Assessing Wheat Frost Risk with the Support of GIS: An Approach Coupling a Growing Season Meteorological Index and a Hybrid Fuzzy Neural Network Model
Crop frost, one kind of agro-meteorological disaster, often causes significant loss to agriculture. Thus, evaluating the risk of wheat frost aids scientific response to such disasters, which will ultimately promote food security. Therefore, this paper aims to propose an integrated risk assessment mo...
Saved in:
Published in | Sustainability Vol. 8; no. 12; p. 1308 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
13.12.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 2071-1050 2071-1050 |
DOI | 10.3390/su8121308 |
Cover
Abstract | Crop frost, one kind of agro-meteorological disaster, often causes significant loss to agriculture. Thus, evaluating the risk of wheat frost aids scientific response to such disasters, which will ultimately promote food security. Therefore, this paper aims to propose an integrated risk assessment model of wheat frost, based on meteorological data and a hybrid fuzzy neural network model, taking China as an example. With the support of a geographic information system (GIS), a comprehensive method was put forward. Firstly, threshold temperatures of wheat frost at three growth stages were proposed, referring to phenology in different wheat growing areas and the meteorological standard of Degree of Crop Frost Damage (QX/T 88-2008). Secondly, a vulnerability curve illustrating the relationship between frost hazard intensity and wheat yield loss was worked out using hybrid fuzzy neural network model. Finally, the wheat frost risk was assessed in China. Results show that our proposed threshold temperatures are more suitable than using 0 °C in revealing the spatial pattern of frost occurrence, and hybrid fuzzy neural network model can further improve the accuracy of the vulnerability curve of wheat subject to frost with limited historical hazard records. Both these advantages ensure the precision of wheat frost risk assessment. In China, frost widely distributes in 85.00% of the total winter wheat planting area, but mainly to the north of 35°N; the southern boundary of wheat frost has moved northward, potentially because of the warming climate. There is a significant trend that suggests high risk areas will enlarge and gradually expand to the south, with the risk levels increasing from a return period of 2 years to 20 years. Among all wheat frost risk levels, the regions with loss rate ranges from 35.00% to 45.00% account for the largest area proportion, ranging from 58.60% to 63.27%. We argue that for wheat and other frost-affected crops, it is necessary to take the risk level, physical exposure, and growth stages of crops into consideration together for frost disaster risk prevention planning. |
---|---|
AbstractList | Crop frost, one kind of agro-meteorological disaster, often causes significant loss to agriculture. Thus, evaluating the risk of wheat frost aids scientific response to such disasters, which will ultimately promote food security. Therefore, this paper aims to propose an integrated risk assessment model of wheat frost, based on meteorological data and a hybrid fuzzy neural network model, taking China as an example. With the support of a geographic information system (GIS), a comprehensive method was put forward. Firstly, threshold temperatures of wheat frost at three growth stages were proposed, referring to phenology in different wheat growing areas and the meteorological standard of Degree of Crop Frost Damage (QX/T 88-2008). Secondly, a vulnerability curve illustrating the relationship between frost hazard intensity and wheat yield loss was worked out using hybrid fuzzy neural network model. Finally, the wheat frost risk was assessed in China. Results show that our proposed threshold temperatures are more suitable than using 0 °C in revealing the spatial pattern of frost occurrence, and hybrid fuzzy neural network model can further improve the accuracy of the vulnerability curve of wheat subject to frost with limited historical hazard records. Both these advantages ensure the precision of wheat frost risk assessment. In China, frost widely distributes in 85.00% of the total winter wheat planting area, but mainly to the north of 35°N; the southern boundary of wheat frost has moved northward, potentially because of the warming climate. There is a significant trend that suggests high risk areas will enlarge and gradually expand to the south, with the risk levels increasing from a return period of 2 years to 20 years. Among all wheat frost risk levels, the regions with loss rate ranges from 35.00% to 45.00% account for the largest area proportion, ranging from 58.60% to 63.27%. We argue that for wheat and other frost-affected crops, it is necessary to take the risk level, physical exposure, and growth stages of crops into consideration together for frost disaster risk prevention planning. Crop frost, one kind of agro-meteorological disaster, often causes significant loss to agriculture. Thus, evaluating the risk of wheat frost aids scientific response to such disasters, which will ultimately promote food security. Therefore, this paper aims to propose an integrated risk assessment model of wheat frost, based on meteorological data and a hybrid fuzzy neural network model, taking China as an example. With the support of a geographic information system (GIS), a comprehensive method was put forward. Firstly, threshold temperatures of wheat frost at three growth stages were proposed, referring to phenology in different wheat growing areas and the meteorological standard of Degree of Crop Frost Damage (QX/T 88-2008). Secondly, a vulnerability curve illustrating the relationship between frost hazard intensity and wheat yield loss was worked out using hybrid fuzzy neural network model. Finally, the wheat frost risk was assessed in China. Results show that our proposed threshold temperatures are more suitable than using 0 degree C in revealing the spatial pattern of frost occurrence, and hybrid fuzzy neural network model can further improve the accuracy of the vulnerability curve of wheat subject to frost with limited historical hazard records. Both these advantages ensure the precision of wheat frost risk assessment. In China, frost widely distributes in 85.00% of the total winter wheat planting area, but mainly to the north of 35 degree N; the southern boundary of wheat frost has moved northward, potentially because of the warming climate. There is a significant trend that suggests high risk areas will enlarge and gradually expand to the south, with the risk levels increasing from a return period of 2 years to 20 years. Among all wheat frost risk levels, the regions with loss rate ranges from 35.00% to 45.00% account for the largest area proportion, ranging from 58.60% to 63.27%. We argue that for wheat and other frost-affected crops, it is necessary to take the risk level, physical exposure, and growth stages of crops into consideration together for frost disaster risk prevention planning. |
Author | Zhou, Yao Wang, Jing’ai Yue, Yaojie Ye, Xinyue |
Author_xml | – sequence: 1 givenname: Yaojie orcidid: 0000-0001-5198-1281 surname: Yue fullname: Yue, Yaojie – sequence: 2 givenname: Yao surname: Zhou fullname: Zhou, Yao – sequence: 3 givenname: Jing’ai surname: Wang fullname: Wang, Jing’ai – sequence: 4 givenname: Xinyue orcidid: 0000-0001-8838-9476 surname: Ye fullname: Ye, Xinyue |
BookMark | eNqF0c1qGzEQB3BRUmjq5tA3GOglPbiRVpZWm5sxtWPIB8QJOS6KdjZWspE2khbXeZA-b2VSSgmB6KIB_Ubwn_lM9px3SMhXRn9wXtGjOChWME7VB7Jf0JKNGRV077_6EzmI8Z7mwzmrmNwnv6cxYozW3cHNGnWCefAxwaWND7CxaQ1pjbAa-t6HBL6FxXJ1DFMH074PXps1zPzQd7t2DYvgN7tqhTp6B2eY0Aff-TtrdAdL1-Av0K7J8mR7G2wD8-H5eQvnOIT8fo5p48MDnPkGuy_kY6u7iAd_7xG5nv-8mp2MTy8Wy9n0dGy4UGmsmpKyshRKl7KQFTeyVZrmuIa2VdMqNjGCqbJhlZ6YRlLBysIYrlFySeWt4SNy-PJvTvM0YEz1o40Gu0479EOsC05FwaUoxLuUKak4o3mqmX57Re_9EFwOkpXIalKoMqvvL8rkkceAbd0H-6jDtma03u2z_rfPbI9eWWOTTta7FLTt3uj4A8nXook |
CitedBy_id | crossref_primary_10_1007_s00024_020_02652_4 crossref_primary_10_3390_ijms232214099 crossref_primary_10_3390_rs13020273 crossref_primary_10_1016_j_stress_2024_100597 crossref_primary_10_3390_ijms242115892 crossref_primary_10_3390_heritage7060140 crossref_primary_10_3390_su131810295 crossref_primary_10_3390_plants12244170 crossref_primary_10_3390_plants12233954 crossref_primary_10_1007_s00484_023_02534_z crossref_primary_10_1016_j_plaphy_2023_107646 crossref_primary_10_1111_ppl_14069 crossref_primary_10_15407_dopovidi2024_03_069 crossref_primary_10_1016_j_agrformet_2018_06_006 crossref_primary_10_1002_joc_7313 crossref_primary_10_1016_j_jag_2019_101971 crossref_primary_10_3389_fpls_2023_1221466 crossref_primary_10_1007_s13351_020_9140_8 crossref_primary_10_1016_j_agee_2019_106793 crossref_primary_10_1016_j_agrformet_2021_108376 crossref_primary_10_3390_agriculture11070607 crossref_primary_10_3390_agronomy14102438 crossref_primary_10_3389_fpls_2021_676884 crossref_primary_10_2139_ssrn_4095572 crossref_primary_10_62810_jnsr_v2iSpecial_Issue_135 |
Cites_doi | 10.5194/nhess-13-2599-2013 10.1023/A:1005420400462 10.1641/B580311 10.1016/S0165-0114(98)00293-0 10.1093/jxb/erv163 10.1007/978-3-642-58132-8 10.1002/joc.4109 10.1016/j.jenvman.2009.05.011 10.1016/j.ijar.2003.06.001 10.1007/978-3-642-71745-1 10.1007/s00477-010-0426-8 10.1007/s00484-009-0213-8 10.1016/S1474-7065(02)00145-6 10.1073/pnas.1231335100 10.1007/s11069-013-0894-5 10.1007/s11069-015-1793-8 10.3390/su8030218 10.1175/1520-0477-83.9.1327 10.1177/030913259602000407 10.1007/s12571-015-0458-5 10.1007/s11069-012-0374-3 10.1111/j.1439-037X.2008.00320.x 10.1007/BF00865525 10.1111/j.1365-2486.2012.02724.x 10.2307/2403090 10.1016/S0304-4238(99)00150-8 10.1002/joc.1405 10.1175/1520-0442(2001)014<1959:CODAET>2.0.CO;2 10.5194/nhess-14-2375-2014 10.1073/pnas.1231334100 10.1117/12.825791 10.1596/0-8213-5930-4 10.1007/s11442-013-1034-6 10.1029/2008GL033955 10.1016/j.eja.2007.01.001 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2016 |
Copyright_xml | – notice: Copyright MDPI AG 2016 |
DBID | AAYXX CITATION 4U- ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI 7ST 7U6 C1K 7S9 L.6 |
DOI | 10.3390/su8121308 |
DatabaseName | CrossRef University Readers ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Publicly Available Content Database University Readers ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Environment Abstracts Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences Geography |
EISSN | 2071-1050 |
EndPage | 1308 |
ExternalDocumentID | 4301326721 10_3390_su8121308 |
GeographicLocations | China China, People's Rep |
GeographicLocations_xml | – name: China – name: China, People's Rep |
GroupedDBID | 29Q 2WC 4P2 5VS 7XC 8FE 8FH A8Z AAHBH AAYXX ACHQT ADBBV ADMLS AENEX AFKRA AFMMW ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION E3Z ECGQY FRS GX1 KQ8 ML. MODMG M~E OK1 P2P PHGZM PHGZT PIMPY PROAC TR2 4U- ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI 7ST 7U6 C1K ESTFP PUEGO 7S9 L.6 |
ID | FETCH-LOGICAL-c358t-8d7017758a762693c6f8a0207c0f9df814c5187d19a4cd605172cc3ae63606bc3 |
IEDL.DBID | BENPR |
ISSN | 2071-1050 |
IngestDate | Fri Sep 05 05:09:43 EDT 2025 Mon Sep 08 07:07:23 EDT 2025 Mon Jun 30 11:17:18 EDT 2025 Tue Jul 01 01:22:38 EDT 2025 Thu Apr 24 23:01:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-8d7017758a762693c6f8a0207c0f9df814c5187d19a4cd605172cc3ae63606bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5198-1281 0000-0001-8838-9476 |
OpenAccessLink | https://www.proquest.com/docview/1858314287?pq-origsite=%requestingapplication% |
PQID | 1858314287 |
PQPubID | 2032327 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2305236525 proquest_miscellaneous_1868310916 proquest_journals_1858314287 crossref_primary_10_3390_su8121308 crossref_citationtrail_10_3390_su8121308 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20161213 |
PublicationDateYYYYMMDD | 2016-12-13 |
PublicationDate_xml | – month: 12 year: 2016 text: 20161213 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sustainability |
PublicationYear | 2016 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Varazanashvili (ref_14) 2012; 64 Dai (ref_5) 2013; 23 Cannell (ref_7) 1986; 23 Laughlin (ref_15) 1990; 42 Lin (ref_56) 2009; 24 Eccel (ref_11) 2009; 53 Turner (ref_39) 2003; 100 ref_57 Huang (ref_60) 2006; 15 ref_12 ref_55 ref_54 Li (ref_10) 2005; 14 ref_53 Zheng (ref_26) 2015; 66 ref_52 Brooks (ref_33) 2003; 38 ref_51 ref_18 Fuller (ref_46) 2007; 26 Liu (ref_40) 2003; 12 Liu (ref_50) 2002; 32 Huang (ref_59) 2004; 35 Yue (ref_35) 2015; 78 ref_61 Gu (ref_6) 2008; 58 Bonsal (ref_3) 2001; 14 Qi (ref_45) 2015; 7 ref_24 ref_23 ref_67 ref_22 Sullivan (ref_34) 2011; 25 Yan (ref_48) 2005; 4 ref_21 ref_20 ref_64 ref_29 Feng (ref_44) 1999; 25 Rahimi (ref_17) 2007; 27 Liu (ref_49) 2002; 3 Easterling (ref_4) 2002; 83 ref_36 Zhong (ref_43) 2008; 194 Potop (ref_27) 2014; 71 Xu (ref_62) 2009; 90 ref_31 ref_30 Huang (ref_58) 1999; 107 Crimp (ref_19) 2015; 35 Zheng (ref_25) 2012; 18 Karimi (ref_63) 2000; 24 Gobin (ref_8) 2013; 13 Li (ref_9) 2005; 14 Turner (ref_38) 2003; 100 Heino (ref_2) 1999; 42 ref_37 Zinoni (ref_16) 2002; 27 Cutter (ref_32) 1996; 20 Zhang (ref_65) 2006; 14 Zhong (ref_66) 2007; 18 ref_47 Zhong (ref_28) 2007; 15 Papagiannaki (ref_1) 2014; 14 ref_42 ref_41 Rodrigo (ref_13) 2000; 85 |
References_xml | – ident: ref_51 – volume: 13 start-page: 2599 year: 2013 ident: ref_8 article-title: Preface “Weather related hazards and risks in agriculture” publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-13-2599-2013 – volume: 42 start-page: 151 year: 1999 ident: ref_2 article-title: Progress in the study of climate extremes in northern and central Europe publication-title: Clim. Chang. doi: 10.1023/A:1005420400462 – volume: 58 start-page: 253 year: 2008 ident: ref_6 article-title: The 2007 eastern US spring freezes: Increased cold damage in a warming world? publication-title: Bioscience doi: 10.1641/B580311 – volume: 107 start-page: 131 year: 1999 ident: ref_58 article-title: Estimating the relationship between isoseismal area and earthquake magnitude by hybrid fuzzy-neural-network method publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(98)00293-0 – volume: 66 start-page: 3611 year: 2015 ident: ref_26 article-title: Frost trends and their estimated impact on yield in the Australian wheat belt publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv163 – ident: ref_42 – ident: ref_61 – ident: ref_23 – ident: ref_18 doi: 10.1007/978-3-642-58132-8 – volume: 35 start-page: 2092 year: 2015 ident: ref_19 article-title: Bayesian space-time model to analyse frost risk for agriculture in Southeast Australia publication-title: Int. J. Climatol. doi: 10.1002/joc.4109 – volume: 90 start-page: 3290 year: 2009 ident: ref_62 article-title: The study of a method of regional environmental risk assessment publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2009.05.011 – ident: ref_31 – volume: 35 start-page: 137 year: 2004 ident: ref_59 article-title: A diffusion-neural-network for learning from small samples publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2003.06.001 – ident: ref_52 – ident: ref_30 doi: 10.1007/978-3-642-71745-1 – volume: 25 start-page: 627 year: 2011 ident: ref_34 article-title: Quantifying water vulnerability: A multi-dimensional approach publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-010-0426-8 – volume: 12 start-page: 82 year: 2003 ident: ref_40 article-title: Regional distribution of main agrometeorological disaster and disaster mitigation strategies in China publication-title: J. Nat. Disasters – volume: 53 start-page: 273 year: 2009 ident: ref_11 article-title: Risk of spring frost to apple production under future climate scenarios: The role of phenological acclimation publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-009-0213-8 – volume: 27 start-page: 1091 year: 2002 ident: ref_16 article-title: Characterisation of Emilia-Romagna region in relation with late frost risk publication-title: Phys. Chem. Earth doi: 10.1016/S1474-7065(02)00145-6 – ident: ref_41 – volume: 100 start-page: 8074 year: 2003 ident: ref_38 article-title: A framework for vulnerability analysis in sustainability science publication-title: Proc. Nat. Acad. Sci. USA doi: 10.1073/pnas.1231335100 – volume: 32 start-page: 1031 year: 2002 ident: ref_50 article-title: The space analysis of land use pattern change of recent China publication-title: Sci. China (Ser. D) – volume: 15 start-page: 1 year: 2006 ident: ref_60 article-title: Information matrix method for risk analysis of natural disaster publication-title: J. Nat. Disasters – ident: ref_20 – volume: 71 start-page: 1 year: 2014 ident: ref_27 article-title: Risk occurrences of damaging frosts during the growing season of vegetables in the Elbe River lowland, the Czech Republic publication-title: Nat. Hazards doi: 10.1007/s11069-013-0894-5 – ident: ref_53 – volume: 14 start-page: 321 year: 2006 ident: ref_65 article-title: Risk assessment and influence of winter late frost on winter yield publication-title: J. Basic Sci. Eng. – volume: 14 start-page: 51 year: 2005 ident: ref_9 article-title: Cause analysis of frost dam to winter wheat in Huang-Huai-Hai plain during 2004–2005 publication-title: J. Nat. Disasters – ident: ref_24 – volume: 78 start-page: 1629 year: 2015 ident: ref_35 article-title: An EPIC model-based vulnerability assessment of wheat subject to drought publication-title: Nat. Hazards doi: 10.1007/s11069-015-1793-8 – volume: 18 start-page: 102 year: 2007 ident: ref_66 article-title: Risk assessment of frost damage in wheat publication-title: J. Appl. Meteorol. Sci. – ident: ref_47 – ident: ref_55 doi: 10.3390/su8030218 – volume: 83 start-page: 1327 year: 2002 ident: ref_4 article-title: Recent changes in frost days and the frost-free season in the United States publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477-83.9.1327 – volume: 20 start-page: 529 year: 1996 ident: ref_32 article-title: Vulnerability to environmental hazards publication-title: Prog. Hum. Geogr. doi: 10.1177/030913259602000407 – volume: 7 start-page: 621 year: 2015 ident: ref_45 article-title: Provincial food security in China: A quantitative risk assessment based on local food supply and demand trends publication-title: Food Secur. doi: 10.1007/s12571-015-0458-5 – volume: 64 start-page: 2021 year: 2012 ident: ref_14 article-title: Vulnerability, hazards and multiple risk assessment for Georgia publication-title: Nat. Hazards doi: 10.1007/s11069-012-0374-3 – ident: ref_37 – volume: 194 start-page: 343 year: 2008 ident: ref_43 article-title: Changes in Frost Resistance of Wheat Young Ears with Development During Jointing Stage publication-title: J. Agron. Crop Sci. doi: 10.1111/j.1439-037X.2008.00320.x – ident: ref_21 – volume: 24 start-page: 167 year: 2000 ident: ref_63 article-title: Prediction of Water Activity Coefficient in TEG-Water System Using Diffusion Neural Network (DNN) publication-title: Chem. Biochem. Eng. Q. – volume: 14 start-page: 72 year: 2005 ident: ref_10 article-title: Current situation and prospect of research on frost of winter wheat publication-title: J. Nat. Disasters – volume: 42 start-page: 41 year: 1990 ident: ref_15 article-title: Frost Risk Mapping for Landscape Planning—A Methodology publication-title: Theor. Appl. Climatol. doi: 10.1007/BF00865525 – volume: 18 start-page: 2899 year: 2012 ident: ref_25 article-title: Breeding for the future: What are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2012.02724.x – ident: ref_29 – volume: 23 start-page: 177 year: 1986 ident: ref_7 article-title: Climatic warming, spring budburst and frost damage on trees publication-title: J. Appl. Ecol. doi: 10.2307/2403090 – volume: 15 start-page: 17 year: 2007 ident: ref_28 article-title: Occurrence of frost temperature in Huanghuai wheat production zone after wheat elongation publication-title: Chin. J. Eco-Agric. – volume: 85 start-page: 155 year: 2000 ident: ref_13 article-title: Spring frosts in deciduous fruit trees—Morphological damage and flower hardiness publication-title: Sci. Hortic. doi: 10.1016/S0304-4238(99)00150-8 – ident: ref_64 – volume: 27 start-page: 349 year: 2007 ident: ref_17 article-title: Risk analysis of first and last frost occurrences in the Central Alborz Region, Iran publication-title: Int. J. Climatol. doi: 10.1002/joc.1405 – volume: 14 start-page: 1959 year: 2001 ident: ref_3 article-title: Characteristics of daily and extreme temperature over Canada publication-title: J. Clim. doi: 10.1175/1520-0442(2001)014<1959:CODAET>2.0.CO;2 – volume: 14 start-page: 2375 year: 2014 ident: ref_1 article-title: Agricultural losses related to frost events: Use of the 850 hPa level temperature as an explanatory variable of the damage cost publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-14-2375-2014 – ident: ref_36 – ident: ref_22 – volume: 25 start-page: 333 year: 1999 ident: ref_44 article-title: Climatological study on frost damage of winter wheat in China publication-title: Acta Agron. Sin. – volume: 100 start-page: 8080 year: 2003 ident: ref_39 article-title: Illustrating the coupled human-environment system for vulnerability analysis: Three case studies publication-title: Proc. Nat. Acad. Sci. USA doi: 10.1073/pnas.1231334100 – ident: ref_57 – ident: ref_67 doi: 10.1117/12.825791 – volume: 4 start-page: 40 year: 2005 ident: ref_48 article-title: The frequency of late frost injury and its preventing method in wheat planted area in Huanghuai publication-title: Meteorol. J. Henan – ident: ref_54 doi: 10.1596/0-8213-5930-4 – volume: 24 start-page: 45 year: 2009 ident: ref_56 article-title: Frost Hazard Risk Assessment of Winter Wheat: Based on the Meteorological Indicator at Different Growing Stages publication-title: J. Catastrophol. – volume: 23 start-page: 641 year: 2013 ident: ref_5 article-title: The decreasing spring frost risks during the flowering period for woody plants in temperate area of eastern China over past 50 years publication-title: J. Geogr. Sci. doi: 10.1007/s11442-013-1034-6 – ident: ref_12 doi: 10.1029/2008GL033955 – volume: 38 start-page: 1 year: 2003 ident: ref_33 article-title: Vulnerability, risk and adaptation: A conceptual framework publication-title: Tyndall Cent. Clim. Chang. Res. Work. Pap. – volume: 26 start-page: 435 year: 2007 ident: ref_46 article-title: The freezing characteristics of wheat at ear emergence publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2007.01.001 – volume: 3 start-page: 3 year: 2002 ident: ref_49 article-title: The establishment of land-use spatial-temporal database and its relative studies in China publication-title: Geo-Inform. Sci. |
SSID | ssj0000331916 |
Score | 2.270363 |
Snippet | Crop frost, one kind of agro-meteorological disaster, often causes significant loss to agriculture. Thus, evaluating the risk of wheat frost aids scientific... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1308 |
SubjectTerms | Agricultural production China climate Climate change Crops developmental stages Disasters Emergency preparedness Food security frost frost injury Fuzzy logic Geographic information systems Geography grain yield growing season meteorological data Neural networks phenology planning planting risk Risk assessment Sustainability temperature Wheat Winter winter wheat |
Title | Assessing Wheat Frost Risk with the Support of GIS: An Approach Coupling a Growing Season Meteorological Index and a Hybrid Fuzzy Neural Network Model |
URI | https://www.proquest.com/docview/1858314287 https://www.proquest.com/docview/1868310916 https://www.proquest.com/docview/2305236525 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB71cSgXVAoVgVINiEMvFlk_1uteUKjyaKVGqA8pN2u9uwZEZZcmOaQ_pL-3M_Y6BQm4RdqRcpidxzfr-T6Aj1RzjHChDlLpsoDwF8dc6QKrU6GtzgjM8bzjfCon1_HZLJn5gdvcf1bZ5cQmUdva8Iz8E9UVFTE9WPr59lfAqlH8uuolNDZhm1Kwonu-_WU4_XqxnrL0I7piQraUQhHhe97pZhYzlpP8vRD9mYeb4jLahee-K8RB68YXsOGqPdjplobne7A_fFpII0MfkXSw41XMv69ewkP7gkvFCJsci81KB178mP9EnrciNXvIMp7UcmNd4vj08hgHFQ48rzie1Ete0P2GGscEz_nXpdPUkeM59db1XZco8ZQ5FlFXliwnK176wtHy_n6FzPVB59P243JkpbWbV3A9Gl6dTAKvuxCYKFGLQNmU4pSAhKZMKbPIyFJpaitT0y8zWyoRm0So1IpMx8ZKZvkKjYm0Y-4xWZhoH7aqunKvAYUrklRnJgmtjUvGkqpfFKpIw5Jyi4x7cNQ5ITeelJy1MW5yAifsr3ztrx58WJvetkwcfzM66DyZ-2Cc509Xpwfv18cURvw2oitXL9lGqoYkVf7bhtAawXaZhMmb___NW3hGfVWjbySiA9ha3C3dO-pdFsWhv6CHsDmeiUcbj_Fu |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9BAuFRQqQgsMCCQuFrHXXttICIWSNKFNhPqQejPr3XVBreySh6r0h_Az-I3M-JGCBNx6s7Qj-zDvWc_3AbyknKNd6yknlDZ2qP9in8usY1ToKqNiauZ43jGeyOGJ_-k0OF2Dn80uDP9W2cTEMlCbQvOM_A3llUgwPFj4_vK7w6xRfLvaUGhUZrFvl1fUss3ejT6Sfl953qB_vDt0alYBR4sgmjuRCckKqUxWFAdkLLTMIkVFU6i7WWyyyPV14EahcWPlayMZw8rTWijLyFoy1YLeewfWfd5obcH6h_7k8-FqqtMVZNKurCCMhIi7vEPOqGlMX_l74vsz7pfJbHAPNuoqFHuV2dyHNZtvQrtZUp5twlb_ZgGOBOsIQAftmjX96_IB_KhujCn5YRnTsVwhwcNvs3Pk-S5ScYlMG0olPhYZ7o2O3mIvx16NY467xYIXgs9Q4d60uOKnI6uoA8Ax1fLFtAnMOGJMR1S5IcnhkpfMcLC4vl4iY4vQ-aT6mR2Z2e3iIZzcika2oJUXuX0E6No0CFWsA88YP-PeNeqmaZSGXkaxTPodeN0oIdE1CDpzcVwk1AyxvpKVvjrwYiV6WSF__E1op9FkUjv_LLkx1Q48Xx2T2_JdjMptsWAZGZWgrPLfMtQdBp6QgRc8_v9nnkF7eDw-SA5Gk_1tuEs1Xcmt5IodaM2nC_uE6qZ5-rQ2VoQvt-0fvwBckSvT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFD7BJRFejKLERdSj0cSXhm2nnbYmxqywy67IhoAkvNXpzBQIpMW9hCw_xB_jr_OcXhZN1DfeNpmT7sO5n5nzfQBvKOdo13rKCaWNHeq_2Ocy6xgVusqomJo5nnfsj-Tg2P98Epwswc9mF4afVTYxsQzUptA8I9-ivBIJhgcLt7L6WcTBTv_j1XeHGaT4prWh06hMZM_Or6l9m3wY7pCu33pev_d1e-DUDAOOFkE0dSITkkVSyawoJshYaJlFigqoUHey2GSR6-vAjULjxsrXRjKelae1UJZRtmSqBX33HiyHlBX9Fix_6o0ODhcTno4g83ZlBWckRNzhfXJGUGMqy9-T4J85oExs_YfwoK5IsVuZ0CNYsvkarDQLy5M1WO_dLsORYB0N6GClZlA_mz-GH9XtMSVCLOM7luskeHg-uUCe9SIVmsgUolTuY5Hh7vDoPXZz7NaY5rhdzHg5-BQV7o6La_51ZBV1A7hPdX0xboI0DhnfEVVuSHIw54Uz7M9ububIOCN0PqoetiOzvF0-geM70cg6tPIit08BXZsGoYp14BnjZ9zHRp00jdLQyyiuSb8N7xolJLoGRGdejsuEGiPWV7LQVxteL0SvKhSQvwltNppM6kAwSW7Ntg2vFsfkwnwvo3JbzFhGRiVAq_y3DHWKgSdk4AUb__-bl3Cf_CL5MhztPYNVKu9KmiVXbEJrOp7Z51RCTdMXta0ifLtr9_gFC5cv_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+Wheat+Frost+Risk+with+the+Support+of+GIS%3A+An+Approach+Coupling+a+Growing+Season+Meteorological+Index+and+a+Hybrid+Fuzzy+Neural+Network+Model&rft.jtitle=Sustainability&rft.au=Yue%2C+Yaojie&rft.au=Zhou%2C+Yao&rft.au=Wang%2C+Jing%E2%80%99ai&rft.au=Ye%2C+Xinyue&rft.date=2016-12-13&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=8&rft.issue=12&rft.spage=1308&rft_id=info:doi/10.3390%2Fsu8121308&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_su8121308 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon |