Exploring on a three-fluid Eulerian-Eulerian-Eulerian approach for the prediction of liquid jet atomization

•A 3-D numerical method with three phases representing the gas, continuous liquid and dispersed liquid respectively is developed to predict the liquid jet atomization process.•The Eulerian description is used for each of the three phases by using low-computer consumption coarse-grid.•The interaction...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 195; p. 117160
Main Authors Qu, Xiaohang, Revankar, Shripad, Qi, Xiaoni, Guo, Qianjian
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.08.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A 3-D numerical method with three phases representing the gas, continuous liquid and dispersed liquid respectively is developed to predict the liquid jet atomization process.•The Eulerian description is used for each of the three phases by using low-computer consumption coarse-grid.•The interactions between gas and continuous liquid is modeled in the framework of AIAD, and the interactions between gas and dispersed droplets is modeled by a population balance model.•Model's performance is evaluated and compared to the experimental data from a reference. Predicting the atomization of a liquid jet in its applications, such as in fuel combustion and nuclear safety systems and in many other critical industrial applications, remains a challenging task. Using a low-computer consumption coarse-grid, this work presents a 3-D numerical method with three phases, which respectively represent the gas, continuous liquid and dispersed liquid. A Eulerian description is used for each of these phases. In addition, an algebraic interfacial area density (AIAD) model is used to consider the continuous liquid and gas phases. Meanwhile, a discrete population balance model is applied in order to take the droplet breakup and coalescences into account. The present Eulerian approach is then tested for the different liquid jets used in atomization regimes and then this is validated against the experimental data. The comparison reveals reasonable agreement in aspects such as jet spreading, droplet coalescence and the distribution of droplet sizes. Based on the simulation, the disintegration rates are found to increase from 175 kg/m3/s for case 1 to 310 kg/m3/s for case 2, which is due to increases in ejection velocity and turbulence intensity. In both the simulation and the experiment, larger-sized droplets form as the jet evolves downstream. This indicates that the coalescence between droplets overwhelms the possible breakup, meaning therefore that the diameter of the droplets increases streamwise, as shown in the comparison between D10 and D32 at the axial positions of 200 mm and 400 mm.
AbstractList Predicting the atomization of a liquid jet in its applications, such as in fuel combustion and nuclear safety systems and in many other critical industrial applications, remains a challenging task. Using a low-computer consumption coarse-grid, this work presents a 3-D numerical method with three phases, which respectively represent the gas, continuous liquid and dispersed liquid. A Eulerian description is used for each of these phases. In addition, an algebraic interfacial area density (AIAD) model is used to consider the continuous liquid and gas phases. Meanwhile, a discrete population balance model is applied in order to take the droplet breakup and coalescences into account. The present Eulerian approach is then tested for the different liquid jets used in atomization regimes and then this is validated against the experimental data. The comparison reveals reasonable agreement in aspects such as jet spreading, droplet coalescence and the distribution of droplet sizes. Based on the simulation, the disintegration rates are found to increase from 175 kg/m3/s for case 1 to 310 kg/m3/s for case 2, which is due to increases in ejection velocity and turbulence intensity. In both the simulation and the experiment, larger-sized droplets form as the jet evolves downstream. This indicates that the coalescence between droplets overwhelms the possible breakup, meaning therefore that the diameter of the droplets increases streamwise, as shown in the comparison between D10 and D32 at the axial positions of 200 mm and 400 mm.
•A 3-D numerical method with three phases representing the gas, continuous liquid and dispersed liquid respectively is developed to predict the liquid jet atomization process.•The Eulerian description is used for each of the three phases by using low-computer consumption coarse-grid.•The interactions between gas and continuous liquid is modeled in the framework of AIAD, and the interactions between gas and dispersed droplets is modeled by a population balance model.•Model's performance is evaluated and compared to the experimental data from a reference. Predicting the atomization of a liquid jet in its applications, such as in fuel combustion and nuclear safety systems and in many other critical industrial applications, remains a challenging task. Using a low-computer consumption coarse-grid, this work presents a 3-D numerical method with three phases, which respectively represent the gas, continuous liquid and dispersed liquid. A Eulerian description is used for each of these phases. In addition, an algebraic interfacial area density (AIAD) model is used to consider the continuous liquid and gas phases. Meanwhile, a discrete population balance model is applied in order to take the droplet breakup and coalescences into account. The present Eulerian approach is then tested for the different liquid jets used in atomization regimes and then this is validated against the experimental data. The comparison reveals reasonable agreement in aspects such as jet spreading, droplet coalescence and the distribution of droplet sizes. Based on the simulation, the disintegration rates are found to increase from 175 kg/m3/s for case 1 to 310 kg/m3/s for case 2, which is due to increases in ejection velocity and turbulence intensity. In both the simulation and the experiment, larger-sized droplets form as the jet evolves downstream. This indicates that the coalescence between droplets overwhelms the possible breakup, meaning therefore that the diameter of the droplets increases streamwise, as shown in the comparison between D10 and D32 at the axial positions of 200 mm and 400 mm.
ArticleNumber 117160
Author Qu, Xiaohang
Guo, Qianjian
Revankar, Shripad
Qi, Xiaoni
Author_xml – sequence: 1
  givenname: Xiaohang
  surname: Qu
  fullname: Qu, Xiaohang
  organization: Department of Energy and Power Engineering, Shandong University of Technology, Zibo 255000, PR China
– sequence: 2
  givenname: Shripad
  surname: Revankar
  fullname: Revankar, Shripad
  organization: School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907, USA
– sequence: 3
  givenname: Xiaoni
  surname: Qi
  fullname: Qi, Xiaoni
  email: bmjw@163.com
  organization: Department of Energy and Power Engineering, Shandong University of Technology, Zibo 255000, PR China
– sequence: 4
  givenname: Qianjian
  surname: Guo
  fullname: Guo, Qianjian
  organization: Department of Energy and Power Engineering, Shandong University of Technology, Zibo 255000, PR China
BookMark eNqNkE9LAzEQxYNUsK1-h4Bet2aS_QtepLQqFLzoOaTZSZt1u9lmd0X99GapF_HiaR7MvDczvxmZNK5BQm6ALYBBelstVNvW_R79QdXY7BaccVgAZJCyMzKFPBNRkrJ0ErRIiigWABdk1nUVY8DzLJ6St9VHWztvmx11DVW033vEyNSDLelqqNFb1UR_BA17vVN6T43zwYO09Vha3dsQ4gyt7XEMqLCnqncH-6XGziU5N6ru8OqnzsnrevWyfIw2zw9Py_tNpEWS91FeijTmymyFSA1uhd5qnRnMCyhUyso8K5IsL7lGLEpeIIcYtwogxULEWhgQc3J9yg03Hgfselm5wTdhpeQBB3CAJA9Td6cp7V3XeTSy9fag_KcEJke8spK_8coRrzzhDfb1yY7hk3eLXnbaYqMDBo-6l6Wz_wv6BjD4j_4
CitedBy_id crossref_primary_10_1007_s11663_023_02727_2
crossref_primary_10_1615_AtomizSpr_2022041370
crossref_primary_10_1016_j_applthermaleng_2024_123478
crossref_primary_10_1016_j_cej_2023_145062
crossref_primary_10_1016_j_applthermaleng_2021_117593
crossref_primary_10_3390_coatings13122095
Cites_doi 10.1016/j.ijheatfluidflow.2020.108652
10.1016/j.ijmultiphaseflow.2018.02.016
10.1016/j.ijmultiphaseflow.2016.10.010
10.4271/970051
10.1006/jcph.2000.6537
10.1002/aic.690420505
10.1016/j.proci.2010.07.006
10.2514/6.1993-903
10.1016/j.ces.2007.05.030
10.1016/S1004-9541(13)60632-1
10.1016/S0301-9322(99)00042-7
10.1016/j.actaastro.2018.10.043
10.1016/0301-9322(95)00059-7
10.1017/CBO9780511840531
10.1260/1757-482X.2.3.131
10.1016/j.apenergy.2018.03.133
10.1002/aic.690361004
10.1016/j.ijheatfluidflow.2004.07.005
10.1016/j.apt.2019.08.019
10.1016/j.ijheatmasstransfer.2008.08.012
10.1016/j.apm.2013.03.063
10.1080/00102209708935747
10.1016/j.ijmultiphaseflow.2014.01.012
10.1016/j.nucengdes.2017.06.047
10.1016/j.compfluid.2010.06.018
10.2514/3.11098
10.1016/j.nucengdes.2014.02.006
10.1016/j.compfluid.2021.104919
10.1016/j.cam.2015.03.044
10.1017/S0022112068999990
10.1016/j.ijmultiphaseflow.2017.05.006
10.1016/0021-9991(88)90002-2
10.1146/annurev.fluid.40.111406.102200
10.1002/aic.690250513
10.1016/j.nucengdes.2013.08.049
10.1016/j.ijmultiphaseflow.2008.11.005
10.1016/0021-9991(81)90145-5
10.1016/j.ijheatfluidflow.2011.05.007
10.1016/j.ijmultiphaseflow.2012.07.007
10.1016/j.ijmultiphaseflow.2016.02.011
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Aug 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 2021
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.applthermaleng.2021.117160
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5606
ExternalDocumentID 10_1016_j_applthermaleng_2021_117160
S1359431121005998
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c358t-8d3642afb336feb3cbcc7fe8919a60d879578d2cee9d29e214eba116e934c3f13
IEDL.DBID AIKHN
ISSN 1359-4311
IngestDate Thu Oct 10 16:57:47 EDT 2024
Thu Sep 26 19:02:31 EDT 2024
Fri Feb 23 02:42:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords CFD
Population balance model
Jet atomization
Multi-scale
Three-fluid approach
AIAD-model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-8d3642afb336feb3cbcc7fe8919a60d879578d2cee9d29e214eba116e934c3f13
PQID 2560121158
PQPubID 2045278
ParticipantIDs proquest_journals_2560121158
crossref_primary_10_1016_j_applthermaleng_2021_117160
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2021_117160
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Applied thermal engineering
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Wang, Wen, Li, Yang, Li, Tu (b0135) 2013; 21
Faeth, Hsiang, Wu (b0190) 1995; 21
Hanthanan Arachchilage, Haghshenas, Park, Zhou, Sohn, McWilliams, Cho, Kumar (b0035) 2019; 30
Shinjo, Umemura (b0030) 2011; 33
Osher, Sethian (b0015) 1988; 79
Morrall, Quayle, Campobasso (b0155) 2020; 85
Hänsch, Lucas, Krepper, Höhne (b0125) 2012; 47
Ohnesorge (b0240) 1936; 16
Saffman (b0175) 1968; 31
Tawfik Badawy,Mohammadreza Anbari Attar,Peter Hutchins,Hongming Xu,Jens Krueger Venus,Roger Cracknell. Investigation of injector coking effects on spray characteristic and engine performance in gasoline direct injection engines. Applied Energy,2018,220.
M. Herrmann, Modeling primary breakup: a three-dimensional Eulerian level set/vortex sheet method for two-phase interface dynamics, Annual Research Briefs. Stanford University, Center for Turbulence Research, pp. (2003) 185-196.
Lebas, Menard, Beau, Berlemont, Demoulin (b0075) 2009; 35
Hirt, Nichols (b0010) 1981; 39
Höhne, Mehlhoop (b0105) 2014; 62
A. Vallier, Eulerian and Lagrangian Cavitation Related Simulations Using OpenFOAM Licenciate of Engineering Thesis, Lund University, 2010.
P. Wu, G.M. faeth, Aerodynamic effects on primary breakup of turbulent liquid, in: Proceedings of the 31st Aerospace Sciences Meeting & Exhibiti (AIAA 93-0903), Reno, NV, 1993.
S. Pope, Turbulent Flows, Cambridge University Press, 2000.
Cheung, Deju, Yeoh, Tu (b0150) 2013; 265
Sallam, Dai, Faeth (b0195) 1999; 25
Numerical and experimental investigation of the spray quenching process with an Euler-Eulerian multi-fluid model.
Saeedipour, Pirker, Bozorgi, Schneiderbauer (b0160) 2016; 82
Lopez de Bertodano (b0165) 1991
Li, Soteriou (b0080) 2018; 104
Li, Wei, Wang, Shi (b0140) 2009; 52
Deju, Cheung, Yeoh, Tu (b0145) 2013; 37
Höhne, Krepper, Montoya, Lucas (b0120) 2017; 322
Ishii, Zuber (b0170) 1979; 25
Saeedipour, Schneiderbauer, Plohl, Brenn, Pirker (b0235) 2017; 95
Sussman, Puckett (b0020) 2000; 162
Höhne, Vallée (b0110) 2010; 2
Zhu, Xiao, Li, Mo, Li, Lin (b0050) 2019; 154
Salvador, Romero, Roselló, Jaramillo (b0040) 2016; 291
Hänsch, Lucas, Höhne, Krepper (b0115) 2014; 279
Pađen, Petranović, Edelbauer, Vujanović (b0225) 2021; 222
Ham, Yong, Apte, Herrmann (b0060) 2003
Y. Egorov, Validation of CFD codes with PTS-relevant test cases, 5th Euratom Framework Programme ECORA project, 91-116. EVOL-ECORA-D07, 2004.
Höhne (b0180) 2011; 32
Iyer, Abraham (b0090) 1997; 130
Hanjalić, Popovac, Hadžiabdić (b0230) 2004; 25
Tomar, Fuster, Zaleski, Popinet (b0065) 2010; 39
Luo, Svendsen (b0215) 1996; 42
Abraham J. What is adequate resolution in the numerical computations of transient jets?. SAE Tech Pap; 1997. doi: 104271/970051.
Tseng, Ruff, Faeth (b0185) 1992; 30
Gorokhovski, Herrmann (b0025) 2008; 40
Shao, Luo, Yang, Fan (b0045) 2017; 89
FLUENT, User Manual. Ansys Inc, in, 2019.
Prince, Blanch (b0220) 1990; 36
Cheung, Yeoh, Tu (b0130) 2007; 62
Morrall (10.1016/j.applthermaleng.2021.117160_b0155) 2020; 85
Höhne (10.1016/j.applthermaleng.2021.117160_b0105) 2014; 62
Lopez de Bertodano (10.1016/j.applthermaleng.2021.117160_b0165) 1991
10.1016/j.applthermaleng.2021.117160_b0205
10.1016/j.applthermaleng.2021.117160_b0005
Hanthanan Arachchilage (10.1016/j.applthermaleng.2021.117160_b0035) 2019; 30
Iyer (10.1016/j.applthermaleng.2021.117160_b0090) 1997; 130
Li (10.1016/j.applthermaleng.2021.117160_b0140) 2009; 52
Cheung (10.1016/j.applthermaleng.2021.117160_b0130) 2007; 62
Saeedipour (10.1016/j.applthermaleng.2021.117160_b0235) 2017; 95
Salvador (10.1016/j.applthermaleng.2021.117160_b0040) 2016; 291
Tomar (10.1016/j.applthermaleng.2021.117160_b0065) 2010; 39
Pađen (10.1016/j.applthermaleng.2021.117160_b0225) 2021; 222
Prince (10.1016/j.applthermaleng.2021.117160_b0220) 1990; 36
Ham (10.1016/j.applthermaleng.2021.117160_b0060) 2003
Wang (10.1016/j.applthermaleng.2021.117160_b0135) 2013; 21
Deju (10.1016/j.applthermaleng.2021.117160_b0145) 2013; 37
10.1016/j.applthermaleng.2021.117160_b0200
10.1016/j.applthermaleng.2021.117160_b0100
Li (10.1016/j.applthermaleng.2021.117160_b0080) 2018; 104
Shao (10.1016/j.applthermaleng.2021.117160_b0045) 2017; 89
10.1016/j.applthermaleng.2021.117160_b0085
Tseng (10.1016/j.applthermaleng.2021.117160_b0185) 1992; 30
Cheung (10.1016/j.applthermaleng.2021.117160_b0150) 2013; 265
Ishii (10.1016/j.applthermaleng.2021.117160_b0170) 1979; 25
Saeedipour (10.1016/j.applthermaleng.2021.117160_b0160) 2016; 82
Zhu (10.1016/j.applthermaleng.2021.117160_b0050) 2019; 154
Hänsch (10.1016/j.applthermaleng.2021.117160_b0125) 2012; 47
Höhne (10.1016/j.applthermaleng.2021.117160_b0180) 2011; 32
Hänsch (10.1016/j.applthermaleng.2021.117160_b0115) 2014; 279
Hanjalić (10.1016/j.applthermaleng.2021.117160_b0230) 2004; 25
Luo (10.1016/j.applthermaleng.2021.117160_b0215) 1996; 42
Gorokhovski (10.1016/j.applthermaleng.2021.117160_b0025) 2008; 40
Shinjo (10.1016/j.applthermaleng.2021.117160_b0030) 2011; 33
Hirt (10.1016/j.applthermaleng.2021.117160_b0010) 1981; 39
10.1016/j.applthermaleng.2021.117160_b0070
Lebas (10.1016/j.applthermaleng.2021.117160_b0075) 2009; 35
Osher (10.1016/j.applthermaleng.2021.117160_b0015) 1988; 79
Saffman (10.1016/j.applthermaleng.2021.117160_b0175) 1968; 31
Sussman (10.1016/j.applthermaleng.2021.117160_b0020) 2000; 162
Höhne (10.1016/j.applthermaleng.2021.117160_b0110) 2010; 2
Ohnesorge (10.1016/j.applthermaleng.2021.117160_b0240) 1936; 16
Sallam (10.1016/j.applthermaleng.2021.117160_b0195) 1999; 25
10.1016/j.applthermaleng.2021.117160_b0210
10.1016/j.applthermaleng.2021.117160_b0055
Höhne (10.1016/j.applthermaleng.2021.117160_b0120) 2017; 322
Faeth (10.1016/j.applthermaleng.2021.117160_b0190) 1995; 21
10.1016/j.applthermaleng.2021.117160_b0095
References_xml – volume: 2
  start-page: 131
  year: 2010
  end-page: 143
  ident: b0110
  article-title: Experiments and Numerical Simulations of Horizontal Two-Phase Flow Regimes Using an Interfacial Area Density Model
  publication-title: Journal of Computational Multiphase Flows
  contributor:
    fullname: Vallée
– volume: 222
  start-page: 104919
  year: 2021
  ident: b0225
  article-title: Petranović Zvonimir, Edelbauer Wilfried, Vujanović Milan. Numerical Modeling of Spray Secondary Atomization with the Euler-Eulerian Multi-Fluid Approach
  publication-title: Comput. Fluids
  contributor:
    fullname: Vujanović
– volume: 33
  start-page: 2089
  year: 2011
  end-page: 2097
  ident: b0030
  article-title: Detailed simulation of primary atomization mechanisms in Diesel jet sprays (isolated identification of liquid jet tip effects)
  publication-title: Proc. Combust. Inst.
  contributor:
    fullname: Umemura
– volume: 21
  start-page: 99
  year: 1995
  end-page: 127
  ident: b0190
  article-title: Structure and breakup properties of sprays
  publication-title: Int. J. Multiph. Flow
  contributor:
    fullname: Wu
– volume: 35
  start-page: 247
  year: 2009
  end-page: 260
  ident: b0075
  article-title: Numerical simulation of primary break-up and atomization: DNS and modelling study
  publication-title: Int. J. Multiph. Flow
  contributor:
    fullname: Demoulin
– volume: 62
  start-page: 1
  year: 2014
  end-page: 16
  ident: b0105
  article-title: Validation of closure models for interfacial drag and turbulence in numerical simulations of horizontal stratified gas–liquid flows
  publication-title: Int. J. Multiph. Flow
  contributor:
    fullname: Mehlhoop
– volume: 52
  start-page: 1510
  year: 2009
  end-page: 1516
  ident: b0140
  article-title: Numerical and experimental investigation of heat transfer on heating surface during subcooled boiling flow of liquid nitrogen
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Shi
– volume: 82
  start-page: 17
  year: 2016
  end-page: 26
  ident: b0160
  article-title: An Eulerian-Lagrangian hybrid model for the coarse-grid simulation of turbulent liquid jet breakup
  publication-title: Int. J. Multiph. Flow
  contributor:
    fullname: Schneiderbauer
– volume: 39
  start-page: 1864
  year: 2010
  end-page: 1874
  ident: b0065
  article-title: Multiscale simulations of primary atomization
  publication-title: Comput. Fluids
  contributor:
    fullname: Popinet
– volume: 31
  start-page: 624
  year: 1968
  ident: b0175
  article-title: The lift on a small sphere in a slow shear flow
  publication-title: J. Fluid Mech.
  contributor:
    fullname: Saffman
– volume: 42
  start-page: 1225
  year: 1996
  end-page: 1233
  ident: b0215
  article-title: Theoretical Model for Drop and Bubble Breakup in Turbulent Dispersions
  publication-title: AIChE J.
  contributor:
    fullname: Svendsen
– volume: 265
  start-page: 120
  year: 2013
  end-page: 136
  ident: b0150
  article-title: Modeling of bubble size distribution in isothermal gas–liquid flows: Numerical assessment of population balance approaches
  publication-title: Nucl. Eng. Des.
  contributor:
    fullname: Tu
– volume: 62
  start-page: 4659
  year: 2007
  end-page: 4674
  ident: b0130
  article-title: On the numerical study of isothermal vertical bubbly flow using two population balance approaches
  publication-title: Chem. Eng. Sci.
  contributor:
    fullname: Tu
– volume: 25
  start-page: 1161
  year: 1999
  end-page: 1180
  ident: b0195
  article-title: Drop formation at the surface of plane turbulent liquid jets in still gases
  publication-title: Int. J. Multiph. Flow
  contributor:
    fullname: Faeth
– volume: 25
  start-page: 1047
  year: 2004
  end-page: 1051
  ident: b0230
  article-title: A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD
  publication-title: Int. J. Heat Fluid Flow
  contributor:
    fullname: Hadžiabdić
– volume: 40
  start-page: 343
  year: 2008
  end-page: 366
  ident: b0025
  article-title: Modeling primary atomization
  publication-title: Annu. Rev. Fluid Mech.
  contributor:
    fullname: Herrmann
– volume: 16
  start-page: 355
  year: 1936
  end-page: 358
  ident: b0240
  article-title: Die Bildung von Tropfen an Düsen und die Auflösung flüssiger Strahlen
  publication-title: John Wiley & Sons Ltd
  contributor:
    fullname: Ohnesorge
– volume: 95
  start-page: 71
  year: 2017
  end-page: 83
  ident: b0235
  article-title: Multiscale simulations and experiments on water jet atomization
  publication-title: Int. J. Multiph. Flow
  contributor:
    fullname: Pirker
– volume: 47
  start-page: 171
  year: 2012
  end-page: 182
  ident: b0125
  article-title: A multi-field two-fluid concept for transitions between different scales of interfacial structures
  publication-title: Int. J. Multiph. Flow
  contributor:
    fullname: Höhne
– volume: 322
  start-page: 165
  year: 2017
  end-page: 176
  ident: b0120
  article-title: CFD-simulation of boiling in a heated pipe including flow pattern transitions using the GENTOP concept
  publication-title: Nucl. Eng. Des.
  contributor:
    fullname: Lucas
– volume: 104
  start-page: 214
  year: 2018
  end-page: 232
  ident: b0080
  article-title: Detailed numerical simulation of liquid jet atomization in crossflow of increasing density
  publication-title: Int. J. Multiph. Flow
  contributor:
    fullname: Soteriou
– volume: 37
  start-page: 8557
  year: 2013
  end-page: 8577
  ident: b0145
  article-title: Capturing coalescence and break-up processes in vertical gas–liquid flows: Assessment of population balance methods
  publication-title: Appl. Math. Model.
  contributor:
    fullname: Tu
– volume: 279
  start-page: 171
  year: 2014
  end-page: 181
  ident: b0115
  article-title: Application of a new concept for multi-scale interfacial structures to the dam-break case with an obstacle
  publication-title: Nucl. Eng. Des.
  contributor:
    fullname: Krepper
– volume: 39
  start-page: 201
  year: 1981
  end-page: 225
  ident: b0010
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J. Comput. Phys.
  contributor:
    fullname: Nichols
– volume: 89
  start-page: 57
  year: 2017
  end-page: 68
  ident: b0045
  article-title: Detailed numerical simulation of swirling primary atomization using a mass conservative level set method
  publication-title: Int. J. Multiph. Flow
  contributor:
    fullname: Fan
– start-page: 313
  year: 2003
  end-page: 322
  ident: b0060
  article-title: A hybrid Eulerian-Lagrangian method for LES of atomizing spray. Computational Methods in Multiphase Flow II, Advances in Fluid Mechanics
  publication-title: WIT Press
  contributor:
    fullname: Herrmann
– volume: 130
  start-page: 315
  year: 1997
  end-page: 334
  ident: b0090
  article-title: Penetration and dispersion of transient gas jets and sprays
  publication-title: Combust. Sci. Technol.
  contributor:
    fullname: Abraham
– volume: 291
  start-page: 94
  year: 2016
  end-page: 102
  ident: b0040
  article-title: Numerical simulation of primary atomization in diesel spray at low injection pressure
  publication-title: J. Comput. Appl. Math.
  contributor:
    fullname: Jaramillo
– volume: 162
  start-page: 301
  year: 2000
  end-page: 337
  ident: b0020
  article-title: A coupled level set and volume-of-fluid method for computing 3Dand axisymmetric incompressible two-phase flows
  publication-title: J. Comput. Phys.
  contributor:
    fullname: Puckett
– volume: 36
  start-page: 1485
  year: 1990
  end-page: 1499
  ident: b0220
  article-title: Bubble Coalescence and Break-Up in Air-Sparged Bubble Columns
  publication-title: AIChE J.
  contributor:
    fullname: Blanch
– volume: 85
  start-page: 108652
  year: 2020
  ident: b0155
  article-title: Turbulence modelling for RANS CFD analyses of multi-nozzle annular jet pump swirling flows
  publication-title: Int. J. Heat Fluid Flow
  contributor:
    fullname: Campobasso
– volume: 154
  start-page: 119
  year: 2019
  end-page: 132
  ident: b0050
  article-title: LES of primary breakup of pulsed liquid jet in supersonic crossflow
  publication-title: Acta Astronaut.
  contributor:
    fullname: Lin
– year: 1991
  ident: b0165
  article-title: Turbulent Bubbly Flow in a Triangular Duct
  contributor:
    fullname: Lopez de Bertodano
– volume: 30
  start-page: 1537
  year: 1992
  end-page: 1544
  ident: b0185
  article-title: Effects of gas density on the structure of liquid jets in still gases
  publication-title: AIAA Journal
  contributor:
    fullname: Faeth
– volume: 30
  start-page: 2726
  year: 2019
  end-page: 2732
  ident: b0035
  article-title: Numerical simulation of high-pressure gas atomization of two-phase flow: Effect of gas pressure on droplet size distribution
  publication-title: Adv. Powder Technol.
  contributor:
    fullname: Kumar
– volume: 25
  start-page: 843
  year: 1979
  end-page: 855
  ident: b0170
  article-title: Drag Coefficient and Relative Velocity in Bubbly Droplet or Particulate Flows
  publication-title: AIChE Journal
  contributor:
    fullname: Zuber
– volume: 21
  start-page: 1195
  year: 2013
  end-page: 1205
  ident: b0135
  article-title: Numerical Prediction for Subcooled Boiling Flow of Liquid Nitrogen in a Vertical Tube with MUSIG Model
  publication-title: Chin. J. Chem. Eng.
  contributor:
    fullname: Tu
– volume: 32
  start-page: 1047
  year: 2011
  end-page: 1056
  ident: b0180
  article-title: Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model
  publication-title: International Journal of Heat and Fluid Flow
  contributor:
    fullname: Höhne
– volume: 79
  start-page: 12
  year: 1988
  end-page: 49
  ident: b0015
  article-title: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations
  publication-title: J. Comput. Phys.
  contributor:
    fullname: Sethian
– year: 1991
  ident: 10.1016/j.applthermaleng.2021.117160_b0165
  contributor:
    fullname: Lopez de Bertodano
– volume: 85
  start-page: 108652
  year: 2020
  ident: 10.1016/j.applthermaleng.2021.117160_b0155
  article-title: Turbulence modelling for RANS CFD analyses of multi-nozzle annular jet pump swirling flows
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2020.108652
  contributor:
    fullname: Morrall
– ident: 10.1016/j.applthermaleng.2021.117160_b0100
– volume: 104
  start-page: 214
  year: 2018
  ident: 10.1016/j.applthermaleng.2021.117160_b0080
  article-title: Detailed numerical simulation of liquid jet atomization in crossflow of increasing density
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2018.02.016
  contributor:
    fullname: Li
– volume: 89
  start-page: 57
  year: 2017
  ident: 10.1016/j.applthermaleng.2021.117160_b0045
  article-title: Detailed numerical simulation of swirling primary atomization using a mass conservative level set method
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2016.10.010
  contributor:
    fullname: Shao
– ident: 10.1016/j.applthermaleng.2021.117160_b0085
  doi: 10.4271/970051
– start-page: 313
  year: 2003
  ident: 10.1016/j.applthermaleng.2021.117160_b0060
  article-title: A hybrid Eulerian-Lagrangian method for LES of atomizing spray. Computational Methods in Multiphase Flow II, Advances in Fluid Mechanics
  publication-title: WIT Press
  contributor:
    fullname: Ham
– volume: 162
  start-page: 301
  year: 2000
  ident: 10.1016/j.applthermaleng.2021.117160_b0020
  article-title: A coupled level set and volume-of-fluid method for computing 3Dand axisymmetric incompressible two-phase flows
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6537
  contributor:
    fullname: Sussman
– volume: 42
  start-page: 1225
  year: 1996
  ident: 10.1016/j.applthermaleng.2021.117160_b0215
  article-title: Theoretical Model for Drop and Bubble Breakup in Turbulent Dispersions
  publication-title: AIChE J.
  doi: 10.1002/aic.690420505
  contributor:
    fullname: Luo
– volume: 33
  start-page: 2089
  issue: 2
  year: 2011
  ident: 10.1016/j.applthermaleng.2021.117160_b0030
  article-title: Detailed simulation of primary atomization mechanisms in Diesel jet sprays (isolated identification of liquid jet tip effects)
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2010.07.006
  contributor:
    fullname: Shinjo
– volume: 16
  start-page: 355
  issue: 6
  year: 1936
  ident: 10.1016/j.applthermaleng.2021.117160_b0240
  article-title: Die Bildung von Tropfen an Düsen und die Auflösung flüssiger Strahlen
  publication-title: John Wiley & Sons Ltd
  contributor:
    fullname: Ohnesorge
– ident: 10.1016/j.applthermaleng.2021.117160_b0200
  doi: 10.2514/6.1993-903
– volume: 62
  start-page: 4659
  issue: 17
  year: 2007
  ident: 10.1016/j.applthermaleng.2021.117160_b0130
  article-title: On the numerical study of isothermal vertical bubbly flow using two population balance approaches
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2007.05.030
  contributor:
    fullname: Cheung
– volume: 21
  start-page: 1195
  issue: 11
  year: 2013
  ident: 10.1016/j.applthermaleng.2021.117160_b0135
  article-title: Numerical Prediction for Subcooled Boiling Flow of Liquid Nitrogen in a Vertical Tube with MUSIG Model
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/S1004-9541(13)60632-1
  contributor:
    fullname: Wang
– volume: 25
  start-page: 1161
  year: 1999
  ident: 10.1016/j.applthermaleng.2021.117160_b0195
  article-title: Drop formation at the surface of plane turbulent liquid jets in still gases
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/S0301-9322(99)00042-7
  contributor:
    fullname: Sallam
– volume: 154
  start-page: 119
  year: 2019
  ident: 10.1016/j.applthermaleng.2021.117160_b0050
  article-title: LES of primary breakup of pulsed liquid jet in supersonic crossflow
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2018.10.043
  contributor:
    fullname: Zhu
– ident: 10.1016/j.applthermaleng.2021.117160_b0095
– ident: 10.1016/j.applthermaleng.2021.117160_b0055
– volume: 21
  start-page: 99
  year: 1995
  ident: 10.1016/j.applthermaleng.2021.117160_b0190
  article-title: Structure and breakup properties of sprays
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/0301-9322(95)00059-7
  contributor:
    fullname: Faeth
– ident: 10.1016/j.applthermaleng.2021.117160_b0205
  doi: 10.1017/CBO9780511840531
– volume: 2
  start-page: 131
  issue: 3
  year: 2010
  ident: 10.1016/j.applthermaleng.2021.117160_b0110
  article-title: Experiments and Numerical Simulations of Horizontal Two-Phase Flow Regimes Using an Interfacial Area Density Model
  publication-title: Journal of Computational Multiphase Flows
  doi: 10.1260/1757-482X.2.3.131
  contributor:
    fullname: Höhne
– ident: 10.1016/j.applthermaleng.2021.117160_b0070
– ident: 10.1016/j.applthermaleng.2021.117160_b0005
  doi: 10.1016/j.apenergy.2018.03.133
– volume: 36
  start-page: 1485
  year: 1990
  ident: 10.1016/j.applthermaleng.2021.117160_b0220
  article-title: Bubble Coalescence and Break-Up in Air-Sparged Bubble Columns
  publication-title: AIChE J.
  doi: 10.1002/aic.690361004
  contributor:
    fullname: Prince
– volume: 25
  start-page: 1047
  issue: 6
  year: 2004
  ident: 10.1016/j.applthermaleng.2021.117160_b0230
  article-title: A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2004.07.005
  contributor:
    fullname: Hanjalić
– volume: 30
  start-page: 2726
  issue: 11
  year: 2019
  ident: 10.1016/j.applthermaleng.2021.117160_b0035
  article-title: Numerical simulation of high-pressure gas atomization of two-phase flow: Effect of gas pressure on droplet size distribution
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2019.08.019
  contributor:
    fullname: Hanthanan Arachchilage
– volume: 52
  start-page: 1510
  issue: 5-6
  year: 2009
  ident: 10.1016/j.applthermaleng.2021.117160_b0140
  article-title: Numerical and experimental investigation of heat transfer on heating surface during subcooled boiling flow of liquid nitrogen
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2008.08.012
  contributor:
    fullname: Li
– volume: 37
  start-page: 8557
  issue: 18–19
  year: 2013
  ident: 10.1016/j.applthermaleng.2021.117160_b0145
  article-title: Capturing coalescence and break-up processes in vertical gas–liquid flows: Assessment of population balance methods
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2013.03.063
  contributor:
    fullname: Deju
– ident: 10.1016/j.applthermaleng.2021.117160_b0210
– volume: 130
  start-page: 315
  issue: 1-6
  year: 1997
  ident: 10.1016/j.applthermaleng.2021.117160_b0090
  article-title: Penetration and dispersion of transient gas jets and sprays
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102209708935747
  contributor:
    fullname: Iyer
– volume: 62
  start-page: 1
  year: 2014
  ident: 10.1016/j.applthermaleng.2021.117160_b0105
  article-title: Validation of closure models for interfacial drag and turbulence in numerical simulations of horizontal stratified gas–liquid flows
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2014.01.012
  contributor:
    fullname: Höhne
– volume: 322
  start-page: 165
  year: 2017
  ident: 10.1016/j.applthermaleng.2021.117160_b0120
  article-title: CFD-simulation of boiling in a heated pipe including flow pattern transitions using the GENTOP concept
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2017.06.047
  contributor:
    fullname: Höhne
– volume: 39
  start-page: 1864
  year: 2010
  ident: 10.1016/j.applthermaleng.2021.117160_b0065
  article-title: Multiscale simulations of primary atomization
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2010.06.018
  contributor:
    fullname: Tomar
– volume: 30
  start-page: 1537
  year: 1992
  ident: 10.1016/j.applthermaleng.2021.117160_b0185
  article-title: Effects of gas density on the structure of liquid jets in still gases
  publication-title: AIAA Journal
  doi: 10.2514/3.11098
  contributor:
    fullname: Tseng
– volume: 279
  start-page: 171
  year: 2014
  ident: 10.1016/j.applthermaleng.2021.117160_b0115
  article-title: Application of a new concept for multi-scale interfacial structures to the dam-break case with an obstacle
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2014.02.006
  contributor:
    fullname: Hänsch
– volume: 222
  start-page: 104919
  year: 2021
  ident: 10.1016/j.applthermaleng.2021.117160_b0225
  article-title: Petranović Zvonimir, Edelbauer Wilfried, Vujanović Milan. Numerical Modeling of Spray Secondary Atomization with the Euler-Eulerian Multi-Fluid Approach
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2021.104919
  contributor:
    fullname: Pađen
– volume: 291
  start-page: 94
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.117160_b0040
  article-title: Numerical simulation of primary atomization in diesel spray at low injection pressure
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2015.03.044
  contributor:
    fullname: Salvador
– volume: 31
  start-page: 624
  year: 1968
  ident: 10.1016/j.applthermaleng.2021.117160_b0175
  article-title: The lift on a small sphere in a slow shear flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112068999990
  contributor:
    fullname: Saffman
– volume: 95
  start-page: 71
  year: 2017
  ident: 10.1016/j.applthermaleng.2021.117160_b0235
  article-title: Multiscale simulations and experiments on water jet atomization
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2017.05.006
  contributor:
    fullname: Saeedipour
– volume: 79
  start-page: 12
  year: 1988
  ident: 10.1016/j.applthermaleng.2021.117160_b0015
  article-title: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(88)90002-2
  contributor:
    fullname: Osher
– volume: 40
  start-page: 343
  year: 2008
  ident: 10.1016/j.applthermaleng.2021.117160_b0025
  article-title: Modeling primary atomization
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.40.111406.102200
  contributor:
    fullname: Gorokhovski
– volume: 25
  start-page: 843
  year: 1979
  ident: 10.1016/j.applthermaleng.2021.117160_b0170
  article-title: Drag Coefficient and Relative Velocity in Bubbly Droplet or Particulate Flows
  publication-title: AIChE Journal
  doi: 10.1002/aic.690250513
  contributor:
    fullname: Ishii
– volume: 265
  start-page: 120
  year: 2013
  ident: 10.1016/j.applthermaleng.2021.117160_b0150
  article-title: Modeling of bubble size distribution in isothermal gas–liquid flows: Numerical assessment of population balance approaches
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2013.08.049
  contributor:
    fullname: Cheung
– volume: 35
  start-page: 247
  issue: 3
  year: 2009
  ident: 10.1016/j.applthermaleng.2021.117160_b0075
  article-title: Numerical simulation of primary break-up and atomization: DNS and modelling study
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2008.11.005
  contributor:
    fullname: Lebas
– volume: 39
  start-page: 201
  year: 1981
  ident: 10.1016/j.applthermaleng.2021.117160_b0010
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(81)90145-5
  contributor:
    fullname: Hirt
– volume: 32
  start-page: 1047
  issue: 5
  year: 2011
  ident: 10.1016/j.applthermaleng.2021.117160_b0180
  article-title: Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model
  publication-title: International Journal of Heat and Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2011.05.007
  contributor:
    fullname: Höhne
– volume: 47
  start-page: 171
  year: 2012
  ident: 10.1016/j.applthermaleng.2021.117160_b0125
  article-title: A multi-field two-fluid concept for transitions between different scales of interfacial structures
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2012.07.007
  contributor:
    fullname: Hänsch
– volume: 82
  start-page: 17
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.117160_b0160
  article-title: An Eulerian-Lagrangian hybrid model for the coarse-grid simulation of turbulent liquid jet breakup
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2016.02.011
  contributor:
    fullname: Saeedipour
SSID ssj0012874
Score 2.4235528
Snippet •A 3-D numerical method with three phases representing the gas, continuous liquid and dispersed liquid respectively is developed to predict the liquid jet...
Predicting the atomization of a liquid jet in its applications, such as in fuel combustion and nuclear safety systems and in many other critical industrial...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 117160
SubjectTerms AIAD-model
Atomizing
Breakup
CFD
Coalescing
Computational fluid dynamics
Disintegration
Droplets
Fluid flow
Fuel combustion
Heat transfer
Industrial applications
Jet atomization
Multi-scale
Nuclear fuels
Nuclear safety
Numerical methods
Population balance model
Population balance models
Predictions
Simulation
Studies
Three-fluid approach
Turbulence intensity
Vapor phases
Velocity
Title Exploring on a three-fluid Eulerian-Eulerian-Eulerian approach for the prediction of liquid jet atomization
URI https://dx.doi.org/10.1016/j.applthermaleng.2021.117160
https://www.proquest.com/docview/2560121158
Volume 195
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgSAgOiKd4KweuYUvTdMkJITQ0QHABJG5Rm4c02LoB3ZXfTtzHeB6QuLWVmka2a_uT7S8ARx3vgmJjQbMsVTTmmaepZYZ6IwSPVBpQFw4KX98k_fv48kE8zMFZMwuDbZW17698eumt6yftWprtyWDQvmVcqBD-kAELSUbkPCyEcBTJFiycXlz1b2bFBKR0L3GXwN0wtghHH21eWCfGVGuU4sklATBGDAuZrOSs_DVSffPZZSA6X4WVOoMkp9Um12DO5euw_IlXcAOeZp11ZJyTlBRBYY764XRgSW86RKPL6Y8L0vCLk5DIhnccmbxgGQdVR8aeDAfPuMCjK0hA6qN6gHMT7s97d2d9Wp-qQA0XsqDS8oA5Up9xnvgApU1mTNc7qZhKk47Fw8e70kYheCobKRex2GUpY4lTPDbcM74FrXycu20ggpmQTnHlrfVxZiPpmZE-6RgvXVcpvwOikaCeVOQZuukqe9RfJa9R8rqS_A6cNOLWX4xBBz__xxX2Gy3p-qd81SX6DIBXyN1_f2APlvCuagXch1bxMnUHIT0pskOYP35jh7URvgMj1-lq
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xkAocUHmpUNr6wNXadRxn7RNaIdBSYC8FiZuV-CEtLNktZP8_M3lsS-mhUm9RIjvWjD0zn2bmM8BJPwZUbKp4UeSGp7KIPPfC8eiUkonJEXVRo_DNOBvdpd_v1f0KnHW9MFRW2dr-xqbX1rp902ul2ZtPJr0fQiqD7o8YsIhkRK_COkYDBk_n-vDyajReJhOI0r3GXYpWI8QHOPlV5kV5Ygq1nnK6uQQBYyIokSlqzsq_eqo_bHbtiC4-wnYbQbJhs8gdWAnlLmz9xiu4B4_Lyjo2K1nOKlRY4HG6mHh2vpjSpiv5uwfW8YszDGRxTGDzZ0rjkOrYLLLp5CdN8BAqhkj9qW3g3Ie7i_PbsxFvb1XgTipdce0lYo48FlJmEaG0K5wbxKCNMHnW93T5-ED7BJ2n8YkJiUhDkQuRBSNTJ6OQB7BWzsrwCZgSDsMpaaL3MS18oqNwOmZ9F3UYGBMPQXUStPOGPMN2VWUP9q3kLUneNpI_hNNO3PbNZrBo5_9xhuNOS7Y9lC-2Rp8IeJU--u8ffION0e3Ntb2-HF99hk360pQFHsNa9bwIXzBUqYqv7VZ8BcpF614
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+on+a+three-fluid+Eulerian-Eulerian-Eulerian+approach+for+the+prediction+of+liquid+jet+atomization&rft.jtitle=Applied+thermal+engineering&rft.au=Qu%2C+Xiaohang&rft.au=Revankar%2C+Shripad&rft.au=Qi%2C+Xiaoni&rft.au=Guo%2C+Qianjian&rft.date=2021-08-01&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=195&rft_id=info:doi/10.1016%2Fj.applthermaleng.2021.117160&rft.externalDocID=S1359431121005998
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon