Exploring on a three-fluid Eulerian-Eulerian-Eulerian approach for the prediction of liquid jet atomization
•A 3-D numerical method with three phases representing the gas, continuous liquid and dispersed liquid respectively is developed to predict the liquid jet atomization process.•The Eulerian description is used for each of the three phases by using low-computer consumption coarse-grid.•The interaction...
Saved in:
Published in | Applied thermal engineering Vol. 195; p. 117160 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.08.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A 3-D numerical method with three phases representing the gas, continuous liquid and dispersed liquid respectively is developed to predict the liquid jet atomization process.•The Eulerian description is used for each of the three phases by using low-computer consumption coarse-grid.•The interactions between gas and continuous liquid is modeled in the framework of AIAD, and the interactions between gas and dispersed droplets is modeled by a population balance model.•Model's performance is evaluated and compared to the experimental data from a reference.
Predicting the atomization of a liquid jet in its applications, such as in fuel combustion and nuclear safety systems and in many other critical industrial applications, remains a challenging task. Using a low-computer consumption coarse-grid, this work presents a 3-D numerical method with three phases, which respectively represent the gas, continuous liquid and dispersed liquid. A Eulerian description is used for each of these phases. In addition, an algebraic interfacial area density (AIAD) model is used to consider the continuous liquid and gas phases. Meanwhile, a discrete population balance model is applied in order to take the droplet breakup and coalescences into account. The present Eulerian approach is then tested for the different liquid jets used in atomization regimes and then this is validated against the experimental data. The comparison reveals reasonable agreement in aspects such as jet spreading, droplet coalescence and the distribution of droplet sizes. Based on the simulation, the disintegration rates are found to increase from 175 kg/m3/s for case 1 to 310 kg/m3/s for case 2, which is due to increases in ejection velocity and turbulence intensity. In both the simulation and the experiment, larger-sized droplets form as the jet evolves downstream. This indicates that the coalescence between droplets overwhelms the possible breakup, meaning therefore that the diameter of the droplets increases streamwise, as shown in the comparison between D10 and D32 at the axial positions of 200 mm and 400 mm. |
---|---|
AbstractList | Predicting the atomization of a liquid jet in its applications, such as in fuel combustion and nuclear safety systems and in many other critical industrial applications, remains a challenging task. Using a low-computer consumption coarse-grid, this work presents a 3-D numerical method with three phases, which respectively represent the gas, continuous liquid and dispersed liquid. A Eulerian description is used for each of these phases. In addition, an algebraic interfacial area density (AIAD) model is used to consider the continuous liquid and gas phases. Meanwhile, a discrete population balance model is applied in order to take the droplet breakup and coalescences into account. The present Eulerian approach is then tested for the different liquid jets used in atomization regimes and then this is validated against the experimental data. The comparison reveals reasonable agreement in aspects such as jet spreading, droplet coalescence and the distribution of droplet sizes. Based on the simulation, the disintegration rates are found to increase from 175 kg/m3/s for case 1 to 310 kg/m3/s for case 2, which is due to increases in ejection velocity and turbulence intensity. In both the simulation and the experiment, larger-sized droplets form as the jet evolves downstream. This indicates that the coalescence between droplets overwhelms the possible breakup, meaning therefore that the diameter of the droplets increases streamwise, as shown in the comparison between D10 and D32 at the axial positions of 200 mm and 400 mm. •A 3-D numerical method with three phases representing the gas, continuous liquid and dispersed liquid respectively is developed to predict the liquid jet atomization process.•The Eulerian description is used for each of the three phases by using low-computer consumption coarse-grid.•The interactions between gas and continuous liquid is modeled in the framework of AIAD, and the interactions between gas and dispersed droplets is modeled by a population balance model.•Model's performance is evaluated and compared to the experimental data from a reference. Predicting the atomization of a liquid jet in its applications, such as in fuel combustion and nuclear safety systems and in many other critical industrial applications, remains a challenging task. Using a low-computer consumption coarse-grid, this work presents a 3-D numerical method with three phases, which respectively represent the gas, continuous liquid and dispersed liquid. A Eulerian description is used for each of these phases. In addition, an algebraic interfacial area density (AIAD) model is used to consider the continuous liquid and gas phases. Meanwhile, a discrete population balance model is applied in order to take the droplet breakup and coalescences into account. The present Eulerian approach is then tested for the different liquid jets used in atomization regimes and then this is validated against the experimental data. The comparison reveals reasonable agreement in aspects such as jet spreading, droplet coalescence and the distribution of droplet sizes. Based on the simulation, the disintegration rates are found to increase from 175 kg/m3/s for case 1 to 310 kg/m3/s for case 2, which is due to increases in ejection velocity and turbulence intensity. In both the simulation and the experiment, larger-sized droplets form as the jet evolves downstream. This indicates that the coalescence between droplets overwhelms the possible breakup, meaning therefore that the diameter of the droplets increases streamwise, as shown in the comparison between D10 and D32 at the axial positions of 200 mm and 400 mm. |
ArticleNumber | 117160 |
Author | Qu, Xiaohang Guo, Qianjian Revankar, Shripad Qi, Xiaoni |
Author_xml | – sequence: 1 givenname: Xiaohang surname: Qu fullname: Qu, Xiaohang organization: Department of Energy and Power Engineering, Shandong University of Technology, Zibo 255000, PR China – sequence: 2 givenname: Shripad surname: Revankar fullname: Revankar, Shripad organization: School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907, USA – sequence: 3 givenname: Xiaoni surname: Qi fullname: Qi, Xiaoni email: bmjw@163.com organization: Department of Energy and Power Engineering, Shandong University of Technology, Zibo 255000, PR China – sequence: 4 givenname: Qianjian surname: Guo fullname: Guo, Qianjian organization: Department of Energy and Power Engineering, Shandong University of Technology, Zibo 255000, PR China |
BookMark | eNqNkE9LAzEQxYNUsK1-h4Bet2aS_QtepLQqFLzoOaTZSZt1u9lmd0X99GapF_HiaR7MvDczvxmZNK5BQm6ALYBBelstVNvW_R79QdXY7BaccVgAZJCyMzKFPBNRkrJ0ErRIiigWABdk1nUVY8DzLJ6St9VHWztvmx11DVW033vEyNSDLelqqNFb1UR_BA17vVN6T43zwYO09Vha3dsQ4gyt7XEMqLCnqncH-6XGziU5N6ru8OqnzsnrevWyfIw2zw9Py_tNpEWS91FeijTmymyFSA1uhd5qnRnMCyhUyso8K5IsL7lGLEpeIIcYtwogxULEWhgQc3J9yg03Hgfselm5wTdhpeQBB3CAJA9Td6cp7V3XeTSy9fag_KcEJke8spK_8coRrzzhDfb1yY7hk3eLXnbaYqMDBo-6l6Wz_wv6BjD4j_4 |
CitedBy_id | crossref_primary_10_1007_s11663_023_02727_2 crossref_primary_10_1615_AtomizSpr_2022041370 crossref_primary_10_1016_j_applthermaleng_2024_123478 crossref_primary_10_1016_j_cej_2023_145062 crossref_primary_10_1016_j_applthermaleng_2021_117593 crossref_primary_10_3390_coatings13122095 |
Cites_doi | 10.1016/j.ijheatfluidflow.2020.108652 10.1016/j.ijmultiphaseflow.2018.02.016 10.1016/j.ijmultiphaseflow.2016.10.010 10.4271/970051 10.1006/jcph.2000.6537 10.1002/aic.690420505 10.1016/j.proci.2010.07.006 10.2514/6.1993-903 10.1016/j.ces.2007.05.030 10.1016/S1004-9541(13)60632-1 10.1016/S0301-9322(99)00042-7 10.1016/j.actaastro.2018.10.043 10.1016/0301-9322(95)00059-7 10.1017/CBO9780511840531 10.1260/1757-482X.2.3.131 10.1016/j.apenergy.2018.03.133 10.1002/aic.690361004 10.1016/j.ijheatfluidflow.2004.07.005 10.1016/j.apt.2019.08.019 10.1016/j.ijheatmasstransfer.2008.08.012 10.1016/j.apm.2013.03.063 10.1080/00102209708935747 10.1016/j.ijmultiphaseflow.2014.01.012 10.1016/j.nucengdes.2017.06.047 10.1016/j.compfluid.2010.06.018 10.2514/3.11098 10.1016/j.nucengdes.2014.02.006 10.1016/j.compfluid.2021.104919 10.1016/j.cam.2015.03.044 10.1017/S0022112068999990 10.1016/j.ijmultiphaseflow.2017.05.006 10.1016/0021-9991(88)90002-2 10.1146/annurev.fluid.40.111406.102200 10.1002/aic.690250513 10.1016/j.nucengdes.2013.08.049 10.1016/j.ijmultiphaseflow.2008.11.005 10.1016/0021-9991(81)90145-5 10.1016/j.ijheatfluidflow.2011.05.007 10.1016/j.ijmultiphaseflow.2012.07.007 10.1016/j.ijmultiphaseflow.2016.02.011 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Aug 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Aug 2021 |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1016/j.applthermaleng.2021.117160 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-5606 |
ExternalDocumentID | 10_1016_j_applthermaleng_2021_117160 S1359431121005998 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAXKI AAYXX AFJKZ AKRWK CITATION 7TB 8FD FR3 KR7 |
ID | FETCH-LOGICAL-c358t-8d3642afb336feb3cbcc7fe8919a60d879578d2cee9d29e214eba116e934c3f13 |
IEDL.DBID | AIKHN |
ISSN | 1359-4311 |
IngestDate | Thu Oct 10 16:57:47 EDT 2024 Thu Sep 26 19:02:31 EDT 2024 Fri Feb 23 02:42:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CFD Population balance model Jet atomization Multi-scale Three-fluid approach AIAD-model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-8d3642afb336feb3cbcc7fe8919a60d879578d2cee9d29e214eba116e934c3f13 |
PQID | 2560121158 |
PQPubID | 2045278 |
ParticipantIDs | proquest_journals_2560121158 crossref_primary_10_1016_j_applthermaleng_2021_117160 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2021_117160 |
PublicationCentury | 2000 |
PublicationDate | August 2021 2021-08-00 20210801 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Wang, Wen, Li, Yang, Li, Tu (b0135) 2013; 21 Faeth, Hsiang, Wu (b0190) 1995; 21 Hanthanan Arachchilage, Haghshenas, Park, Zhou, Sohn, McWilliams, Cho, Kumar (b0035) 2019; 30 Shinjo, Umemura (b0030) 2011; 33 Osher, Sethian (b0015) 1988; 79 Morrall, Quayle, Campobasso (b0155) 2020; 85 Hänsch, Lucas, Krepper, Höhne (b0125) 2012; 47 Ohnesorge (b0240) 1936; 16 Saffman (b0175) 1968; 31 Tawfik Badawy,Mohammadreza Anbari Attar,Peter Hutchins,Hongming Xu,Jens Krueger Venus,Roger Cracknell. Investigation of injector coking effects on spray characteristic and engine performance in gasoline direct injection engines. Applied Energy,2018,220. M. Herrmann, Modeling primary breakup: a three-dimensional Eulerian level set/vortex sheet method for two-phase interface dynamics, Annual Research Briefs. Stanford University, Center for Turbulence Research, pp. (2003) 185-196. Lebas, Menard, Beau, Berlemont, Demoulin (b0075) 2009; 35 Hirt, Nichols (b0010) 1981; 39 Höhne, Mehlhoop (b0105) 2014; 62 A. Vallier, Eulerian and Lagrangian Cavitation Related Simulations Using OpenFOAM Licenciate of Engineering Thesis, Lund University, 2010. P. Wu, G.M. faeth, Aerodynamic effects on primary breakup of turbulent liquid, in: Proceedings of the 31st Aerospace Sciences Meeting & Exhibiti (AIAA 93-0903), Reno, NV, 1993. S. Pope, Turbulent Flows, Cambridge University Press, 2000. Cheung, Deju, Yeoh, Tu (b0150) 2013; 265 Sallam, Dai, Faeth (b0195) 1999; 25 Numerical and experimental investigation of the spray quenching process with an Euler-Eulerian multi-fluid model. Saeedipour, Pirker, Bozorgi, Schneiderbauer (b0160) 2016; 82 Lopez de Bertodano (b0165) 1991 Li, Soteriou (b0080) 2018; 104 Li, Wei, Wang, Shi (b0140) 2009; 52 Deju, Cheung, Yeoh, Tu (b0145) 2013; 37 Höhne, Krepper, Montoya, Lucas (b0120) 2017; 322 Ishii, Zuber (b0170) 1979; 25 Saeedipour, Schneiderbauer, Plohl, Brenn, Pirker (b0235) 2017; 95 Sussman, Puckett (b0020) 2000; 162 Höhne, Vallée (b0110) 2010; 2 Zhu, Xiao, Li, Mo, Li, Lin (b0050) 2019; 154 Salvador, Romero, Roselló, Jaramillo (b0040) 2016; 291 Hänsch, Lucas, Höhne, Krepper (b0115) 2014; 279 Pađen, Petranović, Edelbauer, Vujanović (b0225) 2021; 222 Ham, Yong, Apte, Herrmann (b0060) 2003 Y. Egorov, Validation of CFD codes with PTS-relevant test cases, 5th Euratom Framework Programme ECORA project, 91-116. EVOL-ECORA-D07, 2004. Höhne (b0180) 2011; 32 Iyer, Abraham (b0090) 1997; 130 Hanjalić, Popovac, Hadžiabdić (b0230) 2004; 25 Tomar, Fuster, Zaleski, Popinet (b0065) 2010; 39 Luo, Svendsen (b0215) 1996; 42 Abraham J. What is adequate resolution in the numerical computations of transient jets?. SAE Tech Pap; 1997. doi: 104271/970051. Tseng, Ruff, Faeth (b0185) 1992; 30 Gorokhovski, Herrmann (b0025) 2008; 40 Shao, Luo, Yang, Fan (b0045) 2017; 89 FLUENT, User Manual. Ansys Inc, in, 2019. Prince, Blanch (b0220) 1990; 36 Cheung, Yeoh, Tu (b0130) 2007; 62 Morrall (10.1016/j.applthermaleng.2021.117160_b0155) 2020; 85 Höhne (10.1016/j.applthermaleng.2021.117160_b0105) 2014; 62 Lopez de Bertodano (10.1016/j.applthermaleng.2021.117160_b0165) 1991 10.1016/j.applthermaleng.2021.117160_b0205 10.1016/j.applthermaleng.2021.117160_b0005 Hanthanan Arachchilage (10.1016/j.applthermaleng.2021.117160_b0035) 2019; 30 Iyer (10.1016/j.applthermaleng.2021.117160_b0090) 1997; 130 Li (10.1016/j.applthermaleng.2021.117160_b0140) 2009; 52 Cheung (10.1016/j.applthermaleng.2021.117160_b0130) 2007; 62 Saeedipour (10.1016/j.applthermaleng.2021.117160_b0235) 2017; 95 Salvador (10.1016/j.applthermaleng.2021.117160_b0040) 2016; 291 Tomar (10.1016/j.applthermaleng.2021.117160_b0065) 2010; 39 Pađen (10.1016/j.applthermaleng.2021.117160_b0225) 2021; 222 Prince (10.1016/j.applthermaleng.2021.117160_b0220) 1990; 36 Ham (10.1016/j.applthermaleng.2021.117160_b0060) 2003 Wang (10.1016/j.applthermaleng.2021.117160_b0135) 2013; 21 Deju (10.1016/j.applthermaleng.2021.117160_b0145) 2013; 37 10.1016/j.applthermaleng.2021.117160_b0200 10.1016/j.applthermaleng.2021.117160_b0100 Li (10.1016/j.applthermaleng.2021.117160_b0080) 2018; 104 Shao (10.1016/j.applthermaleng.2021.117160_b0045) 2017; 89 10.1016/j.applthermaleng.2021.117160_b0085 Tseng (10.1016/j.applthermaleng.2021.117160_b0185) 1992; 30 Cheung (10.1016/j.applthermaleng.2021.117160_b0150) 2013; 265 Ishii (10.1016/j.applthermaleng.2021.117160_b0170) 1979; 25 Saeedipour (10.1016/j.applthermaleng.2021.117160_b0160) 2016; 82 Zhu (10.1016/j.applthermaleng.2021.117160_b0050) 2019; 154 Hänsch (10.1016/j.applthermaleng.2021.117160_b0125) 2012; 47 Höhne (10.1016/j.applthermaleng.2021.117160_b0180) 2011; 32 Hänsch (10.1016/j.applthermaleng.2021.117160_b0115) 2014; 279 Hanjalić (10.1016/j.applthermaleng.2021.117160_b0230) 2004; 25 Luo (10.1016/j.applthermaleng.2021.117160_b0215) 1996; 42 Gorokhovski (10.1016/j.applthermaleng.2021.117160_b0025) 2008; 40 Shinjo (10.1016/j.applthermaleng.2021.117160_b0030) 2011; 33 Hirt (10.1016/j.applthermaleng.2021.117160_b0010) 1981; 39 10.1016/j.applthermaleng.2021.117160_b0070 Lebas (10.1016/j.applthermaleng.2021.117160_b0075) 2009; 35 Osher (10.1016/j.applthermaleng.2021.117160_b0015) 1988; 79 Saffman (10.1016/j.applthermaleng.2021.117160_b0175) 1968; 31 Sussman (10.1016/j.applthermaleng.2021.117160_b0020) 2000; 162 Höhne (10.1016/j.applthermaleng.2021.117160_b0110) 2010; 2 Ohnesorge (10.1016/j.applthermaleng.2021.117160_b0240) 1936; 16 Sallam (10.1016/j.applthermaleng.2021.117160_b0195) 1999; 25 10.1016/j.applthermaleng.2021.117160_b0210 10.1016/j.applthermaleng.2021.117160_b0055 Höhne (10.1016/j.applthermaleng.2021.117160_b0120) 2017; 322 Faeth (10.1016/j.applthermaleng.2021.117160_b0190) 1995; 21 10.1016/j.applthermaleng.2021.117160_b0095 |
References_xml | – volume: 2 start-page: 131 year: 2010 end-page: 143 ident: b0110 article-title: Experiments and Numerical Simulations of Horizontal Two-Phase Flow Regimes Using an Interfacial Area Density Model publication-title: Journal of Computational Multiphase Flows contributor: fullname: Vallée – volume: 222 start-page: 104919 year: 2021 ident: b0225 article-title: Petranović Zvonimir, Edelbauer Wilfried, Vujanović Milan. Numerical Modeling of Spray Secondary Atomization with the Euler-Eulerian Multi-Fluid Approach publication-title: Comput. Fluids contributor: fullname: Vujanović – volume: 33 start-page: 2089 year: 2011 end-page: 2097 ident: b0030 article-title: Detailed simulation of primary atomization mechanisms in Diesel jet sprays (isolated identification of liquid jet tip effects) publication-title: Proc. Combust. Inst. contributor: fullname: Umemura – volume: 21 start-page: 99 year: 1995 end-page: 127 ident: b0190 article-title: Structure and breakup properties of sprays publication-title: Int. J. Multiph. Flow contributor: fullname: Wu – volume: 35 start-page: 247 year: 2009 end-page: 260 ident: b0075 article-title: Numerical simulation of primary break-up and atomization: DNS and modelling study publication-title: Int. J. Multiph. Flow contributor: fullname: Demoulin – volume: 62 start-page: 1 year: 2014 end-page: 16 ident: b0105 article-title: Validation of closure models for interfacial drag and turbulence in numerical simulations of horizontal stratified gas–liquid flows publication-title: Int. J. Multiph. Flow contributor: fullname: Mehlhoop – volume: 52 start-page: 1510 year: 2009 end-page: 1516 ident: b0140 article-title: Numerical and experimental investigation of heat transfer on heating surface during subcooled boiling flow of liquid nitrogen publication-title: Int. J. Heat Mass Transf. contributor: fullname: Shi – volume: 82 start-page: 17 year: 2016 end-page: 26 ident: b0160 article-title: An Eulerian-Lagrangian hybrid model for the coarse-grid simulation of turbulent liquid jet breakup publication-title: Int. J. Multiph. Flow contributor: fullname: Schneiderbauer – volume: 39 start-page: 1864 year: 2010 end-page: 1874 ident: b0065 article-title: Multiscale simulations of primary atomization publication-title: Comput. Fluids contributor: fullname: Popinet – volume: 31 start-page: 624 year: 1968 ident: b0175 article-title: The lift on a small sphere in a slow shear flow publication-title: J. Fluid Mech. contributor: fullname: Saffman – volume: 42 start-page: 1225 year: 1996 end-page: 1233 ident: b0215 article-title: Theoretical Model for Drop and Bubble Breakup in Turbulent Dispersions publication-title: AIChE J. contributor: fullname: Svendsen – volume: 265 start-page: 120 year: 2013 end-page: 136 ident: b0150 article-title: Modeling of bubble size distribution in isothermal gas–liquid flows: Numerical assessment of population balance approaches publication-title: Nucl. Eng. Des. contributor: fullname: Tu – volume: 62 start-page: 4659 year: 2007 end-page: 4674 ident: b0130 article-title: On the numerical study of isothermal vertical bubbly flow using two population balance approaches publication-title: Chem. Eng. Sci. contributor: fullname: Tu – volume: 25 start-page: 1161 year: 1999 end-page: 1180 ident: b0195 article-title: Drop formation at the surface of plane turbulent liquid jets in still gases publication-title: Int. J. Multiph. Flow contributor: fullname: Faeth – volume: 25 start-page: 1047 year: 2004 end-page: 1051 ident: b0230 article-title: A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD publication-title: Int. J. Heat Fluid Flow contributor: fullname: Hadžiabdić – volume: 40 start-page: 343 year: 2008 end-page: 366 ident: b0025 article-title: Modeling primary atomization publication-title: Annu. Rev. Fluid Mech. contributor: fullname: Herrmann – volume: 16 start-page: 355 year: 1936 end-page: 358 ident: b0240 article-title: Die Bildung von Tropfen an Düsen und die Auflösung flüssiger Strahlen publication-title: John Wiley & Sons Ltd contributor: fullname: Ohnesorge – volume: 95 start-page: 71 year: 2017 end-page: 83 ident: b0235 article-title: Multiscale simulations and experiments on water jet atomization publication-title: Int. J. Multiph. Flow contributor: fullname: Pirker – volume: 47 start-page: 171 year: 2012 end-page: 182 ident: b0125 article-title: A multi-field two-fluid concept for transitions between different scales of interfacial structures publication-title: Int. J. Multiph. Flow contributor: fullname: Höhne – volume: 322 start-page: 165 year: 2017 end-page: 176 ident: b0120 article-title: CFD-simulation of boiling in a heated pipe including flow pattern transitions using the GENTOP concept publication-title: Nucl. Eng. Des. contributor: fullname: Lucas – volume: 104 start-page: 214 year: 2018 end-page: 232 ident: b0080 article-title: Detailed numerical simulation of liquid jet atomization in crossflow of increasing density publication-title: Int. J. Multiph. Flow contributor: fullname: Soteriou – volume: 37 start-page: 8557 year: 2013 end-page: 8577 ident: b0145 article-title: Capturing coalescence and break-up processes in vertical gas–liquid flows: Assessment of population balance methods publication-title: Appl. Math. Model. contributor: fullname: Tu – volume: 279 start-page: 171 year: 2014 end-page: 181 ident: b0115 article-title: Application of a new concept for multi-scale interfacial structures to the dam-break case with an obstacle publication-title: Nucl. Eng. Des. contributor: fullname: Krepper – volume: 39 start-page: 201 year: 1981 end-page: 225 ident: b0010 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J. Comput. Phys. contributor: fullname: Nichols – volume: 89 start-page: 57 year: 2017 end-page: 68 ident: b0045 article-title: Detailed numerical simulation of swirling primary atomization using a mass conservative level set method publication-title: Int. J. Multiph. Flow contributor: fullname: Fan – start-page: 313 year: 2003 end-page: 322 ident: b0060 article-title: A hybrid Eulerian-Lagrangian method for LES of atomizing spray. Computational Methods in Multiphase Flow II, Advances in Fluid Mechanics publication-title: WIT Press contributor: fullname: Herrmann – volume: 130 start-page: 315 year: 1997 end-page: 334 ident: b0090 article-title: Penetration and dispersion of transient gas jets and sprays publication-title: Combust. Sci. Technol. contributor: fullname: Abraham – volume: 291 start-page: 94 year: 2016 end-page: 102 ident: b0040 article-title: Numerical simulation of primary atomization in diesel spray at low injection pressure publication-title: J. Comput. Appl. Math. contributor: fullname: Jaramillo – volume: 162 start-page: 301 year: 2000 end-page: 337 ident: b0020 article-title: A coupled level set and volume-of-fluid method for computing 3Dand axisymmetric incompressible two-phase flows publication-title: J. Comput. Phys. contributor: fullname: Puckett – volume: 36 start-page: 1485 year: 1990 end-page: 1499 ident: b0220 article-title: Bubble Coalescence and Break-Up in Air-Sparged Bubble Columns publication-title: AIChE J. contributor: fullname: Blanch – volume: 85 start-page: 108652 year: 2020 ident: b0155 article-title: Turbulence modelling for RANS CFD analyses of multi-nozzle annular jet pump swirling flows publication-title: Int. J. Heat Fluid Flow contributor: fullname: Campobasso – volume: 154 start-page: 119 year: 2019 end-page: 132 ident: b0050 article-title: LES of primary breakup of pulsed liquid jet in supersonic crossflow publication-title: Acta Astronaut. contributor: fullname: Lin – year: 1991 ident: b0165 article-title: Turbulent Bubbly Flow in a Triangular Duct contributor: fullname: Lopez de Bertodano – volume: 30 start-page: 1537 year: 1992 end-page: 1544 ident: b0185 article-title: Effects of gas density on the structure of liquid jets in still gases publication-title: AIAA Journal contributor: fullname: Faeth – volume: 30 start-page: 2726 year: 2019 end-page: 2732 ident: b0035 article-title: Numerical simulation of high-pressure gas atomization of two-phase flow: Effect of gas pressure on droplet size distribution publication-title: Adv. Powder Technol. contributor: fullname: Kumar – volume: 25 start-page: 843 year: 1979 end-page: 855 ident: b0170 article-title: Drag Coefficient and Relative Velocity in Bubbly Droplet or Particulate Flows publication-title: AIChE Journal contributor: fullname: Zuber – volume: 21 start-page: 1195 year: 2013 end-page: 1205 ident: b0135 article-title: Numerical Prediction for Subcooled Boiling Flow of Liquid Nitrogen in a Vertical Tube with MUSIG Model publication-title: Chin. J. Chem. Eng. contributor: fullname: Tu – volume: 32 start-page: 1047 year: 2011 end-page: 1056 ident: b0180 article-title: Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model publication-title: International Journal of Heat and Fluid Flow contributor: fullname: Höhne – volume: 79 start-page: 12 year: 1988 end-page: 49 ident: b0015 article-title: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations publication-title: J. Comput. Phys. contributor: fullname: Sethian – year: 1991 ident: 10.1016/j.applthermaleng.2021.117160_b0165 contributor: fullname: Lopez de Bertodano – volume: 85 start-page: 108652 year: 2020 ident: 10.1016/j.applthermaleng.2021.117160_b0155 article-title: Turbulence modelling for RANS CFD analyses of multi-nozzle annular jet pump swirling flows publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2020.108652 contributor: fullname: Morrall – ident: 10.1016/j.applthermaleng.2021.117160_b0100 – volume: 104 start-page: 214 year: 2018 ident: 10.1016/j.applthermaleng.2021.117160_b0080 article-title: Detailed numerical simulation of liquid jet atomization in crossflow of increasing density publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2018.02.016 contributor: fullname: Li – volume: 89 start-page: 57 year: 2017 ident: 10.1016/j.applthermaleng.2021.117160_b0045 article-title: Detailed numerical simulation of swirling primary atomization using a mass conservative level set method publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2016.10.010 contributor: fullname: Shao – ident: 10.1016/j.applthermaleng.2021.117160_b0085 doi: 10.4271/970051 – start-page: 313 year: 2003 ident: 10.1016/j.applthermaleng.2021.117160_b0060 article-title: A hybrid Eulerian-Lagrangian method for LES of atomizing spray. Computational Methods in Multiphase Flow II, Advances in Fluid Mechanics publication-title: WIT Press contributor: fullname: Ham – volume: 162 start-page: 301 year: 2000 ident: 10.1016/j.applthermaleng.2021.117160_b0020 article-title: A coupled level set and volume-of-fluid method for computing 3Dand axisymmetric incompressible two-phase flows publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6537 contributor: fullname: Sussman – volume: 42 start-page: 1225 year: 1996 ident: 10.1016/j.applthermaleng.2021.117160_b0215 article-title: Theoretical Model for Drop and Bubble Breakup in Turbulent Dispersions publication-title: AIChE J. doi: 10.1002/aic.690420505 contributor: fullname: Luo – volume: 33 start-page: 2089 issue: 2 year: 2011 ident: 10.1016/j.applthermaleng.2021.117160_b0030 article-title: Detailed simulation of primary atomization mechanisms in Diesel jet sprays (isolated identification of liquid jet tip effects) publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2010.07.006 contributor: fullname: Shinjo – volume: 16 start-page: 355 issue: 6 year: 1936 ident: 10.1016/j.applthermaleng.2021.117160_b0240 article-title: Die Bildung von Tropfen an Düsen und die Auflösung flüssiger Strahlen publication-title: John Wiley & Sons Ltd contributor: fullname: Ohnesorge – ident: 10.1016/j.applthermaleng.2021.117160_b0200 doi: 10.2514/6.1993-903 – volume: 62 start-page: 4659 issue: 17 year: 2007 ident: 10.1016/j.applthermaleng.2021.117160_b0130 article-title: On the numerical study of isothermal vertical bubbly flow using two population balance approaches publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2007.05.030 contributor: fullname: Cheung – volume: 21 start-page: 1195 issue: 11 year: 2013 ident: 10.1016/j.applthermaleng.2021.117160_b0135 article-title: Numerical Prediction for Subcooled Boiling Flow of Liquid Nitrogen in a Vertical Tube with MUSIG Model publication-title: Chin. J. Chem. Eng. doi: 10.1016/S1004-9541(13)60632-1 contributor: fullname: Wang – volume: 25 start-page: 1161 year: 1999 ident: 10.1016/j.applthermaleng.2021.117160_b0195 article-title: Drop formation at the surface of plane turbulent liquid jets in still gases publication-title: Int. J. Multiph. Flow doi: 10.1016/S0301-9322(99)00042-7 contributor: fullname: Sallam – volume: 154 start-page: 119 year: 2019 ident: 10.1016/j.applthermaleng.2021.117160_b0050 article-title: LES of primary breakup of pulsed liquid jet in supersonic crossflow publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2018.10.043 contributor: fullname: Zhu – ident: 10.1016/j.applthermaleng.2021.117160_b0095 – ident: 10.1016/j.applthermaleng.2021.117160_b0055 – volume: 21 start-page: 99 year: 1995 ident: 10.1016/j.applthermaleng.2021.117160_b0190 article-title: Structure and breakup properties of sprays publication-title: Int. J. Multiph. Flow doi: 10.1016/0301-9322(95)00059-7 contributor: fullname: Faeth – ident: 10.1016/j.applthermaleng.2021.117160_b0205 doi: 10.1017/CBO9780511840531 – volume: 2 start-page: 131 issue: 3 year: 2010 ident: 10.1016/j.applthermaleng.2021.117160_b0110 article-title: Experiments and Numerical Simulations of Horizontal Two-Phase Flow Regimes Using an Interfacial Area Density Model publication-title: Journal of Computational Multiphase Flows doi: 10.1260/1757-482X.2.3.131 contributor: fullname: Höhne – ident: 10.1016/j.applthermaleng.2021.117160_b0070 – ident: 10.1016/j.applthermaleng.2021.117160_b0005 doi: 10.1016/j.apenergy.2018.03.133 – volume: 36 start-page: 1485 year: 1990 ident: 10.1016/j.applthermaleng.2021.117160_b0220 article-title: Bubble Coalescence and Break-Up in Air-Sparged Bubble Columns publication-title: AIChE J. doi: 10.1002/aic.690361004 contributor: fullname: Prince – volume: 25 start-page: 1047 issue: 6 year: 2004 ident: 10.1016/j.applthermaleng.2021.117160_b0230 article-title: A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2004.07.005 contributor: fullname: Hanjalić – volume: 30 start-page: 2726 issue: 11 year: 2019 ident: 10.1016/j.applthermaleng.2021.117160_b0035 article-title: Numerical simulation of high-pressure gas atomization of two-phase flow: Effect of gas pressure on droplet size distribution publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2019.08.019 contributor: fullname: Hanthanan Arachchilage – volume: 52 start-page: 1510 issue: 5-6 year: 2009 ident: 10.1016/j.applthermaleng.2021.117160_b0140 article-title: Numerical and experimental investigation of heat transfer on heating surface during subcooled boiling flow of liquid nitrogen publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2008.08.012 contributor: fullname: Li – volume: 37 start-page: 8557 issue: 18–19 year: 2013 ident: 10.1016/j.applthermaleng.2021.117160_b0145 article-title: Capturing coalescence and break-up processes in vertical gas–liquid flows: Assessment of population balance methods publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2013.03.063 contributor: fullname: Deju – ident: 10.1016/j.applthermaleng.2021.117160_b0210 – volume: 130 start-page: 315 issue: 1-6 year: 1997 ident: 10.1016/j.applthermaleng.2021.117160_b0090 article-title: Penetration and dispersion of transient gas jets and sprays publication-title: Combust. Sci. Technol. doi: 10.1080/00102209708935747 contributor: fullname: Iyer – volume: 62 start-page: 1 year: 2014 ident: 10.1016/j.applthermaleng.2021.117160_b0105 article-title: Validation of closure models for interfacial drag and turbulence in numerical simulations of horizontal stratified gas–liquid flows publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2014.01.012 contributor: fullname: Höhne – volume: 322 start-page: 165 year: 2017 ident: 10.1016/j.applthermaleng.2021.117160_b0120 article-title: CFD-simulation of boiling in a heated pipe including flow pattern transitions using the GENTOP concept publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2017.06.047 contributor: fullname: Höhne – volume: 39 start-page: 1864 year: 2010 ident: 10.1016/j.applthermaleng.2021.117160_b0065 article-title: Multiscale simulations of primary atomization publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2010.06.018 contributor: fullname: Tomar – volume: 30 start-page: 1537 year: 1992 ident: 10.1016/j.applthermaleng.2021.117160_b0185 article-title: Effects of gas density on the structure of liquid jets in still gases publication-title: AIAA Journal doi: 10.2514/3.11098 contributor: fullname: Tseng – volume: 279 start-page: 171 year: 2014 ident: 10.1016/j.applthermaleng.2021.117160_b0115 article-title: Application of a new concept for multi-scale interfacial structures to the dam-break case with an obstacle publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2014.02.006 contributor: fullname: Hänsch – volume: 222 start-page: 104919 year: 2021 ident: 10.1016/j.applthermaleng.2021.117160_b0225 article-title: Petranović Zvonimir, Edelbauer Wilfried, Vujanović Milan. Numerical Modeling of Spray Secondary Atomization with the Euler-Eulerian Multi-Fluid Approach publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2021.104919 contributor: fullname: Pađen – volume: 291 start-page: 94 year: 2016 ident: 10.1016/j.applthermaleng.2021.117160_b0040 article-title: Numerical simulation of primary atomization in diesel spray at low injection pressure publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2015.03.044 contributor: fullname: Salvador – volume: 31 start-page: 624 year: 1968 ident: 10.1016/j.applthermaleng.2021.117160_b0175 article-title: The lift on a small sphere in a slow shear flow publication-title: J. Fluid Mech. doi: 10.1017/S0022112068999990 contributor: fullname: Saffman – volume: 95 start-page: 71 year: 2017 ident: 10.1016/j.applthermaleng.2021.117160_b0235 article-title: Multiscale simulations and experiments on water jet atomization publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2017.05.006 contributor: fullname: Saeedipour – volume: 79 start-page: 12 year: 1988 ident: 10.1016/j.applthermaleng.2021.117160_b0015 article-title: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(88)90002-2 contributor: fullname: Osher – volume: 40 start-page: 343 year: 2008 ident: 10.1016/j.applthermaleng.2021.117160_b0025 article-title: Modeling primary atomization publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.40.111406.102200 contributor: fullname: Gorokhovski – volume: 25 start-page: 843 year: 1979 ident: 10.1016/j.applthermaleng.2021.117160_b0170 article-title: Drag Coefficient and Relative Velocity in Bubbly Droplet or Particulate Flows publication-title: AIChE Journal doi: 10.1002/aic.690250513 contributor: fullname: Ishii – volume: 265 start-page: 120 year: 2013 ident: 10.1016/j.applthermaleng.2021.117160_b0150 article-title: Modeling of bubble size distribution in isothermal gas–liquid flows: Numerical assessment of population balance approaches publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2013.08.049 contributor: fullname: Cheung – volume: 35 start-page: 247 issue: 3 year: 2009 ident: 10.1016/j.applthermaleng.2021.117160_b0075 article-title: Numerical simulation of primary break-up and atomization: DNS and modelling study publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2008.11.005 contributor: fullname: Lebas – volume: 39 start-page: 201 year: 1981 ident: 10.1016/j.applthermaleng.2021.117160_b0010 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(81)90145-5 contributor: fullname: Hirt – volume: 32 start-page: 1047 issue: 5 year: 2011 ident: 10.1016/j.applthermaleng.2021.117160_b0180 article-title: Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model publication-title: International Journal of Heat and Fluid Flow doi: 10.1016/j.ijheatfluidflow.2011.05.007 contributor: fullname: Höhne – volume: 47 start-page: 171 year: 2012 ident: 10.1016/j.applthermaleng.2021.117160_b0125 article-title: A multi-field two-fluid concept for transitions between different scales of interfacial structures publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2012.07.007 contributor: fullname: Hänsch – volume: 82 start-page: 17 year: 2016 ident: 10.1016/j.applthermaleng.2021.117160_b0160 article-title: An Eulerian-Lagrangian hybrid model for the coarse-grid simulation of turbulent liquid jet breakup publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2016.02.011 contributor: fullname: Saeedipour |
SSID | ssj0012874 |
Score | 2.4235528 |
Snippet | •A 3-D numerical method with three phases representing the gas, continuous liquid and dispersed liquid respectively is developed to predict the liquid jet... Predicting the atomization of a liquid jet in its applications, such as in fuel combustion and nuclear safety systems and in many other critical industrial... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 117160 |
SubjectTerms | AIAD-model Atomizing Breakup CFD Coalescing Computational fluid dynamics Disintegration Droplets Fluid flow Fuel combustion Heat transfer Industrial applications Jet atomization Multi-scale Nuclear fuels Nuclear safety Numerical methods Population balance model Population balance models Predictions Simulation Studies Three-fluid approach Turbulence intensity Vapor phases Velocity |
Title | Exploring on a three-fluid Eulerian-Eulerian-Eulerian approach for the prediction of liquid jet atomization |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2021.117160 https://www.proquest.com/docview/2560121158 |
Volume | 195 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgSAgOiKd4KweuYUvTdMkJITQ0QHABJG5Rm4c02LoB3ZXfTtzHeB6QuLWVmka2a_uT7S8ARx3vgmJjQbMsVTTmmaepZYZ6IwSPVBpQFw4KX98k_fv48kE8zMFZMwuDbZW17698eumt6yftWprtyWDQvmVcqBD-kAELSUbkPCyEcBTJFiycXlz1b2bFBKR0L3GXwN0wtghHH21eWCfGVGuU4sklATBGDAuZrOSs_DVSffPZZSA6X4WVOoMkp9Um12DO5euw_IlXcAOeZp11ZJyTlBRBYY764XRgSW86RKPL6Y8L0vCLk5DIhnccmbxgGQdVR8aeDAfPuMCjK0hA6qN6gHMT7s97d2d9Wp-qQA0XsqDS8oA5Up9xnvgApU1mTNc7qZhKk47Fw8e70kYheCobKRex2GUpY4lTPDbcM74FrXycu20ggpmQTnHlrfVxZiPpmZE-6RgvXVcpvwOikaCeVOQZuukqe9RfJa9R8rqS_A6cNOLWX4xBBz__xxX2Gy3p-qd81SX6DIBXyN1_f2APlvCuagXch1bxMnUHIT0pskOYP35jh7URvgMj1-lq |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xkAocUHmpUNr6wNXadRxn7RNaIdBSYC8FiZuV-CEtLNktZP8_M3lsS-mhUm9RIjvWjD0zn2bmM8BJPwZUbKp4UeSGp7KIPPfC8eiUkonJEXVRo_DNOBvdpd_v1f0KnHW9MFRW2dr-xqbX1rp902ul2ZtPJr0fQiqD7o8YsIhkRK_COkYDBk_n-vDyajReJhOI0r3GXYpWI8QHOPlV5kV5Ygq1nnK6uQQBYyIokSlqzsq_eqo_bHbtiC4-wnYbQbJhs8gdWAnlLmz9xiu4B4_Lyjo2K1nOKlRY4HG6mHh2vpjSpiv5uwfW8YszDGRxTGDzZ0rjkOrYLLLp5CdN8BAqhkj9qW3g3Ie7i_PbsxFvb1XgTipdce0lYo48FlJmEaG0K5wbxKCNMHnW93T5-ED7BJ2n8YkJiUhDkQuRBSNTJ6OQB7BWzsrwCZgSDsMpaaL3MS18oqNwOmZ9F3UYGBMPQXUStPOGPMN2VWUP9q3kLUneNpI_hNNO3PbNZrBo5_9xhuNOS7Y9lC-2Rp8IeJU--u8ffION0e3Ntb2-HF99hk360pQFHsNa9bwIXzBUqYqv7VZ8BcpF614 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+on+a+three-fluid+Eulerian-Eulerian-Eulerian+approach+for+the+prediction+of+liquid+jet+atomization&rft.jtitle=Applied+thermal+engineering&rft.au=Qu%2C+Xiaohang&rft.au=Revankar%2C+Shripad&rft.au=Qi%2C+Xiaoni&rft.au=Guo%2C+Qianjian&rft.date=2021-08-01&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=195&rft_id=info:doi/10.1016%2Fj.applthermaleng.2021.117160&rft.externalDocID=S1359431121005998 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |