Machine learning based combinatorial analysis for land use and land cover assessment in Kyiv City (Ukraine)
The main goal of this study is to evaluate different models for further improvement of the accuracy of land use and land cover (LULC) classification on Google Earth Engine using random forest (RF) and support vector machine (SVM) learning algorithms. Ten indices, namely normalized difference vegetat...
Saved in:
Published in | Journal of applied remote sensing Vol. 17; no. 1; p. 014506 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Society of Photo-Optical Instrumentation Engineers
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1931-3195 1931-3195 |
DOI | 10.1117/1.JRS.17.014506 |
Cover
Abstract | The main goal of this study is to evaluate different models for further improvement of the accuracy of land use and land cover (LULC) classification on Google Earth Engine using random forest (RF) and support vector machine (SVM) learning algorithms. Ten indices, namely normalized difference vegetation index, normalized difference soil index, index-based built-up index, biophysical composition index, built-up area extraction index (BAEI), urban index, new built-up index, band ratio for built-up area, bare soil index, and normalized built up area index, were used as input parameters for the machine learning algorithms to improve classification accuracy. The combinatorial analysis of the Sentinel-2 bands and the aforementioned indices allowed us to create four combinations based on surface reflectance characteristics. The study includes data from April 2020 to September 2021 and April 2022 to June 2022. The multitemporal Sentinel-2 data with spatial resolutions of 10 m were used to determine the LULC classification. The major land use classes such as water, forest, grassland, urban areas, and other lands were obtained. Generally, the RF algorithm showed higher accuracy than the SVM. The overall accuracy for RF and SVM was 86.56% and 84.48%, respectively, and the mean Kappa was 0.82 and 0.79, respectively. Using the combination 2 with the RF algorithm and combination 4 with the SVM algorithm for LULC classification was more accurate. The additional use of vegetation indices allowed to increase in the accuracy of LULC classification and separate classes with similar reflection spectra. |
---|---|
AbstractList | The main goal of this study is to evaluate different models for further improvement of the accuracy of land use and land cover (LULC) classification on Google Earth Engine using random forest (RF) and support vector machine (SVM) learning algorithms. Ten indices, namely normalized difference vegetation index, normalized difference soil index, index-based built-up index, biophysical composition index, built-up area extraction index (BAEI), urban index, new built-up index, band ratio for built-up area, bare soil index, and normalized built up area index, were used as input parameters for the machine learning algorithms to improve classification accuracy. The combinatorial analysis of the Sentinel-2 bands and the aforementioned indices allowed us to create four combinations based on surface reflectance characteristics. The study includes data from April 2020 to September 2021 and April 2022 to June 2022. The multitemporal Sentinel-2 data with spatial resolutions of 10 m were used to determine the LULC classification. The major land use classes such as water, forest, grassland, urban areas, and other lands were obtained. Generally, the RF algorithm showed higher accuracy than the SVM. The overall accuracy for RF and SVM was 86.56% and 84.48%, respectively, and the mean Kappa was 0.82 and 0.79, respectively. Using the combination 2 with the RF algorithm and combination 4 with the SVM algorithm for LULC classification was more accurate. The additional use of vegetation indices allowed to increase in the accuracy of LULC classification and separate classes with similar reflection spectra. |
Author | Belenok, Vadym Bielousova, Nataliia Alpert, Sofiia Gladilin, Valeriy Bodnar, Sergii Hebryn-Baidy, Liliia Kryachok, Sergíy Tereshchenko, Andrii |
Author_xml | – sequence: 1 givenname: Vadym orcidid: 0000-0001-5357-7493 surname: Belenok fullname: Belenok, Vadym email: belenok.vadimnau.edu.ua organization: National Aviation University, Department of Aerospace Geodesy and Land Management, Kyiv, Ukraine – sequence: 2 givenname: Liliia orcidid: 0000-0001-7145-6214 surname: Hebryn-Baidy fullname: Hebryn-Baidy, Liliia email: liliya.gebrinbaydi@gmail.com organization: National Aviation University, Department of Aerospace Geodesy and Land Management, Kyiv, Ukraine – sequence: 3 givenname: Nataliia orcidid: 0000-0002-5829-1467 surname: Bielousova fullname: Bielousova, Nataliia email: belousova-69@ukr.net organization: National Aviation University, Department of Aerospace Geodesy and Land Management, Kyiv, Ukraine – sequence: 4 givenname: Valeriy orcidid: 0000-0002-0492-3510 surname: Gladilin fullname: Gladilin, Valeriy email: vgladilin.55@gmail.com organization: Bila Tserkva National Agrarian University, Department of Geodesy, Cartography and Land Management, Bila Tserkva, Ukraine – sequence: 5 givenname: Sergíy orcidid: 0000-0001-5633-1501 surname: Kryachok fullname: Kryachok, Sergíy email: geodesist2015@gmail.com organization: Chernihiv Polytechnic National University, Department of Geodesy, Cartography and Land Management, Chernihiv, Ukraine – sequence: 6 givenname: Andrii orcidid: 0000-0002-6959-6864 surname: Tereshchenko fullname: Tereshchenko, Andrii email: ter_andrew@yahoo.com organization: National Aviation University, Department of Aerospace Geodesy and Land Management, Kyiv, Ukraine – sequence: 7 givenname: Sofiia orcidid: 0000-0002-7284-6502 surname: Alpert fullname: Alpert, Sofiia email: sonyasonet87@gmail.com organization: Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Science of the National Academy of Sciences of Ukraine, Department of Geoinformation Technologies in Remote Sensing of the Earth, Kyiv, Ukraine – sequence: 8 givenname: Sergii orcidid: 0000-0002-1052-5543 surname: Bodnar fullname: Bodnar, Sergii organization: Taras Shevchenko National University of Kyiv, Department of Geodesy and Cartography, Geography Faculty, Kyiv, Ukraine |
BookMark | eNp9kM1LAzEQxYNUsK2eveao4G6TZrMfRynWr4qg9rxMs1lNu01KJi3sf-_WehBBL_PewLyZ4TcgPeusJuScs5hzno14_PDyGvMsZjyRLD0ifV4IHgleyN4Pf0IGiEvGpMjzrE9WT6A-jNW00eCtse90Aagrqtx6YSwE5w00FCw0LRqktfO0AVvRLWq6169GuZ32FBA14lrbQI2lj63Z0YkJLb2Yrzx0Jy5PyXENDeqzbx2S-fTmbXIXzZ5v7yfXs0gJmYcok0mqM5VDmo5VypkAxsZ1uuCZFJDkuhCFhqISmSiSRBWKAeuKqpO6ElKyXAyJPOxV3iF6XZfKBAjG2dA90pSclXtiJS87YmVnDsS63OhXbuPNGnz7T-LqkMCN0eXSbX0HCv8c_wTtSH3E |
CitedBy_id | crossref_primary_10_15446_esrj_v27n3_100324 crossref_primary_10_3390_rs16091637 crossref_primary_10_1007_s12040_024_02305_3 crossref_primary_10_3390_su151612329 crossref_primary_10_1016_j_ijdrr_2024_104901 crossref_primary_10_1007_s12518_023_00523_w crossref_primary_10_1088_2631_8695_acfa64 |
Cites_doi | 10.1016/j.isprsjprs.2016.01.011 10.3390/rs12223776 10.1016/j.rsase.2020.100410 10.1080/1747423X.2020.1720842 10.3390/su132413758 10.3390/rs13101891 10.1016/j.apgeog.2014.01.003 10.1016/j.rse.2017.06.031 10.3390/land10070700 10.3390/rs12091367 10.3390/rs12152503 10.3390/rs10071079 10.1007/978-981-13-7067-0_39 10.1073/pnas.2109217118 10.3390/rs12142291 10.1016/j.rse.2012.09.009 10.3390/land10010044 10.1016/j.rse.2008.02.011 10.1080/01431169408954345 10.1080/014311600210092 10.1016/j.isprsjprs.2020.04.001 10.1109/JSTARS.2021.3067325 10.1023/A:1010933404324 10.5194/isprsarchives-XL-7-W3-323-2015 10.3997/2214-4609.202056069 10.1080/01431160802039957 10.7494/geom.2020.14.1.47 10.3390/rs14091977 10.1016/j.rse.2007.04.008 10.1117/1.JRS.16.012017 10.1016/j.isprsjprs.2010.10.010 10.1007/s12524-015-0460-6 10.1016/j.rse.2010.12.017 10.7494/geom.2022.16.2.39 10.1117/12.2278218. 10.1080/10106049.2017.1381179 10.1126/science.1258832 10.1016/j.rsase.2021.100477 10.1007/s13280-022-01701-7 10.1007/s40808-021-01157-w 10.1002/9781119457107.ch4 10.15576/ASP.FC/2022.21.1.69 10.3390/s19143120 10.1016/j.isprsjprs.2014.03.009 10.1080/01431161.2020.1809027 10.1080/22797254.2018.1451782 10.3846/gac.2022.14453 10.1016/j.rsase.2021.100635 10.1080/22797254.2017.1299557 10.1109/JSTARS.2015.2478914 10.1016/j.rse.2005.11.016 10.1080/01431160701469024 10.3390/rs13245134 10.1109/JSTARS.2020.3021052 10.1016/j.rsase.2020.100419 10.1016/j.isprsjprs.2018.07.017 10.1016/j.ecolind.2015.03.037 10.1080/10106049.2019.1629647 10.1016/j.fuel.2018.11.006 |
ContentType | Journal Article |
Copyright | 2023 Society of Photo-Optical Instrumentation Engineers (SPIE) |
Copyright_xml | – notice: 2023 Society of Photo-Optical Instrumentation Engineers (SPIE) |
DBID | AAYXX CITATION |
DOI | 10.1117/1.JRS.17.014506 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1931-3195 |
EndPage | 014506 |
ExternalDocumentID | 10_1117_1_JRS_17_014506 |
GrantInformation_xml | – fundername: Technische Informations bibliothek (TIB) – fundername: University Library – fundername: Leibniz Information Centre for Science and Technology |
GroupedDBID | 0R~ 29J 5GY ACGFO ACGFS AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS FQ0 HZ~ O9- RNS SPBNH UT2 AAYXX ABJNI ADMLS AKROS CITATION M4X |
ID | FETCH-LOGICAL-c358t-7546e7c8a662c6103a002f6b1753a48e939ea9d373944c9c0a09c0cf4fd355083 |
ISSN | 1931-3195 |
IngestDate | Thu Apr 24 22:59:03 EDT 2025 Tue Jul 01 04:10:02 EDT 2025 Sun Apr 02 05:15:28 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | vegetation index land use and land cover Google Earth engine support vector machine random forest Sentinel-2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c358t-7546e7c8a662c6103a002f6b1753a48e939ea9d373944c9c0a09c0cf4fd355083 |
ORCID | 0000-0001-5357-7493 0000-0001-7145-6214 0000-0002-1052-5543 0000-0002-5829-1467 0000-0002-0492-3510 0000-0002-7284-6502 0000-0002-6959-6864 0000-0001-5633-1501 |
OpenAccessLink | https://www.spiedigitallibrary.org/journals/journal-of-applied-remote-sensing/volume-17/issue-1/014506/Machine-learning-based-combinatorial-analysis-for-land-use-and-land/10.1117/1.JRS.17.014506.pdf |
PageCount | 1 |
ParticipantIDs | spie_journals_10_1117_1_JRS_17_014506 crossref_citationtrail_10_1117_1_JRS_17_014506 crossref_primary_10_1117_1_JRS_17_014506 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of applied remote sensing |
PublicationTitleAlternate | J. Appl. Remote Sens |
PublicationYear | 2023 |
Publisher | Society of Photo-Optical Instrumentation Engineers |
Publisher_xml | – name: Society of Photo-Optical Instrumentation Engineers |
References | r3 r4 r5 r6 r7 r8 r9 Hsu (r71) 2003 r50 r52 r51 r10 r54 r53 r12 r11 r55 r14 r13 r15 r18 r17 r19 Leroux (r72) 2018 r61 r63 Pal (r39) 2017 r62 r21 (r57) 2019 r65 r20 r64 Barbiroglio (r2) r23 r67 r22 r66 r25 r69 r24 r68 r27 r26 r29 r28 Lillesand (r77) 2015 Takeuchi (r37) 2004 Rahar (r74) 2020 r70 (r56) 2021 r30 r73 r32 Nedkov (r75) 2017 r76 r31 r34 r33 r36 Congalton (r78) 2015 r35 r38 Antil (r16) 2017 r41 r40 r43 r42 r45 Liashenko (r59) 2020 r44 r47 r46 r49 r48 (r60) 2022 Zatserkovny (r58) 2019 r1 |
References_xml | – ident: r26 doi: 10.1016/j.isprsjprs.2016.01.011 – year: 2022 ident: r60 article-title: State Statistics Service of Ukraine – ident: r13 doi: 10.3390/rs12223776 – ident: r15 doi: 10.1016/j.rsase.2020.100410 – ident: r31 doi: 10.1080/1747423X.2020.1720842 – ident: r14 doi: 10.3390/su132413758 – ident: r70 doi: 10.3390/rs13101891 – ident: r33 doi: 10.1016/j.apgeog.2014.01.003 – ident: r20 doi: 10.1016/j.rse.2017.06.031 – ident: r35 doi: 10.3390/land10070700 – ident: r69 article-title: The Humanitarian data exchange – ident: r10 doi: 10.3390/rs12091367 – ident: r42 doi: 10.3390/rs12152503 – ident: r63 article-title: Copernicus open access hub – ident: r65 doi: 10.3390/rs10071079 – ident: r40 doi: 10.1007/978-981-13-7067-0_39 – ident: r1 doi: 10.1073/pnas.2109217118 – ident: r9 doi: 10.3390/rs12142291 – ident: r48 doi: 10.1016/j.rse.2012.09.009 – ident: r2 article-title: Land use puts huge pressure on Earth’s resources. Here’s what needs to change – year: 2021 ident: r56 article-title: Passport of the city of Kyiv – ident: r32 doi: 10.3390/land10010044 – ident: r25 doi: 10.1016/j.rse.2008.02.011 – ident: r36 doi: 10.1080/01431169408954345 – ident: r7 doi: 10.1080/014311600210092 – ident: r22 doi: 10.1016/j.isprsjprs.2020.04.001 – ident: r64 article-title: Google Earth Engine – ident: r17 doi: 10.1109/JSTARS.2021.3067325 – start-page: 501 year: 2020 ident: r74 article-title: Comparison of various indices to differentiate built-up and bare soil with sentinel 2 data – year: 2015 ident: r77 – ident: r27 doi: 10.1023/A:1010933404324 – ident: r6 doi: 10.5194/isprsarchives-XL-7-W3-323-2015 – year: 2020 ident: r59 article-title: Landslide GIS modelling with QGIS software doi: 10.3997/2214-4609.202056069 – ident: r41 doi: 10.1080/01431160802039957 – ident: r66 article-title: Radiometric resolutions – ident: r73 doi: 10.7494/geom.2020.14.1.47 – ident: r12 doi: 10.3390/rs14091977 – ident: r55 doi: 10.1016/j.rse.2007.04.008 – ident: r30 doi: 10.1117/1.JRS.16.012017 – ident: r46 doi: 10.1016/j.isprsjprs.2010.10.010 – ident: r44 doi: 10.1007/s12524-015-0460-6 – ident: r51 doi: 10.1016/j.rse.2010.12.017 – ident: r52 doi: 10.7494/geom.2022.16.2.39 – ident: r67 doi: 10.1117/12.2278218. – ident: r61 article-title: Central geophysical observatory named after Boris Sreznevsky – ident: r62 article-title: The project of the City Target Program for the Use and Protection of Lands of the City of Kyiv for 2022-2025, No. 1425 of the Kyiv City Council dated June 22, 2021, The official portal of the city of Kyiv – ident: r76 doi: 10.1080/10106049.2017.1381179 – year: 2004 ident: r37 article-title: Development of normalized vegetation, soil and water indices derived from satellite remote sensing data. C-9.4 – ident: r3 doi: 10.1126/science.1258832 – ident: r68 doi: 10.1016/j.rsase.2021.100477 – ident: r4 doi: 10.1007/s13280-022-01701-7 – ident: r54 doi: 10.1007/s40808-021-01157-w – year: 2018 ident: r72 article-title: Land cover mapping using Sentinel-2 images and the semi-automatic classification plugin: a Northern Burkina Faso Case Study doi: 10.1002/9781119457107.ch4 – ident: r18 doi: 10.15576/ASP.FC/2022.21.1.69 – year: 2019 ident: r57 article-title: Ecological passport of the city of Kyiv – ident: r50 doi: 10.3390/s19143120 – ident: r8 doi: 10.1016/j.isprsjprs.2014.03.009 – ident: r49 doi: 10.1080/01431161.2020.1809027 – start-page: 1 year: 2003 ident: r71 article-title: A practical guide to support vector classification – ident: r21 doi: 10.1080/22797254.2018.1451782 – start-page: 13 year: 2019 ident: r58 article-title: Black sea level change monitoring using altimetry data and geo-information technologies – ident: r53 doi: 10.3846/gac.2022.14453 – ident: r19 doi: 10.1016/j.rsase.2021.100635 – ident: r24 doi: 10.1080/22797254.2017.1299557 – start-page: 687 year: 2017 ident: r75 article-title: Orthogonal transformation of segmented images from the satellite Sentinel-2 – year: 2017 ident: r39 article-title: Comparison of Landsat 8 and Sentinel 2 data for accurate mapping of built-up area and bare soil – ident: r45 doi: 10.1109/JSTARS.2015.2478914 – ident: r43 doi: 10.1016/j.rse.2005.11.016 – ident: r47 doi: 10.1080/01431160701469024 – ident: r34 doi: 10.3390/rs13245134 – start-page: 583 year: 2015 ident: r78 article-title: Assessing positional and thematic accuracies of maps generated from remotely sensed data – ident: r23 doi: 10.1109/JSTARS.2020.3021052 – ident: r11 doi: 10.1016/j.rsase.2020.100419 – year: 2017 ident: r16 article-title: Comparison of landsat 8 and sentinel 2 data for accurate mapping of built-up area and bare soil – ident: r29 doi: 10.1016/j.isprsjprs.2018.07.017 – ident: r38 doi: 10.1016/j.ecolind.2015.03.037 – ident: r5 doi: 10.1080/10106049.2019.1629647 – ident: r28 doi: 10.1016/j.fuel.2018.11.006 |
SSID | ssj0053887 |
Score | 2.3659608 |
Snippet | The main goal of this study is to evaluate different models for further improvement of the accuracy of land use and land cover (LULC) classification on Google... |
SourceID | crossref spie |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 014506 |
Title | Machine learning based combinatorial analysis for land use and land cover assessment in Kyiv City (Ukraine) |
URI | http://www.dx.doi.org/10.1117/1.JRS.17.014506 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6F9AFeEKcol_YBpKLIxsfGaz-WAi2lAYke6pu1ttdgNbWjHJXCr-WnMLO7PtImUuFl42zWzjFfZmbHM98Q8kbmgROFbm553JUWG7oJ6MGIWR5LOMv9MHVUb8DRt-DglB2eD897vT-drKXFPLHT32vrSv5HqjAHcsUq2X-QbHNRmIBjkC-MIGEYbyXjkcqElHXrh58DtEmqTA32u7ibLhQTgKEdwYRCzGMcLGb6nsFY17TB1x6IhqATAyBfl8XVYA_9c4zIXmAXiYa86aYjK4wjO5UgdjmYYUq8sYe6AEiWldK5ZyJbXrbB12S6LK0PwuT_HhXjomijA4UcV4tZdSW0CUCexvbV_bHICtNp_gws3LRYdqMXnn8telGnpmK-369qXlnfJzqE_0Xx516a-quyYWfsRDDB9XTBhOgenbZcM1creH4DyFpb4y1VJ-jY_nZijWVR3AT24Y9j2-V299QVum69qeKxG8PKGA70yjtky-McEwm2dj-Ojo5rbwHsjWri2HxwQz8Fl3h_7c1WPKf-bFLIjid08oDcN5KnuxqPD0lPlo_I3X1pyM8fkwuDS1rjkipc0hVc0hqXFHBJEYoUcEnxUT1RuKQtLmlRUsQlRVzSHYPKd0_I6edPJ3sHlmnqYaX-MJxbfMgCydNQBIGXgu_uC7DJeZAgY6xgoYz8SIoo8zlWbKdR6ggHhjRneQauMWwYnpJ-WZXyGaGOm3iOn3sOY-CH8kxk3BVy6IWglhhMbhO7_sHi1DDeY-OVcbxBSNtkpzlhosleNi99ixKIjTaYbVr3_JbrXpB77d_jJekD-OUrcHfnyWuDmL8UYakJ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+based+combinatorial+analysis+for+land+use+and+land+cover+assessment+in+Kyiv+City+%28Ukraine%29&rft.jtitle=Journal+of+applied+remote+sensing&rft.au=Belenok%2C+Vadym&rft.au=Hebryn-Baidy%2C+Liliia&rft.au=Bielousova%2C+Nataliia&rft.au=Gladilin%2C+Valeriy&rft.date=2023-01-01&rft.pub=Society+of+Photo-Optical+Instrumentation+Engineers&rft.issn=1931-3195&rft.eissn=1931-3195&rft.volume=17&rft.issue=1&rft.spage=014506&rft.epage=014506&rft_id=info:doi/10.1117%2F1.JRS.17.014506&rft.externalDocID=10_1117_1_JRS_17_014506 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3195&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3195&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3195&client=summon |