Monte Carlo Evaluation of the Continuum Limit of the Two-Point Function of the Euclidean Free Real Scalar Field Subject to Affine Quantization

We study canonical and affine versions of the quantized covariant Euclidean free real scalar field-theory on four dimensional lattices through the Monte Carlo method. We calculate the two-point function near the continuum limit at finite volume. Our investigation shows that affine quantization is ab...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical physics Vol. 184; no. 3
Main Authors Fantoni, Riccardo, Klauder, John R.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2021
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study canonical and affine versions of the quantized covariant Euclidean free real scalar field-theory on four dimensional lattices through the Monte Carlo method. We calculate the two-point function near the continuum limit at finite volume. Our investigation shows that affine quantization is able to give meaningful results for the two-point function for which is not available an exact analytic result and therefore numerical methods are necessary.
AbstractList We study canonical and affine versions of the quantized covariant Euclidean free real scalar field-theory on four dimensional lattices through the Monte Carlo method. We calculate the two-point function near the continuum limit at finite volume. Our investigation shows that affine quantization is able to give meaningful results for the two-point function for which is not available an exact analytic result and therefore numerical methods are necessary.
ArticleNumber 28
Audience Academic
Author Fantoni, Riccardo
Klauder, John R.
Author_xml – sequence: 1
  givenname: Riccardo
  orcidid: 0000-0002-5950-8648
  surname: Fantoni
  fullname: Fantoni, Riccardo
  email: riccardo.fantoni@posta.istruzione.it
  organization: Dipartimento di Fisica, Università di Trieste
– sequence: 2
  givenname: John R.
  surname: Klauder
  fullname: Klauder, John R.
  organization: Department of Physics and Department of Mathematics, University of Florida
BookMark eNp9kd9uFCEUxolpE7etL-AViddT-TMMM5ebza6arFHbek1Y5lDZsFAZqNWH8JnFHY2mF80JIfn4fpyc852hkxADIPSSkktKiHw9UTII0RBG6-lp3zw8QwsqJGuGjvITtCCEsaaVVDxHZ9O0J4QM_SAW6Of7GDLglU4-4vW99kVnFwOOFucvVa-vLpRywFt3cPmvfPMtNh-jCxlvSjD_A-tivBtBB7xJAPgKtMfXRnud8MaBH_F12e3BZJwjXlrrAuBPRdcmP459L9Cp1X6CF3_uc_R5s75ZvW22H968Wy23jeGiz03fAofdYAc5aiNYK4Q042AIWEJ2os7fGqtHIoHVAtkxMXJqpOFdZzvJRn6OXs3_3qX4tcCU1T6WFGpLxUTX15XWdVbX5ey61R6UCzbmpE2tEQ7O1ASsq_qyk3xgtOdtBfoZMClOUwKrjMvHwSrovKJE_Y5LzXGpGpc6xqUeKsoeoXfJHXT6_jTEZ2iq5nAL6d8YT1C_AMbgq3E
CitedBy_id crossref_primary_10_1088_1742_5468_ac0f69
crossref_primary_10_4236_jhepgc_2023_91006
crossref_primary_10_1007_s10955_021_02818_x
crossref_primary_10_3390_quantum6020010
crossref_primary_10_1103_PhysRevD_106_114508
crossref_primary_10_1140_epjc_s10052_022_10807_x
crossref_primary_10_1142_S0217732323501675
crossref_primary_10_1142_S0217751X22500944
crossref_primary_10_1103_PhysRevD_104_054514
crossref_primary_10_1142_S0217751X22500294
Cites_doi 10.1007/s10955-021-02818-x
10.1103/RevModPhys.67.279
10.1002/9783527626212
10.4236/jhepgc.2020.64053
10.1103/PhysRevD.103.076013
10.4236/jhepgc.2020.62014
10.1088/1742-5468/ac0f69
10.4236/jhepgc.2021.71019
10.4236/jhepgc.2020.64044
10.1063/1.3062610
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
COPYRIGHT 2021 Springer
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: COPYRIGHT 2021 Springer
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s10955-021-02818-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Physics
EISSN 1572-9613
ExternalDocumentID A673921834
10_1007_s10955_021_02818_x
GroupedDBID -54
-5F
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBEA
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IGS
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MQGED
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
WH7
WK8
XOL
YLTOR
YQT
YYP
Z45
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8Q
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
AEIIB
ABRTQ
ID FETCH-LOGICAL-c358t-84e3eb9f97dac524557cd9c0ef00b58184cfad07e2e2ee7625d31c7c366f672d3
IEDL.DBID U2A
ISSN 0022-4715
IngestDate Fri Jul 25 22:55:16 EDT 2025
Tue Jun 10 20:36:09 EDT 2025
Thu Apr 24 22:57:21 EDT 2025
Tue Jul 01 00:19:13 EDT 2025
Fri Feb 21 02:48:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Monte Carlo method
05.10.Ln
Euclidean free real scalar field-theory
03.50.-z
Continuum limit
02.70.Ss
02.70.Uu
Two-point function
Affine quantization
11.10.Gh
11.10.Kk
Canonical quantization
11.10.-z
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-84e3eb9f97dac524557cd9c0ef00b58184cfad07e2e2ee7625d31c7c366f672d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5950-8648
PQID 2568007955
PQPubID 2043551
ParticipantIDs proquest_journals_2568007955
gale_infotracacademiconefile_A673921834
crossref_citationtrail_10_1007_s10955_021_02818_x
crossref_primary_10_1007_s10955_021_02818_x
springer_journals_10_1007_s10955_021_02818_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of statistical physics
PublicationTitleAbbrev J Stat Phys
PublicationYear 2021
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References KalosMHWhitlockPAMonte Carlo Methods2008HobokenWiley10.1002/9783527626212
Fantoni, R.: Monte Carlo evaluation of the continuum limit of (ϕ12)3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\phi ^{12})_3$$\end{document}, J. Stat. Mech. 083102 (2021)
MetropolisNRosenbluthAWRosenbluthMNTellerAMTellerEEquation of state calculations by fast computing machinesJ. Chem. Phys.19531087211431.65006
KlauderJRAn ultralocal classical and quantum gravity theoryJ. High Energy Phys. Gravit. Cosmol.2020665610.4236/jhepgc.2020.64044
Klauder, J.R.: The benefits of affine quantization. J. High Energy Phys. Gravit. Cosmol. 6, 175 (2020)
FantoniRKlauderJRAffine Quantization of (φ4)4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varphi ^{4})_4$$\end{document} Succeeds While Canonical Quantization FailsPhys. Rev. D20211030760132021PhRvD.103g6013F425993810.1103/PhysRevD.103.076013
CeperleyDMPath integrals in the theory of condensed heliumRev. Mod. Phys.1995672791995RvMP...67..279C10.1103/RevModPhys.67.279
DiracPAMThe Principles of Quantum Mechanics1958OxfordClaredon Press10.1063/1.3062610
Klauder, J.R.: Using affine quantization to analyze non-renormalizable scalar fields and the quantization of Einstein’s gravity. J. High Energy Phys. Gravit. Cosmol. 6, 802 (2020)
KlauderJRBeyond Conventional Quantization2000CambridgeCambridge University Press0956.81001
GoubaLAffine quantization on the half lineJ. High Energy Phys. Gravit. Cosmol.2021735210.4236/jhepgc.2021.71019
Fantoni, R., Klauder, J. R.: Monte Carlo evaluation of the continuum limit of the two-point function of two Euclidean Higgs real scalar fields subject to affine quantization. Phys. Rev. D (2021) arXiv:2107.08601
N Metropolis (2818_CR7) 1953; 1087
JR Klauder (2818_CR2) 2000
2818_CR4
2818_CR1
L Gouba (2818_CR10) 2021; 7
MH Kalos (2818_CR6) 2008
DM Ceperley (2818_CR8) 1995; 67
2818_CR12
R Fantoni (2818_CR5) 2021; 103
2818_CR9
PAM Dirac (2818_CR3) 1958
JR Klauder (2818_CR11) 2020; 6
References_xml – reference: MetropolisNRosenbluthAWRosenbluthMNTellerAMTellerEEquation of state calculations by fast computing machinesJ. Chem. Phys.19531087211431.65006
– reference: Klauder, J.R.: The benefits of affine quantization. J. High Energy Phys. Gravit. Cosmol. 6, 175 (2020)
– reference: DiracPAMThe Principles of Quantum Mechanics1958OxfordClaredon Press10.1063/1.3062610
– reference: Fantoni, R.: Monte Carlo evaluation of the continuum limit of (ϕ12)3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\phi ^{12})_3$$\end{document}, J. Stat. Mech. 083102 (2021)
– reference: KlauderJRBeyond Conventional Quantization2000CambridgeCambridge University Press0956.81001
– reference: KlauderJRAn ultralocal classical and quantum gravity theoryJ. High Energy Phys. Gravit. Cosmol.2020665610.4236/jhepgc.2020.64044
– reference: KalosMHWhitlockPAMonte Carlo Methods2008HobokenWiley10.1002/9783527626212
– reference: FantoniRKlauderJRAffine Quantization of (φ4)4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varphi ^{4})_4$$\end{document} Succeeds While Canonical Quantization FailsPhys. Rev. D20211030760132021PhRvD.103g6013F425993810.1103/PhysRevD.103.076013
– reference: CeperleyDMPath integrals in the theory of condensed heliumRev. Mod. Phys.1995672791995RvMP...67..279C10.1103/RevModPhys.67.279
– reference: Klauder, J.R.: Using affine quantization to analyze non-renormalizable scalar fields and the quantization of Einstein’s gravity. J. High Energy Phys. Gravit. Cosmol. 6, 802 (2020)
– reference: GoubaLAffine quantization on the half lineJ. High Energy Phys. Gravit. Cosmol.2021735210.4236/jhepgc.2021.71019
– reference: Fantoni, R., Klauder, J. R.: Monte Carlo evaluation of the continuum limit of the two-point function of two Euclidean Higgs real scalar fields subject to affine quantization. Phys. Rev. D (2021) arXiv:2107.08601
– volume-title: Beyond Conventional Quantization
  year: 2000
  ident: 2818_CR2
– ident: 2818_CR12
  doi: 10.1007/s10955-021-02818-x
– volume: 67
  start-page: 279
  year: 1995
  ident: 2818_CR8
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.67.279
– volume-title: Monte Carlo Methods
  year: 2008
  ident: 2818_CR6
  doi: 10.1002/9783527626212
– ident: 2818_CR9
  doi: 10.4236/jhepgc.2020.64053
– volume: 103
  start-page: 076013
  year: 2021
  ident: 2818_CR5
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.076013
– volume: 1087
  start-page: 21
  year: 1953
  ident: 2818_CR7
  publication-title: J. Chem. Phys.
– ident: 2818_CR1
  doi: 10.4236/jhepgc.2020.62014
– ident: 2818_CR4
  doi: 10.1088/1742-5468/ac0f69
– volume: 7
  start-page: 352
  year: 2021
  ident: 2818_CR10
  publication-title: J. High Energy Phys. Gravit. Cosmol.
  doi: 10.4236/jhepgc.2021.71019
– volume: 6
  start-page: 656
  year: 2020
  ident: 2818_CR11
  publication-title: J. High Energy Phys. Gravit. Cosmol.
  doi: 10.4236/jhepgc.2020.64044
– volume-title: The Principles of Quantum Mechanics
  year: 1958
  ident: 2818_CR3
  doi: 10.1063/1.3062610
SSID ssj0009895
Score 2.395966
Snippet We study canonical and affine versions of the quantized covariant Euclidean free real scalar field-theory on four dimensional lattices through the Monte Carlo...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Analysis
Euclidean geometry
Field theory
Mathematical and Computational Physics
Measurement
Monte Carlo method
Monte Carlo simulation
Numerical methods
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Scalars
Statistical Physics and Dynamical Systems
Theoretical
Title Monte Carlo Evaluation of the Continuum Limit of the Two-Point Function of the Euclidean Free Real Scalar Field Subject to Affine Quantization
URI https://link.springer.com/article/10.1007/s10955-021-02818-x
https://www.proquest.com/docview/2568007955
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEBUloZBLadOUbpqGORR6aAy2ZUnW0QnrhpSEfmQhPQlZH7CwscOuTfsr-ps78trZNEkLxQeDLctGbzR6smaeCHlnK-0TYbKI0SqPssTySOpEIiDSaG505XnIdz6_4Kez7OyKXQ1JYasx2n1ckuw99Z1kN8lCNjFOf4OEUYTMcZuFuTta8SwtNlK7uWSjRji6Xjakyjxexx_D0X2n_GB1tB90yufk2cAWoVjD-4I8cfUuedpHbZrVLtkJVHGttPyS_DoPQlNwopeLBqa3It7QeECSB0GGal533TX0OU3j5csfTfS5mdctlDjC3X1g2pnF3DpdQ7l0Dr4io4RviKheQhnC3gB9TviJA20DhffIVuFLhzgNiZ17ZFZOL09Oo2G3hchQlrdRnjnqKumlsNqwNGNMGCtN7HwcVwwbKzNe21i4FA-HPpRZmhhhKOeei9TSV2Srbmr3moCIc4OewmqJ9CbJvKQUy1WmotwyLvyEJGOjKzNIkYcdMRZqI6IcgFIIlOqBUj8n5MPtMzdrIY5_ln4fsFShl2LNRg_JBvh9Qe9KFVwgMUR3lk3IwQi3GrrvSiEPRCItsNIJORpNYHP77-_d_7_ib8hO2htjiFk7IFvtsnNvkeS01SHZLsrj44tw_vj90_Swt_Hfu6v2dg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL2ahqbtBcEYojDAD5N4gEhJHNvxYzU1KmydYLTS3izHH1KlkqA2EfwKfjPXabKO8SGhvCW2E_k41yfxPccAZ7bUPhEmixgt8yhLLI-kTiQCIo3mRpeeB73z7IpPF9mHG3bTi8I2Q7b7sCTZReo7YjfJgpoYP3-DhVGEzPEBkoE8JHIt0vHOajeXbPAIx9DLeqnMn9v4ZTq6H5R_Wx3tJp3iETzs2SIZb-F9DHuuOoaDLmvTbI7hKFDFrdPyE_gxC0ZT5FyvVzWZ3Jp4k9oTJHkk2FAtq7b9QjpN03B6_q2OPtbLqiEFznB3K0xas1papytSrJ0j18goyWdEVK9JEdLeCMac8BOHNDUZe49slXxqEade2HkCi2IyP59G_W4LkaEsb6I8c9SV0kthtWFpxpgwVprY-TguGXZWZry2sXApHg5jKLM0McJQzj0XqaVPYb-qK_cMiIhzg5HCaon0Jsm8pBTLlaak3DIu_AiSodOV6a3Iw44YK7UzUQ5AKQRKdUCp7yN4e1vn69aI45-l3wQsVXhLsWWje7EBPl_wu1JjLpAYYjjLRnA6wK3613ejkAcikRbY6AjeDUNgd_nv933-f8Vfw-F0PrtUl--vLl7AUdoNzJC_dgr7zbp1L5HwNOWrbnz_BA_T9lk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwFLRQEVUvCEqrLhR4h0ocIGoSx3Z8XJWNCrRVoV2pN8vxh7TSklTbRO2v4DfznE26CxQklFtiO4nHfp7EnjEhB7bUPhEmixgt8yhLLI-kTiQCIo3mRpeeB73z6Rk_nmafr9jVmoq_W-0-TEkuNQ3BpalqDq-tP1wTvkkWlMX4KRzsjCJkkY8xHCehXU_T8cp2N5ds8AvHMMx62czDZfwyNP0eoP-YKe0GoOIZedozRxgvoX5OHrlqmzzpVnCam22yFWjj0nX5BflxGl4HjvRiXsPk3tAbag9I-CBYUs2qtv0Onb5pOH15W0fn9axqoMDRbj3DpDXzmXW6gmLhHHxDdgkXiK5eQBGWwAHGn_BDB5oaxt4jc4WvLWLWizx3yLSYXB4dR_3OC5GhLG-iPHPUldJLYbVhacaYMFaa2Pk4LhlWVma8trFwKR4O4ymzNDHCUM49F6mlu2Sjqiu3R0DEucGoYbVEqpNkXlKK6UpTUm4ZF35EkqHSleltycPuGHO1MlQOQCkESnVAqbsReX-f53ppyvHP1O8Clir0WCzZ6F54gM8XvK_UmAskiRjashHZH-BWfVe-UcgJkVQLLHREPgxNYHX57_d9-X_J35LN84-FOvl09uUV2Uq7dhmWsu2TjWbRutfIfZryTde8fwIxwvqV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monte+Carlo+Evaluation+of+the+Continuum+Limit+of+the+Two-Point+Function+of+the+Euclidean+Free+Real+Scalar+Field+Subject+to+Affine+Quantization&rft.jtitle=Journal+of+statistical+physics&rft.au=Fantoni%2C+Riccardo&rft.au=Klauder%2C+John+R.&rft.date=2021-09-01&rft.issn=0022-4715&rft.eissn=1572-9613&rft.volume=184&rft.issue=3&rft_id=info:doi/10.1007%2Fs10955-021-02818-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10955_021_02818_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4715&client=summon