Real-time measurement method of melt pool temperature in the directed energy deposition process

•A melt pool temperature measurement system was constructed.•Three calibration methods guarantee a measuring error of less than 1%.•The high resolution image of temperature distribution in melt pool was obtained. In metal additive manufacturing, the quality of the parts is closely related to the tem...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 177; p. 115475
Main Authors Hao, Ce, Liu, Zhanwei, Xie, Huimin, Zhao, Kai, Liu, Sheng
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.08.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A melt pool temperature measurement system was constructed.•Three calibration methods guarantee a measuring error of less than 1%.•The high resolution image of temperature distribution in melt pool was obtained. In metal additive manufacturing, the quality of the parts is closely related to the temperature distribution in the melt pool; hence, real-time monitoring of the temperature distribution has become a common method of evaluating printing quality. However, there are difficulties in the temperature measurement of a melt pool related to its small size, high temperature, and rapid melting and cooling. A high-speed measuring optical path for a temperature field using a single camera is designed based on dual-wavelength thermometry herein. A dual-waveband image-matching method with sub-pixel accuracy, and a multi-parameter cooperative optimization and calibration method of proportional coefficient K, λ1, and λ2 are developed. Moreover, it was found that the splitting ratio of a beam splitter is not a constant value, rather, it is a distribution; hence, an accurate calibration method for the splitting ratio distribution of the optical system is developed. An on-line temperature measurement system is developed, and its validation experiment indicates a measuring error of less than 1%. The temperature distribution of the melt pool in the directed energy deposition (DED) process was measured. It was found that the temperature distribution was uneven, and the position of the high-temperature peak region changed with time. The evolution law of profile size and temperature change rates during the formation, development, and cooling process of the melt pool are analyzed. The method developed herein significantly reduces the system development cost, and can realize real-time monitoring of the temperature distribution of the melt pool in DED processing.
AbstractList In metal additive manufacturing, the quality of the parts is closely related to the temperature distribution in the melt pool; hence, real-time monitoring of the temperature distribution has become a common method of evaluating printing quality. However, there are difficulties in the temperature measurement of a melt pool related to its small size, high temperature, and rapid melting and cooling. A high-speed measuring optical path for a temperature field using a single camera is designed based on dual-wavelength thermometry herein. A dual-waveband image-matching method with sub-pixel accuracy, and a multi-parameter cooperative optimization and calibration method of proportional coefficient K, λ1, and λ2 are developed. Moreover, it was found that the splitting ratio of a beam splitter is not a constant value, rather, it is a distribution; hence, an accurate calibration method for the splitting ratio distribution of the optical system is developed. An on-line temperature measurement system is developed, and its validation experiment indicates a measuring error of less than 1%. The temperature distribution of the melt pool in the directed energy deposition (DED) process was measured. It was found that the temperature distribution was uneven, and the position of the high-temperature peak region changed with time. The evolution law of profile size and temperature change rates during the formation, development, and cooling process of the melt pool are analyzed. The method developed herein significantly reduces the system development cost, and can realize real-time monitoring of the temperature distribution of the melt pool in DED processing.
•A melt pool temperature measurement system was constructed.•Three calibration methods guarantee a measuring error of less than 1%.•The high resolution image of temperature distribution in melt pool was obtained. In metal additive manufacturing, the quality of the parts is closely related to the temperature distribution in the melt pool; hence, real-time monitoring of the temperature distribution has become a common method of evaluating printing quality. However, there are difficulties in the temperature measurement of a melt pool related to its small size, high temperature, and rapid melting and cooling. A high-speed measuring optical path for a temperature field using a single camera is designed based on dual-wavelength thermometry herein. A dual-waveband image-matching method with sub-pixel accuracy, and a multi-parameter cooperative optimization and calibration method of proportional coefficient K, λ1, and λ2 are developed. Moreover, it was found that the splitting ratio of a beam splitter is not a constant value, rather, it is a distribution; hence, an accurate calibration method for the splitting ratio distribution of the optical system is developed. An on-line temperature measurement system is developed, and its validation experiment indicates a measuring error of less than 1%. The temperature distribution of the melt pool in the directed energy deposition (DED) process was measured. It was found that the temperature distribution was uneven, and the position of the high-temperature peak region changed with time. The evolution law of profile size and temperature change rates during the formation, development, and cooling process of the melt pool are analyzed. The method developed herein significantly reduces the system development cost, and can realize real-time monitoring of the temperature distribution of the melt pool in DED processing.
ArticleNumber 115475
Author Xie, Huimin
Zhao, Kai
Liu, Zhanwei
Hao, Ce
Liu, Sheng
Author_xml – sequence: 1
  givenname: Ce
  surname: Hao
  fullname: Hao, Ce
  organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
– sequence: 2
  givenname: Zhanwei
  surname: Liu
  fullname: Liu, Zhanwei
  email: liuzw@bit.edu.cn
  organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
– sequence: 3
  givenname: Huimin
  surname: Xie
  fullname: Xie, Huimin
  organization: AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
– sequence: 4
  givenname: Kai
  surname: Zhao
  fullname: Zhao, Kai
  organization: Shanghai Aerospace Equipments Manufacturer Co. Ltd, Shanghai 201100, China
– sequence: 5
  givenname: Sheng
  surname: Liu
  fullname: Liu, Sheng
  email: victor_liu63@vip.126.com
  organization: School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
BookMark eNqNkEtLxDAUhYOM4PM_BHTbMWnapgE3Ir5AEETXIZPczGRok5pkhPn3Zqgbd67ugXvOPdzvDC188IDQNSVLSmh3s12qaRryBuKoBvDrZU3qsqJtw9sjdEp7zqq2I92iaNaKqmGUnqCzlLaE0LrnzSmS76CGKrsR8Agq7SKM4HPReRMMDraoIeMphAFnGCeIKhcPdh6XWmxcBJ3BYPAQ13tsYArJZRc8nmLQkNIFOrZqSHD5O8_R5-PDx_1z9fr29HJ_91pp1va56hVntmeguaDC1F0rlFKaKssIA9EYbXrdt70FwzvQZKW4ZYIDsyuA2oqanaOr-W7p_dpBynIbdtGXSlk3DW05p0IU1-3s0jGkFMHKKbpRxb2kRB6Qyq38i1QekMoZaYk_znEon3w7iDJpB17DzEGa4P536AesGYyu
CitedBy_id crossref_primary_10_1177_00325899241248996
crossref_primary_10_1016_j_addma_2023_103855
crossref_primary_10_1016_j_optlastec_2022_108877
crossref_primary_10_1016_j_applthermaleng_2022_118515
crossref_primary_10_1016_j_jmapro_2024_05_001
crossref_primary_10_1007_s11081_023_09818_8
crossref_primary_10_1016_j_optlastec_2022_108363
crossref_primary_10_1007_s00170_024_13764_9
crossref_primary_10_1016_j_taml_2022_100366
crossref_primary_10_3390_app12115469
crossref_primary_10_1016_j_addma_2022_102760
crossref_primary_10_1016_j_jmapro_2023_05_035
crossref_primary_10_1089_3dp_2021_0049
crossref_primary_10_3788_gzxb20235202_0211003
crossref_primary_10_1007_s10845_024_02342_1
crossref_primary_10_1016_j_jmapro_2022_01_049
Cites_doi 10.1007/s00170-014-6214-8
10.1007/s11340-010-9418-3
10.1088/1361-6501/aa5c4f
10.1016/j.dib.2016.02.084
10.1038/s41467-018-03071-9
10.1007/s40684-017-0029-7
10.1007/s11837-015-1767-z
10.1016/j.applthermaleng.2009.12.005
10.1038/s41467-018-03734-7
10.1088/0957-0233/22/2/025106
10.1016/j.jmatprotec.2010.08.007
10.1016/1350-4495(94)00106-U
10.1109/JSEN.2010.2045651
10.1007/s11661-011-0787-8
10.1115/1.4028540
10.1016/j.measurement.2016.04.024
10.3390/met9040456
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Aug 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 2020
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.applthermaleng.2020.115475
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5606
ExternalDocumentID 10_1016_j_applthermaleng_2020_115475
S1359431120329574
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c358t-8a73f83ec7919d2659aaac1af303e94dcd8c858fed76ec0ba7f397e3fbee2f923
IEDL.DBID AIKHN
ISSN 1359-4311
IngestDate Thu Oct 10 18:29:21 EDT 2024
Thu Sep 26 16:59:07 EDT 2024
Fri Feb 23 02:48:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Splitting ratio calibration
Directed Energy Deposition (DED)
Temperature distribution in melt pool
Dual-wavelength thermometry
Image-matching method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-8a73f83ec7919d2659aaac1af303e94dcd8c858fed76ec0ba7f397e3fbee2f923
PQID 2441577199
PQPubID 2045278
ParticipantIDs proquest_journals_2441577199
crossref_primary_10_1016_j_applthermaleng_2020_115475
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2020_115475
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Applied thermal engineering
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Thevenet, Siroux, Desmet (b0095) 2010; 30
Yang, Sun, Brandt, Yan (b0050) 2010; 210
Ahmed, Mian (b0055) 2019; 9
Marshall, Young, Thompson, Shamsaei, Daniewicz, Shao (b0070) 2016; 68
Pan (b0105) 2010; 51
Zhang, Fuh, Ye, Hong (b0020) 2019; 25
Musto, Rotondo, De Cesare, Del Vecchio, Savino, De Filippis (b0090) 2016; 90
ISO/ASTM 52900, Standard Terminology for Additive Manufacturing-General Principles-Terminology, 2015.
Litwa (b0115) 2010; 10
K. Zeng, D. Pal, B. Stucker, A review of thermal analysis methods in laser sintering and selective laser melting, Proc. Solid Free. Fabr. Symp. Austin, TX. 60 (2012) 796–814.
Grasso, Colosimo (b0005) 2017; 28
Tapia, Elwany (b0065) 2014; 136
Chua, Ahn, Moon (b0030) 2017
Hijazi, Sachidanandan, Singh, Madhavan (b0075) 2011; 22
Hooper (b0080) 2018; 22
Clijsters, Craeghs, Buls, Kempen, Kruth (b0085) 2014; 75
Blouke, Ide, Bodegom, Akahane, Sugawa (b0100) 2008
Leung, Marussi, Atwood, Towrie, Withers, Lee (b0025) 2018; 9
V.D. Manvatkar, A.A. Gokhale, G. Jagan Reddy, A. Venkataramana, A. De, Estimation of melt pool dimensions, thermal cycle, and hardness distribution in the laser-engineered net shaping process of austenitic stainless steel, Metall. Mater. Trans. A. 42 (2011) 4080–4087. 10.1007/s11661-011-0787-8.
Marshall, Thompson, Shamsaei (b0060) 2016; 7
Chrzanowski (b0110) 1995; 36
Vyatskikh, Delalande, Kudo, Zhang, Portela, Greer (b0010) 2018
B. Cheng, K. Chou, Melt pool geometry simulations for powder-based electron beam additive manufacturing, 24th Annu. Int. Solid Free. Fabr. Symp. Addit. Manuf. Conf. Austin, TX, USA, 2013.
Marshall (10.1016/j.applthermaleng.2020.115475_b0070) 2016; 68
10.1016/j.applthermaleng.2020.115475_b0045
Thevenet (10.1016/j.applthermaleng.2020.115475_b0095) 2010; 30
Marshall (10.1016/j.applthermaleng.2020.115475_b0060) 2016; 7
10.1016/j.applthermaleng.2020.115475_b0040
Hijazi (10.1016/j.applthermaleng.2020.115475_b0075) 2011; 22
Grasso (10.1016/j.applthermaleng.2020.115475_b0005) 2017; 28
Hooper (10.1016/j.applthermaleng.2020.115475_b0080) 2018; 22
Blouke (10.1016/j.applthermaleng.2020.115475_b0100) 2008
Chua (10.1016/j.applthermaleng.2020.115475_b0030) 2017
Yang (10.1016/j.applthermaleng.2020.115475_b0050) 2010; 210
10.1016/j.applthermaleng.2020.115475_b0035
10.1016/j.applthermaleng.2020.115475_b0015
Vyatskikh (10.1016/j.applthermaleng.2020.115475_b0010) 2018
Leung (10.1016/j.applthermaleng.2020.115475_b0025) 2018; 9
Clijsters (10.1016/j.applthermaleng.2020.115475_b0085) 2014; 75
Tapia (10.1016/j.applthermaleng.2020.115475_b0065) 2014; 136
Musto (10.1016/j.applthermaleng.2020.115475_b0090) 2016; 90
Zhang (10.1016/j.applthermaleng.2020.115475_b0020) 2019; 25
Ahmed (10.1016/j.applthermaleng.2020.115475_b0055) 2019; 9
Litwa (10.1016/j.applthermaleng.2020.115475_b0115) 2010; 10
Pan (10.1016/j.applthermaleng.2020.115475_b0105) 2010; 51
Chrzanowski (10.1016/j.applthermaleng.2020.115475_b0110) 1995; 36
References_xml – volume: 10
  start-page: 1552
  year: 2010
  end-page: 1554
  ident: b0115
  article-title: Influence of angle of view on temperature measurements using thermovision camera
  publication-title: IEEE Sens. J.
  contributor:
    fullname: Litwa
– volume: 68
  start-page: 778
  year: 2016
  end-page: 790
  ident: b0070
  article-title: Understanding the microstructure formation of Ti-6Al-4V during direct laser deposition via in-situ thermal monitoring
  publication-title: Jom.
  contributor:
    fullname: Shao
– year: 2008
  ident: b0100
  article-title: A linear response 200-dB dynamic range CMOS image sensor with multiple voltage and current readout operations
  publication-title: Sensors, Cameras, Syst. Ind. Appl. IX.
  contributor:
    fullname: Sugawa
– volume: 22
  start-page: 548
  year: 2018
  end-page: 559
  ident: b0080
  article-title: Melt pool temperature and cooling rates in laser powder bed fusion
  publication-title: Addit. Manuf.
  contributor:
    fullname: Hooper
– volume: 30
  start-page: 753
  year: 2010
  end-page: 759
  ident: b0095
  article-title: Measurements of brake disc surface temperature and emissivity by two-color pyrometry
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Desmet
– volume: 22
  year: 2011
  ident: b0075
  article-title: A calibrated dual-wavelength infrared thermometry approach with non-greybody compensation for machining temperature measurements
  publication-title: Meas. Sci. Technol.
  contributor:
    fullname: Madhavan
– year: 2017
  ident: b0030
  article-title: Process monitoring and inspection systems in metal additive manufacturing: Status and applications
  publication-title: Int. J. Precis. Eng. Manuf. - Green Technol.
  contributor:
    fullname: Moon
– volume: 9
  year: 2019
  ident: b0055
  article-title: Influence of material property variation on computationally calculated melt pool temperature during laser melting process
  publication-title: Metals (Basel)
  contributor:
    fullname: Mian
– volume: 90
  start-page: 265
  year: 2016
  end-page: 277
  ident: b0090
  article-title: Error analysis on measurement temperature by means dual-color thermography technique
  publication-title: Measurement
  contributor:
    fullname: De Filippis
– volume: 28
  year: 2017
  ident: b0005
  article-title: Process defects and in situ monitoring methods in metal powder bed fusion: a review
  publication-title: Meas. Sci. Technol.
  contributor:
    fullname: Colosimo
– volume: 9
  start-page: 1355
  year: 2018
  ident: b0025
  article-title: In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing
  publication-title: Nat. Commun.
  contributor:
    fullname: Lee
– volume: 210
  start-page: 2215
  year: 2010
  end-page: 2222
  ident: b0050
  article-title: Experimental investigation and 3D finite element prediction of the heat affected zone during laser assisted machining of Ti6Al4V alloy
  publication-title: J. Mater. Process. Technol.
  contributor:
    fullname: Yan
– volume: 25
  start-page: 263
  year: 2019
  end-page: 274
  ident: b0020
  article-title: In-situ monitoring of laser-based PBF via off-axis vision and image processing approaches
  publication-title: Addit. Manuf.
  contributor:
    fullname: Hong
– volume: 75
  start-page: 1089
  year: 2014
  end-page: 1101
  ident: b0085
  article-title: In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system
  publication-title: Int. J. Adv. Manuf. Technol.
  contributor:
    fullname: Kruth
– volume: 136
  year: 2014
  ident: b0065
  article-title: A review on process monitoring and control in metal-based additive manufacturing
  publication-title: J. Manuf. Sci. Eng.
  contributor:
    fullname: Elwany
– year: 2018
  ident: b0010
  article-title: Additive manufacturing of 3D nano-architected metals
  publication-title: Nat. Commun.
  contributor:
    fullname: Greer
– volume: 7
  start-page: 697
  year: 2016
  end-page: 703
  ident: b0060
  article-title: Data indicating temperature response of Ti-6Al-4V thin-walled structure during its additive manufacture via Laser Engineered Net Shaping
  publication-title: Data Br.
  contributor:
    fullname: Shamsaei
– volume: 51
  start-page: 1223
  year: 2010
  end-page: 1235
  ident: b0105
  article-title: Recent progress in digital image correlation
  publication-title: Exp. Mech.
  contributor:
    fullname: Pan
– volume: 36
  start-page: 703
  year: 1995
  end-page: 713
  ident: b0110
  article-title: Influence of object-system distance on accuracy of remote temperature measurement with IR systems
  publication-title: Infrared Phys. Technol.
  contributor:
    fullname: Chrzanowski
– year: 2008
  ident: 10.1016/j.applthermaleng.2020.115475_b0100
  article-title: A linear response 200-dB dynamic range CMOS image sensor with multiple voltage and current readout operations
  publication-title: Sensors, Cameras, Syst. Ind. Appl. IX.
  contributor:
    fullname: Blouke
– volume: 75
  start-page: 1089
  year: 2014
  ident: 10.1016/j.applthermaleng.2020.115475_b0085
  article-title: In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-014-6214-8
  contributor:
    fullname: Clijsters
– volume: 51
  start-page: 1223
  year: 2010
  ident: 10.1016/j.applthermaleng.2020.115475_b0105
  article-title: Recent progress in digital image correlation
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-010-9418-3
  contributor:
    fullname: Pan
– volume: 28
  year: 2017
  ident: 10.1016/j.applthermaleng.2020.115475_b0005
  article-title: Process defects and in situ monitoring methods in metal powder bed fusion: a review
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aa5c4f
  contributor:
    fullname: Grasso
– volume: 7
  start-page: 697
  year: 2016
  ident: 10.1016/j.applthermaleng.2020.115475_b0060
  article-title: Data indicating temperature response of Ti-6Al-4V thin-walled structure during its additive manufacture via Laser Engineered Net Shaping
  publication-title: Data Br.
  doi: 10.1016/j.dib.2016.02.084
  contributor:
    fullname: Marshall
– year: 2018
  ident: 10.1016/j.applthermaleng.2020.115475_b0010
  article-title: Additive manufacturing of 3D nano-architected metals
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03071-9
  contributor:
    fullname: Vyatskikh
– volume: 25
  start-page: 263
  year: 2019
  ident: 10.1016/j.applthermaleng.2020.115475_b0020
  article-title: In-situ monitoring of laser-based PBF via off-axis vision and image processing approaches
  publication-title: Addit. Manuf.
  contributor:
    fullname: Zhang
– year: 2017
  ident: 10.1016/j.applthermaleng.2020.115475_b0030
  article-title: Process monitoring and inspection systems in metal additive manufacturing: Status and applications
  publication-title: Int. J. Precis. Eng. Manuf. - Green Technol.
  doi: 10.1007/s40684-017-0029-7
  contributor:
    fullname: Chua
– ident: 10.1016/j.applthermaleng.2020.115475_b0035
– volume: 68
  start-page: 778
  year: 2016
  ident: 10.1016/j.applthermaleng.2020.115475_b0070
  article-title: Understanding the microstructure formation of Ti-6Al-4V during direct laser deposition via in-situ thermal monitoring
  publication-title: Jom.
  doi: 10.1007/s11837-015-1767-z
  contributor:
    fullname: Marshall
– volume: 30
  start-page: 753
  year: 2010
  ident: 10.1016/j.applthermaleng.2020.115475_b0095
  article-title: Measurements of brake disc surface temperature and emissivity by two-color pyrometry
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2009.12.005
  contributor:
    fullname: Thevenet
– ident: 10.1016/j.applthermaleng.2020.115475_b0015
– volume: 9
  start-page: 1355
  year: 2018
  ident: 10.1016/j.applthermaleng.2020.115475_b0025
  article-title: In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03734-7
  contributor:
    fullname: Leung
– ident: 10.1016/j.applthermaleng.2020.115475_b0045
– volume: 22
  year: 2011
  ident: 10.1016/j.applthermaleng.2020.115475_b0075
  article-title: A calibrated dual-wavelength infrared thermometry approach with non-greybody compensation for machining temperature measurements
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/22/2/025106
  contributor:
    fullname: Hijazi
– volume: 210
  start-page: 2215
  year: 2010
  ident: 10.1016/j.applthermaleng.2020.115475_b0050
  article-title: Experimental investigation and 3D finite element prediction of the heat affected zone during laser assisted machining of Ti6Al4V alloy
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2010.08.007
  contributor:
    fullname: Yang
– volume: 36
  start-page: 703
  year: 1995
  ident: 10.1016/j.applthermaleng.2020.115475_b0110
  article-title: Influence of object-system distance on accuracy of remote temperature measurement with IR systems
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/1350-4495(94)00106-U
  contributor:
    fullname: Chrzanowski
– volume: 22
  start-page: 548
  year: 2018
  ident: 10.1016/j.applthermaleng.2020.115475_b0080
  article-title: Melt pool temperature and cooling rates in laser powder bed fusion
  publication-title: Addit. Manuf.
  contributor:
    fullname: Hooper
– volume: 10
  start-page: 1552
  year: 2010
  ident: 10.1016/j.applthermaleng.2020.115475_b0115
  article-title: Influence of angle of view on temperature measurements using thermovision camera
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2010.2045651
  contributor:
    fullname: Litwa
– ident: 10.1016/j.applthermaleng.2020.115475_b0040
  doi: 10.1007/s11661-011-0787-8
– volume: 136
  year: 2014
  ident: 10.1016/j.applthermaleng.2020.115475_b0065
  article-title: A review on process monitoring and control in metal-based additive manufacturing
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4028540
  contributor:
    fullname: Tapia
– volume: 90
  start-page: 265
  year: 2016
  ident: 10.1016/j.applthermaleng.2020.115475_b0090
  article-title: Error analysis on measurement temperature by means dual-color thermography technique
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.04.024
  contributor:
    fullname: Musto
– volume: 9
  year: 2019
  ident: 10.1016/j.applthermaleng.2020.115475_b0055
  article-title: Influence of material property variation on computationally calculated melt pool temperature during laser melting process
  publication-title: Metals (Basel)
  doi: 10.3390/met9040456
  contributor:
    fullname: Ahmed
SSID ssj0012874
Score 2.4490964
Snippet •A melt pool temperature measurement system was constructed.•Three calibration methods guarantee a measuring error of less than 1%.•The high resolution image...
In metal additive manufacturing, the quality of the parts is closely related to the temperature distribution in the melt pool; hence, real-time monitoring of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 115475
SubjectTerms Additive manufacturing
Calibration
Cooling rate
Cost analysis
Directed Energy Deposition (DED)
Dual-wavelength thermometry
Error analysis
Heat transfer
High temperature
Image-matching method
Measurement
Monitoring
On-line systems
Optimization
Real time
Splitting
Splitting ratio calibration
Temperature distribution
Temperature distribution in melt pool
Temperature measurement
Title Real-time measurement method of melt pool temperature in the directed energy deposition process
URI https://dx.doi.org/10.1016/j.applthermaleng.2020.115475
https://www.proquest.com/docview/2441577199
Volume 177
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7oBqIH8Sf-HDl4jbNN0iQnGUOZih7UwW4hbRKYuDl0Xv3bzVtb58SD4K0ttA1f0_e-l_fyPoATlRc66OApy5OMcsZzqp3NqM6CtdE_WV5goHh7l_X6_HogBkvQrffCYFllZftLmz6z1tWVdoVmezIcth8SJnR0fwlqgGsh-TI0oztKVQOanaub3t1XMgFbus_iLqEp3rACJ_MyL8wTI9UaWVQuiQFjimZEcCw8_N1T_bDZM0d0uQHrFYMknXKQm7Dkx1uw9q2v4DaY-0j_KMrGk9F8DZCUatHkJcSj5ylBdS2CramqvspkOCZxjKRExDviZ_sCifN1ZReZlNsKdqB_efHY7dFKSYEWTKgpVVayoJgvpE60SzOhrbVFYkN0YF5zhw0ClFDBO5n54iy3MkSe4lnIvU9D5IC70Bi_jP0eEJlzh-ldmWaMM-UV6hJGGqUVd567bB9EjZqZlA0zTF1J9mQW0TaItinR3ofzGmKzMAFMtO1_fMJR_WVM9SO-mRTjRSkTrQ_-_YJDWMWzsvzvCBrT13d_HCnJNG_B8ulH0qom3ifnsuSb
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSCwHxCqWAj70apXEdmyfEEKgsvUArdSb5cS2VEQXQfl_PE0CFHFA4hYlSmK92DNv4pl5AE2VFzro4CnLk4xyxnOqnc2ozoK10T9ZXmCg-NDJ2j1-2xf9Bbisa2EwrbKy_aVNn1nr6kyrQrM1GQxaTwkTOrq_BDXAtZB8EZYjG9BxdS5f3Ny1O5-bCdjSfRZ3CU3xhhVofqV54T4xUq2hReWSGDCmaEYEx8TD3z3VD5s9c0TXm7BRMUhyUQ5yCxb8aBvWv_UV3AHzGOkfRdl4Mvz6B0hKtWgyDvHoZUpQXYtga6qqrzIZjEgcIykR8Y74WV0gcb7O7CKTsqxgF3rXV93LNq2UFGjBhJpSZSULivlC6kS7NBPaWlskNkQH5jV32CBACRW8k5kvznIrQ-QpnoXc-zREDrgHS6PxyO8DkTl3uL0r04xxprxCXcJIo7TiznOXHYCoUTOTsmGGqTPJns082gbRNiXaB3BeQ2zmJoCJtv2PT2jUX8ZUC_HNpBgvSploffjvF5zCarv7cG_ubzp3R7CGV8pUwAYsTV_f_XGkJ9P8pJp-H3EB5o8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+measurement+method+of+melt+pool+temperature+in+the+directed+energy+deposition+process&rft.jtitle=Applied+thermal+engineering&rft.au=Hao%2C+Ce&rft.au=Liu%2C+Zhanwei&rft.au=Xie%2C+Huimin&rft.au=Zhao%2C+Kai&rft.date=2020-08-01&rft.issn=1359-4311&rft.volume=177&rft.spage=115475&rft_id=info:doi/10.1016%2Fj.applthermaleng.2020.115475&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2020_115475
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon