Methods for removing links in a network to minimize the spread of infections
Minimizing the spread of infections is a challenging problem, and it is the subject matter in many different fields such as epidemiology and cyber-security. In this paper, we investigate link removal as an intervention strategy and study the relative effectiveness of different link removal methods i...
Saved in:
Published in | Computers & operations research Vol. 69; pp. 10 - 24 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.05.2016
Pergamon Press Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0305-0548 1873-765X 0305-0548 |
DOI | 10.1016/j.cor.2015.11.001 |
Cover
Abstract | Minimizing the spread of infections is a challenging problem, and it is the subject matter in many different fields such as epidemiology and cyber-security. In this paper, we investigate link removal as an intervention strategy and study the relative effectiveness of different link removal methods in minimizing the spread of infections in a network. With that in mind, we develop four connectivity-based network interdiction models and formulate these models as mixed integer linear programs. The first model minimizes the number of connections between infected and susceptible nodes; the second the number of susceptible nodes having one or more connections with infected nodes; the third the total number of paths between infected and susceptible nodes; and the fourth the total weight of the paths between infected and susceptible nodes. We also propose heuristic algorithms to solve the models. The network interdiction models act as link removal methods, i.e., each return a solution consisting of a set of links to remove in the network. We compare the effectiveness of these four methods with the effectiveness of an existing link removal method [25], a method based on link betweenness centrality [18], and random link removal method. Our results show that complete isolation of susceptible nodes from infected nodes is the most effective method in reducing the average number of new infections (reduce occurrence) under most scenarios, and the relative effectiveness of the complete isolation method increases with transmission probability. In contrast, removing the highest probability transmission paths is the most effective method in increasing the average time to infect half of the susceptible nodes (reduce speed) under most scenarios, and the relative effectiveness of this method decreases with transmission probability.
•We present four new network interdiction models to minimize spread in a network.•We formulate the models as mixed-integer linear programs.•We propose heuristic algorithms to solve the network interdiction models.•We report run-times using CPLEX and also the run-times of the heuristic algorithms.•We report the effectiveness of the network interdiction models in minimizing the spread of infections compared to several existing methods. |
---|---|
AbstractList | Minimizing the spread of infections is a challenging problem, and it is the subject matter in many different fields such as epidemiology and cyber-security. In this paper, we investigate link removal as an intervention strategy and study the relative effectiveness of different link removal methods in minimizing the spread of infections in a network. With that in mind, we develop four connectivity-based network interdiction models and formulate these models as mixed integer linear programs. The first model minimizes the number of connections between infected and susceptible nodes; the second the number of susceptible nodes having one or more connections with infected nodes; the third the total number of paths between infected and susceptible nodes; and the fourth the total weight of the paths between infected and susceptible nodes. We also propose heuristic algorithms to solve the models. The network interdiction models act as link removal methods, i.e., each return a solution consisting of a set of links to remove in the network. We compare the effectiveness of these four methods with the effectiveness of an existing link removal method [25], a method based on link betweenness centrality [18], and random link removal method. Our results show that complete isolation of susceptible nodes from infected nodes is the most effective method in reducing the average number of new infections (reduce occurrence) under most scenarios, and the relative effectiveness of the complete isolation method increases with transmission probability. In contrast, removing the highest probability transmission paths is the most effective method in increasing the average time to infect half of the susceptible nodes (reduce speed) under most scenarios, and the relative effectiveness of this method decreases with transmission probability. Minimizing the spread of infections is a challenging problem, and it is the subject matter in many different fields such as epidemiology and cyber-security. In this paper, we investigate link removal as an intervention strategy and study the relative effectiveness of different link removal methods in minimizing the spread of infections in a network. With that in mind, we develop four connectivity-based network interdiction models and formulate these models as mixed integer linear programs. The first model minimizes the number of connections between infected and susceptible nodes; the second the number of susceptible nodes having one or more connections with infected nodes; the third the total number of paths between infected and susceptible nodes; and the fourth the total weight of the paths between infected and susceptible nodes. We also propose heuristic algorithms to solve the models. The network interdiction models act as link removal methods, i.e., each return a solution consisting of a set of links to remove in the network. We compare the effectiveness of these four methods with the effectiveness of an existing link removal method [25], a method based on link betweenness centrality [18], and random link removal method. Our results show that complete isolation of susceptible nodes from infected nodes is the most effective method in reducing the average number of new infections (reduce occurrence) under most scenarios, and the relative effectiveness of the complete isolation method increases with transmission probability. In contrast, removing the highest probability transmission paths is the most effective method in increasing the average time to infect half of the susceptible nodes (reduce speed) under most scenarios, and the relative effectiveness of this method decreases with transmission probability. •We present four new network interdiction models to minimize spread in a network.•We formulate the models as mixed-integer linear programs.•We propose heuristic algorithms to solve the network interdiction models.•We report run-times using CPLEX and also the run-times of the heuristic algorithms.•We report the effectiveness of the network interdiction models in minimizing the spread of infections compared to several existing methods. |
Author | Nandi, Apurba K. Medal, Hugh R. |
Author_xml | – sequence: 1 givenname: Apurba K. orcidid: 0000-0003-1696-3293 surname: Nandi fullname: Nandi, Apurba K. email: akn77@msstate.edu – sequence: 2 givenname: Hugh R. orcidid: 0000-0002-0666-8410 surname: Medal fullname: Medal, Hugh R. email: hugh.medal@msstate.edu |
BookMark | eNp9kE1P3DAQQK2KSl0oP6A3S71wSfAk_kjUE0IUkLbiwoGb5TiT4iWxF9sLKr--Xi0nDvgyl_dG43dMjnzwSMgPYDUwkOeb2oZYNwxEDVAzBl_ICjrVVkqKhyOyYi0TFRO8-0aOU9qw8lQDK7L-g_kxjIlOIdKIS3hx_i-dnX9K1HlqqMf8GuITzYEuzrvFvSHNj0jTNqIZaZgKNqHNLvj0nXydzJzw9H2ekPvfV_eXN9X67vr28mJd2VZ0uVKDVEoJqQZmehiYtWLifBC268beglKSMdM2nPWmb1kzDtKIno-Cq6lHLtoTcnZYu43heYcp68Uli_NsPIZd0tCB6DvOpSrozw_oJuyiL8dpUFI2SrWdLJQ6UDaGlCJO2rps9l_K0bhZA9P7yHqjS2S9j6wBdIlcTPhgbqNbTPz3qfPr4GBJ9OIw6mQdeoujiyWkHoP7xP4PzXmVUQ |
CODEN | CMORAP |
CitedBy_id | crossref_primary_10_1007_s10479_023_05350_1 crossref_primary_10_1155_2018_4184805 crossref_primary_10_1371_journal_pntd_0009236 crossref_primary_10_1016_j_knosys_2022_109920 crossref_primary_10_1016_j_ijcip_2021_100408 crossref_primary_10_1145_3449023 crossref_primary_10_1002_net_21761 crossref_primary_10_1016_j_ejor_2019_04_035 crossref_primary_10_1016_j_epsr_2025_111554 crossref_primary_10_1140_epjs_s11734_021_00138_5 crossref_primary_10_1016_j_cnsns_2023_107753 crossref_primary_10_1016_j_cor_2019_06_011 crossref_primary_10_1016_j_cie_2021_107708 crossref_primary_10_1016_j_cor_2024_106578 crossref_primary_10_1109_TKDE_2023_3309987 crossref_primary_10_1016_j_omega_2023_102898 crossref_primary_10_1016_j_cor_2024_106675 crossref_primary_10_1080_23302674_2023_2247964 crossref_primary_10_1016_j_disopt_2018_06_005 crossref_primary_10_1016_j_chaos_2019_05_031 crossref_primary_10_1109_TNSE_2022_3168042 crossref_primary_10_3389_fphy_2021_681343 crossref_primary_10_1016_j_cor_2023_106392 crossref_primary_10_1287_ijoc_2020_0992 crossref_primary_10_1007_s40622_024_00380_5 crossref_primary_10_1016_j_ejor_2018_01_015 crossref_primary_10_1109_TSMC_2023_3237933 crossref_primary_10_1111_poms_13192 crossref_primary_10_1016_j_physa_2022_128359 crossref_primary_10_1016_j_cor_2020_105138 crossref_primary_10_1080_01605682_2021_1913078 crossref_primary_10_1371_journal_pone_0307754 crossref_primary_10_1016_j_omega_2019_02_006 crossref_primary_10_7498_aps_66_038901 crossref_primary_10_1002_net_21732 crossref_primary_10_1002_net_21930 crossref_primary_10_1016_j_cie_2017_12_008 crossref_primary_10_1016_j_cor_2018_02_020 crossref_primary_10_1016_j_knosys_2020_106562 crossref_primary_10_1016_j_cor_2021_105254 crossref_primary_10_1016_j_physrep_2022_05_003 crossref_primary_10_1007_s11590_024_02117_w crossref_primary_10_1016_j_cor_2016_05_005 crossref_primary_10_1016_j_cor_2021_105690 crossref_primary_10_1038_s41598_022_25023_6 |
Cites_doi | 10.1038/nrm1837 10.1016/j.cor.2003.11.012 10.1016/j.jtbi.2015.02.005 10.1126/science.286.5439.509 10.1097/00002030-199601001-00011 10.1109/ICDM.2013.47 10.1016/j.cor.2013.09.012 10.1109/INFCOM.2010.5462098 10.1007/978-3-642-25510-6_18 10.1103/PhysRevE.65.035108 10.1371/4f8c9a2e1fca8 10.1145/2396761.2396795 10.1287/inte.1060.0252 10.1016/j.cor.2008.08.016 10.1038/30918 10.1016/j.mbs.2011.11.006 10.1038/35019019 10.1103/PhysRevLett.86.3200 10.1016/j.dam.2013.03.021 10.1209/0295-5075/98/58004 10.1016/j.cor.2007.09.004 10.1371/journal.pone.0012200 10.1109/TNET.2011.2170849 10.1016/j.disopt.2012.07.001 10.1142/9789812771667_0007 10.1103/PhysRevLett.85.5468 10.1016/S0960-0779(03)00429-6 10.1007/s00285-012-0545-6 10.1007/s10589-012-9458-y 10.1109/RELDIS.2003.1238052 10.1016/j.physa.2009.02.007 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd Copyright Pergamon Press Inc. May 2016 |
Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Copyright Pergamon Press Inc. May 2016 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.cor.2015.11.001 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Business |
EISSN | 1873-765X 0305-0548 |
EndPage | 24 |
ExternalDocumentID | 3957253181 10_1016_j_cor_2015_11_001 S030505481500249X |
Genre | Feature |
GroupedDBID | --K --M -~X .DC .~1 0R~ 186 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN AAYOK ABAOU ABBOA ABEFU ABFNM ABFRF ABJNI ABMAC ABMMH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD AEBSH AEFWE AEHXG AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ARUGR ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HAMUX HVGLF HZ~ H~9 IHE J1W KOM LY1 M41 MHUIS MO0 MS~ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ RXW SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSO SSV SSW SSZ T5K TAE TN5 U5U UAO UPT VH1 WUQ XFK XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c358t-7b6777567b0a91b0cc5f44b5c88d9c177600a32409a9302db6a594d547f9e453 |
IEDL.DBID | AIKHN |
ISSN | 0305-0548 |
IngestDate | Fri Sep 05 06:37:07 EDT 2025 Fri Jul 25 05:41:50 EDT 2025 Tue Jul 01 02:06:31 EDT 2025 Thu Apr 24 23:13:03 EDT 2025 Fri Feb 23 02:33:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Integer programming Link removal Spread of infections Contamination minimization Network interdiction Edge manipulation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-7b6777567b0a91b0cc5f44b5c88d9c177600a32409a9302db6a594d547f9e453 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1696-3293 0000-0002-0666-8410 |
PQID | 1766277386 |
PQPubID | 45870 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1815984467 proquest_journals_1766277386 crossref_citationtrail_10_1016_j_cor_2015_11_001 crossref_primary_10_1016_j_cor_2015_11_001 elsevier_sciencedirect_doi_10_1016_j_cor_2015_11_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2016 2016-05-00 20160501 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: May 2016 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Computers & operations research |
PublicationYear | 2016 |
Publisher | Elsevier Ltd Pergamon Press Inc |
Publisher_xml | – name: Elsevier Ltd – name: Pergamon Press Inc |
References | Beygelzimer, Grinstein, Linsker, Rish (bib6) 2005; 357 Shen, Smith, Goli (bib44) Aug. 2012; 9 Scott, Novak, Aultman-Hall, Guo (bib43) 2006; 14 Di Summa, Grosso, Locatelli (bib14) 2012; 53 Bansal, Grenfell, Meyers (bib4) 2007; 4 Pastor-Satorras, Vespignani (bib38) 2001; 86 He, Li, Ma (bib21) 2009; 388 Kuhlman CJ, Tuli G, Swarup S, Marathe MV, Ravi S. Blocking simple and complex contagion by edge removal. In: 2013 IEEE 13th international conference on data mining (ICDM). IEEE; 2013. p. 399–408. Tong H, Prakash BA, Rad TE, Faloutsos M, Faloutsos C. Gelling, and melting, large graphs by edge manipulation. In: Proceedings of the 21st ACM international conference on Information and knowledge management. CIKM ’12. New York, NY, USA: ACM; 2012, pp. 245–254. Addis, Di Summa, Grosso (bib1) 2013; 161 Satorras, Vespignani (bib42) 2002; 65 Brown, Carlyle, Salmerón, Wood (bib8) 2006; 36 He J, Liang H, Yuan H. Controlling infection by blocking nodes and links simultaneously, vol. 7090 of Lecture Notes in Computer Science. Springer Berlin Heidelberg;2011. p. 206–217. Erdos, Renyi (bib19) 1960; 5 Sanger DE. Obama order sped up wave of cyberattacks against Iran. The Newyork Times; June 2012. Barabási, Albert (bib5) 1999; 286 Dinh, Xuan, Thai, Pardalos, Znati (bib15) 2012; 20 Latora, Marchiori (bib28) 2004; 20 Snyder, Scaparra, Daskin, Church (bib45) 2006 Matisziw, Murray (bib32) 2009; 36 Boginski, Commander (bib7) 2009 Enns, Brandeau (bib17) 2015; 371 Yang, Wu, Wang (bib54) 2013; 87 Nandi AK, Medal HR, Vadlamani S. Interdicting attack graphs to protect organizations from cyber attacks: a bi-level attacker-defender model. Technical Report, Mississippi State University; 2014. Zhang B, Al-Shaer E. On synthesizing distributed firewall configurations considering risk, usability and cost constraints. In: Proceedings of the 7th international conference on network and services management. International federation for information processing; 2011, pp. 28–36. Chung, Chew, Zhou, Lai (bib10) 2012; 98 Cplex ILOG. 2007. 11.0 User׳s Manual. ILOG SA, Gentilly, France. Kimura, Saito, Motoda (bib25) 2009; 3 Joyce, Laurienti, Burdette, Hayasaka (bib24) 2010; 5 Marcelino J, Kaiser M. Reducing influenza spreading over the airline network. PLoS Curr 1, RRN1005+. Commander CW. Optimization problems in telecommunications with military applications [Ph.D. thesis], University of Florida; 2007. Meyers, Pourbohloul, Newman, Skowronski, Brunham (bib33) 2005; 232 Callaway, Newman, Strogatz, Watts (bib9) 2000; 85 Watts, Strogatz (bib52) 1998; 393 Costa (bib12) 2005; 32 WHO, Beaglehole R, Irwin A. The world health report, 2004: changing history. Technical Report, World Health Organization Nandi AK, Medal HR. Optimization models to control infectious disease spread in networks. In: Proceedings of the 8th INFORMS workshop on data mining and health informatics; 2013. Veremyev, Prokopyev, Pasiliao (bib50) 2014; 28 Veremyev, Boginski, Pasiliao (bib49) 2014; 8 Prakash, Valler, Faloutsos, Faloutsos, Jul (bib39) 2012; 33 Myung, Kim (bib34) 2004; 156 Wang Y, Chakrabarti D, Wang C, Faloutsos C. Epidemic spreading in real networks: an eigenvalue viewpoint. In: Proceedings of 22nd international symposium on reliable distributed systems, 2003, vol. 0. Los Alamitos, CA, USA: IEEE; October 2003, pp. 25–34. Albert, Jeong, Barabasi (bib2) 2000; 406 Enns, Mounzer, Brandeau (bib18) 2012; 235 Newman (bib37) 2002; 66 Resende MGC, Pardalos PM. Handbook of optimization in telecommunication networks. Springer; 2008. Mastro TD, De Vincenzi I. Probabilities of sexual HIV-1 transmission. Aids 1996;10:S75–82. Ventresca, Aleman (bib48) 2014; 43 2000. August 2009. Arulselvan, Commander, Elefteriadou, Pardalos (bib3) 2009; 36 Marcelino J, Kaiser M. Critical paths in a metapopulation model of H1N1: efficiently delaying influenza spreading through flight cancellation. PLoS Curr 4. Dinh TN, Xuan Y, Thai MT, Park E, Znati T. On approximation of new optimization methods for assessing network vulnerability. In: 2010 Proceedings IEEE INFOCOM, IEEE; 2010. p. 1–9. 2012. Taniguchi, Emanuelli, Kahn (bib46) 2006; 7 Holme, Kim, Yoon, Han (bib23) 2002; 65 2004. Koch D, Illner R, Ma J. Edge removal in random contact networks and the basic reproduction number. J Math Biol 2013; 1–22. HHS. The great pandemic—The United States in 1918–1919. Technical Report, United States Department of Health and Human Services Holme (10.1016/j.cor.2015.11.001_bib23) 2002; 65 Costa (10.1016/j.cor.2015.11.001_bib12) 2005; 32 10.1016/j.cor.2015.11.001_bib40 10.1016/j.cor.2015.11.001_bib30 10.1016/j.cor.2015.11.001_bib31 10.1016/j.cor.2015.11.001_bib36 Shen (10.1016/j.cor.2015.11.001_bib44) 2012; 9 10.1016/j.cor.2015.11.001_bib35 Boginski (10.1016/j.cor.2015.11.001_bib7) 2009 Prakash (10.1016/j.cor.2015.11.001_bib39) 2012; 33 Latora (10.1016/j.cor.2015.11.001_bib28) 2004; 20 Callaway (10.1016/j.cor.2015.11.001_bib9) 2000; 85 Watts (10.1016/j.cor.2015.11.001_bib52) 1998; 393 Dinh (10.1016/j.cor.2015.11.001_bib15) 2012; 20 Matisziw (10.1016/j.cor.2015.11.001_bib32) 2009; 36 10.1016/j.cor.2015.11.001_bib51 10.1016/j.cor.2015.11.001_bib41 Beygelzimer (10.1016/j.cor.2015.11.001_bib6) 2005; 357 Satorras (10.1016/j.cor.2015.11.001_bib42) 2002; 65 10.1016/j.cor.2015.11.001_bib47 Albert (10.1016/j.cor.2015.11.001_bib2) 2000; 406 Brown (10.1016/j.cor.2015.11.001_bib8) 2006; 36 Snyder (10.1016/j.cor.2015.11.001_bib45) 2006 Veremyev (10.1016/j.cor.2015.11.001_bib50) 2014; 28 Joyce (10.1016/j.cor.2015.11.001_bib24) 2010; 5 Meyers (10.1016/j.cor.2015.11.001_bib33) 2005; 232 Veremyev (10.1016/j.cor.2015.11.001_bib49) 2014; 8 Arulselvan (10.1016/j.cor.2015.11.001_bib3) 2009; 36 Newman (10.1016/j.cor.2015.11.001_bib37) 2002; 66 He (10.1016/j.cor.2015.11.001_bib21) 2009; 388 Myung (10.1016/j.cor.2015.11.001_bib34) 2004; 156 10.1016/j.cor.2015.11.001_bib11 10.1016/j.cor.2015.11.001_bib55 10.1016/j.cor.2015.11.001_bib53 Barabási (10.1016/j.cor.2015.11.001_bib5) 1999; 286 Erdos (10.1016/j.cor.2015.11.001_bib19) 1960; 5 10.1016/j.cor.2015.11.001_bib13 10.1016/j.cor.2015.11.001_bib16 Ventresca (10.1016/j.cor.2015.11.001_bib48) 2014; 43 Di Summa (10.1016/j.cor.2015.11.001_bib14) 2012; 53 Yang (10.1016/j.cor.2015.11.001_bib54) 2013; 87 Taniguchi (10.1016/j.cor.2015.11.001_bib46) 2006; 7 Chung (10.1016/j.cor.2015.11.001_bib10) 2012; 98 Enns (10.1016/j.cor.2015.11.001_bib17) 2015; 371 Kimura (10.1016/j.cor.2015.11.001_bib25) 2009; 3 Enns (10.1016/j.cor.2015.11.001_bib18) 2012; 235 Addis (10.1016/j.cor.2015.11.001_bib1) 2013; 161 Bansal (10.1016/j.cor.2015.11.001_bib4) 2007; 4 10.1016/j.cor.2015.11.001_bib22 Scott (10.1016/j.cor.2015.11.001_bib43) 2006; 14 10.1016/j.cor.2015.11.001_bib20 10.1016/j.cor.2015.11.001_bib26 10.1016/j.cor.2015.11.001_bib29 10.1016/j.cor.2015.11.001_bib27 Pastor-Satorras (10.1016/j.cor.2015.11.001_bib38) 2001; 86 |
References_xml | – volume: 161 start-page: 2349 year: 2013 end-page: 2360 ident: bib1 article-title: Identifying critical nodes in undirected graphs publication-title: Discret Appl Math – start-page: 153 year: 2009 end-page: 167 ident: bib7 article-title: Identifying critical nodes in protein-protein interaction networks publication-title: Clust Chall Biol Netw – volume: 9 start-page: 172 year: Aug. 2012 end-page: 188 ident: bib44 article-title: Exact interdiction models and algorithms for disconnecting networks via node deletions publication-title: Discret Optim – reference: ; August 2009. – start-page: 234 year: 2006 end-page: 257 ident: bib45 article-title: Planning for disruptions in supply chain networks publication-title: Tutor Oper Res – volume: 32 start-page: 1429 year: 2005 end-page: 1450 ident: bib12 article-title: A survey on benders decomposition applied to fixed-charge network design problems publication-title: Comput Oper Res – reference: Nandi AK, Medal HR, Vadlamani S. Interdicting attack graphs to protect organizations from cyber attacks: a bi-level attacker-defender model. Technical Report, Mississippi State University; 2014. – volume: 28 start-page: 233 year: 2014 end-page: 273 ident: bib50 article-title: An integer programming framework for critical elements detection in graphs publication-title: J Comb Optim – reference: ; 2012. – volume: 20 start-page: 69 year: 2004 end-page: 75 ident: bib28 article-title: How the science of complex networks can help developing strategies against terrorism publication-title: Chaos Solitons Fractals – reference: Marcelino J, Kaiser M. Reducing influenza spreading over the airline network. PLoS Curr 1, RRN1005+. – reference: Marcelino J, Kaiser M. Critical paths in a metapopulation model of H1N1: efficiently delaying influenza spreading through flight cancellation. PLoS Curr 4. – volume: 232 start-page: 71 year: 2005 end-page: 81 ident: bib33 article-title: Network theory and SARS publication-title: J Theor Biol – reference: Commander CW. Optimization problems in telecommunications with military applications [Ph.D. thesis], University of Florida; 2007. – volume: 388 start-page: 2243 year: 2009 end-page: 2253 ident: bib21 article-title: Effect of edge removal on topological and functional robustness of complex networks publication-title: Phys A: Stat Mech Appl – volume: 36 start-page: 530 year: 2006 end-page: 544 ident: bib8 article-title: Defending critical infrastructure publication-title: Interfaces – reference: Cplex ILOG. 2007. 11.0 User׳s Manual. ILOG SA, Gentilly, France. – reference: WHO, Beaglehole R, Irwin A. The world health report, 2004: changing history. Technical Report, World Health Organization, 〈 – reference: Koch D, Illner R, Ma J. Edge removal in random contact networks and the basic reproduction number. J Math Biol 2013; 1–22. – reference: 〉; 2004. – volume: 8 start-page: 1245 year: 2014 end-page: 1259 ident: bib49 article-title: Exact identification of critical nodes in sparse networks via new compact formulations publication-title: Optim Lett – volume: 4 start-page: 879 year: 2007 end-page: 891 ident: bib4 article-title: When individual behaviour matters publication-title: J R Soc Interface – volume: 65 start-page: 056109 year: 2002 ident: bib23 article-title: Attack vulnerability of complex networks publication-title: Phys Rev E – reference: Sanger DE. Obama order sped up wave of cyberattacks against Iran. The Newyork Times; June 2012. – volume: 235 start-page: 138 year: 2012 end-page: 147 ident: bib18 article-title: Optimal link removal for epidemic mitigation publication-title: Math Biosci – reference: Tong H, Prakash BA, Rad TE, Faloutsos M, Faloutsos C. Gelling, and melting, large graphs by edge manipulation. In: Proceedings of the 21st ACM international conference on Information and knowledge management. CIKM ’12. New York, NY, USA: ACM; 2012, pp. 245–254. – volume: 43 start-page: 261 year: 2014 end-page: 270 ident: bib48 article-title: A randomized approximation algorithm for the critical node detection problem publication-title: Comput Oper Res – volume: 86 start-page: 3200 year: 2001 end-page: 3203 ident: bib38 article-title: Epidemic spreading in scale-free networks publication-title: Phys Rev Lett – reference: Dinh TN, Xuan Y, Thai MT, Park E, Znati T. On approximation of new optimization methods for assessing network vulnerability. In: 2010 Proceedings IEEE INFOCOM, IEEE; 2010. p. 1–9. – volume: 65 start-page: 035108 year: 2002 ident: bib42 article-title: Epidemic dynamics in finite size scale-free networks publication-title: Phys Rev E – volume: 36 start-page: 2193 year: 2009 end-page: 2200 ident: bib3 article-title: Detecting critical nodes in sparse graphs publication-title: Comput Oper Res – volume: 5 start-page: e12200 year: 2010 ident: bib24 article-title: A new measure of centrality for brain networks publication-title: PLoS One – volume: 33 start-page: 549 year: 2012 end-page: 575 ident: bib39 article-title: Threshold conditions for arbitrary cascade models on arbitrary networks publication-title: Knowl Inf Syst – volume: 20 start-page: 609 year: 2012 end-page: 619 ident: bib15 article-title: On new approaches of assessing network vulnerability publication-title: IEEE/ACM Trans Netw – reference: Mastro TD, De Vincenzi I. Probabilities of sexual HIV-1 transmission. Aids 1996;10:S75–82. – volume: 5 start-page: 17 year: 1960 end-page: 61 ident: bib19 article-title: On the evolution of random graphs publication-title: Publ Math Inst Hung Acad Sci – reference: 〉; 2000. – reference: Kuhlman CJ, Tuli G, Swarup S, Marathe MV, Ravi S. Blocking simple and complex contagion by edge removal. In: 2013 IEEE 13th international conference on data mining (ICDM). IEEE; 2013. p. 399–408. – reference: Zhang B, Al-Shaer E. On synthesizing distributed firewall configurations considering risk, usability and cost constraints. In: Proceedings of the 7th international conference on network and services management. International federation for information processing; 2011, pp. 28–36. – volume: 406 start-page: 378 year: 2000 end-page: 382 ident: bib2 article-title: Error and attack tolerance of complex networks publication-title: Nature – volume: 87 start-page: 064801 year: 2013 ident: bib54 article-title: Suppressing traffic-driven epidemic spreading by edge-removal strategies publication-title: Phys Rev E – volume: 156 start-page: 579 year: 2004 end-page: 589 ident: bib34 article-title: A cutting plane algorithm for computing k-edge survivability of a network publication-title: Eur J Oper Res – volume: 98 start-page: 58004 year: 2012 ident: bib10 article-title: Impact of edge removal on the centrality betweenness of the best spreaders publication-title: EPL (Europhys Lett) – volume: 36 start-page: 16 year: 2009 end-page: 26 ident: bib32 article-title: Modeling s-t path availability to support disaster vulnerability assessment of network infrastructure publication-title: Comput Oper Res – reference: He J, Liang H, Yuan H. Controlling infection by blocking nodes and links simultaneously, vol. 7090 of Lecture Notes in Computer Science. Springer Berlin Heidelberg;2011. p. 206–217. – volume: 7 start-page: 85 year: 2006 end-page: 96 ident: bib46 article-title: Critical nodes in signalling pathways publication-title: Nat Rev Mol Cell Biol – volume: 393 start-page: 440 year: 1998 end-page: 442 ident: bib52 article-title: Collective dynamics of ‘small-world’ networks publication-title: Nature – volume: 53 start-page: 649 year: 2012 end-page: 680 ident: bib14 article-title: Branch and cut algorithms for detecting critical nodes in undirected graphs publication-title: Comput Optim Appl – volume: 371 start-page: 154 year: 2015 end-page: 165 ident: bib17 article-title: Link removal for the control of stochastically evolving epidemics over networks publication-title: J Theor Biol – volume: 3 start-page: 9 year: 2009 ident: bib25 article-title: Blocking links to minimize contamination spread in a social network publication-title: ACM Trans Knowl Discov Data (TKDD) – reference: Nandi AK, Medal HR. Optimization models to control infectious disease spread in networks. In: Proceedings of the 8th INFORMS workshop on data mining and health informatics; 2013. – volume: 14 start-page: 215 year: 2006 end-page: 227 ident: bib43 article-title: Network robustness index publication-title: J Transp Geogr – volume: 357 start-page: 593 year: 2005 end-page: 612 ident: bib6 article-title: Improving network robustness by edge modification publication-title: Phys A: Stat Mech Appl – volume: 66 start-page: 016128 year: 2002 ident: bib37 article-title: Spread of epidemic disease on networks publication-title: Phys Rev E – reference: HHS. The great pandemic—The United States in 1918–1919. Technical Report, United States Department of Health and Human Services, 〈 – volume: 85 start-page: 5468 year: 2000 end-page: 5471 ident: bib9 article-title: Network robustness and fragility publication-title: Phys Rev Lett – volume: 286 start-page: 509 year: 1999 end-page: 512 ident: bib5 article-title: Emergence of scaling in random networks publication-title: Science – reference: Wang Y, Chakrabarti D, Wang C, Faloutsos C. Epidemic spreading in real networks: an eigenvalue viewpoint. In: Proceedings of 22nd international symposium on reliable distributed systems, 2003, vol. 0. Los Alamitos, CA, USA: IEEE; October 2003, pp. 25–34. – reference: Resende MGC, Pardalos PM. Handbook of optimization in telecommunication networks. Springer; 2008. – volume: 7 start-page: 85 issue: February (2) year: 2006 ident: 10.1016/j.cor.2015.11.001_bib46 article-title: Critical nodes in signalling pathways publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm1837 – ident: 10.1016/j.cor.2015.11.001_bib35 – volume: 32 start-page: 1429 issue: June (6) year: 2005 ident: 10.1016/j.cor.2015.11.001_bib12 article-title: A survey on benders decomposition applied to fixed-charge network design problems publication-title: Comput Oper Res doi: 10.1016/j.cor.2003.11.012 – volume: 371 start-page: 154 year: 2015 ident: 10.1016/j.cor.2015.11.001_bib17 article-title: Link removal for the control of stochastically evolving epidemics over networks publication-title: J Theor Biol doi: 10.1016/j.jtbi.2015.02.005 – volume: 286 start-page: 509 issue: October (5439) year: 1999 ident: 10.1016/j.cor.2015.11.001_bib5 article-title: Emergence of scaling in random networks publication-title: Science doi: 10.1126/science.286.5439.509 – ident: 10.1016/j.cor.2015.11.001_bib29 – ident: 10.1016/j.cor.2015.11.001_bib31 doi: 10.1097/00002030-199601001-00011 – ident: 10.1016/j.cor.2015.11.001_bib27 doi: 10.1109/ICDM.2013.47 – volume: 357 start-page: 593 issue: 3 year: 2005 ident: 10.1016/j.cor.2015.11.001_bib6 article-title: Improving network robustness by edge modification publication-title: Phys A: Stat Mech Appl – volume: 14 start-page: 215 issue: 3 year: 2006 ident: 10.1016/j.cor.2015.11.001_bib43 article-title: Network robustness index publication-title: J Transp Geogr – volume: 43 start-page: 261 issue: September year: 2014 ident: 10.1016/j.cor.2015.11.001_bib48 article-title: A randomized approximation algorithm for the critical node detection problem publication-title: Comput Oper Res doi: 10.1016/j.cor.2013.09.012 – ident: 10.1016/j.cor.2015.11.001_bib55 – volume: 156 start-page: 579 issue: 3 year: 2004 ident: 10.1016/j.cor.2015.11.001_bib34 article-title: A cutting plane algorithm for computing k-edge survivability of a network publication-title: Eur J Oper Res – ident: 10.1016/j.cor.2015.11.001_bib13 – ident: 10.1016/j.cor.2015.11.001_bib16 doi: 10.1109/INFCOM.2010.5462098 – ident: 10.1016/j.cor.2015.11.001_bib20 doi: 10.1007/978-3-642-25510-6_18 – ident: 10.1016/j.cor.2015.11.001_bib40 – volume: 65 start-page: 035108 issue: March (3) year: 2002 ident: 10.1016/j.cor.2015.11.001_bib42 article-title: Epidemic dynamics in finite size scale-free networks publication-title: Phys Rev E doi: 10.1103/PhysRevE.65.035108 – ident: 10.1016/j.cor.2015.11.001_bib30 doi: 10.1371/4f8c9a2e1fca8 – ident: 10.1016/j.cor.2015.11.001_bib41 – volume: 65 start-page: 056109 issue: 5 year: 2002 ident: 10.1016/j.cor.2015.11.001_bib23 article-title: Attack vulnerability of complex networks publication-title: Phys Rev E – ident: 10.1016/j.cor.2015.11.001_bib47 doi: 10.1145/2396761.2396795 – volume: 36 start-page: 530 issue: November (6) year: 2006 ident: 10.1016/j.cor.2015.11.001_bib8 article-title: Defending critical infrastructure publication-title: Interfaces doi: 10.1287/inte.1060.0252 – volume: 36 start-page: 2193 issue: July (7) year: 2009 ident: 10.1016/j.cor.2015.11.001_bib3 article-title: Detecting critical nodes in sparse graphs publication-title: Comput Oper Res doi: 10.1016/j.cor.2008.08.016 – volume: 66 start-page: 016128 issue: 1 year: 2002 ident: 10.1016/j.cor.2015.11.001_bib37 article-title: Spread of epidemic disease on networks publication-title: Phys Rev E – volume: 393 start-page: 440 issue: June (6684) year: 1998 ident: 10.1016/j.cor.2015.11.001_bib52 article-title: Collective dynamics of ‘small-world’ networks publication-title: Nature doi: 10.1038/30918 – volume: 235 start-page: 138 issue: Febuary (2) year: 2012 ident: 10.1016/j.cor.2015.11.001_bib18 article-title: Optimal link removal for epidemic mitigation publication-title: Math Biosci doi: 10.1016/j.mbs.2011.11.006 – volume: 406 start-page: 378 issue: 6794 year: 2000 ident: 10.1016/j.cor.2015.11.001_bib2 article-title: Error and attack tolerance of complex networks publication-title: Nature doi: 10.1038/35019019 – volume: 4 start-page: 879 issue: 16 year: 2007 ident: 10.1016/j.cor.2015.11.001_bib4 article-title: When individual behaviour matters publication-title: J R Soc Interface – volume: 86 start-page: 3200 issue: April (14) year: 2001 ident: 10.1016/j.cor.2015.11.001_bib38 article-title: Epidemic spreading in scale-free networks publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.86.3200 – volume: 161 start-page: 2349 issue: 16 year: 2013 ident: 10.1016/j.cor.2015.11.001_bib1 article-title: Identifying critical nodes in undirected graphs publication-title: Discret Appl Math doi: 10.1016/j.dam.2013.03.021 – volume: 98 start-page: 58004 issue: 5 year: 2012 ident: 10.1016/j.cor.2015.11.001_bib10 article-title: Impact of edge removal on the centrality betweenness of the best spreaders publication-title: EPL (Europhys Lett) doi: 10.1209/0295-5075/98/58004 – volume: 36 start-page: 16 issue: 1 year: 2009 ident: 10.1016/j.cor.2015.11.001_bib32 article-title: Modeling s-t path availability to support disaster vulnerability assessment of network infrastructure publication-title: Comput Oper Res doi: 10.1016/j.cor.2007.09.004 – volume: 5 start-page: e12200 issue: August (8) year: 2010 ident: 10.1016/j.cor.2015.11.001_bib24 article-title: A new measure of centrality for brain networks publication-title: PLoS One doi: 10.1371/journal.pone.0012200 – volume: 232 start-page: 71 issue: 1 year: 2005 ident: 10.1016/j.cor.2015.11.001_bib33 article-title: Network theory and SARS publication-title: J Theor Biol – volume: 20 start-page: 609 issue: 2 year: 2012 ident: 10.1016/j.cor.2015.11.001_bib15 article-title: On new approaches of assessing network vulnerability publication-title: IEEE/ACM Trans Netw doi: 10.1109/TNET.2011.2170849 – volume: 8 start-page: 1245 issue: 4 year: 2014 ident: 10.1016/j.cor.2015.11.001_bib49 article-title: Exact identification of critical nodes in sparse networks via new compact formulations publication-title: Optim Lett – ident: 10.1016/j.cor.2015.11.001_bib11 – start-page: 234 year: 2006 ident: 10.1016/j.cor.2015.11.001_bib45 article-title: Planning for disruptions in supply chain networks publication-title: Tutor Oper Res – volume: 3 start-page: 9 issue: April (2) year: 2009 ident: 10.1016/j.cor.2015.11.001_bib25 article-title: Blocking links to minimize contamination spread in a social network publication-title: ACM Trans Knowl Discov Data (TKDD) – volume: 9 start-page: 172 issue: 3 year: 2012 ident: 10.1016/j.cor.2015.11.001_bib44 article-title: Exact interdiction models and algorithms for disconnecting networks via node deletions publication-title: Discret Optim doi: 10.1016/j.disopt.2012.07.001 – volume: 28 start-page: 233 issue: 1 year: 2014 ident: 10.1016/j.cor.2015.11.001_bib50 article-title: An integer programming framework for critical elements detection in graphs publication-title: J Comb Optim – start-page: 153 year: 2009 ident: 10.1016/j.cor.2015.11.001_bib7 article-title: Identifying critical nodes in protein-protein interaction networks publication-title: Clust Chall Biol Netw doi: 10.1142/9789812771667_0007 – volume: 85 start-page: 5468 year: 2000 ident: 10.1016/j.cor.2015.11.001_bib9 article-title: Network robustness and fragility publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.85.5468 – volume: 20 start-page: 69 issue: April (1) year: 2004 ident: 10.1016/j.cor.2015.11.001_bib28 article-title: How the science of complex networks can help developing strategies against terrorism publication-title: Chaos Solitons Fractals doi: 10.1016/S0960-0779(03)00429-6 – ident: 10.1016/j.cor.2015.11.001_bib26 doi: 10.1007/s00285-012-0545-6 – volume: 53 start-page: 649 issue: 3 year: 2012 ident: 10.1016/j.cor.2015.11.001_bib14 article-title: Branch and cut algorithms for detecting critical nodes in undirected graphs publication-title: Comput Optim Appl doi: 10.1007/s10589-012-9458-y – ident: 10.1016/j.cor.2015.11.001_bib22 – ident: 10.1016/j.cor.2015.11.001_bib51 doi: 10.1109/RELDIS.2003.1238052 – volume: 388 start-page: 2243 issue: 11 year: 2009 ident: 10.1016/j.cor.2015.11.001_bib21 article-title: Effect of edge removal on topological and functional robustness of complex networks publication-title: Phys A: Stat Mech Appl doi: 10.1016/j.physa.2009.02.007 – ident: 10.1016/j.cor.2015.11.001_bib36 – ident: 10.1016/j.cor.2015.11.001_bib53 – volume: 87 start-page: 064801 issue: 6 year: 2013 ident: 10.1016/j.cor.2015.11.001_bib54 article-title: Suppressing traffic-driven epidemic spreading by edge-removal strategies publication-title: Phys Rev E – volume: 33 start-page: 549 issue: 3 year: 2012 ident: 10.1016/j.cor.2015.11.001_bib39 article-title: Threshold conditions for arbitrary cascade models on arbitrary networks publication-title: Knowl Inf Syst – volume: 5 start-page: 17 year: 1960 ident: 10.1016/j.cor.2015.11.001_bib19 article-title: On the evolution of random graphs publication-title: Publ Math Inst Hung Acad Sci |
SSID | ssj0000721 |
Score | 2.397847 |
Snippet | Minimizing the spread of infections is a challenging problem, and it is the subject matter in many different fields such as epidemiology and cyber-security. In... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10 |
SubjectTerms | Algorithms Computer information security Contamination minimization Edge manipulation Effectiveness Heuristic Infections Integer programming Joints Link removal Links Mathematical models Methods Mixed integer Network interdiction Networks Operations research Spread of infections Strategy Studies |
Title | Methods for removing links in a network to minimize the spread of infections |
URI | https://dx.doi.org/10.1016/j.cor.2015.11.001 https://www.proquest.com/docview/1766277386 https://www.proquest.com/docview/1815984467 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BroToAdqFqlseMlJPSGHzsGP7iBBoaYFLQdpblDi2tKhkV-xy4cBv70xibymqOPSYxFai8Xgemc_fAHwzaOOcViKy0mCC4ngcKWeySFXG1bqW6FboNPL1TT6-498nYrIGZ-EsDMEqve3vbHprrf2dkZfmaD6djn6SqmLAoTCkId67yTr000znogf908sf45s_Blm2x69ofEQTQnGzhXlhjkcAL3FCXJ6-Ncw_3NMbQ916n4uPsOXDRnbafdknWLPNADYCan0A26E7A_ObdQAfXlEN7sDVddsqesEwSGWP9qH9kcDa8i2bNqxkTYcHZ8sZI7qRh-mzZRgcssUcw8qazRwLuK1msQu3F-e3Z-PId1KITCbUMpJVLqUUuaziUidVbIxwnFfCKFVrk0iqzpVEzadLncVpXeWl0LwWXDptucg-Q6-ZNfYLsJLodGJZCx1bbp1SukxtWiVGOVe7PBlCHORXGM8yTs0ufhUBTnZfoMgLEjlmHwSpG8Lxasq8o9h4bzAPi1L8pScFuoD3pu2HBSz8Jl0UxI2ZSup6OoSj1WPcXlQzKRs7e8IxqF5aYc4sv_7fm_dgE6_yDiO5D73l45M9wDhmWR3C-slLcui19Tdn__AP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB4BlYAeoAQQ4VUj9YS0ZJPYa_uIUFFKEy5NpdysXa8tBcEmIuHCgd_emV2blqri0Ova1q7G43nsfP4G4ItFG-e1EomTFhMUz9NEedtPVGF9qUuJboVuI49us8FPfjMRkxW4indhCFYZbH9j02trHZ50gjQ78-m084NUFQMOhSEN8d5NVuEDF31JuL6Ll984DyIAa0oJIqHpsbRZg7wwwyN4l7ggJs_QGOYfzukvM137nutPsBWCRnbZfNcOrLiqBesRs96C7dibgYWj2oKPfxAN7sJwVDeKXjAMUdmje6h_I7C6eMumFctZ1aDB2XLGiGzkYfrsGIaGbDHHoLJkM88iaqta7MH4-uv4apCEPgqJ7Qu1TGSRSSlFJos0190itVZ4zgthlSq17UqqzeVEzKdz3U97ZZHlQvNScOm1Q5Huw1o1q9wBsJzIdFJZCp067rxSOu-5XtG1yvvSZ902pFF-xgaOcWp1cW8imOzOoMgNiRxzDwLUteH8dcm8Idh4bzKPm2LeaIlBB_DesuO4gSYc0YUhZsyepJ6nbTh7HcbDRRWTvHKzJ5yDyqUVZszy8P_e_Bk2BuPR0Ay_3X4_gk0cyRq05DGsLR-f3AlGNMvitNbYX2s88No |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methods+for+removing+links+in+a+network+to+minimize+the+spread+of+infections&rft.jtitle=Computers+%26+operations+research&rft.au=Nandi%2C+Apurba+K&rft.au=Medal%2C+Hugh+R&rft.date=2016-05-01&rft.pub=Pergamon+Press+Inc&rft.issn=0305-0548&rft.eissn=0305-0548&rft.volume=69&rft.spage=10&rft_id=info:doi/10.1016%2Fj.cor.2015.11.001&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3957253181 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon |