Support+of+GIS%3A+An+Approach+Coupling+a+Growing+Season+Meteorological+Index+and+a+Hybrid+Fuzzy+Neural+Network+Model&rft.jtitle=Sustainability&rft.au=Yue%2C+Yaojie&rft.au=Zhou%2C+Yao&rft.au=Wang%2C+Jing%E2%80%99ai&rft.au=Ye%2C+Xinyue&rft.date=2016-12-13&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=8&rft.issue=12&rft.spage=1308&rft_id=info:doi/10.3390%2Fsu8121308&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_su8121308
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon