Monte Carlo Evaluation of the Continuum Limit of the Two-Point Function of the Euclidean Free Real Scalar Field Subject to Affine Quantization
We study canonical and affine versions of the quantized covariant Euclidean free real scalar field-theory on four dimensional lattices through the Monte Carlo method. We calculate the two-point function near the continuum limit at finite volume. Our investigation shows that affine quantization is ab...
Saved in:
Published in | Journal of statistical physics Vol. 184; no. 3 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2021
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We study canonical and affine versions of the quantized covariant Euclidean free real scalar field-theory on four dimensional lattices through the Monte Carlo method. We calculate the two-point function near the continuum limit at finite volume. Our investigation shows that affine quantization is able to give meaningful results for the two-point function for which is not available an exact analytic result and therefore numerical methods are necessary. |
---|---|
AbstractList | We study canonical and affine versions of the quantized covariant Euclidean free real scalar field-theory on four dimensional lattices through the Monte Carlo method. We calculate the two-point function near the continuum limit at finite volume. Our investigation shows that affine quantization is able to give meaningful results for the two-point function for which is not available an exact analytic result and therefore numerical methods are necessary. |
ArticleNumber | 28 |
Audience | Academic |
Author | Fantoni, Riccardo Klauder, John R. |
Author_xml | – sequence: 1 givenname: Riccardo orcidid: 0000-0002-5950-8648 surname: Fantoni fullname: Fantoni, Riccardo email: riccardo.fantoni@posta.istruzione.it organization: Dipartimento di Fisica, Università di Trieste – sequence: 2 givenname: John R. surname: Klauder fullname: Klauder, John R. organization: Department of Physics and Department of Mathematics, University of Florida |
BookMark | eNp9kd9uFCEUxolpE7etL-AViddT-TMMM5ebza6arFHbek1Y5lDZsFAZqNWH8JnFHY2mF80JIfn4fpyc852hkxADIPSSkktKiHw9UTII0RBG6-lp3zw8QwsqJGuGjvITtCCEsaaVVDxHZ9O0J4QM_SAW6Of7GDLglU4-4vW99kVnFwOOFucvVa-vLpRywFt3cPmvfPMtNh-jCxlvSjD_A-tivBtBB7xJAPgKtMfXRnud8MaBH_F12e3BZJwjXlrrAuBPRdcmP459L9Cp1X6CF3_uc_R5s75ZvW22H968Wy23jeGiz03fAofdYAc5aiNYK4Q042AIWEJ2os7fGqtHIoHVAtkxMXJqpOFdZzvJRn6OXs3_3qX4tcCU1T6WFGpLxUTX15XWdVbX5ey61R6UCzbmpE2tEQ7O1ASsq_qyk3xgtOdtBfoZMClOUwKrjMvHwSrovKJE_Y5LzXGpGpc6xqUeKsoeoXfJHXT6_jTEZ2iq5nAL6d8YT1C_AMbgq3E |
CitedBy_id | crossref_primary_10_1088_1742_5468_ac0f69 crossref_primary_10_4236_jhepgc_2023_91006 crossref_primary_10_1007_s10955_021_02818_x crossref_primary_10_3390_quantum6020010 crossref_primary_10_1103_PhysRevD_106_114508 crossref_primary_10_1140_epjc_s10052_022_10807_x crossref_primary_10_1142_S0217732323501675 crossref_primary_10_1142_S0217751X22500944 crossref_primary_10_1103_PhysRevD_104_054514 crossref_primary_10_1142_S0217751X22500294 |
Cites_doi | 10.1007/s10955-021-02818-x 10.1103/RevModPhys.67.279 10.1002/9783527626212 10.4236/jhepgc.2020.64053 10.1103/PhysRevD.103.076013 10.4236/jhepgc.2020.62014 10.1088/1742-5468/ac0f69 10.4236/jhepgc.2021.71019 10.4236/jhepgc.2020.64044 10.1063/1.3062610 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 COPYRIGHT 2021 Springer The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: COPYRIGHT 2021 Springer – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10955-021-02818-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Physics |
EISSN | 1572-9613 |
ExternalDocumentID | A673921834 10_1007_s10955_021_02818_x |
GroupedDBID | -54 -5F -5G -BR -DZ -EM -Y2 -~C -~X .86 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBEA ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IGS IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MQGED N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UPT UTJUX UZXMN VC2 VFIZW VH1 VOH W23 W48 WH7 WK8 XOL YLTOR YQT YYP Z45 Z5O Z7R Z7S Z7U Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8Q Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION AEIIB ABRTQ |
ID | FETCH-LOGICAL-c358t-84e3eb9f97dac524557cd9c0ef00b58184cfad07e2e2ee7625d31c7c366f672d3 |
IEDL.DBID | U2A |
ISSN | 0022-4715 |
IngestDate | Fri Jul 25 22:55:16 EDT 2025 Tue Jun 10 20:36:09 EDT 2025 Thu Apr 24 22:57:21 EDT 2025 Tue Jul 01 00:19:13 EDT 2025 Fri Feb 21 02:48:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Monte Carlo method 05.10.Ln Euclidean free real scalar field-theory 03.50.-z Continuum limit 02.70.Ss 02.70.Uu Two-point function Affine quantization 11.10.Gh 11.10.Kk Canonical quantization 11.10.-z |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-84e3eb9f97dac524557cd9c0ef00b58184cfad07e2e2ee7625d31c7c366f672d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5950-8648 |
PQID | 2568007955 |
PQPubID | 2043551 |
ParticipantIDs | proquest_journals_2568007955 gale_infotracacademiconefile_A673921834 crossref_citationtrail_10_1007_s10955_021_02818_x crossref_primary_10_1007_s10955_021_02818_x springer_journals_10_1007_s10955_021_02818_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of statistical physics |
PublicationTitleAbbrev | J Stat Phys |
PublicationYear | 2021 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | KalosMHWhitlockPAMonte Carlo Methods2008HobokenWiley10.1002/9783527626212 Fantoni, R.: Monte Carlo evaluation of the continuum limit of (ϕ12)3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\phi ^{12})_3$$\end{document}, J. Stat. Mech. 083102 (2021) MetropolisNRosenbluthAWRosenbluthMNTellerAMTellerEEquation of state calculations by fast computing machinesJ. Chem. Phys.19531087211431.65006 KlauderJRAn ultralocal classical and quantum gravity theoryJ. High Energy Phys. Gravit. Cosmol.2020665610.4236/jhepgc.2020.64044 Klauder, J.R.: The benefits of affine quantization. J. High Energy Phys. Gravit. Cosmol. 6, 175 (2020) FantoniRKlauderJRAffine Quantization of (φ4)4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varphi ^{4})_4$$\end{document} Succeeds While Canonical Quantization FailsPhys. Rev. D20211030760132021PhRvD.103g6013F425993810.1103/PhysRevD.103.076013 CeperleyDMPath integrals in the theory of condensed heliumRev. Mod. Phys.1995672791995RvMP...67..279C10.1103/RevModPhys.67.279 DiracPAMThe Principles of Quantum Mechanics1958OxfordClaredon Press10.1063/1.3062610 Klauder, J.R.: Using affine quantization to analyze non-renormalizable scalar fields and the quantization of Einstein’s gravity. J. High Energy Phys. Gravit. Cosmol. 6, 802 (2020) KlauderJRBeyond Conventional Quantization2000CambridgeCambridge University Press0956.81001 GoubaLAffine quantization on the half lineJ. High Energy Phys. Gravit. Cosmol.2021735210.4236/jhepgc.2021.71019 Fantoni, R., Klauder, J. R.: Monte Carlo evaluation of the continuum limit of the two-point function of two Euclidean Higgs real scalar fields subject to affine quantization. Phys. Rev. D (2021) arXiv:2107.08601 N Metropolis (2818_CR7) 1953; 1087 JR Klauder (2818_CR2) 2000 2818_CR4 2818_CR1 L Gouba (2818_CR10) 2021; 7 MH Kalos (2818_CR6) 2008 DM Ceperley (2818_CR8) 1995; 67 2818_CR12 R Fantoni (2818_CR5) 2021; 103 2818_CR9 PAM Dirac (2818_CR3) 1958 JR Klauder (2818_CR11) 2020; 6 |
References_xml | – reference: MetropolisNRosenbluthAWRosenbluthMNTellerAMTellerEEquation of state calculations by fast computing machinesJ. Chem. Phys.19531087211431.65006 – reference: Klauder, J.R.: The benefits of affine quantization. J. High Energy Phys. Gravit. Cosmol. 6, 175 (2020) – reference: DiracPAMThe Principles of Quantum Mechanics1958OxfordClaredon Press10.1063/1.3062610 – reference: Fantoni, R.: Monte Carlo evaluation of the continuum limit of (ϕ12)3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\phi ^{12})_3$$\end{document}, J. Stat. Mech. 083102 (2021) – reference: KlauderJRBeyond Conventional Quantization2000CambridgeCambridge University Press0956.81001 – reference: KlauderJRAn ultralocal classical and quantum gravity theoryJ. High Energy Phys. Gravit. Cosmol.2020665610.4236/jhepgc.2020.64044 – reference: KalosMHWhitlockPAMonte Carlo Methods2008HobokenWiley10.1002/9783527626212 – reference: FantoniRKlauderJRAffine Quantization of (φ4)4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varphi ^{4})_4$$\end{document} Succeeds While Canonical Quantization FailsPhys. Rev. D20211030760132021PhRvD.103g6013F425993810.1103/PhysRevD.103.076013 – reference: CeperleyDMPath integrals in the theory of condensed heliumRev. Mod. Phys.1995672791995RvMP...67..279C10.1103/RevModPhys.67.279 – reference: Klauder, J.R.: Using affine quantization to analyze non-renormalizable scalar fields and the quantization of Einstein’s gravity. J. High Energy Phys. Gravit. Cosmol. 6, 802 (2020) – reference: GoubaLAffine quantization on the half lineJ. High Energy Phys. Gravit. Cosmol.2021735210.4236/jhepgc.2021.71019 – reference: Fantoni, R., Klauder, J. R.: Monte Carlo evaluation of the continuum limit of the two-point function of two Euclidean Higgs real scalar fields subject to affine quantization. Phys. Rev. D (2021) arXiv:2107.08601 – volume-title: Beyond Conventional Quantization year: 2000 ident: 2818_CR2 – ident: 2818_CR12 doi: 10.1007/s10955-021-02818-x – volume: 67 start-page: 279 year: 1995 ident: 2818_CR8 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.67.279 – volume-title: Monte Carlo Methods year: 2008 ident: 2818_CR6 doi: 10.1002/9783527626212 – ident: 2818_CR9 doi: 10.4236/jhepgc.2020.64053 – volume: 103 start-page: 076013 year: 2021 ident: 2818_CR5 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.076013 – volume: 1087 start-page: 21 year: 1953 ident: 2818_CR7 publication-title: J. Chem. Phys. – ident: 2818_CR1 doi: 10.4236/jhepgc.2020.62014 – ident: 2818_CR4 doi: 10.1088/1742-5468/ac0f69 – volume: 7 start-page: 352 year: 2021 ident: 2818_CR10 publication-title: J. High Energy Phys. Gravit. Cosmol. doi: 10.4236/jhepgc.2021.71019 – volume: 6 start-page: 656 year: 2020 ident: 2818_CR11 publication-title: J. High Energy Phys. Gravit. Cosmol. doi: 10.4236/jhepgc.2020.64044 – volume-title: The Principles of Quantum Mechanics year: 1958 ident: 2818_CR3 doi: 10.1063/1.3062610 |
SSID | ssj0009895 |
Score | 2.395966 |
Snippet | We study canonical and affine versions of the quantized covariant Euclidean free real scalar field-theory on four dimensional lattices through the Monte Carlo... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Analysis Euclidean geometry Field theory Mathematical and Computational Physics Measurement Monte Carlo method Monte Carlo simulation Numerical methods Physical Chemistry Physics Physics and Astronomy Quantum Physics Scalars Statistical Physics and Dynamical Systems Theoretical |
Title | Monte Carlo Evaluation of the Continuum Limit of the Two-Point Function of the Euclidean Free Real Scalar Field Subject to Affine Quantization |
URI | https://link.springer.com/article/10.1007/s10955-021-02818-x https://www.proquest.com/docview/2568007955 |
Volume | 184 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEBUloZBLadOUbpqGORR6aAy2ZUnW0QnrhpSEfmQhPQlZH7CwscOuTfsr-ps78trZNEkLxQeDLctGbzR6smaeCHlnK-0TYbKI0SqPssTySOpEIiDSaG505XnIdz6_4Kez7OyKXQ1JYasx2n1ckuw99Z1kN8lCNjFOf4OEUYTMcZuFuTta8SwtNlK7uWSjRji6Xjakyjxexx_D0X2n_GB1tB90yufk2cAWoVjD-4I8cfUuedpHbZrVLtkJVHGttPyS_DoPQlNwopeLBqa3It7QeECSB0GGal533TX0OU3j5csfTfS5mdctlDjC3X1g2pnF3DpdQ7l0Dr4io4RviKheQhnC3gB9TviJA20DhffIVuFLhzgNiZ17ZFZOL09Oo2G3hchQlrdRnjnqKumlsNqwNGNMGCtN7HwcVwwbKzNe21i4FA-HPpRZmhhhKOeei9TSV2Srbmr3moCIc4OewmqJ9CbJvKQUy1WmotwyLvyEJGOjKzNIkYcdMRZqI6IcgFIIlOqBUj8n5MPtMzdrIY5_ln4fsFShl2LNRg_JBvh9Qe9KFVwgMUR3lk3IwQi3GrrvSiEPRCItsNIJORpNYHP77-_d_7_ib8hO2htjiFk7IFvtsnNvkeS01SHZLsrj44tw_vj90_Swt_Hfu6v2dg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL2ahqbtBcEYojDAD5N4gEhJHNvxYzU1KmydYLTS3izHH1KlkqA2EfwKfjPXabKO8SGhvCW2E_k41yfxPccAZ7bUPhEmixgt8yhLLI-kTiQCIo3mRpeeB73z7IpPF9mHG3bTi8I2Q7b7sCTZReo7YjfJgpoYP3-DhVGEzPEBkoE8JHIt0vHOajeXbPAIx9DLeqnMn9v4ZTq6H5R_Wx3tJp3iETzs2SIZb-F9DHuuOoaDLmvTbI7hKFDFrdPyE_gxC0ZT5FyvVzWZ3Jp4k9oTJHkk2FAtq7b9QjpN03B6_q2OPtbLqiEFznB3K0xas1papytSrJ0j18goyWdEVK9JEdLeCMac8BOHNDUZe49slXxqEade2HkCi2IyP59G_W4LkaEsb6I8c9SV0kthtWFpxpgwVprY-TguGXZWZry2sXApHg5jKLM0McJQzj0XqaVPYb-qK_cMiIhzg5HCaon0Jsm8pBTLlaak3DIu_AiSodOV6a3Iw44YK7UzUQ5AKQRKdUCp7yN4e1vn69aI45-l3wQsVXhLsWWje7EBPl_wu1JjLpAYYjjLRnA6wK3613ejkAcikRbY6AjeDUNgd_nv933-f8Vfw-F0PrtUl--vLl7AUdoNzJC_dgr7zbp1L5HwNOWrbnz_BA_T9lk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwFLRQEVUvCEqrLhR4h0ocIGoSx3Z8XJWNCrRVoV2pN8vxh7TSklTbRO2v4DfznE26CxQklFtiO4nHfp7EnjEhB7bUPhEmixgt8yhLLI-kTiQCIo3mRpeeB73z6Rk_nmafr9jVmoq_W-0-TEkuNQ3BpalqDq-tP1wTvkkWlMX4KRzsjCJkkY8xHCehXU_T8cp2N5ds8AvHMMx62czDZfwyNP0eoP-YKe0GoOIZedozRxgvoX5OHrlqmzzpVnCam22yFWjj0nX5BflxGl4HjvRiXsPk3tAbag9I-CBYUs2qtv0Onb5pOH15W0fn9axqoMDRbj3DpDXzmXW6gmLhHHxDdgkXiK5eQBGWwAHGn_BDB5oaxt4jc4WvLWLWizx3yLSYXB4dR_3OC5GhLG-iPHPUldJLYbVhacaYMFaa2Pk4LhlWVma8trFwKR4O4ymzNDHCUM49F6mlu2Sjqiu3R0DEucGoYbVEqpNkXlKK6UpTUm4ZF35EkqHSleltycPuGHO1MlQOQCkESnVAqbsReX-f53ppyvHP1O8Clir0WCzZ6F54gM8XvK_UmAskiRjashHZH-BWfVe-UcgJkVQLLHREPgxNYHX57_d9-X_J35LN84-FOvl09uUV2Uq7dhmWsu2TjWbRutfIfZryTde8fwIxwvqV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monte+Carlo+Evaluation+of+the+Continuum+Limit+of+the+Two-Point+Function+of+the+Euclidean+Free+Real+Scalar+Field+Subject+to+Affine+Quantization&rft.jtitle=Journal+of+statistical+physics&rft.au=Fantoni%2C+Riccardo&rft.au=Klauder%2C+John+R.&rft.date=2021-09-01&rft.issn=0022-4715&rft.eissn=1572-9613&rft.volume=184&rft.issue=3&rft_id=info:doi/10.1007%2Fs10955-021-02818-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10955_021_02818_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4715&client=summon |