Methods for removing links in a network to minimize the spread of infections

Minimizing the spread of infections is a challenging problem, and it is the subject matter in many different fields such as epidemiology and cyber-security. In this paper, we investigate link removal as an intervention strategy and study the relative effectiveness of different link removal methods i...

Full description

Saved in:
Bibliographic Details
Published inComputers & operations research Vol. 69; pp. 10 - 24
Main Authors Nandi, Apurba K., Medal, Hugh R.
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.05.2016
Pergamon Press Inc
Subjects
Online AccessGet full text
ISSN0305-0548
1873-765X
0305-0548
DOI10.1016/j.cor.2015.11.001

Cover

Abstract Minimizing the spread of infections is a challenging problem, and it is the subject matter in many different fields such as epidemiology and cyber-security. In this paper, we investigate link removal as an intervention strategy and study the relative effectiveness of different link removal methods in minimizing the spread of infections in a network. With that in mind, we develop four connectivity-based network interdiction models and formulate these models as mixed integer linear programs. The first model minimizes the number of connections between infected and susceptible nodes; the second the number of susceptible nodes having one or more connections with infected nodes; the third the total number of paths between infected and susceptible nodes; and the fourth the total weight of the paths between infected and susceptible nodes. We also propose heuristic algorithms to solve the models. The network interdiction models act as link removal methods, i.e., each return a solution consisting of a set of links to remove in the network. We compare the effectiveness of these four methods with the effectiveness of an existing link removal method [25], a method based on link betweenness centrality [18], and random link removal method. Our results show that complete isolation of susceptible nodes from infected nodes is the most effective method in reducing the average number of new infections (reduce occurrence) under most scenarios, and the relative effectiveness of the complete isolation method increases with transmission probability. In contrast, removing the highest probability transmission paths is the most effective method in increasing the average time to infect half of the susceptible nodes (reduce speed) under most scenarios, and the relative effectiveness of this method decreases with transmission probability. •We present four new network interdiction models to minimize spread in a network.•We formulate the models as mixed-integer linear programs.•We propose heuristic algorithms to solve the network interdiction models.•We report run-times using CPLEX and also the run-times of the heuristic algorithms.•We report the effectiveness of the network interdiction models in minimizing the spread of infections compared to several existing methods.
AbstractList Minimizing the spread of infections is a challenging problem, and it is the subject matter in many different fields such as epidemiology and cyber-security. In this paper, we investigate link removal as an intervention strategy and study the relative effectiveness of different link removal methods in minimizing the spread of infections in a network. With that in mind, we develop four connectivity-based network interdiction models and formulate these models as mixed integer linear programs. The first model minimizes the number of connections between infected and susceptible nodes; the second the number of susceptible nodes having one or more connections with infected nodes; the third the total number of paths between infected and susceptible nodes; and the fourth the total weight of the paths between infected and susceptible nodes. We also propose heuristic algorithms to solve the models. The network interdiction models act as link removal methods, i.e., each return a solution consisting of a set of links to remove in the network. We compare the effectiveness of these four methods with the effectiveness of an existing link removal method [25], a method based on link betweenness centrality [18], and random link removal method. Our results show that complete isolation of susceptible nodes from infected nodes is the most effective method in reducing the average number of new infections (reduce occurrence) under most scenarios, and the relative effectiveness of the complete isolation method increases with transmission probability. In contrast, removing the highest probability transmission paths is the most effective method in increasing the average time to infect half of the susceptible nodes (reduce speed) under most scenarios, and the relative effectiveness of this method decreases with transmission probability.
Minimizing the spread of infections is a challenging problem, and it is the subject matter in many different fields such as epidemiology and cyber-security. In this paper, we investigate link removal as an intervention strategy and study the relative effectiveness of different link removal methods in minimizing the spread of infections in a network. With that in mind, we develop four connectivity-based network interdiction models and formulate these models as mixed integer linear programs. The first model minimizes the number of connections between infected and susceptible nodes; the second the number of susceptible nodes having one or more connections with infected nodes; the third the total number of paths between infected and susceptible nodes; and the fourth the total weight of the paths between infected and susceptible nodes. We also propose heuristic algorithms to solve the models. The network interdiction models act as link removal methods, i.e., each return a solution consisting of a set of links to remove in the network. We compare the effectiveness of these four methods with the effectiveness of an existing link removal method [25], a method based on link betweenness centrality [18], and random link removal method. Our results show that complete isolation of susceptible nodes from infected nodes is the most effective method in reducing the average number of new infections (reduce occurrence) under most scenarios, and the relative effectiveness of the complete isolation method increases with transmission probability. In contrast, removing the highest probability transmission paths is the most effective method in increasing the average time to infect half of the susceptible nodes (reduce speed) under most scenarios, and the relative effectiveness of this method decreases with transmission probability. •We present four new network interdiction models to minimize spread in a network.•We formulate the models as mixed-integer linear programs.•We propose heuristic algorithms to solve the network interdiction models.•We report run-times using CPLEX and also the run-times of the heuristic algorithms.•We report the effectiveness of the network interdiction models in minimizing the spread of infections compared to several existing methods.
Author Nandi, Apurba K.
Medal, Hugh R.
Author_xml – sequence: 1
  givenname: Apurba K.
  orcidid: 0000-0003-1696-3293
  surname: Nandi
  fullname: Nandi, Apurba K.
  email: akn77@msstate.edu
– sequence: 2
  givenname: Hugh R.
  orcidid: 0000-0002-0666-8410
  surname: Medal
  fullname: Medal, Hugh R.
  email: hugh.medal@msstate.edu
BookMark eNp9kE1P3DAQQK2KSl0oP6A3S71wSfAk_kjUE0IUkLbiwoGb5TiT4iWxF9sLKr--Xi0nDvgyl_dG43dMjnzwSMgPYDUwkOeb2oZYNwxEDVAzBl_ICjrVVkqKhyOyYi0TFRO8-0aOU9qw8lQDK7L-g_kxjIlOIdKIS3hx_i-dnX9K1HlqqMf8GuITzYEuzrvFvSHNj0jTNqIZaZgKNqHNLvj0nXydzJzw9H2ekPvfV_eXN9X67vr28mJd2VZ0uVKDVEoJqQZmehiYtWLifBC268beglKSMdM2nPWmb1kzDtKIno-Cq6lHLtoTcnZYu43heYcp68Uli_NsPIZd0tCB6DvOpSrozw_oJuyiL8dpUFI2SrWdLJQ6UDaGlCJO2rps9l_K0bhZA9P7yHqjS2S9j6wBdIlcTPhgbqNbTPz3qfPr4GBJ9OIw6mQdeoujiyWkHoP7xP4PzXmVUQ
CODEN CMORAP
CitedBy_id crossref_primary_10_1007_s10479_023_05350_1
crossref_primary_10_1155_2018_4184805
crossref_primary_10_1371_journal_pntd_0009236
crossref_primary_10_1016_j_knosys_2022_109920
crossref_primary_10_1016_j_ijcip_2021_100408
crossref_primary_10_1145_3449023
crossref_primary_10_1002_net_21761
crossref_primary_10_1016_j_ejor_2019_04_035
crossref_primary_10_1016_j_epsr_2025_111554
crossref_primary_10_1140_epjs_s11734_021_00138_5
crossref_primary_10_1016_j_cnsns_2023_107753
crossref_primary_10_1016_j_cor_2019_06_011
crossref_primary_10_1016_j_cie_2021_107708
crossref_primary_10_1016_j_cor_2024_106578
crossref_primary_10_1109_TKDE_2023_3309987
crossref_primary_10_1016_j_omega_2023_102898
crossref_primary_10_1016_j_cor_2024_106675
crossref_primary_10_1080_23302674_2023_2247964
crossref_primary_10_1016_j_disopt_2018_06_005
crossref_primary_10_1016_j_chaos_2019_05_031
crossref_primary_10_1109_TNSE_2022_3168042
crossref_primary_10_3389_fphy_2021_681343
crossref_primary_10_1016_j_cor_2023_106392
crossref_primary_10_1287_ijoc_2020_0992
crossref_primary_10_1007_s40622_024_00380_5
crossref_primary_10_1016_j_ejor_2018_01_015
crossref_primary_10_1109_TSMC_2023_3237933
crossref_primary_10_1111_poms_13192
crossref_primary_10_1016_j_physa_2022_128359
crossref_primary_10_1016_j_cor_2020_105138
crossref_primary_10_1080_01605682_2021_1913078
crossref_primary_10_1371_journal_pone_0307754
crossref_primary_10_1016_j_omega_2019_02_006
crossref_primary_10_7498_aps_66_038901
crossref_primary_10_1002_net_21732
crossref_primary_10_1002_net_21930
crossref_primary_10_1016_j_cie_2017_12_008
crossref_primary_10_1016_j_cor_2018_02_020
crossref_primary_10_1016_j_knosys_2020_106562
crossref_primary_10_1016_j_cor_2021_105254
crossref_primary_10_1016_j_physrep_2022_05_003
crossref_primary_10_1007_s11590_024_02117_w
crossref_primary_10_1016_j_cor_2016_05_005
crossref_primary_10_1016_j_cor_2021_105690
crossref_primary_10_1038_s41598_022_25023_6
Cites_doi 10.1038/nrm1837
10.1016/j.cor.2003.11.012
10.1016/j.jtbi.2015.02.005
10.1126/science.286.5439.509
10.1097/00002030-199601001-00011
10.1109/ICDM.2013.47
10.1016/j.cor.2013.09.012
10.1109/INFCOM.2010.5462098
10.1007/978-3-642-25510-6_18
10.1103/PhysRevE.65.035108
10.1371/4f8c9a2e1fca8
10.1145/2396761.2396795
10.1287/inte.1060.0252
10.1016/j.cor.2008.08.016
10.1038/30918
10.1016/j.mbs.2011.11.006
10.1038/35019019
10.1103/PhysRevLett.86.3200
10.1016/j.dam.2013.03.021
10.1209/0295-5075/98/58004
10.1016/j.cor.2007.09.004
10.1371/journal.pone.0012200
10.1109/TNET.2011.2170849
10.1016/j.disopt.2012.07.001
10.1142/9789812771667_0007
10.1103/PhysRevLett.85.5468
10.1016/S0960-0779(03)00429-6
10.1007/s00285-012-0545-6
10.1007/s10589-012-9458-y
10.1109/RELDIS.2003.1238052
10.1016/j.physa.2009.02.007
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright Pergamon Press Inc. May 2016
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Copyright Pergamon Press Inc. May 2016
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cor.2015.11.001
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1873-765X
0305-0548
EndPage 24
ExternalDocumentID 3957253181
10_1016_j_cor_2015_11_001
S030505481500249X
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
186
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
AEBSH
AEFWE
AEHXG
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ARUGR
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSO
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
UAO
UPT
VH1
WUQ
XFK
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c358t-7b6777567b0a91b0cc5f44b5c88d9c177600a32409a9302db6a594d547f9e453
IEDL.DBID AIKHN
ISSN 0305-0548
IngestDate Fri Sep 05 06:37:07 EDT 2025
Fri Jul 25 05:41:50 EDT 2025
Tue Jul 01 02:06:31 EDT 2025
Thu Apr 24 23:13:03 EDT 2025
Fri Feb 23 02:33:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Integer programming
Link removal
Spread of infections
Contamination minimization
Network interdiction
Edge manipulation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-7b6777567b0a91b0cc5f44b5c88d9c177600a32409a9302db6a594d547f9e453
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1696-3293
0000-0002-0666-8410
PQID 1766277386
PQPubID 45870
PageCount 15
ParticipantIDs proquest_miscellaneous_1815984467
proquest_journals_1766277386
crossref_citationtrail_10_1016_j_cor_2015_11_001
crossref_primary_10_1016_j_cor_2015_11_001
elsevier_sciencedirect_doi_10_1016_j_cor_2015_11_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2016
2016-05-00
20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: May 2016
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computers & operations research
PublicationYear 2016
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Beygelzimer, Grinstein, Linsker, Rish (bib6) 2005; 357
Shen, Smith, Goli (bib44) Aug. 2012; 9
Scott, Novak, Aultman-Hall, Guo (bib43) 2006; 14
Di Summa, Grosso, Locatelli (bib14) 2012; 53
Bansal, Grenfell, Meyers (bib4) 2007; 4
Pastor-Satorras, Vespignani (bib38) 2001; 86
He, Li, Ma (bib21) 2009; 388
Kuhlman CJ, Tuli G, Swarup S, Marathe MV, Ravi S. Blocking simple and complex contagion by edge removal. In: 2013 IEEE 13th international conference on data mining (ICDM). IEEE; 2013. p. 399–408.
Tong H, Prakash BA, Rad TE, Faloutsos M, Faloutsos C. Gelling, and melting, large graphs by edge manipulation. In: Proceedings of the 21st ACM international conference on Information and knowledge management. CIKM ’12. New York, NY, USA: ACM; 2012, pp. 245–254.
Addis, Di Summa, Grosso (bib1) 2013; 161
Satorras, Vespignani (bib42) 2002; 65
Brown, Carlyle, Salmerón, Wood (bib8) 2006; 36
He J, Liang H, Yuan H. Controlling infection by blocking nodes and links simultaneously, vol. 7090 of Lecture Notes in Computer Science. Springer Berlin Heidelberg;2011. p. 206–217.
Erdos, Renyi (bib19) 1960; 5
Sanger DE. Obama order sped up wave of cyberattacks against Iran. The Newyork Times; June 2012.
Barabási, Albert (bib5) 1999; 286
Dinh, Xuan, Thai, Pardalos, Znati (bib15) 2012; 20
Latora, Marchiori (bib28) 2004; 20
Snyder, Scaparra, Daskin, Church (bib45) 2006
Matisziw, Murray (bib32) 2009; 36
Boginski, Commander (bib7) 2009
Enns, Brandeau (bib17) 2015; 371
Yang, Wu, Wang (bib54) 2013; 87
Nandi AK, Medal HR, Vadlamani S. Interdicting attack graphs to protect organizations from cyber attacks: a bi-level attacker-defender model. Technical Report, Mississippi State University; 2014.
Zhang B, Al-Shaer E. On synthesizing distributed firewall configurations considering risk, usability and cost constraints. In: Proceedings of the 7th international conference on network and services management. International federation for information processing; 2011, pp. 28–36.
Chung, Chew, Zhou, Lai (bib10) 2012; 98
Cplex ILOG. 2007. 11.0 User׳s Manual. ILOG SA, Gentilly, France.
Kimura, Saito, Motoda (bib25) 2009; 3
Joyce, Laurienti, Burdette, Hayasaka (bib24) 2010; 5
Marcelino J, Kaiser M. Reducing influenza spreading over the airline network. PLoS Curr 1, RRN1005+.
Commander CW. Optimization problems in telecommunications with military applications [Ph.D. thesis], University of Florida; 2007.
Meyers, Pourbohloul, Newman, Skowronski, Brunham (bib33) 2005; 232
Callaway, Newman, Strogatz, Watts (bib9) 2000; 85
Watts, Strogatz (bib52) 1998; 393
Costa (bib12) 2005; 32
WHO, Beaglehole R, Irwin A. The world health report, 2004: changing history. Technical Report, World Health Organization
Nandi AK, Medal HR. Optimization models to control infectious disease spread in networks. In: Proceedings of the 8th INFORMS workshop on data mining and health informatics; 2013.
Veremyev, Prokopyev, Pasiliao (bib50) 2014; 28
Veremyev, Boginski, Pasiliao (bib49) 2014; 8
Prakash, Valler, Faloutsos, Faloutsos, Jul (bib39) 2012; 33
Myung, Kim (bib34) 2004; 156
Wang Y, Chakrabarti D, Wang C, Faloutsos C. Epidemic spreading in real networks: an eigenvalue viewpoint. In: Proceedings of 22nd international symposium on reliable distributed systems, 2003, vol. 0. Los Alamitos, CA, USA: IEEE; October 2003, pp. 25–34.
Albert, Jeong, Barabasi (bib2) 2000; 406
Enns, Mounzer, Brandeau (bib18) 2012; 235
Newman (bib37) 2002; 66
Resende MGC, Pardalos PM. Handbook of optimization in telecommunication networks. Springer; 2008.
Mastro TD, De Vincenzi I. Probabilities of sexual HIV-1 transmission. Aids 1996;10:S75–82.
Ventresca, Aleman (bib48) 2014; 43
2000.
August 2009.
Arulselvan, Commander, Elefteriadou, Pardalos (bib3) 2009; 36
Marcelino J, Kaiser M. Critical paths in a metapopulation model of H1N1: efficiently delaying influenza spreading through flight cancellation. PLoS Curr 4.
Dinh TN, Xuan Y, Thai MT, Park E, Znati T. On approximation of new optimization methods for assessing network vulnerability. In: 2010 Proceedings IEEE INFOCOM, IEEE; 2010. p. 1–9.
2012.
Taniguchi, Emanuelli, Kahn (bib46) 2006; 7
Holme, Kim, Yoon, Han (bib23) 2002; 65
2004.
Koch D, Illner R, Ma J. Edge removal in random contact networks and the basic reproduction number. J Math Biol 2013; 1–22.
HHS. The great pandemic—The United States in 1918–1919. Technical Report, United States Department of Health and Human Services
Holme (10.1016/j.cor.2015.11.001_bib23) 2002; 65
Costa (10.1016/j.cor.2015.11.001_bib12) 2005; 32
10.1016/j.cor.2015.11.001_bib40
10.1016/j.cor.2015.11.001_bib30
10.1016/j.cor.2015.11.001_bib31
10.1016/j.cor.2015.11.001_bib36
Shen (10.1016/j.cor.2015.11.001_bib44) 2012; 9
10.1016/j.cor.2015.11.001_bib35
Boginski (10.1016/j.cor.2015.11.001_bib7) 2009
Prakash (10.1016/j.cor.2015.11.001_bib39) 2012; 33
Latora (10.1016/j.cor.2015.11.001_bib28) 2004; 20
Callaway (10.1016/j.cor.2015.11.001_bib9) 2000; 85
Watts (10.1016/j.cor.2015.11.001_bib52) 1998; 393
Dinh (10.1016/j.cor.2015.11.001_bib15) 2012; 20
Matisziw (10.1016/j.cor.2015.11.001_bib32) 2009; 36
10.1016/j.cor.2015.11.001_bib51
10.1016/j.cor.2015.11.001_bib41
Beygelzimer (10.1016/j.cor.2015.11.001_bib6) 2005; 357
Satorras (10.1016/j.cor.2015.11.001_bib42) 2002; 65
10.1016/j.cor.2015.11.001_bib47
Albert (10.1016/j.cor.2015.11.001_bib2) 2000; 406
Brown (10.1016/j.cor.2015.11.001_bib8) 2006; 36
Snyder (10.1016/j.cor.2015.11.001_bib45) 2006
Veremyev (10.1016/j.cor.2015.11.001_bib50) 2014; 28
Joyce (10.1016/j.cor.2015.11.001_bib24) 2010; 5
Meyers (10.1016/j.cor.2015.11.001_bib33) 2005; 232
Veremyev (10.1016/j.cor.2015.11.001_bib49) 2014; 8
Arulselvan (10.1016/j.cor.2015.11.001_bib3) 2009; 36
Newman (10.1016/j.cor.2015.11.001_bib37) 2002; 66
He (10.1016/j.cor.2015.11.001_bib21) 2009; 388
Myung (10.1016/j.cor.2015.11.001_bib34) 2004; 156
10.1016/j.cor.2015.11.001_bib11
10.1016/j.cor.2015.11.001_bib55
10.1016/j.cor.2015.11.001_bib53
Barabási (10.1016/j.cor.2015.11.001_bib5) 1999; 286
Erdos (10.1016/j.cor.2015.11.001_bib19) 1960; 5
10.1016/j.cor.2015.11.001_bib13
10.1016/j.cor.2015.11.001_bib16
Ventresca (10.1016/j.cor.2015.11.001_bib48) 2014; 43
Di Summa (10.1016/j.cor.2015.11.001_bib14) 2012; 53
Yang (10.1016/j.cor.2015.11.001_bib54) 2013; 87
Taniguchi (10.1016/j.cor.2015.11.001_bib46) 2006; 7
Chung (10.1016/j.cor.2015.11.001_bib10) 2012; 98
Enns (10.1016/j.cor.2015.11.001_bib17) 2015; 371
Kimura (10.1016/j.cor.2015.11.001_bib25) 2009; 3
Enns (10.1016/j.cor.2015.11.001_bib18) 2012; 235
Addis (10.1016/j.cor.2015.11.001_bib1) 2013; 161
Bansal (10.1016/j.cor.2015.11.001_bib4) 2007; 4
10.1016/j.cor.2015.11.001_bib22
Scott (10.1016/j.cor.2015.11.001_bib43) 2006; 14
10.1016/j.cor.2015.11.001_bib20
10.1016/j.cor.2015.11.001_bib26
10.1016/j.cor.2015.11.001_bib29
10.1016/j.cor.2015.11.001_bib27
Pastor-Satorras (10.1016/j.cor.2015.11.001_bib38) 2001; 86
References_xml – volume: 161
  start-page: 2349
  year: 2013
  end-page: 2360
  ident: bib1
  article-title: Identifying critical nodes in undirected graphs
  publication-title: Discret Appl Math
– start-page: 153
  year: 2009
  end-page: 167
  ident: bib7
  article-title: Identifying critical nodes in protein-protein interaction networks
  publication-title: Clust Chall Biol Netw
– volume: 9
  start-page: 172
  year: Aug. 2012
  end-page: 188
  ident: bib44
  article-title: Exact interdiction models and algorithms for disconnecting networks via node deletions
  publication-title: Discret Optim
– reference: ; August 2009.
– start-page: 234
  year: 2006
  end-page: 257
  ident: bib45
  article-title: Planning for disruptions in supply chain networks
  publication-title: Tutor Oper Res
– volume: 32
  start-page: 1429
  year: 2005
  end-page: 1450
  ident: bib12
  article-title: A survey on benders decomposition applied to fixed-charge network design problems
  publication-title: Comput Oper Res
– reference: Nandi AK, Medal HR, Vadlamani S. Interdicting attack graphs to protect organizations from cyber attacks: a bi-level attacker-defender model. Technical Report, Mississippi State University; 2014.
– volume: 28
  start-page: 233
  year: 2014
  end-page: 273
  ident: bib50
  article-title: An integer programming framework for critical elements detection in graphs
  publication-title: J Comb Optim
– reference: ; 2012.
– volume: 20
  start-page: 69
  year: 2004
  end-page: 75
  ident: bib28
  article-title: How the science of complex networks can help developing strategies against terrorism
  publication-title: Chaos Solitons Fractals
– reference: Marcelino J, Kaiser M. Reducing influenza spreading over the airline network. PLoS Curr 1, RRN1005+.
– reference: Marcelino J, Kaiser M. Critical paths in a metapopulation model of H1N1: efficiently delaying influenza spreading through flight cancellation. PLoS Curr 4.
– volume: 232
  start-page: 71
  year: 2005
  end-page: 81
  ident: bib33
  article-title: Network theory and SARS
  publication-title: J Theor Biol
– reference: Commander CW. Optimization problems in telecommunications with military applications [Ph.D. thesis], University of Florida; 2007.
– volume: 388
  start-page: 2243
  year: 2009
  end-page: 2253
  ident: bib21
  article-title: Effect of edge removal on topological and functional robustness of complex networks
  publication-title: Phys A: Stat Mech Appl
– volume: 36
  start-page: 530
  year: 2006
  end-page: 544
  ident: bib8
  article-title: Defending critical infrastructure
  publication-title: Interfaces
– reference: Cplex ILOG. 2007. 11.0 User׳s Manual. ILOG SA, Gentilly, France.
– reference: WHO, Beaglehole R, Irwin A. The world health report, 2004: changing history. Technical Report, World Health Organization, 〈
– reference: Koch D, Illner R, Ma J. Edge removal in random contact networks and the basic reproduction number. J Math Biol 2013; 1–22.
– reference: 〉; 2004.
– volume: 8
  start-page: 1245
  year: 2014
  end-page: 1259
  ident: bib49
  article-title: Exact identification of critical nodes in sparse networks via new compact formulations
  publication-title: Optim Lett
– volume: 4
  start-page: 879
  year: 2007
  end-page: 891
  ident: bib4
  article-title: When individual behaviour matters
  publication-title: J R Soc Interface
– volume: 65
  start-page: 056109
  year: 2002
  ident: bib23
  article-title: Attack vulnerability of complex networks
  publication-title: Phys Rev E
– reference: Sanger DE. Obama order sped up wave of cyberattacks against Iran. The Newyork Times; June 2012.
– volume: 235
  start-page: 138
  year: 2012
  end-page: 147
  ident: bib18
  article-title: Optimal link removal for epidemic mitigation
  publication-title: Math Biosci
– reference: Tong H, Prakash BA, Rad TE, Faloutsos M, Faloutsos C. Gelling, and melting, large graphs by edge manipulation. In: Proceedings of the 21st ACM international conference on Information and knowledge management. CIKM ’12. New York, NY, USA: ACM; 2012, pp. 245–254.
– volume: 43
  start-page: 261
  year: 2014
  end-page: 270
  ident: bib48
  article-title: A randomized approximation algorithm for the critical node detection problem
  publication-title: Comput Oper Res
– volume: 86
  start-page: 3200
  year: 2001
  end-page: 3203
  ident: bib38
  article-title: Epidemic spreading in scale-free networks
  publication-title: Phys Rev Lett
– reference: Dinh TN, Xuan Y, Thai MT, Park E, Znati T. On approximation of new optimization methods for assessing network vulnerability. In: 2010 Proceedings IEEE INFOCOM, IEEE; 2010. p. 1–9.
– volume: 65
  start-page: 035108
  year: 2002
  ident: bib42
  article-title: Epidemic dynamics in finite size scale-free networks
  publication-title: Phys Rev E
– volume: 36
  start-page: 2193
  year: 2009
  end-page: 2200
  ident: bib3
  article-title: Detecting critical nodes in sparse graphs
  publication-title: Comput Oper Res
– volume: 5
  start-page: e12200
  year: 2010
  ident: bib24
  article-title: A new measure of centrality for brain networks
  publication-title: PLoS One
– volume: 33
  start-page: 549
  year: 2012
  end-page: 575
  ident: bib39
  article-title: Threshold conditions for arbitrary cascade models on arbitrary networks
  publication-title: Knowl Inf Syst
– volume: 20
  start-page: 609
  year: 2012
  end-page: 619
  ident: bib15
  article-title: On new approaches of assessing network vulnerability
  publication-title: IEEE/ACM Trans Netw
– reference: Mastro TD, De Vincenzi I. Probabilities of sexual HIV-1 transmission. Aids 1996;10:S75–82.
– volume: 5
  start-page: 17
  year: 1960
  end-page: 61
  ident: bib19
  article-title: On the evolution of random graphs
  publication-title: Publ Math Inst Hung Acad Sci
– reference: 〉; 2000.
– reference: Kuhlman CJ, Tuli G, Swarup S, Marathe MV, Ravi S. Blocking simple and complex contagion by edge removal. In: 2013 IEEE 13th international conference on data mining (ICDM). IEEE; 2013. p. 399–408.
– reference: Zhang B, Al-Shaer E. On synthesizing distributed firewall configurations considering risk, usability and cost constraints. In: Proceedings of the 7th international conference on network and services management. International federation for information processing; 2011, pp. 28–36.
– volume: 406
  start-page: 378
  year: 2000
  end-page: 382
  ident: bib2
  article-title: Error and attack tolerance of complex networks
  publication-title: Nature
– volume: 87
  start-page: 064801
  year: 2013
  ident: bib54
  article-title: Suppressing traffic-driven epidemic spreading by edge-removal strategies
  publication-title: Phys Rev E
– volume: 156
  start-page: 579
  year: 2004
  end-page: 589
  ident: bib34
  article-title: A cutting plane algorithm for computing k-edge survivability of a network
  publication-title: Eur J Oper Res
– volume: 98
  start-page: 58004
  year: 2012
  ident: bib10
  article-title: Impact of edge removal on the centrality betweenness of the best spreaders
  publication-title: EPL (Europhys Lett)
– volume: 36
  start-page: 16
  year: 2009
  end-page: 26
  ident: bib32
  article-title: Modeling s-t path availability to support disaster vulnerability assessment of network infrastructure
  publication-title: Comput Oper Res
– reference: He J, Liang H, Yuan H. Controlling infection by blocking nodes and links simultaneously, vol. 7090 of Lecture Notes in Computer Science. Springer Berlin Heidelberg;2011. p. 206–217.
– volume: 7
  start-page: 85
  year: 2006
  end-page: 96
  ident: bib46
  article-title: Critical nodes in signalling pathways
  publication-title: Nat Rev Mol Cell Biol
– volume: 393
  start-page: 440
  year: 1998
  end-page: 442
  ident: bib52
  article-title: Collective dynamics of ‘small-world’ networks
  publication-title: Nature
– volume: 53
  start-page: 649
  year: 2012
  end-page: 680
  ident: bib14
  article-title: Branch and cut algorithms for detecting critical nodes in undirected graphs
  publication-title: Comput Optim Appl
– volume: 371
  start-page: 154
  year: 2015
  end-page: 165
  ident: bib17
  article-title: Link removal for the control of stochastically evolving epidemics over networks
  publication-title: J Theor Biol
– volume: 3
  start-page: 9
  year: 2009
  ident: bib25
  article-title: Blocking links to minimize contamination spread in a social network
  publication-title: ACM Trans Knowl Discov Data (TKDD)
– reference: Nandi AK, Medal HR. Optimization models to control infectious disease spread in networks. In: Proceedings of the 8th INFORMS workshop on data mining and health informatics; 2013.
– volume: 14
  start-page: 215
  year: 2006
  end-page: 227
  ident: bib43
  article-title: Network robustness index
  publication-title: J Transp Geogr
– volume: 357
  start-page: 593
  year: 2005
  end-page: 612
  ident: bib6
  article-title: Improving network robustness by edge modification
  publication-title: Phys A: Stat Mech Appl
– volume: 66
  start-page: 016128
  year: 2002
  ident: bib37
  article-title: Spread of epidemic disease on networks
  publication-title: Phys Rev E
– reference: HHS. The great pandemic—The United States in 1918–1919. Technical Report, United States Department of Health and Human Services, 〈
– volume: 85
  start-page: 5468
  year: 2000
  end-page: 5471
  ident: bib9
  article-title: Network robustness and fragility
  publication-title: Phys Rev Lett
– volume: 286
  start-page: 509
  year: 1999
  end-page: 512
  ident: bib5
  article-title: Emergence of scaling in random networks
  publication-title: Science
– reference: Wang Y, Chakrabarti D, Wang C, Faloutsos C. Epidemic spreading in real networks: an eigenvalue viewpoint. In: Proceedings of 22nd international symposium on reliable distributed systems, 2003, vol. 0. Los Alamitos, CA, USA: IEEE; October 2003, pp. 25–34.
– reference: Resende MGC, Pardalos PM. Handbook of optimization in telecommunication networks. Springer; 2008.
– volume: 7
  start-page: 85
  issue: February (2)
  year: 2006
  ident: 10.1016/j.cor.2015.11.001_bib46
  article-title: Critical nodes in signalling pathways
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm1837
– ident: 10.1016/j.cor.2015.11.001_bib35
– volume: 32
  start-page: 1429
  issue: June (6)
  year: 2005
  ident: 10.1016/j.cor.2015.11.001_bib12
  article-title: A survey on benders decomposition applied to fixed-charge network design problems
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2003.11.012
– volume: 371
  start-page: 154
  year: 2015
  ident: 10.1016/j.cor.2015.11.001_bib17
  article-title: Link removal for the control of stochastically evolving epidemics over networks
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2015.02.005
– volume: 286
  start-page: 509
  issue: October (5439)
  year: 1999
  ident: 10.1016/j.cor.2015.11.001_bib5
  article-title: Emergence of scaling in random networks
  publication-title: Science
  doi: 10.1126/science.286.5439.509
– ident: 10.1016/j.cor.2015.11.001_bib29
– ident: 10.1016/j.cor.2015.11.001_bib31
  doi: 10.1097/00002030-199601001-00011
– ident: 10.1016/j.cor.2015.11.001_bib27
  doi: 10.1109/ICDM.2013.47
– volume: 357
  start-page: 593
  issue: 3
  year: 2005
  ident: 10.1016/j.cor.2015.11.001_bib6
  article-title: Improving network robustness by edge modification
  publication-title: Phys A: Stat Mech Appl
– volume: 14
  start-page: 215
  issue: 3
  year: 2006
  ident: 10.1016/j.cor.2015.11.001_bib43
  article-title: Network robustness index
  publication-title: J Transp Geogr
– volume: 43
  start-page: 261
  issue: September
  year: 2014
  ident: 10.1016/j.cor.2015.11.001_bib48
  article-title: A randomized approximation algorithm for the critical node detection problem
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2013.09.012
– ident: 10.1016/j.cor.2015.11.001_bib55
– volume: 156
  start-page: 579
  issue: 3
  year: 2004
  ident: 10.1016/j.cor.2015.11.001_bib34
  article-title: A cutting plane algorithm for computing k-edge survivability of a network
  publication-title: Eur J Oper Res
– ident: 10.1016/j.cor.2015.11.001_bib13
– ident: 10.1016/j.cor.2015.11.001_bib16
  doi: 10.1109/INFCOM.2010.5462098
– ident: 10.1016/j.cor.2015.11.001_bib20
  doi: 10.1007/978-3-642-25510-6_18
– ident: 10.1016/j.cor.2015.11.001_bib40
– volume: 65
  start-page: 035108
  issue: March (3)
  year: 2002
  ident: 10.1016/j.cor.2015.11.001_bib42
  article-title: Epidemic dynamics in finite size scale-free networks
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.65.035108
– ident: 10.1016/j.cor.2015.11.001_bib30
  doi: 10.1371/4f8c9a2e1fca8
– ident: 10.1016/j.cor.2015.11.001_bib41
– volume: 65
  start-page: 056109
  issue: 5
  year: 2002
  ident: 10.1016/j.cor.2015.11.001_bib23
  article-title: Attack vulnerability of complex networks
  publication-title: Phys Rev E
– ident: 10.1016/j.cor.2015.11.001_bib47
  doi: 10.1145/2396761.2396795
– volume: 36
  start-page: 530
  issue: November (6)
  year: 2006
  ident: 10.1016/j.cor.2015.11.001_bib8
  article-title: Defending critical infrastructure
  publication-title: Interfaces
  doi: 10.1287/inte.1060.0252
– volume: 36
  start-page: 2193
  issue: July (7)
  year: 2009
  ident: 10.1016/j.cor.2015.11.001_bib3
  article-title: Detecting critical nodes in sparse graphs
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2008.08.016
– volume: 66
  start-page: 016128
  issue: 1
  year: 2002
  ident: 10.1016/j.cor.2015.11.001_bib37
  article-title: Spread of epidemic disease on networks
  publication-title: Phys Rev E
– volume: 393
  start-page: 440
  issue: June (6684)
  year: 1998
  ident: 10.1016/j.cor.2015.11.001_bib52
  article-title: Collective dynamics of ‘small-world’ networks
  publication-title: Nature
  doi: 10.1038/30918
– volume: 235
  start-page: 138
  issue: Febuary (2)
  year: 2012
  ident: 10.1016/j.cor.2015.11.001_bib18
  article-title: Optimal link removal for epidemic mitigation
  publication-title: Math Biosci
  doi: 10.1016/j.mbs.2011.11.006
– volume: 406
  start-page: 378
  issue: 6794
  year: 2000
  ident: 10.1016/j.cor.2015.11.001_bib2
  article-title: Error and attack tolerance of complex networks
  publication-title: Nature
  doi: 10.1038/35019019
– volume: 4
  start-page: 879
  issue: 16
  year: 2007
  ident: 10.1016/j.cor.2015.11.001_bib4
  article-title: When individual behaviour matters
  publication-title: J R Soc Interface
– volume: 86
  start-page: 3200
  issue: April (14)
  year: 2001
  ident: 10.1016/j.cor.2015.11.001_bib38
  article-title: Epidemic spreading in scale-free networks
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.86.3200
– volume: 161
  start-page: 2349
  issue: 16
  year: 2013
  ident: 10.1016/j.cor.2015.11.001_bib1
  article-title: Identifying critical nodes in undirected graphs
  publication-title: Discret Appl Math
  doi: 10.1016/j.dam.2013.03.021
– volume: 98
  start-page: 58004
  issue: 5
  year: 2012
  ident: 10.1016/j.cor.2015.11.001_bib10
  article-title: Impact of edge removal on the centrality betweenness of the best spreaders
  publication-title: EPL (Europhys Lett)
  doi: 10.1209/0295-5075/98/58004
– volume: 36
  start-page: 16
  issue: 1
  year: 2009
  ident: 10.1016/j.cor.2015.11.001_bib32
  article-title: Modeling s-t path availability to support disaster vulnerability assessment of network infrastructure
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2007.09.004
– volume: 5
  start-page: e12200
  issue: August (8)
  year: 2010
  ident: 10.1016/j.cor.2015.11.001_bib24
  article-title: A new measure of centrality for brain networks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0012200
– volume: 232
  start-page: 71
  issue: 1
  year: 2005
  ident: 10.1016/j.cor.2015.11.001_bib33
  article-title: Network theory and SARS
  publication-title: J Theor Biol
– volume: 20
  start-page: 609
  issue: 2
  year: 2012
  ident: 10.1016/j.cor.2015.11.001_bib15
  article-title: On new approaches of assessing network vulnerability
  publication-title: IEEE/ACM Trans Netw
  doi: 10.1109/TNET.2011.2170849
– volume: 8
  start-page: 1245
  issue: 4
  year: 2014
  ident: 10.1016/j.cor.2015.11.001_bib49
  article-title: Exact identification of critical nodes in sparse networks via new compact formulations
  publication-title: Optim Lett
– ident: 10.1016/j.cor.2015.11.001_bib11
– start-page: 234
  year: 2006
  ident: 10.1016/j.cor.2015.11.001_bib45
  article-title: Planning for disruptions in supply chain networks
  publication-title: Tutor Oper Res
– volume: 3
  start-page: 9
  issue: April (2)
  year: 2009
  ident: 10.1016/j.cor.2015.11.001_bib25
  article-title: Blocking links to minimize contamination spread in a social network
  publication-title: ACM Trans Knowl Discov Data (TKDD)
– volume: 9
  start-page: 172
  issue: 3
  year: 2012
  ident: 10.1016/j.cor.2015.11.001_bib44
  article-title: Exact interdiction models and algorithms for disconnecting networks via node deletions
  publication-title: Discret Optim
  doi: 10.1016/j.disopt.2012.07.001
– volume: 28
  start-page: 233
  issue: 1
  year: 2014
  ident: 10.1016/j.cor.2015.11.001_bib50
  article-title: An integer programming framework for critical elements detection in graphs
  publication-title: J Comb Optim
– start-page: 153
  year: 2009
  ident: 10.1016/j.cor.2015.11.001_bib7
  article-title: Identifying critical nodes in protein-protein interaction networks
  publication-title: Clust Chall Biol Netw
  doi: 10.1142/9789812771667_0007
– volume: 85
  start-page: 5468
  year: 2000
  ident: 10.1016/j.cor.2015.11.001_bib9
  article-title: Network robustness and fragility
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.85.5468
– volume: 20
  start-page: 69
  issue: April (1)
  year: 2004
  ident: 10.1016/j.cor.2015.11.001_bib28
  article-title: How the science of complex networks can help developing strategies against terrorism
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/S0960-0779(03)00429-6
– ident: 10.1016/j.cor.2015.11.001_bib26
  doi: 10.1007/s00285-012-0545-6
– volume: 53
  start-page: 649
  issue: 3
  year: 2012
  ident: 10.1016/j.cor.2015.11.001_bib14
  article-title: Branch and cut algorithms for detecting critical nodes in undirected graphs
  publication-title: Comput Optim Appl
  doi: 10.1007/s10589-012-9458-y
– ident: 10.1016/j.cor.2015.11.001_bib22
– ident: 10.1016/j.cor.2015.11.001_bib51
  doi: 10.1109/RELDIS.2003.1238052
– volume: 388
  start-page: 2243
  issue: 11
  year: 2009
  ident: 10.1016/j.cor.2015.11.001_bib21
  article-title: Effect of edge removal on topological and functional robustness of complex networks
  publication-title: Phys A: Stat Mech Appl
  doi: 10.1016/j.physa.2009.02.007
– ident: 10.1016/j.cor.2015.11.001_bib36
– ident: 10.1016/j.cor.2015.11.001_bib53
– volume: 87
  start-page: 064801
  issue: 6
  year: 2013
  ident: 10.1016/j.cor.2015.11.001_bib54
  article-title: Suppressing traffic-driven epidemic spreading by edge-removal strategies
  publication-title: Phys Rev E
– volume: 33
  start-page: 549
  issue: 3
  year: 2012
  ident: 10.1016/j.cor.2015.11.001_bib39
  article-title: Threshold conditions for arbitrary cascade models on arbitrary networks
  publication-title: Knowl Inf Syst
– volume: 5
  start-page: 17
  year: 1960
  ident: 10.1016/j.cor.2015.11.001_bib19
  article-title: On the evolution of random graphs
  publication-title: Publ Math Inst Hung Acad Sci
SSID ssj0000721
Score 2.397847
Snippet Minimizing the spread of infections is a challenging problem, and it is the subject matter in many different fields such as epidemiology and cyber-security. In...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10
SubjectTerms Algorithms
Computer information security
Contamination minimization
Edge manipulation
Effectiveness
Heuristic
Infections
Integer programming
Joints
Link removal
Links
Mathematical models
Methods
Mixed integer
Network interdiction
Networks
Operations research
Spread of infections
Strategy
Studies
Title Methods for removing links in a network to minimize the spread of infections
URI https://dx.doi.org/10.1016/j.cor.2015.11.001
https://www.proquest.com/docview/1766277386
https://www.proquest.com/docview/1815984467
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BroToAdqFqlseMlJPSGHzsGP7iBBoaYFLQdpblDi2tKhkV-xy4cBv70xibymqOPSYxFai8Xgemc_fAHwzaOOcViKy0mCC4ngcKWeySFXG1bqW6FboNPL1TT6-498nYrIGZ-EsDMEqve3vbHprrf2dkZfmaD6djn6SqmLAoTCkId67yTr000znogf908sf45s_Blm2x69ofEQTQnGzhXlhjkcAL3FCXJ6-Ncw_3NMbQ916n4uPsOXDRnbafdknWLPNADYCan0A26E7A_ObdQAfXlEN7sDVddsqesEwSGWP9qH9kcDa8i2bNqxkTYcHZ8sZI7qRh-mzZRgcssUcw8qazRwLuK1msQu3F-e3Z-PId1KITCbUMpJVLqUUuaziUidVbIxwnFfCKFVrk0iqzpVEzadLncVpXeWl0LwWXDptucg-Q6-ZNfYLsJLodGJZCx1bbp1SukxtWiVGOVe7PBlCHORXGM8yTs0ufhUBTnZfoMgLEjlmHwSpG8Lxasq8o9h4bzAPi1L8pScFuoD3pu2HBSz8Jl0UxI2ZSup6OoSj1WPcXlQzKRs7e8IxqF5aYc4sv_7fm_dgE6_yDiO5D73l45M9wDhmWR3C-slLcui19Tdn__AP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB4BlYAeoAQQ4VUj9YS0ZJPYa_uIUFFKEy5NpdysXa8tBcEmIuHCgd_emV2blqri0Ova1q7G43nsfP4G4ItFG-e1EomTFhMUz9NEedtPVGF9qUuJboVuI49us8FPfjMRkxW4indhCFYZbH9j02trHZ50gjQ78-m084NUFQMOhSEN8d5NVuEDF31JuL6Ll984DyIAa0oJIqHpsbRZg7wwwyN4l7ggJs_QGOYfzukvM137nutPsBWCRnbZfNcOrLiqBesRs96C7dibgYWj2oKPfxAN7sJwVDeKXjAMUdmje6h_I7C6eMumFctZ1aDB2XLGiGzkYfrsGIaGbDHHoLJkM88iaqta7MH4-uv4apCEPgqJ7Qu1TGSRSSlFJos0190itVZ4zgthlSq17UqqzeVEzKdz3U97ZZHlQvNScOm1Q5Huw1o1q9wBsJzIdFJZCp067rxSOu-5XtG1yvvSZ902pFF-xgaOcWp1cW8imOzOoMgNiRxzDwLUteH8dcm8Idh4bzKPm2LeaIlBB_DesuO4gSYc0YUhZsyepJ6nbTh7HcbDRRWTvHKzJ5yDyqUVZszy8P_e_Bk2BuPR0Ay_3X4_gk0cyRq05DGsLR-f3AlGNMvitNbYX2s88No
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methods+for+removing+links+in+a+network+to+minimize+the+spread+of+infections&rft.jtitle=Computers+%26+operations+research&rft.au=Nandi%2C+Apurba+K&rft.au=Medal%2C+Hugh+R&rft.date=2016-05-01&rft.pub=Pergamon+Press+Inc&rft.issn=0305-0548&rft.eissn=0305-0548&rft.volume=69&rft.spage=10&rft_id=info:doi/10.1016%2Fj.cor.2015.11.001&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3957253181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon