Machine learning based combinatorial analysis for land use and land cover assessment in Kyiv City (Ukraine)

The main goal of this study is to evaluate different models for further improvement of the accuracy of land use and land cover (LULC) classification on Google Earth Engine using random forest (RF) and support vector machine (SVM) learning algorithms. Ten indices, namely normalized difference vegetat...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied remote sensing Vol. 17; no. 1; p. 014506
Main Authors Belenok, Vadym, Hebryn-Baidy, Liliia, Bielousova, Nataliia, Gladilin, Valeriy, Kryachok, Sergíy, Tereshchenko, Andrii, Alpert, Sofiia, Bodnar, Sergii
Format Journal Article
LanguageEnglish
Published Society of Photo-Optical Instrumentation Engineers 01.01.2023
Subjects
Online AccessGet full text
ISSN1931-3195
1931-3195
DOI10.1117/1.JRS.17.014506

Cover

Abstract The main goal of this study is to evaluate different models for further improvement of the accuracy of land use and land cover (LULC) classification on Google Earth Engine using random forest (RF) and support vector machine (SVM) learning algorithms. Ten indices, namely normalized difference vegetation index, normalized difference soil index, index-based built-up index, biophysical composition index, built-up area extraction index (BAEI), urban index, new built-up index, band ratio for built-up area, bare soil index, and normalized built up area index, were used as input parameters for the machine learning algorithms to improve classification accuracy. The combinatorial analysis of the Sentinel-2 bands and the aforementioned indices allowed us to create four combinations based on surface reflectance characteristics. The study includes data from April 2020 to September 2021 and April 2022 to June 2022. The multitemporal Sentinel-2 data with spatial resolutions of 10 m were used to determine the LULC classification. The major land use classes such as water, forest, grassland, urban areas, and other lands were obtained. Generally, the RF algorithm showed higher accuracy than the SVM. The overall accuracy for RF and SVM was 86.56% and 84.48%, respectively, and the mean Kappa was 0.82 and 0.79, respectively. Using the combination 2 with the RF algorithm and combination 4 with the SVM algorithm for LULC classification was more accurate. The additional use of vegetation indices allowed to increase in the accuracy of LULC classification and separate classes with similar reflection spectra.
AbstractList The main goal of this study is to evaluate different models for further improvement of the accuracy of land use and land cover (LULC) classification on Google Earth Engine using random forest (RF) and support vector machine (SVM) learning algorithms. Ten indices, namely normalized difference vegetation index, normalized difference soil index, index-based built-up index, biophysical composition index, built-up area extraction index (BAEI), urban index, new built-up index, band ratio for built-up area, bare soil index, and normalized built up area index, were used as input parameters for the machine learning algorithms to improve classification accuracy. The combinatorial analysis of the Sentinel-2 bands and the aforementioned indices allowed us to create four combinations based on surface reflectance characteristics. The study includes data from April 2020 to September 2021 and April 2022 to June 2022. The multitemporal Sentinel-2 data with spatial resolutions of 10 m were used to determine the LULC classification. The major land use classes such as water, forest, grassland, urban areas, and other lands were obtained. Generally, the RF algorithm showed higher accuracy than the SVM. The overall accuracy for RF and SVM was 86.56% and 84.48%, respectively, and the mean Kappa was 0.82 and 0.79, respectively. Using the combination 2 with the RF algorithm and combination 4 with the SVM algorithm for LULC classification was more accurate. The additional use of vegetation indices allowed to increase in the accuracy of LULC classification and separate classes with similar reflection spectra.
Author Belenok, Vadym
Bielousova, Nataliia
Alpert, Sofiia
Gladilin, Valeriy
Bodnar, Sergii
Hebryn-Baidy, Liliia
Kryachok, Sergíy
Tereshchenko, Andrii
Author_xml – sequence: 1
  givenname: Vadym
  orcidid: 0000-0001-5357-7493
  surname: Belenok
  fullname: Belenok, Vadym
  email: belenok.vadimnau.edu.ua
  organization: National Aviation University, Department of Aerospace Geodesy and Land Management, Kyiv, Ukraine
– sequence: 2
  givenname: Liliia
  orcidid: 0000-0001-7145-6214
  surname: Hebryn-Baidy
  fullname: Hebryn-Baidy, Liliia
  email: liliya.gebrinbaydi@gmail.com
  organization: National Aviation University, Department of Aerospace Geodesy and Land Management, Kyiv, Ukraine
– sequence: 3
  givenname: Nataliia
  orcidid: 0000-0002-5829-1467
  surname: Bielousova
  fullname: Bielousova, Nataliia
  email: belousova-69@ukr.net
  organization: National Aviation University, Department of Aerospace Geodesy and Land Management, Kyiv, Ukraine
– sequence: 4
  givenname: Valeriy
  orcidid: 0000-0002-0492-3510
  surname: Gladilin
  fullname: Gladilin, Valeriy
  email: vgladilin.55@gmail.com
  organization: Bila Tserkva National Agrarian University, Department of Geodesy, Cartography and Land Management, Bila Tserkva, Ukraine
– sequence: 5
  givenname: Sergíy
  orcidid: 0000-0001-5633-1501
  surname: Kryachok
  fullname: Kryachok, Sergíy
  email: geodesist2015@gmail.com
  organization: Chernihiv Polytechnic National University, Department of Geodesy, Cartography and Land Management, Chernihiv, Ukraine
– sequence: 6
  givenname: Andrii
  orcidid: 0000-0002-6959-6864
  surname: Tereshchenko
  fullname: Tereshchenko, Andrii
  email: ter_andrew@yahoo.com
  organization: National Aviation University, Department of Aerospace Geodesy and Land Management, Kyiv, Ukraine
– sequence: 7
  givenname: Sofiia
  orcidid: 0000-0002-7284-6502
  surname: Alpert
  fullname: Alpert, Sofiia
  email: sonyasonet87@gmail.com
  organization: Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Science of the National Academy of Sciences of Ukraine, Department of Geoinformation Technologies in Remote Sensing of the Earth, Kyiv, Ukraine
– sequence: 8
  givenname: Sergii
  orcidid: 0000-0002-1052-5543
  surname: Bodnar
  fullname: Bodnar, Sergii
  organization: Taras Shevchenko National University of Kyiv, Department of Geodesy and Cartography, Geography Faculty, Kyiv, Ukraine
BookMark eNp9kM1LAzEQxYNUsK2eveao4G6TZrMfRynWr4qg9rxMs1lNu01KJi3sf-_WehBBL_PewLyZ4TcgPeusJuScs5hzno14_PDyGvMsZjyRLD0ifV4IHgleyN4Pf0IGiEvGpMjzrE9WT6A-jNW00eCtse90Aagrqtx6YSwE5w00FCw0LRqktfO0AVvRLWq6169GuZ32FBA14lrbQI2lj63Z0YkJLb2Yrzx0Jy5PyXENDeqzbx2S-fTmbXIXzZ5v7yfXs0gJmYcok0mqM5VDmo5VypkAxsZ1uuCZFJDkuhCFhqISmSiSRBWKAeuKqpO6ElKyXAyJPOxV3iF6XZfKBAjG2dA90pSclXtiJS87YmVnDsS63OhXbuPNGnz7T-LqkMCN0eXSbX0HCv8c_wTtSH3E
CitedBy_id crossref_primary_10_15446_esrj_v27n3_100324
crossref_primary_10_3390_rs16091637
crossref_primary_10_1007_s12040_024_02305_3
crossref_primary_10_3390_su151612329
crossref_primary_10_1016_j_ijdrr_2024_104901
crossref_primary_10_1007_s12518_023_00523_w
crossref_primary_10_1088_2631_8695_acfa64
Cites_doi 10.1016/j.isprsjprs.2016.01.011
10.3390/rs12223776
10.1016/j.rsase.2020.100410
10.1080/1747423X.2020.1720842
10.3390/su132413758
10.3390/rs13101891
10.1016/j.apgeog.2014.01.003
10.1016/j.rse.2017.06.031
10.3390/land10070700
10.3390/rs12091367
10.3390/rs12152503
10.3390/rs10071079
10.1007/978-981-13-7067-0_39
10.1073/pnas.2109217118
10.3390/rs12142291
10.1016/j.rse.2012.09.009
10.3390/land10010044
10.1016/j.rse.2008.02.011
10.1080/01431169408954345
10.1080/014311600210092
10.1016/j.isprsjprs.2020.04.001
10.1109/JSTARS.2021.3067325
10.1023/A:1010933404324
10.5194/isprsarchives-XL-7-W3-323-2015
10.3997/2214-4609.202056069
10.1080/01431160802039957
10.7494/geom.2020.14.1.47
10.3390/rs14091977
10.1016/j.rse.2007.04.008
10.1117/1.JRS.16.012017
10.1016/j.isprsjprs.2010.10.010
10.1007/s12524-015-0460-6
10.1016/j.rse.2010.12.017
10.7494/geom.2022.16.2.39
10.1117/12.2278218.
10.1080/10106049.2017.1381179
10.1126/science.1258832
10.1016/j.rsase.2021.100477
10.1007/s13280-022-01701-7
10.1007/s40808-021-01157-w
10.1002/9781119457107.ch4
10.15576/ASP.FC/2022.21.1.69
10.3390/s19143120
10.1016/j.isprsjprs.2014.03.009
10.1080/01431161.2020.1809027
10.1080/22797254.2018.1451782
10.3846/gac.2022.14453
10.1016/j.rsase.2021.100635
10.1080/22797254.2017.1299557
10.1109/JSTARS.2015.2478914
10.1016/j.rse.2005.11.016
10.1080/01431160701469024
10.3390/rs13245134
10.1109/JSTARS.2020.3021052
10.1016/j.rsase.2020.100419
10.1016/j.isprsjprs.2018.07.017
10.1016/j.ecolind.2015.03.037
10.1080/10106049.2019.1629647
10.1016/j.fuel.2018.11.006
ContentType Journal Article
Copyright 2023 Society of Photo-Optical Instrumentation Engineers (SPIE)
Copyright_xml – notice: 2023 Society of Photo-Optical Instrumentation Engineers (SPIE)
DBID AAYXX
CITATION
DOI 10.1117/1.JRS.17.014506
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1931-3195
EndPage 014506
ExternalDocumentID 10_1117_1_JRS_17_014506
GrantInformation_xml – fundername: Technische Informations bibliothek (TIB)
– fundername: University Library
– fundername: Leibniz Information Centre for Science and Technology
GroupedDBID 0R~
29J
5GY
ACGFO
ACGFS
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
FQ0
HZ~
O9-
RNS
SPBNH
UT2
AAYXX
ABJNI
ADMLS
AKROS
CITATION
M4X
ID FETCH-LOGICAL-c358t-7546e7c8a662c6103a002f6b1753a48e939ea9d373944c9c0a09c0cf4fd355083
ISSN 1931-3195
IngestDate Thu Apr 24 22:59:03 EDT 2025
Tue Jul 01 04:10:02 EDT 2025
Sun Apr 02 05:15:28 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords vegetation index
land use and land cover
Google Earth engine
support vector machine
random forest
Sentinel-2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c358t-7546e7c8a662c6103a002f6b1753a48e939ea9d373944c9c0a09c0cf4fd355083
ORCID 0000-0001-5357-7493
0000-0001-7145-6214
0000-0002-1052-5543
0000-0002-5829-1467
0000-0002-0492-3510
0000-0002-7284-6502
0000-0002-6959-6864
0000-0001-5633-1501
OpenAccessLink https://www.spiedigitallibrary.org/journals/journal-of-applied-remote-sensing/volume-17/issue-1/014506/Machine-learning-based-combinatorial-analysis-for-land-use-and-land/10.1117/1.JRS.17.014506.pdf
PageCount 1
ParticipantIDs spie_journals_10_1117_1_JRS_17_014506
crossref_citationtrail_10_1117_1_JRS_17_014506
crossref_primary_10_1117_1_JRS_17_014506
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of applied remote sensing
PublicationTitleAlternate J. Appl. Remote Sens
PublicationYear 2023
Publisher Society of Photo-Optical Instrumentation Engineers
Publisher_xml – name: Society of Photo-Optical Instrumentation Engineers
References r3
r4
r5
r6
r7
r8
r9
Hsu (r71) 2003
r50
r52
r51
r10
r54
r53
r12
r11
r55
r14
r13
r15
r18
r17
r19
Leroux (r72) 2018
r61
r63
Pal (r39) 2017
r62
r21
(r57) 2019
r65
r20
r64
Barbiroglio (r2)
r23
r67
r22
r66
r25
r69
r24
r68
r27
r26
r29
r28
Lillesand (r77) 2015
Takeuchi (r37) 2004
Rahar (r74) 2020
r70
(r56) 2021
r30
r73
r32
Nedkov (r75) 2017
r76
r31
r34
r33
r36
Congalton (r78) 2015
r35
r38
Antil (r16) 2017
r41
r40
r43
r42
r45
Liashenko (r59) 2020
r44
r47
r46
r49
r48
(r60) 2022
Zatserkovny (r58) 2019
r1
References_xml – ident: r26
  doi: 10.1016/j.isprsjprs.2016.01.011
– year: 2022
  ident: r60
  article-title: State Statistics Service of Ukraine
– ident: r13
  doi: 10.3390/rs12223776
– ident: r15
  doi: 10.1016/j.rsase.2020.100410
– ident: r31
  doi: 10.1080/1747423X.2020.1720842
– ident: r14
  doi: 10.3390/su132413758
– ident: r70
  doi: 10.3390/rs13101891
– ident: r33
  doi: 10.1016/j.apgeog.2014.01.003
– ident: r20
  doi: 10.1016/j.rse.2017.06.031
– ident: r35
  doi: 10.3390/land10070700
– ident: r69
  article-title: The Humanitarian data exchange
– ident: r10
  doi: 10.3390/rs12091367
– ident: r42
  doi: 10.3390/rs12152503
– ident: r63
  article-title: Copernicus open access hub
– ident: r65
  doi: 10.3390/rs10071079
– ident: r40
  doi: 10.1007/978-981-13-7067-0_39
– ident: r1
  doi: 10.1073/pnas.2109217118
– ident: r9
  doi: 10.3390/rs12142291
– ident: r48
  doi: 10.1016/j.rse.2012.09.009
– ident: r2
  article-title: Land use puts huge pressure on Earth’s resources. Here’s what needs to change
– year: 2021
  ident: r56
  article-title: Passport of the city of Kyiv
– ident: r32
  doi: 10.3390/land10010044
– ident: r25
  doi: 10.1016/j.rse.2008.02.011
– ident: r36
  doi: 10.1080/01431169408954345
– ident: r7
  doi: 10.1080/014311600210092
– ident: r22
  doi: 10.1016/j.isprsjprs.2020.04.001
– ident: r64
  article-title: Google Earth Engine
– ident: r17
  doi: 10.1109/JSTARS.2021.3067325
– start-page: 501
  year: 2020
  ident: r74
  article-title: Comparison of various indices to differentiate built-up and bare soil with sentinel 2 data
– year: 2015
  ident: r77
– ident: r27
  doi: 10.1023/A:1010933404324
– ident: r6
  doi: 10.5194/isprsarchives-XL-7-W3-323-2015
– year: 2020
  ident: r59
  article-title: Landslide GIS modelling with QGIS software
  doi: 10.3997/2214-4609.202056069
– ident: r41
  doi: 10.1080/01431160802039957
– ident: r66
  article-title: Radiometric resolutions
– ident: r73
  doi: 10.7494/geom.2020.14.1.47
– ident: r12
  doi: 10.3390/rs14091977
– ident: r55
  doi: 10.1016/j.rse.2007.04.008
– ident: r30
  doi: 10.1117/1.JRS.16.012017
– ident: r46
  doi: 10.1016/j.isprsjprs.2010.10.010
– ident: r44
  doi: 10.1007/s12524-015-0460-6
– ident: r51
  doi: 10.1016/j.rse.2010.12.017
– ident: r52
  doi: 10.7494/geom.2022.16.2.39
– ident: r67
  doi: 10.1117/12.2278218.
– ident: r61
  article-title: Central geophysical observatory named after Boris Sreznevsky
– ident: r62
  article-title: The project of the City Target Program for the Use and Protection of Lands of the City of Kyiv for 2022-2025, No. 1425 of the Kyiv City Council dated June 22, 2021, The official portal of the city of Kyiv
– ident: r76
  doi: 10.1080/10106049.2017.1381179
– year: 2004
  ident: r37
  article-title: Development of normalized vegetation, soil and water indices derived from satellite remote sensing data. C-9.4
– ident: r3
  doi: 10.1126/science.1258832
– ident: r68
  doi: 10.1016/j.rsase.2021.100477
– ident: r4
  doi: 10.1007/s13280-022-01701-7
– ident: r54
  doi: 10.1007/s40808-021-01157-w
– year: 2018
  ident: r72
  article-title: Land cover mapping using Sentinel-2 images and the semi-automatic classification plugin: a Northern Burkina Faso Case Study
  doi: 10.1002/9781119457107.ch4
– ident: r18
  doi: 10.15576/ASP.FC/2022.21.1.69
– year: 2019
  ident: r57
  article-title: Ecological passport of the city of Kyiv
– ident: r50
  doi: 10.3390/s19143120
– ident: r8
  doi: 10.1016/j.isprsjprs.2014.03.009
– ident: r49
  doi: 10.1080/01431161.2020.1809027
– start-page: 1
  year: 2003
  ident: r71
  article-title: A practical guide to support vector classification
– ident: r21
  doi: 10.1080/22797254.2018.1451782
– start-page: 13
  year: 2019
  ident: r58
  article-title: Black sea level change monitoring using altimetry data and geo-information technologies
– ident: r53
  doi: 10.3846/gac.2022.14453
– ident: r19
  doi: 10.1016/j.rsase.2021.100635
– ident: r24
  doi: 10.1080/22797254.2017.1299557
– start-page: 687
  year: 2017
  ident: r75
  article-title: Orthogonal transformation of segmented images from the satellite Sentinel-2
– year: 2017
  ident: r39
  article-title: Comparison of Landsat 8 and Sentinel 2 data for accurate mapping of built-up area and bare soil
– ident: r45
  doi: 10.1109/JSTARS.2015.2478914
– ident: r43
  doi: 10.1016/j.rse.2005.11.016
– ident: r47
  doi: 10.1080/01431160701469024
– ident: r34
  doi: 10.3390/rs13245134
– start-page: 583
  year: 2015
  ident: r78
  article-title: Assessing positional and thematic accuracies of maps generated from remotely sensed data
– ident: r23
  doi: 10.1109/JSTARS.2020.3021052
– ident: r11
  doi: 10.1016/j.rsase.2020.100419
– year: 2017
  ident: r16
  article-title: Comparison of landsat 8 and sentinel 2 data for accurate mapping of built-up area and bare soil
– ident: r29
  doi: 10.1016/j.isprsjprs.2018.07.017
– ident: r38
  doi: 10.1016/j.ecolind.2015.03.037
– ident: r5
  doi: 10.1080/10106049.2019.1629647
– ident: r28
  doi: 10.1016/j.fuel.2018.11.006
SSID ssj0053887
Score 2.3659608
Snippet The main goal of this study is to evaluate different models for further improvement of the accuracy of land use and land cover (LULC) classification on Google...
SourceID crossref
spie
SourceType Enrichment Source
Index Database
Publisher
StartPage 014506
Title Machine learning based combinatorial analysis for land use and land cover assessment in Kyiv City (Ukraine)
URI http://www.dx.doi.org/10.1117/1.JRS.17.014506
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6F9AFeEKcol_YBpKLIxsfGaz-WAi2lAYke6pu1ttdgNbWjHJXCr-WnMLO7PtImUuFl42zWzjFfZmbHM98Q8kbmgROFbm553JUWG7oJ6MGIWR5LOMv9MHVUb8DRt-DglB2eD897vT-drKXFPLHT32vrSv5HqjAHcsUq2X-QbHNRmIBjkC-MIGEYbyXjkcqElHXrh58DtEmqTA32u7ibLhQTgKEdwYRCzGMcLGb6nsFY17TB1x6IhqATAyBfl8XVYA_9c4zIXmAXiYa86aYjK4wjO5UgdjmYYUq8sYe6AEiWldK5ZyJbXrbB12S6LK0PwuT_HhXjomijA4UcV4tZdSW0CUCexvbV_bHICtNp_gws3LRYdqMXnn8telGnpmK-369qXlnfJzqE_0Xx516a-quyYWfsRDDB9XTBhOgenbZcM1creH4DyFpb4y1VJ-jY_nZijWVR3AT24Y9j2-V299QVum69qeKxG8PKGA70yjtky-McEwm2dj-Ojo5rbwHsjWri2HxwQz8Fl3h_7c1WPKf-bFLIjid08oDcN5KnuxqPD0lPlo_I3X1pyM8fkwuDS1rjkipc0hVc0hqXFHBJEYoUcEnxUT1RuKQtLmlRUsQlRVzSHYPKd0_I6edPJ3sHlmnqYaX-MJxbfMgCydNQBIGXgu_uC7DJeZAgY6xgoYz8SIoo8zlWbKdR6ggHhjRneQauMWwYnpJ-WZXyGaGOm3iOn3sOY-CH8kxk3BVy6IWglhhMbhO7_sHi1DDeY-OVcbxBSNtkpzlhosleNi99ixKIjTaYbVr3_JbrXpB77d_jJekD-OUrcHfnyWuDmL8UYakJ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+based+combinatorial+analysis+for+land+use+and+land+cover+assessment+in+Kyiv+City+%28Ukraine%29&rft.jtitle=Journal+of+applied+remote+sensing&rft.au=Belenok%2C+Vadym&rft.au=Hebryn-Baidy%2C+Liliia&rft.au=Bielousova%2C+Nataliia&rft.au=Gladilin%2C+Valeriy&rft.date=2023-01-01&rft.pub=Society+of+Photo-Optical+Instrumentation+Engineers&rft.issn=1931-3195&rft.eissn=1931-3195&rft.volume=17&rft.issue=1&rft.spage=014506&rft.epage=014506&rft_id=info:doi/10.1117%2F1.JRS.17.014506&rft.externalDocID=10_1117_1_JRS_17_014506
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3195&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3195&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3195&client=summon