Deep learning in environmental remote sensing: Achievements and challenges

Various forms of machine learning (ML) methods have historically played a valuable role in environmental remote sensing research. With an increasing amount of “big data” from earth observation and rapid advances in ML, increasing opportunities for novel methods have emerged to aid in earth environme...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 241; p. 111716
Main Authors Yuan, Qiangqiang, Shen, Huanfeng, Li, Tongwen, Li, Zhiwei, Li, Shuwen, Jiang, Yun, Xu, Hongzhang, Tan, Weiwei, Yang, Qianqian, Wang, Jiwen, Gao, Jianhao, Zhang, Liangpei
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.05.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Various forms of machine learning (ML) methods have historically played a valuable role in environmental remote sensing research. With an increasing amount of “big data” from earth observation and rapid advances in ML, increasing opportunities for novel methods have emerged to aid in earth environmental monitoring. Over the last decade, a typical and state-of-the-art ML framework named deep learning (DL), which is developed from the traditional neural network (NN), has outperformed traditional models with considerable improvement in performance. Substantial progress in developing a DL methodology for a variety of earth science applications has been observed. Therefore, this review will concentrate on the use of the traditional NN and DL methods to advance the environmental remote sensing process. First, the potential of DL in environmental remote sensing, including land cover mapping, environmental parameter retrieval, data fusion and downscaling, and information reconstruction and prediction, will be analyzed. A typical network structure will then be introduced. Afterward, the applications of DL environmental monitoring in the atmosphere, vegetation, hydrology, air and land surface temperature, evapotranspiration, solar radiation, and ocean color are specifically reviewed. Finally, challenges and future perspectives will be comprehensively analyzed and discussed. •The potential of deep learning (DL) in environmental remote sensing is analyzed.•Typical DL network architectures in remote sensing applications are introduced.•Progress on DL in remote sensing of ten more environmental parameters is reviewed.•New insights on combining DL and physical/geographical laws are discussed.
AbstractList Various forms of machine learning (ML) methods have historically played a valuable role in environmental remote sensing research. With an increasing amount of “big data” from earth observation and rapid advances in ML, increasing opportunities for novel methods have emerged to aid in earth environmental monitoring. Over the last decade, a typical and state-of-the-art ML framework named deep learning (DL), which is developed from the traditional neural network (NN), has outperformed traditional models with considerable improvement in performance. Substantial progress in developing a DL methodology for a variety of earth science applications has been observed. Therefore, this review will concentrate on the use of the traditional NN and DL methods to advance the environmental remote sensing process. First, the potential of DL in environmental remote sensing, including land cover mapping, environmental parameter retrieval, data fusion and downscaling, and information reconstruction and prediction, will be analyzed. A typical network structure will then be introduced. Afterward, the applications of DL environmental monitoring in the atmosphere, vegetation, hydrology, air and land surface temperature, evapotranspiration, solar radiation, and ocean color are specifically reviewed. Finally, challenges and future perspectives will be comprehensively analyzed and discussed. •The potential of deep learning (DL) in environmental remote sensing is analyzed.•Typical DL network architectures in remote sensing applications are introduced.•Progress on DL in remote sensing of ten more environmental parameters is reviewed.•New insights on combining DL and physical/geographical laws are discussed.
Various forms of machine learning (ML) methods have historically played a valuable role in environmental remote sensing research. With an increasing amount of "big data" from earth observation and rapid advances in ML, increasing opportunities for novel methods have emerged to aid in earth environmental monitoring. Over the last decade, a typical and state-of-the-art ML framework named deep learning (DL), which is developed from the traditional neural network (NN), has outperformed traditional models with considerable improvement in performance. Substantial progress in developing a DL methodology for a variety of earth science applications has been observed. Therefore, this review will concentrate on the use of the traditional NN and DL methods to advance the environmental remote sensing process. First, the potential of DL in environmental remote sensing, including land cover mapping, environmental parameter retrieval, data fusion and downscaling, and information reconstruction and prediction, will be analyzed. A typical network structure will then be introduced. Afterward, the applications of DL environmental monitoring in the atmosphere, vegetation, hydrology, air and land surface temperature, evapotranspiration, solar radiation, and ocean color are specifically reviewed. Finally, challenges and future perspectives will be comprehensively analyzed and discussed.
ArticleNumber 111716
Author Yuan, Qiangqiang
Gao, Jianhao
Tan, Weiwei
Yang, Qianqian
Zhang, Liangpei
Wang, Jiwen
Li, Zhiwei
Shen, Huanfeng
Jiang, Yun
Li, Tongwen
Xu, Hongzhang
Li, Shuwen
Author_xml – sequence: 1
  givenname: Qiangqiang
  orcidid: 0000-0001-7140-2224
  surname: Yuan
  fullname: Yuan, Qiangqiang
  organization: School of Geodesy and Geomatics, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Huanfeng
  orcidid: 0000-0002-4140-1869
  surname: Shen
  fullname: Shen, Huanfeng
  email: shenhf@whu.edu.cn
  organization: School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
– sequence: 3
  givenname: Tongwen
  surname: Li
  fullname: Li, Tongwen
  organization: School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
– sequence: 4
  givenname: Zhiwei
  orcidid: 0000-0001-5635-8499
  surname: Li
  fullname: Li, Zhiwei
  organization: School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
– sequence: 5
  givenname: Shuwen
  surname: Li
  fullname: Li, Shuwen
  organization: School of Geodesy and Geomatics, Wuhan University, Wuhan, China
– sequence: 6
  givenname: Yun
  surname: Jiang
  fullname: Jiang, Yun
  organization: School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
– sequence: 7
  givenname: Hongzhang
  surname: Xu
  fullname: Xu, Hongzhang
  organization: School of Geodesy and Geomatics, Wuhan University, Wuhan, China
– sequence: 8
  givenname: Weiwei
  surname: Tan
  fullname: Tan, Weiwei
  organization: The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
– sequence: 9
  givenname: Qianqian
  surname: Yang
  fullname: Yang, Qianqian
  organization: School of Geodesy and Geomatics, Wuhan University, Wuhan, China
– sequence: 10
  givenname: Jiwen
  surname: Wang
  fullname: Wang, Jiwen
  organization: School of Geodesy and Geomatics, Wuhan University, Wuhan, China
– sequence: 11
  givenname: Jianhao
  surname: Gao
  fullname: Gao, Jianhao
  organization: School of Geodesy and Geomatics, Wuhan University, Wuhan, China
– sequence: 12
  givenname: Liangpei
  orcidid: 0000-0001-6890-3650
  surname: Zhang
  fullname: Zhang, Liangpei
  organization: The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
BookMark eNp9kE1LwzAch4NMcJt-AG8FL14689ImqZ6G7zLwoueQpv9uGV0yk27gtzejnnbYKYTf84TwTNDIeQcIXRM8I5jwu_UsRJhRTNOdEEH4GRoTKaocC1yM0BhjVuQFLcUFmsS4xpiUUpAx-ngC2GYd6OCsW2bWZeD2Nni3AdfrLguw8T1kEVxM-302NysLezisMdOuycxKdx24JcRLdN7qLsLV_zlF3y_PX49v-eLz9f1xvsgNK2WfC1qLmsq2AqZrA63kTJqK1JIDBVaklRPgmBiqS01LTJuGG6MFF4nkpmFTdDu8uw3-ZwexVxsbDXSdduB3UVEmpSiEYCShN0fo2u-CS79TtCgIw1VVyESRgTLBxxigVdtgNzr8KoLVoa5aq1RXHeqqoW5yxJFjbK97610ftO1Omg-DCanR3kJQ0VhwBhobwPSq8faE_QdQOpW-
CitedBy_id crossref_primary_10_3390_rs15071922
crossref_primary_10_1016_j_rse_2023_113628
crossref_primary_10_1016_j_rse_2022_113106
crossref_primary_10_1007_s11769_022_1315_z
crossref_primary_10_1016_j_ocecoaman_2023_106713
crossref_primary_10_1016_j_jag_2024_104334
crossref_primary_10_1016_j_jhazmat_2024_136285
crossref_primary_10_1016_j_atech_2024_100581
crossref_primary_10_3390_rs16244659
crossref_primary_10_1016_j_ecoinf_2021_101397
crossref_primary_10_1109_JSTARS_2020_3045516
crossref_primary_10_1109_TGRS_2020_3038878
crossref_primary_10_3390_rs15020327
crossref_primary_10_1016_j_isprsjprs_2023_11_015
crossref_primary_10_34133_2022_9757948
crossref_primary_10_3390_rs14030717
crossref_primary_10_3390_rs16234611
crossref_primary_10_1016_j_rse_2023_113856
crossref_primary_10_1109_TAES_2022_3197098
crossref_primary_10_1109_TGRS_2023_3247806
crossref_primary_10_1109_TGRS_2024_3464574
crossref_primary_10_1016_j_earscirev_2021_103858
crossref_primary_10_1016_j_isprsjprs_2022_08_010
crossref_primary_10_1016_j_compag_2024_109002
crossref_primary_10_1109_MGRS_2020_3043504
crossref_primary_10_1364_JOSAA_468627
crossref_primary_10_1016_j_rse_2022_113357
crossref_primary_10_3390_rs12244052
crossref_primary_10_1016_j_asr_2024_03_033
crossref_primary_10_1109_MGRS_2021_3136100
crossref_primary_10_1109_JSTARS_2021_3073719
crossref_primary_10_1016_j_jobe_2024_110473
crossref_primary_10_1016_j_jag_2024_104111
crossref_primary_10_1016_j_jag_2024_104113
crossref_primary_10_1109_JSTARS_2021_3098817
crossref_primary_10_1080_15481603_2023_2233756
crossref_primary_10_1109_TGRS_2021_3097336
crossref_primary_10_1109_JSTARS_2024_3454093
crossref_primary_10_1080_01431161_2024_2387132
crossref_primary_10_1016_j_rse_2023_113886
crossref_primary_10_1016_j_eswa_2024_125132
crossref_primary_10_3390_app122312392
crossref_primary_10_3390_f14030483
crossref_primary_10_1109_JSTARS_2023_3298946
crossref_primary_10_1109_TGRS_2025_3540710
crossref_primary_10_3390_rs16081392
crossref_primary_10_1007_s12517_023_11538_3
crossref_primary_10_1109_MGRS_2023_3293459
crossref_primary_10_1109_TGRS_2024_3429350
crossref_primary_10_3390_rs16081394
crossref_primary_10_1109_JSTARS_2023_3342986
crossref_primary_10_1038_s41612_023_00407_1
crossref_primary_10_1109_TGRS_2023_3337845
crossref_primary_10_1109_JPROC_2021_3087029
crossref_primary_10_1038_s41597_023_02844_2
crossref_primary_10_1109_TGRS_2024_3519371
crossref_primary_10_1007_s11119_024_10149_6
crossref_primary_10_1016_j_scs_2024_105393
crossref_primary_10_3390_rs13234902
crossref_primary_10_1016_j_ecoinf_2022_101883
crossref_primary_10_3390_math11020479
crossref_primary_10_1109_JSTARS_2022_3188788
crossref_primary_10_1371_journal_pone_0315127
crossref_primary_10_1016_j_jag_2021_102516
crossref_primary_10_1109_TGRS_2021_3099522
crossref_primary_10_3390_rs13050908
crossref_primary_10_3389_fpls_2023_1124939
crossref_primary_10_1007_s12145_024_01686_9
crossref_primary_10_1016_j_agrformet_2024_110136
crossref_primary_10_1016_j_gsf_2022_101499
crossref_primary_10_1007_s11119_022_09932_0
crossref_primary_10_1016_j_isprsjprs_2023_11_026
crossref_primary_10_1109_TGRS_2024_3373873
crossref_primary_10_3390_rs14195053
crossref_primary_10_1016_j_cemconcomp_2021_104159
crossref_primary_10_1016_j_compag_2021_106188
crossref_primary_10_3390_rs16050837
crossref_primary_10_1016_j_jag_2021_102511
crossref_primary_10_1016_j_isprsjprs_2023_10_017
crossref_primary_10_3390_stats6040077
crossref_primary_10_1186_s12889_024_20316_z
crossref_primary_10_1016_j_jenvman_2023_119131
crossref_primary_10_1109_TGRS_2023_3336791
crossref_primary_10_3390_app14167152
crossref_primary_10_1039_D4NR01445F
crossref_primary_10_1109_LGRS_2022_3213984
crossref_primary_10_1109_JSTARS_2023_3276977
crossref_primary_10_1109_TGRS_2024_3470800
crossref_primary_10_1139_cjfas_2020_0423
crossref_primary_10_1109_JSTARS_2024_3492177
crossref_primary_10_1016_j_rse_2023_113658
crossref_primary_10_1016_j_tifs_2023_02_010
crossref_primary_10_1016_j_isprsjprs_2023_10_004
crossref_primary_10_1080_10095020_2024_2440615
crossref_primary_10_1016_j_jhydrol_2021_125969
crossref_primary_10_1109_TGRS_2024_3361652
crossref_primary_10_1109_TGRS_2024_3443420
crossref_primary_10_2166_wqrj_2025_026
crossref_primary_10_1029_2022EF002723
crossref_primary_10_1016_j_rse_2023_113653
crossref_primary_10_1016_j_rse_2023_113655
crossref_primary_10_1109_TGRS_2022_3169216
crossref_primary_10_1016_j_engappai_2024_108921
crossref_primary_10_3390_rs14174378
crossref_primary_10_1016_j_rse_2025_114694
crossref_primary_10_3390_s22166124
crossref_primary_10_1109_JSTARS_2022_3144339
crossref_primary_10_1109_TGRS_2023_3296151
crossref_primary_10_1016_j_algal_2024_103649
crossref_primary_10_1109_TGRS_2022_3187095
crossref_primary_10_3390_drones9010032
crossref_primary_10_1109_ACCESS_2024_3411777
crossref_primary_10_1371_journal_pone_0268007
crossref_primary_10_3390_s25010244
crossref_primary_10_1016_j_jhydrol_2023_129466
crossref_primary_10_3390_rs12203324
crossref_primary_10_1007_s44163_024_00198_1
crossref_primary_10_3390_app122211457
crossref_primary_10_3390_rs16142676
crossref_primary_10_3390_rs13020249
crossref_primary_10_1007_s12524_024_01997_w
crossref_primary_10_1109_TGRS_2022_3203071
crossref_primary_10_1016_j_jhydrol_2025_133086
crossref_primary_10_3390_rs16163106
crossref_primary_10_1080_20964471_2023_2177435
crossref_primary_10_1038_s41612_023_00353_y
crossref_primary_10_1080_2150704X_2024_2343130
crossref_primary_10_1109_ACCESS_2021_3087206
crossref_primary_10_3934_environsci_2025004
crossref_primary_10_1109_JSTARS_2023_3276781
crossref_primary_10_1016_j_rse_2021_112818
crossref_primary_10_3390_app11041403
crossref_primary_10_3390_rs14194841
crossref_primary_10_1016_j_envsoft_2022_105467
crossref_primary_10_1016_j_agwat_2023_108405
crossref_primary_10_3390_s20123559
crossref_primary_10_1080_17538947_2022_2130460
crossref_primary_10_3390_electronics13245022
crossref_primary_10_3390_rs14205146
crossref_primary_10_1029_2022GL097947
crossref_primary_10_1016_j_seta_2024_104057
crossref_primary_10_1109_JSTARS_2022_3211857
crossref_primary_10_1016_j_jag_2025_104447
crossref_primary_10_3390_rs13183600
crossref_primary_10_1016_j_geoderma_2023_116589
crossref_primary_10_1109_TGRS_2023_3310521
crossref_primary_10_3390_rs15174193
crossref_primary_10_1016_j_jag_2021_102389
crossref_primary_10_3389_fenvs_2022_979133
crossref_primary_10_1109_TGRS_2020_3000684
crossref_primary_10_1080_10095020_2022_2162980
crossref_primary_10_3390_geosciences13120380
crossref_primary_10_1016_j_jag_2024_104182
crossref_primary_10_1109_MGRS_2022_3145854
crossref_primary_10_1109_TGRS_2024_3522152
crossref_primary_10_1016_j_compag_2023_107615
crossref_primary_10_1016_j_ejrs_2025_02_002
crossref_primary_10_1109_TGRS_2025_3525728
crossref_primary_10_1016_j_cosust_2020_10_013
crossref_primary_10_1016_j_jag_2021_102375
crossref_primary_10_1109_JSTARS_2024_3524443
crossref_primary_10_3390_ijgi10120813
crossref_primary_10_3390_rs16173193
crossref_primary_10_1109_JSTARS_2024_3408154
crossref_primary_10_3390_rs13214467
crossref_primary_10_1109_LGRS_2021_3116601
crossref_primary_10_1109_ACCESS_2025_3526180
crossref_primary_10_1016_j_rsase_2025_101498
crossref_primary_10_3390_atmos16010082
crossref_primary_10_1155_2020_8811630
crossref_primary_10_1109_TGRS_2023_3335820
crossref_primary_10_1016_j_jag_2021_102365
crossref_primary_10_3390_rs15143458
crossref_primary_10_3390_rs13132477
crossref_primary_10_1016_j_isprsjprs_2021_01_019
crossref_primary_10_3390_math10183392
crossref_primary_10_1016_j_isprsjprs_2023_05_032
crossref_primary_10_1155_2024_8854675
crossref_primary_10_1109_JSTARS_2024_3435739
crossref_primary_10_1109_JSTARS_2021_3104726
crossref_primary_10_3390_rs14051263
crossref_primary_10_1109_JSTARS_2024_3469728
crossref_primary_10_1155_2022_6994179
crossref_primary_10_1016_j_isprsjprs_2021_02_011
crossref_primary_10_1016_j_envint_2021_106392
crossref_primary_10_3390_atmos15070760
crossref_primary_10_3390_rs14143290
crossref_primary_10_1016_j_rse_2025_114637
crossref_primary_10_1080_22797254_2022_2062054
crossref_primary_10_1016_j_jag_2021_102599
crossref_primary_10_1007_s11042_024_19417_z
crossref_primary_10_1109_LGRS_2024_3350211
crossref_primary_10_1016_j_envint_2025_109389
crossref_primary_10_1109_TGRS_2024_3462589
crossref_primary_10_3390_rs13112211
crossref_primary_10_1016_j_jag_2021_102356
crossref_primary_10_3390_rs15051203
crossref_primary_10_3390_geographies3020019
crossref_primary_10_32604_cmc_2023_036894
crossref_primary_10_3390_su15032741
crossref_primary_10_1038_s41597_024_03508_5
crossref_primary_10_1109_TGRS_2024_3430981
crossref_primary_10_1063_5_0246235
crossref_primary_10_3390_agronomy15020492
crossref_primary_10_3390_s21216996
crossref_primary_10_1016_j_rse_2021_112600
crossref_primary_10_1007_s00477_024_02728_w
crossref_primary_10_1016_j_scitotenv_2024_176783
crossref_primary_10_1109_TGRS_2024_3394501
crossref_primary_10_3390_f14050913
crossref_primary_10_1016_j_agrformet_2024_109962
crossref_primary_10_1016_j_geodrs_2024_e00817
crossref_primary_10_3390_w13152003
crossref_primary_10_3390_rs15133232
crossref_primary_10_59324_ejtas_2024_2_3__53
crossref_primary_10_3390_w16131762
crossref_primary_10_3390_rs17040680
crossref_primary_10_1016_j_rse_2021_112830
crossref_primary_10_3390_rs16040655
crossref_primary_10_3390_rs16040654
crossref_primary_10_1016_j_jag_2024_104152
crossref_primary_10_1080_01431161_2024_2347526
crossref_primary_10_3390_agronomy13071723
crossref_primary_10_1109_LGRS_2022_3222836
crossref_primary_10_1109_JSTARS_2023_3347571
crossref_primary_10_1016_j_isprsjprs_2023_06_015
crossref_primary_10_1016_j_rse_2025_114609
crossref_primary_10_3390_app15073434
crossref_primary_10_1111_jiec_13356
crossref_primary_10_3390_w14213401
crossref_primary_10_1016_j_rse_2021_112826
crossref_primary_10_1016_j_isprsjprs_2023_12_011
crossref_primary_10_1016_j_jag_2022_102865
crossref_primary_10_1007_s12652_022_03788_y
crossref_primary_10_1016_j_isprsjprs_2023_12_012
crossref_primary_10_1007_s00521_022_07019_5
crossref_primary_10_1016_j_jag_2021_102318
crossref_primary_10_3390_w17020199
crossref_primary_10_1016_j_catena_2021_105585
crossref_primary_10_1145_3649448
crossref_primary_10_1109_JSTARS_2024_3421622
crossref_primary_10_1016_j_heliyon_2024_e40683
crossref_primary_10_3390_agriculture15010036
crossref_primary_10_1016_j_hal_2023_102383
crossref_primary_10_1016_j_rse_2022_112934
crossref_primary_10_1080_01431161_2024_2305625
crossref_primary_10_1111_cgf_14978
crossref_primary_10_1016_j_rsase_2024_101394
crossref_primary_10_1109_TGRS_2024_3495508
crossref_primary_10_3390_rs12162659
crossref_primary_10_1109_ACCESS_2024_3379142
crossref_primary_10_17221_94_2022_SWR
crossref_primary_10_3390_rs15245656
crossref_primary_10_1109_ACCESS_2023_3300967
crossref_primary_10_1016_j_rse_2021_112652
crossref_primary_10_1016_j_isprsjprs_2021_11_015
crossref_primary_10_1016_j_rse_2024_114432
crossref_primary_10_1016_j_jenvman_2024_123668
crossref_primary_10_1109_TGRS_2023_3257290
crossref_primary_10_1016_j_rse_2022_112947
crossref_primary_10_3390_rs14215455
crossref_primary_10_3390_s20185076
crossref_primary_10_1109_TGRS_2023_3257293
crossref_primary_10_3390_rs15010088
crossref_primary_10_1016_j_chaos_2023_114432
crossref_primary_10_1109_TGRS_2024_3387393
crossref_primary_10_1016_j_rse_2021_112408
crossref_primary_10_1016_j_resglo_2024_100245
crossref_primary_10_1016_j_isprsjprs_2024_08_015
crossref_primary_10_32604_iasc_2023_039057
crossref_primary_10_1016_j_srs_2023_100085
crossref_primary_10_1001_jamacardio_2024_0749
crossref_primary_10_1016_j_optlaseng_2025_108953
crossref_primary_10_3390_rs16020423
crossref_primary_10_1016_j_rse_2024_114200
crossref_primary_10_3390_rs14184631
crossref_primary_10_1109_TGRS_2024_3398038
crossref_primary_10_3390_rs13071284
crossref_primary_10_3390_su15054545
crossref_primary_10_1016_j_rse_2022_112913
crossref_primary_10_1016_j_compag_2022_107297
crossref_primary_10_1016_j_jag_2024_103704
crossref_primary_10_1109_TGRS_2024_3461717
crossref_primary_10_1016_j_isprsjprs_2020_08_016
crossref_primary_10_3390_rs13245005
crossref_primary_10_1007_s00779_022_01674_0
crossref_primary_10_1109_TGRS_2022_3232498
crossref_primary_10_1109_TGRS_2023_3274633
crossref_primary_10_58763_rc2025355
crossref_primary_10_1109_JSTARS_2024_3507023
crossref_primary_10_1016_j_cageo_2021_104932
crossref_primary_10_1109_TGRS_2024_3357774
crossref_primary_10_3390_app13169264
crossref_primary_10_1016_j_isprsjprs_2020_09_025
crossref_primary_10_1080_01431161_2022_2161856
crossref_primary_10_3390_rs13091804
crossref_primary_10_1016_j_pepi_2024_107283
crossref_primary_10_1038_s41559_022_01957_y
crossref_primary_10_1016_j_jag_2022_103112
crossref_primary_10_1109_TGRS_2022_3166777
crossref_primary_10_3390_rs17010049
crossref_primary_10_1016_j_jhydrol_2022_128678
crossref_primary_10_3390_rs15153774
crossref_primary_10_1016_j_ecoinf_2024_102882
crossref_primary_10_1109_TGRS_2023_3326292
crossref_primary_10_1080_17538947_2024_2391952
crossref_primary_10_1016_j_srs_2024_100123
crossref_primary_10_1109_JSTARS_2024_3372113
crossref_primary_10_3390_rs16030437
crossref_primary_10_1109_TGRS_2021_3129853
crossref_primary_10_1007_s12524_024_01839_9
crossref_primary_10_3390_ijgi12070281
crossref_primary_10_1016_j_jhydrol_2022_127990
crossref_primary_10_1016_j_rsase_2022_100898
crossref_primary_10_1109_TGRS_2022_3140335
crossref_primary_10_3390_rs16101712
crossref_primary_10_61186_jgst_14_2_119
crossref_primary_10_3390_rs16020228
crossref_primary_10_1016_j_jenvman_2024_121299
crossref_primary_10_1016_j_scitotenv_2022_154223
crossref_primary_10_1109_JSTARS_2022_3219809
crossref_primary_10_1109_JSTARS_2023_3281892
crossref_primary_10_3390_rs15082102
crossref_primary_10_3390_rs12223825
crossref_primary_10_1016_j_cageo_2020_104678
crossref_primary_10_1364_OME_528010
crossref_primary_10_1109_JSTARS_2021_3122509
crossref_primary_10_3390_rs17050768
crossref_primary_10_1016_j_engappai_2024_109686
crossref_primary_10_1016_S1876_3804_24_60523_9
crossref_primary_10_3390_rs16020236
crossref_primary_10_1080_17538947_2022_2094001
crossref_primary_10_3390_rs16193568
crossref_primary_10_3390_rs15184491
crossref_primary_10_3390_app13169239
crossref_primary_10_1016_j_rse_2022_112985
crossref_primary_10_1109_TGRS_2023_3303336
crossref_primary_10_3390_rs14215413
crossref_primary_10_1002_esp_5981
crossref_primary_10_1007_s10479_021_04377_6
crossref_primary_10_3390_rs13132450
crossref_primary_10_3390_rs14081826
crossref_primary_10_3390_rs15143552
crossref_primary_10_14358_PERS_23_00005R3
crossref_primary_10_3390_rs13071250
crossref_primary_10_1016_j_rse_2024_114484
crossref_primary_10_1016_j_ecoinf_2023_102333
crossref_primary_10_3390_rs13163125
crossref_primary_10_1016_j_rse_2021_112680
crossref_primary_10_1016_j_envadv_2024_100539
crossref_primary_10_1016_j_rse_2020_112113
crossref_primary_10_1016_j_rsase_2021_100599
crossref_primary_10_3390_rs13071246
crossref_primary_10_3390_rs16203888
crossref_primary_10_3390_rs16234586
crossref_primary_10_3389_fenvs_2022_1014155
crossref_primary_10_3390_s24103258
crossref_primary_10_1016_j_jag_2022_102695
crossref_primary_10_3390_rs13142693
crossref_primary_10_1016_j_rse_2024_114252
crossref_primary_10_1007_s00521_025_11003_0
crossref_primary_10_1016_j_gloplacha_2023_104209
crossref_primary_10_1109_TGRS_2024_3357730
crossref_primary_10_1109_JSTARS_2021_3110994
crossref_primary_10_1080_01431161_2024_2406035
crossref_primary_10_1016_j_rse_2021_112665
crossref_primary_10_3390_su152115444
crossref_primary_10_1016_j_geoderma_2024_116941
crossref_primary_10_1016_j_rse_2022_112969
crossref_primary_10_1002_esp_5961
crossref_primary_10_22761_GD_2024_0036
crossref_primary_10_3390_w14213363
crossref_primary_10_3390_s23198162
crossref_primary_10_1109_TGRS_2022_3233385
crossref_primary_10_1007_s11269_023_03659_x
crossref_primary_10_1016_j_isprsjprs_2021_11_023
crossref_primary_10_1016_j_watres_2024_121181
crossref_primary_10_3390_rs14215624
crossref_primary_10_1007_s41324_021_00425_2
crossref_primary_10_3389_frsen_2025_1531097
crossref_primary_10_3390_rs15020299
crossref_primary_10_1002_joc_7926
crossref_primary_10_3390_rs13010070
crossref_primary_10_1109_LGRS_2022_3149045
crossref_primary_10_3390_s20216070
crossref_primary_10_1016_j_jenvman_2022_114560
crossref_primary_10_1029_2021WR030827
crossref_primary_10_3390_rs14040925
crossref_primary_10_3788_AI_2024_20001
crossref_primary_10_1109_JSTARS_2022_3221098
crossref_primary_10_1007_s00500_023_09352_w
crossref_primary_10_1016_j_asr_2022_05_038
crossref_primary_10_3390_rs16020275
crossref_primary_10_1109_JSTARS_2023_3237500
crossref_primary_10_3390_rs14071665
crossref_primary_10_1109_TGRS_2024_3380914
crossref_primary_10_3390_rs13163319
crossref_primary_10_1016_j_agwat_2022_107827
crossref_primary_10_3390_rs16122185
crossref_primary_10_3390_land12061125
crossref_primary_10_3390_rs16020260
crossref_primary_10_1109_LGRS_2021_3133872
crossref_primary_10_1016_j_resconrec_2022_106813
crossref_primary_10_1016_j_rse_2024_114281
crossref_primary_10_3390_rs14010051
crossref_primary_10_1109_TGRS_2021_3121272
crossref_primary_10_3390_rs14071676
crossref_primary_10_1016_j_rse_2023_113924
crossref_primary_10_1016_j_earscirev_2023_104461
crossref_primary_10_3390_electronics13050949
crossref_primary_10_3390_rs12060932
crossref_primary_10_1007_s11760_023_02823_5
crossref_primary_10_1016_j_uclim_2023_101494
crossref_primary_10_1093_forestry_cpad049
crossref_primary_10_1109_JSTARS_2023_3321776
crossref_primary_10_1145_3651163
crossref_primary_10_3390_rs16122194
crossref_primary_10_1016_j_ijmecsci_2024_109419
crossref_primary_10_1016_j_geoderma_2025_117222
crossref_primary_10_1016_j_atmosenv_2022_118972
crossref_primary_10_1016_j_rse_2024_114290
crossref_primary_10_34133_icomputing_0007
crossref_primary_10_1016_j_isprsjprs_2020_06_019
crossref_primary_10_1111_tgis_13284
crossref_primary_10_1016_j_isprsjprs_2024_10_002
crossref_primary_10_1016_j_jag_2024_103799
crossref_primary_10_1016_j_geoderma_2022_115695
crossref_primary_10_1109_TGRS_2020_3042974
crossref_primary_10_1016_j_isprsjprs_2024_10_004
crossref_primary_10_3390_rs15010227
crossref_primary_10_1016_j_ecoinf_2024_102804
crossref_primary_10_1016_j_ecoinf_2024_102808
crossref_primary_10_1109_JSTARS_2023_3236662
crossref_primary_10_1007_s40747_023_01129_w
crossref_primary_10_3390_rs15092320
crossref_primary_10_1007_s11042_022_13692_4
crossref_primary_10_3390_rs12244125
crossref_primary_10_1109_JSTARS_2024_3354103
crossref_primary_10_3390_rs16010028
crossref_primary_10_1109_JSTARS_2024_3450301
crossref_primary_10_3390_rs15184406
crossref_primary_10_1109_TGRS_2024_3360276
crossref_primary_10_1109_TGRS_2024_3388604
crossref_primary_10_3390_w16223194
crossref_primary_10_3390_rs14184441
crossref_primary_10_1109_JSTARS_2023_3310617
crossref_primary_10_1016_j_paerosci_2021_100727
crossref_primary_10_5194_essd_16_3795_2024
crossref_primary_10_5194_essd_14_3137_2022
crossref_primary_10_1111_tgis_70029
crossref_primary_10_1360_SSTe_2022_0089
crossref_primary_10_1080_17538947_2024_2372317
crossref_primary_10_1007_s11069_023_05972_5
crossref_primary_10_3390_rs15010047
crossref_primary_10_1109_JSTARS_2023_3339295
crossref_primary_10_1109_MGRS_2022_3171836
crossref_primary_10_1016_j_chemosphere_2022_134817
crossref_primary_10_21015_vtcs_v12i1_1655
crossref_primary_10_3390_rs15184420
crossref_primary_10_1109_JSTARS_2024_3486906
crossref_primary_10_1155_2022_1973777
crossref_primary_10_3389_fpls_2024_1499875
crossref_primary_10_1109_TGRS_2023_3309949
crossref_primary_10_3390_rs16234529
crossref_primary_10_1109_TGRS_2023_3269622
crossref_primary_10_1016_j_rse_2023_113968
crossref_primary_10_1109_TGRS_2024_3432397
crossref_primary_10_3390_drones5020031
crossref_primary_10_1016_j_geomorph_2020_107558
crossref_primary_10_1109_TGRS_2023_3307764
crossref_primary_10_3389_feart_2023_1090185
crossref_primary_10_1016_j_rse_2023_113723
crossref_primary_10_1016_j_eng_2021_11_021
crossref_primary_10_1016_j_geoderma_2021_115366
crossref_primary_10_1016_j_agrformet_2022_108985
crossref_primary_10_3390_rs13010054
crossref_primary_10_1007_s12524_024_02022_w
crossref_primary_10_55529_jipirs_44_30_40
crossref_primary_10_1109_ACCESS_2021_3109216
crossref_primary_10_1016_j_inffus_2024_102649
crossref_primary_10_3390_rs14225812
crossref_primary_10_1039_D4AY01200C
crossref_primary_10_1038_s41597_023_02696_w
crossref_primary_10_1109_JSTARS_2023_3286912
crossref_primary_10_1016_j_scitotenv_2023_164921
crossref_primary_10_3390_rs14225821
crossref_primary_10_1117_1_JRS_18_022204
crossref_primary_10_1109_JSTARS_2024_3422078
crossref_primary_10_1016_j_agwat_2024_108692
crossref_primary_10_3390_rs14225828
crossref_primary_10_3390_rs16060945
crossref_primary_10_3390_rs14010033
crossref_primary_10_1109_TGRS_2023_3281511
crossref_primary_10_5194_acp_23_5233_2023
crossref_primary_10_1029_2022EA002804
crossref_primary_10_1016_j_inffus_2020_07_004
crossref_primary_10_1029_2024WR038931
crossref_primary_10_3390_agronomy12102404
crossref_primary_10_1109_JSTARS_2023_3261326
crossref_primary_10_3390_rs16244777
crossref_primary_10_1109_LGRS_2025_3533557
crossref_primary_10_1016_j_isprsjprs_2024_05_022
crossref_primary_10_1016_j_jag_2022_102948
crossref_primary_10_3390_ijerph17249333
crossref_primary_10_1016_j_ecoinf_2022_101552
crossref_primary_10_3390_rs14030610
crossref_primary_10_1016_j_cej_2025_160780
crossref_primary_10_3390_s21144867
crossref_primary_10_1016_j_rse_2022_113223
crossref_primary_10_1080_15481603_2025_2478689
crossref_primary_10_3390_rs14174283
crossref_primary_10_3390_rs16010076
crossref_primary_10_1016_j_jag_2020_102163
crossref_primary_10_1109_MGRS_2022_3161377
crossref_primary_10_1109_TGRS_2024_3489974
crossref_primary_10_1016_j_jhydrol_2023_129561
crossref_primary_10_1016_j_isprsjprs_2022_01_018
crossref_primary_10_1016_j_jag_2021_102664
crossref_primary_10_1155_2021_7613511
crossref_primary_10_3390_rs15102641
crossref_primary_10_3390_rs16050764
crossref_primary_10_1016_j_isprsjprs_2021_06_002
crossref_primary_10_1109_TGRS_2020_2999943
crossref_primary_10_1016_j_agrformet_2021_108582
crossref_primary_10_1002_ael2_20134
crossref_primary_10_1016_j_geomorph_2024_109369
crossref_primary_10_1016_j_rse_2022_113234
crossref_primary_10_1371_journal_pone_0292260
crossref_primary_10_1016_j_rse_2022_113205
crossref_primary_10_1007_s11053_023_10249_6
crossref_primary_10_3390_rs12244149
crossref_primary_10_1109_TGRS_2024_3397989
crossref_primary_10_1109_JSTARS_2022_3188201
crossref_primary_10_3390_rs16010044
crossref_primary_10_3390_rs13010133
crossref_primary_10_3390_rs14225732
crossref_primary_10_1016_j_isprsjprs_2021_06_018
crossref_primary_10_1016_j_isprsjprs_2022_01_021
crossref_primary_10_1016_j_rse_2023_113522
crossref_primary_10_1038_s41598_023_31394_1
crossref_primary_10_1002_ldr_4360
crossref_primary_10_1016_j_ophoto_2025_100084
crossref_primary_10_1016_j_rse_2023_113519
crossref_primary_10_3390_rs17030550
crossref_primary_10_1016_j_ecoinf_2025_103111
crossref_primary_10_1109_JSTARS_2024_3492033
crossref_primary_10_3390_rs16152778
crossref_primary_10_1016_j_isprsjprs_2024_04_013
crossref_primary_10_1109_TGRS_2024_3485595
crossref_primary_10_3390_rs13122392
crossref_primary_10_3390_rs13112121
crossref_primary_10_1016_j_jag_2021_102640
crossref_primary_10_1016_j_eswa_2023_119980
crossref_primary_10_1016_j_jag_2021_102400
crossref_primary_10_1109_TGRS_2023_3309690
crossref_primary_10_3390_f16030449
crossref_primary_10_3390_app11052238
crossref_primary_10_1016_j_jhydrol_2023_129308
crossref_primary_10_3390_su16188277
crossref_primary_10_1109_JSTARS_2021_3123163
crossref_primary_10_1109_LGRS_2022_3171973
crossref_primary_10_1016_j_jhydrol_2024_130649
crossref_primary_10_1016_j_wen_2023_09_001
crossref_primary_10_1007_s12517_022_09677_0
crossref_primary_10_1016_j_marpolbul_2021_112639
crossref_primary_10_1080_09640568_2023_2298249
crossref_primary_10_3390_rs17020318
crossref_primary_10_1109_JSTARS_2023_3328315
crossref_primary_10_1038_s41467_023_37136_1
crossref_primary_10_3390_rs14122874
crossref_primary_10_1016_j_rse_2022_113262
crossref_primary_10_1109_JSTARS_2024_3366178
crossref_primary_10_1016_j_cj_2021_12_011
crossref_primary_10_1016_j_rse_2022_113267
crossref_primary_10_1039_D4NR00321G
crossref_primary_10_1109_TGRS_2024_3369023
crossref_primary_10_1007_s11430_022_9999_9
crossref_primary_10_5194_amt_17_7129_2024
crossref_primary_10_5194_essd_14_1193_2022
crossref_primary_10_1109_TGRS_2023_3344283
crossref_primary_10_1016_j_isprsjprs_2024_12_017
crossref_primary_10_1080_01431161_2022_2048319
crossref_primary_10_3390_rs14225760
crossref_primary_10_54097_ajst_v4i3_4785
crossref_primary_10_1016_j_ecolind_2020_106394
crossref_primary_10_1007_s11368_024_03747_4
crossref_primary_10_1080_10106049_2022_2040601
crossref_primary_10_3390_rs17061044
crossref_primary_10_1016_j_atmosenv_2022_118969
crossref_primary_10_1109_JSTARS_2022_3176031
crossref_primary_10_3390_land10121382
crossref_primary_10_15446_ing_investig_108609
crossref_primary_10_1080_17538947_2024_2402425
crossref_primary_10_1016_j_dwt_2025_101037
crossref_primary_10_1080_01431161_2022_2026521
crossref_primary_10_25046_aj060170
crossref_primary_10_1016_j_ejrh_2023_101438
crossref_primary_10_1016_j_ejrh_2023_101431
crossref_primary_10_1109_ACCESS_2020_3041645
crossref_primary_10_3390_app14093545
crossref_primary_10_3390_rs13234839
crossref_primary_10_3390_rs14143318
crossref_primary_10_1049_rsn2_12484
crossref_primary_10_1029_2023EA003227
crossref_primary_10_1109_JSTARS_2024_3359647
crossref_primary_10_1016_j_isprsjprs_2022_02_023
crossref_primary_10_1109_JSTARS_2025_3531886
crossref_primary_10_1002_rse2_194
crossref_primary_10_1016_j_atmosres_2022_106339
crossref_primary_10_1109_TGRS_2021_3074569
crossref_primary_10_3390_rs13234822
crossref_primary_10_3390_rs16142548
crossref_primary_10_5194_essd_14_2315_2022
crossref_primary_10_1109_JSTARS_2023_3275995
crossref_primary_10_1109_TGRS_2025_3531930
crossref_primary_10_3390_en14102960
crossref_primary_10_3390_electronics13081590
crossref_primary_10_1016_j_jhydrol_2021_126586
crossref_primary_10_1038_s41598_024_69022_1
crossref_primary_10_1109_ACCESS_2024_3425654
crossref_primary_10_3390_app14167235
crossref_primary_10_1016_j_jhydrol_2025_132900
crossref_primary_10_1109_JSTARS_2024_3413838
crossref_primary_10_1016_j_jag_2024_104290
crossref_primary_10_1109_JSTARS_2023_3328997
crossref_primary_10_1016_j_isprsjprs_2022_03_015
crossref_primary_10_1007_s11676_024_01700_2
crossref_primary_10_1109_TGRS_2024_3511118
crossref_primary_10_3390_rs16030509
crossref_primary_10_1109_JSTARS_2024_3420148
crossref_primary_10_1016_j_rsase_2021_100627
crossref_primary_10_1016_j_simpa_2023_100518
crossref_primary_10_3390_rs12213493
crossref_primary_10_1016_j_eiar_2023_107073
crossref_primary_10_59717_j_xinn_geo_2024_100118
crossref_primary_10_1007_s13131_023_2203_9
crossref_primary_10_1016_j_isprsjprs_2025_01_025
crossref_primary_10_1007_s10661_021_09561_6
crossref_primary_10_1016_j_ecolind_2022_109417
crossref_primary_10_3390_rs15030674
crossref_primary_10_1016_j_rse_2022_113070
crossref_primary_10_1007_s10346_023_02089_5
crossref_primary_10_3390_rs16071293
crossref_primary_10_1109_TGRS_2021_3107542
crossref_primary_10_1080_2150704X_2020_1842540
crossref_primary_10_1016_j_isprsjprs_2022_03_002
crossref_primary_10_1080_10106049_2023_2252389
crossref_primary_10_3390_rs14051166
crossref_primary_10_1016_j_optlastec_2023_109627
crossref_primary_10_1016_j_rse_2022_113079
crossref_primary_10_1109_LGRS_2021_3062453
crossref_primary_10_1109_TGRS_2021_3119537
crossref_primary_10_3390_land12122142
crossref_primary_10_1080_01431161_2020_1809742
crossref_primary_10_1080_10106049_2023_2246939
crossref_primary_10_1016_j_jhydrol_2025_132921
crossref_primary_10_1007_s00376_024_3222_y
crossref_primary_10_1109_MGRS_2024_3495516
crossref_primary_10_1016_j_jag_2024_104073
crossref_primary_10_1007_s13218_022_00796_0
crossref_primary_10_1016_j_rse_2022_113044
crossref_primary_10_1109_JSEN_2023_3343080
crossref_primary_10_1007_s10661_023_11562_6
crossref_primary_10_1029_2024JH000165
crossref_primary_10_1016_j_cviu_2023_103909
crossref_primary_10_1109_ACCESS_2022_3149052
crossref_primary_10_3390_rs14143353
crossref_primary_10_1007_s00521_023_08497_x
crossref_primary_10_3390_rs15041101
crossref_primary_10_1016_j_compag_2023_107989
crossref_primary_10_1002_wat2_1533
crossref_primary_10_3390_rs15041103
crossref_primary_10_1016_j_jhydrol_2022_127982
crossref_primary_10_3390_rs14205232
crossref_primary_10_1109_TGRS_2022_3147513
crossref_primary_10_1117_1_JRS_17_044509
crossref_primary_10_1016_j_isprsjprs_2022_03_020
crossref_primary_10_1007_s10462_021_09994_y
crossref_primary_10_1016_j_jhydrol_2022_128835
crossref_primary_10_1109_TGRS_2022_3204885
crossref_primary_10_1109_JSTARS_2022_3232409
crossref_primary_10_3390_w14142211
crossref_primary_10_1007_s11270_023_06324_6
crossref_primary_10_1016_j_isprsjprs_2022_11_006
crossref_primary_10_1080_24694452_2023_2206469
crossref_primary_10_1016_j_jhydrol_2022_127749
crossref_primary_10_1029_2023GL106580
crossref_primary_10_1109_JSTARS_2024_3361556
crossref_primary_10_1007_s10479_023_05247_z
crossref_primary_10_1016_j_geomorph_2023_108626
crossref_primary_10_1016_j_rse_2024_114518
crossref_primary_10_3390_rs14205221
crossref_primary_10_1016_j_ecoinf_2024_102576
crossref_primary_10_1016_j_jag_2021_102475
crossref_primary_10_1016_j_jag_2021_102477
crossref_primary_10_1109_TGRS_2021_3094321
crossref_primary_10_3390_rs15112882
crossref_primary_10_3390_math10173043
crossref_primary_10_3390_su16020832
crossref_primary_10_1016_j_isprsjprs_2022_04_026
crossref_primary_10_1016_j_procs_2021_08_059
crossref_primary_10_3390_rs13214372
crossref_primary_10_1109_LGRS_2021_3125429
crossref_primary_10_3390_rs13051024
crossref_primary_10_3390_app122010439
crossref_primary_10_1016_j_jag_2022_102764
crossref_primary_10_3390_rs15051308
crossref_primary_10_3390_w16050732
crossref_primary_10_1109_LGRS_2025_3527450
crossref_primary_10_3390_rs13245092
crossref_primary_10_1109_JSTARS_2024_3396883
crossref_primary_10_1016_j_scs_2024_105455
crossref_primary_10_3390_rs15164071
crossref_primary_10_3390_s21123954
crossref_primary_10_1145_3635153
crossref_primary_10_1109_TGRS_2023_3321595
crossref_primary_10_1016_j_marpolbul_2023_114598
crossref_primary_10_1016_j_wasman_2023_12_014
crossref_primary_10_1109_TGRS_2023_3276853
crossref_primary_10_1016_j_jag_2021_102456
crossref_primary_10_1016_j_jag_2022_102734
crossref_primary_10_3390_rs15082046
crossref_primary_10_1021_acs_est_3c03237
crossref_primary_10_1109_LGRS_2023_3244324
crossref_primary_10_3390_rs13122368
crossref_primary_10_1093_icesjms_fsad100
crossref_primary_10_1002_ldr_4721
crossref_primary_10_1109_TGRS_2021_3107352
crossref_primary_10_3390_rs15225385
crossref_primary_10_1016_j_compag_2023_107946
crossref_primary_10_1109_JSTARS_2024_3360458
crossref_primary_10_1016_j_jag_2022_102744
crossref_primary_10_1109_JSTARS_2025_3528650
crossref_primary_10_1016_j_future_2024_107691
crossref_primary_10_1016_j_acags_2024_100198
crossref_primary_10_3390_rs15133332
crossref_primary_10_1007_s11356_021_13503_7
crossref_primary_10_1109_ACCESS_2022_3210218
crossref_primary_10_3389_fnbot_2024_1488337
crossref_primary_10_3390_rs15164053
crossref_primary_10_1109_JSTARS_2023_3302571
crossref_primary_10_1109_ACCESS_2021_3075159
crossref_primary_10_1080_10095020_2022_2072775
crossref_primary_10_3390_rs17010159
crossref_primary_10_3389_frsen_2024_1481848
crossref_primary_10_1038_s41598_022_19357_4
crossref_primary_10_3390_rs14215584
crossref_primary_10_1109_JSTARS_2022_3148448
crossref_primary_10_1016_j_isprsjprs_2021_03_016
crossref_primary_10_1080_01431161_2024_2365811
crossref_primary_10_3390_rs14102429
crossref_primary_10_1080_01431161_2023_2297178
crossref_primary_10_1109_TGRS_2022_3209340
crossref_primary_10_1109_LGRS_2021_3109484
crossref_primary_10_1016_j_rse_2025_114711
crossref_primary_10_1016_j_rse_2024_114315
crossref_primary_10_1109_JSTARS_2024_3421990
crossref_primary_10_3390_w14111792
crossref_primary_10_3389_frsen_2021_770431
crossref_primary_10_3390_s23125505
crossref_primary_10_3390_rs15245785
crossref_primary_10_1016_j_isprsjprs_2024_01_009
crossref_primary_10_1016_j_apenergy_2024_123585
crossref_primary_10_3390_rs13040694
crossref_primary_10_3390_systems12050171
crossref_primary_10_1007_s10980_023_01753_4
crossref_primary_10_1016_j_rse_2024_114324
crossref_primary_10_1109_JSTARS_2024_3365971
crossref_primary_10_1016_j_agwat_2023_108499
crossref_primary_10_1016_j_jag_2024_103809
crossref_primary_10_1109_TAES_2023_3328853
crossref_primary_10_1109_MGRS_2024_3393010
crossref_primary_10_3390_w16182704
crossref_primary_10_1016_j_compag_2024_108627
crossref_primary_10_1016_j_jag_2024_103822
crossref_primary_10_1109_ACCESS_2022_3194507
crossref_primary_10_3390_rs15205050
crossref_primary_10_3390_systems13010031
crossref_primary_10_1029_2024MS004341
crossref_primary_10_1109_JSTARS_2020_3025451
crossref_primary_10_1080_22797254_2024_2367221
crossref_primary_10_1016_j_jag_2023_103540
crossref_primary_10_3390_rs14020384
crossref_primary_10_1117_1_JRS_18_014513
crossref_primary_10_1109_TGRS_2025_3540173
crossref_primary_10_1016_j_rse_2024_114575
crossref_primary_10_3390_agronomy14071355
crossref_primary_10_3390_electronics12143201
crossref_primary_10_3390_rs15082014
crossref_primary_10_1016_j_envpol_2023_122914
crossref_primary_10_1038_s41598_024_66699_2
crossref_primary_10_1109_JSTARS_2023_3326967
crossref_primary_10_1016_j_rse_2024_114100
crossref_primary_10_1016_j_rsase_2024_101243
crossref_primary_10_1016_j_ufug_2023_127943
crossref_primary_10_1016_j_rse_2024_114119
crossref_primary_10_1016_j_compag_2022_107396
crossref_primary_10_1016_j_jhydrol_2021_127354
crossref_primary_10_1016_j_atmosenv_2022_119370
crossref_primary_10_1109_MGRS_2021_3050782
crossref_primary_10_1016_j_ecoinf_2024_102974
crossref_primary_10_1016_j_scitotenv_2021_146602
crossref_primary_10_3390_rs14194763
crossref_primary_10_1016_j_isprsjprs_2022_12_027
crossref_primary_10_1109_JSTARS_2023_3268326
crossref_primary_10_1590_01047760202127012769
crossref_primary_10_3389_fmars_2023_1077623
crossref_primary_10_3390_rs15112920
crossref_primary_10_1016_j_ophoto_2024_100064
crossref_primary_10_1016_j_rse_2021_112566
crossref_primary_10_1109_TGRS_2023_3308902
crossref_primary_10_1007_s00704_023_04493_2
crossref_primary_10_1029_2022EA002338
crossref_primary_10_3390_rs14102456
crossref_primary_10_1016_j_jenvman_2022_117127
crossref_primary_10_1016_j_isprsjprs_2022_12_011
crossref_primary_10_3390_rs16234497
crossref_primary_10_3390_rs17050882
crossref_primary_10_3390_rs13193904
crossref_primary_10_1088_1748_9326_ad7043
crossref_primary_10_1109_TASE_2021_3077689
crossref_primary_10_3390_rs13091713
crossref_primary_10_1016_j_ecoinf_2024_102507
crossref_primary_10_3390_rs16162953
crossref_primary_10_3390_rs15164112
crossref_primary_10_3390_rs14020328
crossref_primary_10_3390_atmos13020255
crossref_primary_10_1016_j_apenergy_2024_123308
crossref_primary_10_1080_15481603_2024_2327146
crossref_primary_10_20659_jjfp_55_1_3
crossref_primary_10_1016_j_scitotenv_2024_176910
crossref_primary_10_1111_gfs_12607
crossref_primary_10_3390_rs15061540
crossref_primary_10_1016_j_ecoinf_2024_102954
crossref_primary_10_1007_s11356_021_16004_9
crossref_primary_10_1007_s41062_022_00981_y
crossref_primary_10_1109_JSTARS_2021_3076470
crossref_primary_10_1016_j_uclim_2023_101736
crossref_primary_10_1016_j_ophoto_2024_100080
crossref_primary_10_1109_TGRS_2024_3446042
crossref_primary_10_1080_17538947_2021_1980125
crossref_primary_10_1016_j_rse_2024_114378
crossref_primary_10_1155_2023_8552624
crossref_primary_10_3390_rs14081929
crossref_primary_10_1016_j_compag_2023_108518
crossref_primary_10_1016_j_patter_2025_101186
crossref_primary_10_3390_rs12162514
crossref_primary_10_1016_j_tecto_2021_229140
crossref_primary_10_3390_rs13245156
crossref_primary_10_3390_rs16061083
crossref_primary_10_3390_rs14215517
crossref_primary_10_1109_TGRS_2025_3525811
crossref_primary_10_1007_s40808_023_01822_2
crossref_primary_10_1016_j_ecoinf_2021_101547
crossref_primary_10_14358_PERS_24_00001R2
crossref_primary_10_1016_j_apr_2023_101866
crossref_primary_10_1016_j_rse_2024_114141
crossref_primary_10_3390_agronomy12071583
crossref_primary_10_1021_acs_estlett_1c01025
crossref_primary_10_3390_rs15082205
crossref_primary_10_1109_TGRS_2024_3452700
crossref_primary_10_1016_j_rsase_2022_100790
crossref_primary_10_1109_TGRS_2023_3318590
crossref_primary_10_1016_j_rse_2024_114386
crossref_primary_10_1109_TGRS_2022_3154406
crossref_primary_10_1109_JSTARS_2023_3336930
crossref_primary_10_1016_j_jconhyd_2023_104235
crossref_primary_10_1109_TGRS_2025_3541871
crossref_primary_10_1155_2022_8750648
crossref_primary_10_1109_TGRS_2025_3526247
crossref_primary_10_3390_f15112010
crossref_primary_10_1016_j_cageo_2021_104879
crossref_primary_10_3390_rs13173495
crossref_primary_10_1007_s13218_023_00801_0
crossref_primary_10_3390_rs13091749
crossref_primary_10_3390_ijgi13120437
crossref_primary_10_1016_j_jhydrol_2023_129964
crossref_primary_10_3390_rs14102494
crossref_primary_10_1002_rse2_415
crossref_primary_10_3390_rs15010124
crossref_primary_10_1016_j_geoderma_2024_117056
crossref_primary_10_3390_ijgi11020097
crossref_primary_10_1109_TCYB_2020_3029787
crossref_primary_10_1109_TGRS_2024_3492505
crossref_primary_10_3390_rs14010171
crossref_primary_10_1007_s00477_022_02378_w
crossref_primary_10_1016_j_rse_2021_112364
crossref_primary_10_1109_TGRS_2024_3492500
crossref_primary_10_3390_rs15071780
crossref_primary_10_1016_j_jhydrol_2022_128388
crossref_primary_10_1109_TGRS_2023_3268232
crossref_primary_10_1109_TGRS_2024_3367850
crossref_primary_10_1109_TGRS_2022_3210990
crossref_primary_10_3389_fenvs_2024_1392469
crossref_primary_10_3390_f14091705
crossref_primary_10_1080_15481603_2024_2330185
crossref_primary_10_38016_jista_772145
crossref_primary_10_1007_s11760_025_03913_2
crossref_primary_10_1109_TGRS_2023_3280591
crossref_primary_10_3390_a17050182
crossref_primary_10_1007_s12144_024_06261_5
crossref_primary_10_1016_j_rse_2021_112590
crossref_primary_10_3390_rs14040829
crossref_primary_10_3390_rs14092224
crossref_primary_10_1016_j_scitotenv_2024_169992
crossref_primary_10_1016_j_jag_2023_103379
crossref_primary_10_3390_photonics11020190
crossref_primary_10_1109_TGRS_2023_3288073
crossref_primary_10_1016_j_jhydrol_2022_128158
crossref_primary_10_1080_14680629_2022_2150276
crossref_primary_10_1016_j_rse_2024_114190
crossref_primary_10_1007_s44196_023_00364_w
crossref_primary_10_1109_TGRS_2022_3229361
crossref_primary_10_1016_j_srs_2022_100047
crossref_primary_10_3390_su151813724
crossref_primary_10_3390_rs15153805
crossref_primary_10_3390_min13091153
crossref_primary_10_3390_rs13020195
crossref_primary_10_3390_rs15071723
crossref_primary_10_1016_j_jag_2023_103569
crossref_primary_10_1016_j_ejrh_2024_101776
crossref_primary_10_1080_10106049_2023_2190622
crossref_primary_10_3390_agronomy13112741
crossref_primary_10_1080_17538947_2023_2210312
crossref_primary_10_34133_remotesensing_0285
crossref_primary_10_1016_j_jag_2024_103847
crossref_primary_10_1109_LGRS_2023_3302906
crossref_primary_10_4236_jgis_2022_146034
crossref_primary_10_3390_s25020531
crossref_primary_10_1029_2023EA003162
crossref_primary_10_1155_2022_2076633
crossref_primary_10_3390_rs13010155
crossref_primary_10_1007_s11227_023_05087_5
crossref_primary_10_5194_gmd_16_4137_2023
crossref_primary_10_1093_aobpla_plac061
crossref_primary_10_1111_2041_210X_14046
crossref_primary_10_1016_j_clpl_2024_100088
crossref_primary_10_3390_rs14071744
crossref_primary_10_1016_j_earscirev_2023_104370
crossref_primary_10_1515_geo_2022_0351
crossref_primary_10_3390_a14040109
crossref_primary_10_1016_j_eswa_2024_124583
crossref_primary_10_1080_08982112_2024_2448477
crossref_primary_10_1016_j_isprsjprs_2024_02_003
crossref_primary_10_1016_j_isprsjprs_2024_02_002
crossref_primary_10_1080_19475683_2024_2309866
crossref_primary_10_1109_TGRS_2025_3540573
crossref_primary_10_3390_app11209691
crossref_primary_10_3389_fenvs_2025_1549209
crossref_primary_10_1364_OE_499743
crossref_primary_10_1080_05704928_2024_2369570
crossref_primary_10_1109_JSTARS_2021_3079357
crossref_primary_10_1016_j_catena_2023_107228
crossref_primary_10_34133_remotesensing_0289
crossref_primary_10_1080_10095020_2022_2085633
crossref_primary_10_1038_s44287_024_00116_8
crossref_primary_10_1109_ACCESS_2021_3057057
crossref_primary_10_3389_fenvs_2022_917590
crossref_primary_10_1016_j_scs_2024_105809
crossref_primary_10_1080_10106049_2024_2400493
crossref_primary_10_5194_acp_23_375_2023
crossref_primary_10_1002_sat_1482
crossref_primary_10_1016_j_rse_2023_113609
crossref_primary_10_1016_j_lithos_2025_107947
crossref_primary_10_3390_rs15081990
crossref_primary_10_3390_rs15184551
crossref_primary_10_1117_1_JRS_18_024517
crossref_primary_10_1007_s00226_021_01309_2
crossref_primary_10_1016_j_inffus_2022_10_005
crossref_primary_10_1016_j_rse_2023_113842
crossref_primary_10_1109_TGRS_2023_3315472
crossref_primary_10_1016_j_isprsjprs_2021_07_010
crossref_primary_10_1111_tgis_13193
crossref_primary_10_1016_j_xinn_2021_100179
crossref_primary_10_1016_j_jag_2022_103030
crossref_primary_10_3390_rs14153622
crossref_primary_10_22430_22565337_3017
crossref_primary_10_1016_j_scitotenv_2023_162855
crossref_primary_10_1007_s40031_024_01084_1
crossref_primary_10_1109_JSTARS_2022_3166978
crossref_primary_10_1080_17538947_2022_2133184
crossref_primary_10_1109_JSTARS_2024_3404781
crossref_primary_10_1080_17538947_2022_2159553
crossref_primary_10_1016_j_jhazmat_2025_137369
crossref_primary_10_3390_w13182523
crossref_primary_10_1109_JSTARS_2024_3364020
crossref_primary_10_3390_rs15153846
Cites_doi 10.1016/j.isprsjprs.2019.04.015
10.5194/hess-22-5639-2018
10.3390/rs71114680
10.1061/(ASCE)0733-9437(2005)131:4(316)
10.3390/rs11091022
10.3390/ijgi6050130
10.1016/j.isprsjprs.2019.04.005
10.1016/S0143-6228(02)00048-6
10.3103/S1068367407060031
10.1016/j.rse.2012.12.014
10.1061/(ASCE)1084-0699(2009)14:2(131)
10.1364/OE.23.0A1442
10.1016/j.agsy.2004.07.009
10.1080/01431160600702632
10.1080/10962247.2018.1459956
10.1016/j.energy.2013.09.008
10.1016/j.envpol.2018.05.100
10.1023/B:JOCE.0000038345.99050.c0
10.1016/j.rse.2003.12.002
10.5194/hess-16-3659-2012
10.3390/s8128181
10.1155/2018/9315132
10.1007/s11707-012-0346-7
10.1111/gwat.12557
10.1080/10095020.2017.1373955
10.1029/2011RG000372
10.1109/LGRS.2017.2657778
10.1109/TGRS.2016.2596290
10.1016/j.rse.2018.06.034
10.1006/jare.1997.0269
10.1038/ncomms13890
10.1109/TPAMI.2013.50
10.1007/s00271-007-0090-z
10.1038/nclimate1908
10.1016/j.atmosenv.2016.02.002
10.1061/(ASCE)0733-9437(2002)128:4(224)
10.1109/TGRS.2002.800277
10.3390/rs8110959
10.1061/(ASCE)0733-9437(2003)129:3(214)
10.1016/j.isprsjprs.2014.02.015
10.1080/02693799508902054
10.5194/hess-21-5201-2017
10.1109/MGRS.2016.2540798
10.1016/j.ecoinf.2014.07.004
10.1002/2017GL075710
10.1016/j.rse.2019.111322
10.1029/2018JD028759
10.1038/s41586-019-0912-1
10.1109/LGRS.2017.2681128
10.1109/LGRS.2017.2780843
10.1002/2016RG000543
10.1080/15481603.2018.1489943
10.1016/j.jag.2017.10.010
10.1080/014311697218728
10.1016/j.solener.2015.03.014
10.1007/s11269-016-1331-9
10.1016/j.agrformet.2015.11.003
10.1109/MGRS.2015.2441912
10.3390/rs9080857
10.1126/science.1197869
10.1016/j.scitotenv.2018.11.086
10.1007/s00271-008-0119-y
10.4209/aaqr.2015.05.0375
10.1109/ACCESS.2018.2885565
10.1016/j.procs.2019.02.036
10.1007/BF03013488
10.3390/atmos7100129
10.1080/014311699213695
10.1016/j.envsoft.2017.02.004
10.5589/m02-066
10.1109/TGRS.2016.2586602
10.1590/S0001-37652013005000037
10.1016/j.rse.2013.02.027
10.1007/978-3-319-70796-9_4
10.1016/j.isprsjprs.2017.06.001
10.1007/s11769-018-0930-1
10.3390/rs10071119
10.1016/j.rser.2017.01.114
10.1016/j.energy.2010.09.009
10.1109/36.942544
10.1016/j.rse.2018.04.050
10.1016/j.isprsjprs.2018.04.005
10.5194/isprs-archives-XLII-3-583-2018
10.3390/rs2030673
10.1109/TGRS.2008.916632
10.1007/s11269-013-0337-9
10.1016/S0034-4257(02)00105-0
10.1109/TIP.2017.2725580
10.3390/rs11192272
10.1016/j.rse.2017.10.045
10.1016/j.scitotenv.2018.12.297
10.1080/01431161.2012.671553
10.1016/j.rse.2018.08.017
10.1080/01431160310001657533
10.1016/j.solener.2012.12.008
10.1109/TGRS.2018.2810208
10.1109/TGRS.2007.907333
10.1016/j.envpol.2019.113395
10.3390/w10111687
10.1016/j.measurement.2011.07.008
10.1016/j.gloplacha.2018.12.008
10.3390/rs2010166
10.1016/j.rse.2015.02.021
10.1029/2018JD028422
10.1109/LGRS.2018.2839092
10.1016/j.engappai.2006.05.009
10.1175/1520-0450(2001)040<2115:REFACO>2.0.CO;2
10.1029/2004JD005094
10.3390/rs9040395
10.3390/rs9050484
10.1016/j.asr.2012.10.010
10.1016/j.rse.2018.03.008
10.3390/rs10071022
10.1016/j.rse.2011.07.018
10.1029/98JC02160
10.1117/1.JRS.7.073579
10.1029/2011JD017141
10.3390/s19092082
10.1016/j.mcm.2010.11.046
10.1016/j.energy.2018.07.202
10.5194/hess-22-5341-2018
10.1016/j.rse.2009.01.004
10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2
10.1080/01431161.2013.822597
10.5194/isprs-annals-IV-4-W4-179-2017
10.1016/j.jhydrol.2019.124351
10.1016/j.rse.2014.09.026
10.1166/sl.2011.1380
10.1029/2018JD028447
10.1016/j.jhydrol.2016.10.005
10.1016/j.compag.2018.05.012
10.1007/s10661-017-6323-6
10.1080/01431161.2017.1325531
10.1016/j.rse.2012.12.012
10.1016/j.rse.2007.04.013
10.1109/TGRS.2013.2237780
10.1016/j.jag.2019.101933
10.1016/j.ecolmodel.2009.04.025
10.1109/LGRS.2016.2586109
10.1109/TGRS.2011.2166120
10.1109/JSTARS.2016.2575361
10.3390/rs10091351
10.3390/rs11222673
10.1029/2012JD018150
10.1080/014311698215342
10.1109/LGRS.2019.2900270
10.1109/TGRS.2008.920370
10.1017/S1350482704001173
10.1080/2150704X.2015.1062157
10.1016/j.isprsjprs.2009.06.004
10.1061/(ASCE)0733-9437(2003)129:6(454)
10.1016/j.rser.2013.08.055
10.1016/j.isprsjprs.2014.12.011
10.1109/LGRS.2017.2722988
10.1016/j.agwat.2018.07.039
10.1016/j.rser.2016.11.124
10.3390/rs11030300
10.1016/j.isprsjprs.2017.07.014
10.1109/TGRS.2015.2430845
10.1021/acs.est.5b06121
10.1016/j.rser.2019.109327
10.1016/j.isprsjprs.2016.01.004
10.1029/2018EO095649
10.1016/j.procs.2016.07.144
10.1016/j.compag.2015.11.018
10.3390/rs10111746
10.1007/s11769-008-0356-2
10.1016/j.rse.2018.04.039
10.1016/j.rse.2016.02.019
10.1117/1.JRS.11.042609
10.1155/2015/538063
10.1175/JHM-D-15-0075.1
10.1175/JHM-D-19-0110.1
10.2495/EID180141
10.1002/met.83
10.1016/j.rse.2010.12.017
10.1109/TGRS.2018.2872131
10.1109/TGRS.2016.2560522
10.5194/tc-12-1579-2018
10.1016/j.isprsjprs.2016.03.011
10.1016/j.cj.2019.06.005
10.1007/s40333-016-0049-0
10.1002/er.3030
10.1016/j.scitotenv.2012.06.033
10.1016/j.agrformet.2016.08.005
10.1016/j.rse.2018.11.014
10.1007/s11119-011-9233-6
10.1016/j.rse.2017.01.015
10.5194/tc-12-891-2018
10.1029/2019GL084771
10.1631/jzus.2007.A0883
10.3390/s19132987
10.1007/s40808-018-0431-3
10.1016/j.rse.2010.04.001
10.1016/j.isprsjprs.2019.09.016
10.1109/LGRS.2007.912725
10.1002/2017GL075619
10.1109/TGRS.2013.2290996
10.1155/2014/839205
10.1016/j.aeolia.2018.10.002
10.1029/2001JD900085
10.1007/s00704-009-0204-z
10.1109/LGRS.2009.2023605
10.1016/j.rse.2011.11.020
10.1175/JHM-D-16-0176.1
10.1109/TGRS.2015.2431315
10.1109/JSTARS.2017.2760202
10.1080/01431161.2012.716536
10.1155/2016/6156513
10.1016/j.rse.2012.04.026
10.1016/j.enconman.2013.11.043
10.1038/nature14539
10.1061/(ASCE)0733-9437(2000)126:4(268)
10.1080/0143116031000103781
10.1029/2006JD007811
10.1080/01431160902953891
10.1109/LGRS.2016.2616440
10.3390/ijerph15051032
10.1175/JHM-D-17-0077.1
10.1016/j.isprsjprs.2018.04.025
10.1002/joc.2286
10.1016/j.rse.2015.11.011
10.1016/j.isprsjprs.2019.01.011
10.1109/TGRS.2008.2005206
10.5194/amt-7-3151-2014
10.1016/j.biosystemseng.2009.12.008
10.1109/MGRS.2017.2762307
10.1109/TGRS.2009.2033180
10.1016/j.atmosenv.2017.01.004
10.1029/2007JD008428
10.1109/36.239907
10.1109/TGRS.2017.2675902
10.1175/JAM2173.1
10.1016/j.apenergy.2008.06.003
10.1002/jgrd.50430
10.1109/LGRS.2017.2691013
10.1002/joc.655
10.1080/01431160802192160
10.1109/TGRS.2007.909951
10.1080/01431161.2016.1246775
10.1109/LGRS.2015.2498644
10.1016/j.isprsjprs.2019.05.004
10.1007/s00271-008-0114-3
10.4209/aaqr.2016.11.0484
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright Elsevier BV May 2020
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright Elsevier BV May 2020
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
DOI 10.1016/j.rse.2020.111716
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Materials Research Database
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
ExternalDocumentID 10_1016_j_rse_2020_111716
S0034425720300857
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
41~
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
VOH
WH7
WUQ
XOL
ZCA
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
ID FETCH-LOGICAL-c358t-72b7b28f9e3abcef8638c91b86e2e342b761e601c2a5a2502dd6cca7678636cd3
IEDL.DBID .~1
ISSN 0034-4257
IngestDate Fri Jul 11 05:11:19 EDT 2025
Wed Aug 13 06:16:46 EDT 2025
Tue Jul 01 03:51:23 EDT 2025
Thu Apr 24 23:07:51 EDT 2025
Fri Feb 23 02:48:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Environmental remote sensing
Neural network
Parameter retrieval
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-72b7b28f9e3abcef8638c91b86e2e342b761e601c2a5a2502dd6cca7678636cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5635-8499
0000-0002-4140-1869
0000-0001-6890-3650
0000-0001-7140-2224
PQID 2441309948
PQPubID 2045405
ParticipantIDs proquest_miscellaneous_2388747731
proquest_journals_2441309948
crossref_primary_10_1016_j_rse_2020_111716
crossref_citationtrail_10_1016_j_rse_2020_111716
elsevier_sciencedirect_doi_10_1016_j_rse_2020_111716
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Remote sensing of environment
PublicationYear 2020
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Zhang, Zhang, Huang, Hong, Meng (bb1415) 2017; 6
Baghdadi, Gaultier, King (bb0055) 2002; 28
Shen, Meng, Zhang (bb1040) 2016; 54
Yang, Shen, Zhang, He, Li (bb1345) 2015; 53
Savin, Stathakis, Negre, Isaev (bb0985) 2007; 33
Wang, Li, Tang, Zeng, Li (bb1215) 2013; 34
Karpatne, Watkins, Read, Kumar (bb0480) 2017
Venkateshwarlu, Gopal, Prakash (bb1190) 2004; 3
Yang, Zhu, Zhao, Liu, Tong (bb1330) 2011; 54
Huang, Zeng, Wu, Mao, Xu, Su (bb0410) 2011; 9
Pierdicca, Castracane, Pulvirenti (bb0865) 2008; 8
Cho, van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (bb0160) 2014
Çiftçi, Kuter, Akyürek, Weber (bb0175) 2017; 4
Şenkal (bb1015) 2010; 35
Tedesco, Pulliainen, Takala, Hallikainen, Pampaloni (bb1145) 2004; 90
Liu, Shi, Zhang, Zeng, Wang, Tao, Gao (bb0700) 2017; 189
Xiao, Liang, Wang, Xiang, Zhao, Song (bb1270) 2016; 54
Eroglu, Kurum, Boyd, Gurbuz (bb0265) 2019; 11
Li, Yang, Zhang, Qi, Li (bb0650) 2019; 173
Zhang, Zhang, Du (bb1410) 2016; 4
Yuan, Jia (bb1365) 2015
Lu, Zhuang (bb0705) 2010; 114
Peng, Loew, Merlin, Verhoest (bb0860) 2017; 55
Aires, Prigent, Rossow (bb0010) 2005; 110
Zeng, Shen, Zhang (bb1390) 2013; 131
Chai, Qu, Zhang, Liang, Wang (bb0120) 2012; 33
Hsu, Gao, Sorooshian, Gupta (bb0390) 1997; 36
Liou, Liu, Wang (bb0675) 2001; 39
Li, Shen, Yuan, Zhang (bb0640) 2018
Sobayo, Wu, Ray, Qian (bb1075) 2018
Xiao, Zhang, Zhong, Shao, Li (bb1275) 2018; 210
Davis, Chen, Tsang, Hwang, Chang (bb0205) 1993; 31
Notarnicola, Angiulli, Posa (bb0800) 2008; 46
Jang, Viau, Anctil (bb0430) 2004; 25
Wang, Liang, Augustine (bb1205) 2009; 47
Panda, Ames, Panigrahi (bb0840) 2010; 2
Freeman, Taylor, Gharabaghi, The (bb0315) 2018; 68
Trajkovic, Stankovic, Todorovic (bb1170) 2000; 126
Khoob (bb0500) 2008; 26
Schütt, Arbabzadah, Chmiela, Müller, Tkatchenko (bb0995) 2017; 8
Hu, Huang, Li, Zhang (bb0400) 2018; 217
Zang, Mao, Guo, Wang, Pan, Shen, Zhu, Wang (bb1380) 2019; 658
Duro, Franklin, Dubé (bb0255) 2012; 118
Eissa, Marpu, Gherboudj, Ghedira, Ouarda, Chiesa (bb0260) 2013; 89
Crow, Berg, Cosh, Loew, Mohanty, Panciera, de Rosnay, Ryu, Walker (bb0185) 2012; 50
Tapiador, Kidd, Hsu, Marzano (bb1135) 2004; 11
Liao, Shen, Dong (bb0665) 2013; 7
Shaker, Yan, LaRocque (bb1025) 2019; 152
Reddy, Prasad (bb0895) 2018; 4
Shen, Laloy, Elshorbagy, Albert, Bales, Chang, Ganguly, Hsu, Kifer, Fang (bb1045) 2018; 22
Zhang, Zhang, Zhang, Nie, Gui, Que (bb1440) 2018; 15
Di, Kloog, Koutrakis, Lyapustin, Wang, Schwartz (bb0230) 2016; 50
Wang, Tran, Desai, Lobell, Ermon (bb1220) 2018
Qin, Wang, Lin, Zhang, Bilal (bb0870) 2018; 10
Fang, Pan, Shen (bb0280) 2018
Li, Liang, Wang, Qin (bb0605) 2007; 79
Trombetti, Riano, Rubio, Cheng, Ustin (bb1180) 2008; 112
Kuwata, Shibasaki (bb0565) 2015
Rodríguez-Fernández, de Souza, Kerr, Richaume, Al Bitar (bb0925) 2017
Goodfellow, Bengio, Courville (bb0345) 2016
Huang, Zhao, Song (bb0415) 2018; 214
Benediktsson, Sveinsson (bb0075) 1997; 18
Hosseini, McNairn, Mitchell, Robertson, Davidson, Homayouni (bb0380) 2019; 83
Cui, Long, Hong, Zeng, Zhou, Han, Liu, Wan (bb0190) 2016; 543
Tanikawa, Li, Kuchiki, Aoki, Hori, Stamnes (bb1110) 2015; 23
Zhang, Sargent, Pan, Li, Gardiner, Hare, Atkinson (bb1450) 2019; 221
Şahin, Kaya, Uyar, Yıldırım (bb0955) 2014; 38
Zhang, Pan, Li, Gardiner, Sargent, Hare, Atkinson (bb1425) 2018; 140
Nabavi, Haimberger, Abbasi, Samimi (bb0770) 2018; 35
Wagle, Xiao, Gowda, Basara, Brunsell, Steiner, K.C (bb1200) 2017; 232
Kaba, Sarıgül, Avcı, Kandırmaz (bb0475) 2018; 162
Liang (bb0655) 2005
Shen, Jiang, Li, Cheng, Zeng, Zhang (bb1055) 2020
Alipour, Yarahmadi, Mahdavi (bb0025) 2014; 2014
O'Reilly, Maritorena, Mitchell, Siegel, Carder, Garver, Kahru, McClain (bb0810) 1998; 103
Srivastava, Han, Ramirez, Islam (bb1085) 2013; 27
Deo, Mehmet (bb0215) 2017; 72
Frate, Solimini (bb0310) 2004; 42
Jo, Kim, Kim (bb0465) 2018; 26
Shwetha, Kumar (bb1060) 2016; 117
Zhao, Huang, Zhong (bb1470) 2017; 14
Yan, Mas, Maathuis, Xiangmin, Van Dijk (bb1315) 2006; 27
Mao, Shi, Tang, Li, Wang, Chen (bb0735) 2008; 46
Besnard, Carvalhais, Clevers, Dutrieux, Gans, Herold, Reichstein, Jung (bb0085) 2017
Santi, Paloscia, Pettinato, Brocca, Ciabatta (bb0970) 2016; 9
Musavi, Miller, Ressom, Natarajan (bb0760) 2002
Tao, Gao, Ihler, Sorooshian, Hsu (bb1125) 2017; 18
Das, Ghosh (bb0200) 2017; 10
Jiménez, Clark, Kolassa, Aires, Prigent (bb0455) 2013; 118
Kumar, Raghuwanshi, Singh (bb0555) 2009; 14
Liang, Li, Lei, Wang, Gao (bb0660) 2011; 44
Hu, Xu, Yu (bb0405) 2018; XLII-3
Taylor, Kazadzis, Tsekeri, Gkikas, Amiridis (bb1140) 2014; 7
Zhang, Zhao, Deng, Xu, Zhang (bb1420) 2017; 70
Tao, Hsu, Ihler, Gao, Sorooshian (bb1130) 2018; 19
Nock, Gilmour, Elmore, Leadbetter, Sweeney, Petry (bb0795) 2019
Mahdianpari, Salehi, Rezaee, Mohammadimanesh, Zhang (bb0725) 2018; 10
Foody (bb0300) 1995; 9
García-Pedrero, Gonzalo-Martín, Lillo-Saavedra, Rodriguéz-Esparragón, Menasalvas (bb0330) 2017
Gatebe, Li, Chen, Fan, Poudyal, Brucker, Stamnes (bb0335) 2018
Tao, Gao, Ihler, Hsu, Sorooshian (bb1120) 2016
Yang, Huang, Wang, Wang, Liu (bb1320) 2007; 8
Goyal, Ojha (bb0350) 2012; 32
Li, Shen, Yuan, Zhang, Zhang (bb0625) 2017; 44
Kolassa, Aires, Polcher, Prigent, Jimenez, Pereira (bb0515) 2013; 118
Meng, Zhang, Xie, Yao, Chen, Zhang (bb0755) 2018; 2018
Castellanos, Silva (bb0110) 2017
Tanaka, Kishino, Doerffer, Schiller, Oishi, Kubota (bb1105) 2004; 60
Trajkovic (bb1165) 2005; 131
Xie, Sha, Yu, Bai, Zhang (bb1280) 2009; 220
Xiao, Liang, Wang, Chen, Yin, Zhang, Song (bb1265) 2014; 52
Bellerby, Todd, Kniveton, Kidd (bb0070) 2000; 39
Del Frate, Ferrazzoli, Schiavon (bb0210) 2003; 84
Ayzel, Heistermann, Sorokin, Nikitin, Lukyanova (bb0050) 2019; 150
Yang, Jia, Liang, Wei, Yao, Zhang (bb5000) 2017; 9
Chen, Lee, Gan, Peres, Fraisse, Zhang, He (bb0145) 2019; 11
Paloscia, Pettinato, Santi, Notarnicola, Pasolli, Reppucci (bb0835) 2013; 134
Overpeck, Meehl, Bony, Easterling (bb0815) 2011; 331
Ndikumana, Dinh Ho Tong, Baghdadi, Courault, Hossard (bb0780) 2018; 10
Santi, Paloscia, Pettinato, Brocca, Ciabatta, Entekhabi (bb0975) 2018; 212
Santi, Paloscia, Pettinato, Brocca, Ciabatta, Entekhabi (bb0980) 2018; 65
Johnson, Hsieh, Cannon, Davidson, Bédard (bb0470) 2016; 218–219
Linares-rodriguez, Ruiz-arias, Pozo-vazquez, Tovar-pescador (bb0670) 2013; 61
Yang, Dong, Sun, Lima, Mu, Wang (bb1350) 2018; 15
Lanzaco, Olcese, Palancar, Toselli (bb0575) 2017; 17
Schoof, Pryor (bb0990) 2001; 21
Xu, Zhu, Fu, Dong, Xiao (bb1295) 2017; 91
Wen, Liu, Yao, Peng, Li, Hu, Chi (bb1240) 2019; 654
Zhan, Chen, Zhou, Wang, Liu, Voogt, Zhu (bb1400) 2013; 131
Nagamani, Chauhan, Dwivedi (bb0775) 2007; 35
Dong, Yang, Reindl, Walsh (bb0250) 2014; 79
Marçais, de Dreuzy (bb0750) 2017; 55
Li, Fang, Wu, Wang (bb0635) 2018
Yang, Gong, Fu, Zhang, Chen, Liang, Xu, Shi, Dickinson (bb1340) 2013; 3
Chen, Chandrasekar, Tan, Cifelli (bb0140) 2019; 46
Kolassa, Reichle, Draper (bb0525) 2017; 191
Snauffer, Hsieh, Cannon, Schnorbus (bb1070) 2018; 12
Şahin (bb0945) 2013; 34
Pantazi, Moshou, Alexandridis, Whetton, Mouazen (bb0850) 2016; 121
Zhang, Sargent, Pan, Li, Gardiner, Hare, Atkinson (bb1430) 2018; 216
Liu, Wu (bb0685) 2016; 91
Ienco, Interdonato, Gaetano, Minh (bb0420) 2019; 158
Chai, Walker, Makarynskyy, Kuhn, Veenendaal, West (bb0115) 2009; 2
Ustaoglu, Cigizoglu, Karaca (bb1185) 2008; 15
Xu, Yuan, Li, Shen, Zhang, Jiang (bb1300) 2018; 10
Akhand, Nizamuddin, Roytman, Kogan (bb0015) 2016; 9975
Jiang, Cui, Zhou, Cao, Ieee (bb0440) 2018
Park, Kwon, Heo, Hu, Liu, Moon (bb0855) 2020; 256
Yeom, Park, Chae, Kim, Lee (bb1355) 2019; 19
Jiang, Lu, Qin, Tang, Yao (bb0445) 2019; 114
Gaetano, Ienco, Ose, Cresson (bb0320) 2018; 10
Santi, Paloscia, Pettinato, Fontanelli (bb0965) 2014
Interdonato, Ienco, Gaetano, Ose (bb0425) 2019; 149
Wei, Zheng, Yang (bb1235) 2016
Yadav, Chandel (bb1310) 2014; 33
Lipton, Berkowitz, Elkan (bb0680) 2015
Nijhawan, Das, Raman (bb0790) 2018
Sudheer, Gosain, Ramasastri (bb1090) 2003; 129
Ma, Liu, Zhang, Ye, Yin, Johnson (bb0720) 2019; 152
Yang, Pu, Huang, Wang, Zhao (bb1325) 2010; 48
Chlingaryan, Sukkarieh, Whelan (bb0155) 2018; 151
Lanzaco, Olcese, Palancar, Toselli (bb0570) 2016; 16
Aires, Prigent, Rothstein (bb0005) 2001; 106
Wolanin, Camps-Valls, Gómez-Chova, Mateo-Garcí, Tol, Zhang, Guanter (bb1245) 2019; 225
Wang, Liang, Liu (bb1225) 2019; 7
Ndikumana, Minh, Baghdadi, Courault, Hossard (bb0785) 2018
Ma, Li, Ma, Cheng, Du, Liu (bb0715) 2017; 130
Ball, Anderson, Chan (bb0065) 2017; 11
Krasnopolsky, Nadiga, Mehra, Bayler, Behringer (bb0540) 2016; 2016
Bengio, Courville, Vincent (bb0080) 2013; 35
Paloscia, Pampaloni, Pettinato, Santi (bb0830) 2010; 31
Di Noia, Hasekamp (bb0225) 2018
Xing, Chen, Zhang, Gong (bb1285) 2017; 9
Chu, Liu, Li, Liu, Lu, Lu, Mao, Chen, Li, Ren (bb0170) 2016; 7
Qiu, Mou, Schmitt, Zhu (bb0875) 2019; 154
Vucetic, Han, Mi, Li, Obradovic (bb1195) 2008; 5
Diao, Sun, Zheng, Dou, Wang, Fu (bb0240) 2016; 13
Tong, Xia, Lu, Shen, Li, You, Zhang (bb1155) 2020; 237
Trajkovic, Todorovic, Stankovic (bb1175) 2003; 129
Scott, Marcum, Davis, Nivin (bb1005) 2017; 14
Awad (bb0045) 2014; 24
Zhong, Gong, Li, Schönlieb (bb1480) 2017; 55
Wang, Yan, Chen (bb1210) 2012; 124
Jia, Liang, Gu, Baret, Wei, Wang, Yao, Yang, Li (bb0435) 2016; 177
Lv, Dou, Niu, Xu, Xu, Xia (bb0710) 2015; 2015
Kizil, Genç, Inalpulat, Şapolyo, Mirik (bb0510) 2012; 99
Tao, Gao, Hsu, Sorooshian, Ihler (bb1115) 2016; 17
Li, Liang, Huang, Zhu (bb0615) 2010
Gupta, Christopher (bb0360) 2009; 114
Cho, Choi, Park (bb0165) 2018; 215
Zhang, Gong, Wang (bb1445) 2018; 210
Liu, Liu, Li, Fang, Chi (bb0695) 2010; 106
Zhao, Guo, Yue, Zhang, Luo (bb1465) 2015; 36
Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais, Prabhat (bb0900) 2019; 566
Nussbaumer, Pinker (bb0805) 2012; 117
Zhang, Ma, Zhang (bb1405) 2016; 13
Ristovski, Vucetic, Obradovic (bb0905) 2012; 50
Corsini, Diani, Grasso, De Martino, Mantero, Serpico (bb0180) 2003; 24
Liu, Liou, Wang, Wigneron, Lee (bb0690) 2002; 40
Bose, Kasabov, Bruzzone, Hartono (bb0095) 2016; 54
Xu, Guo, Liu, He, Meng, Xu, Xia, Xiao, Zhang, Ma (bb1305) 2018; 123
Hong, Hsu, Sorooshian, Gao (bb0375) 2004; 43
Zeiler, Fergus (bb1385) 2014
Cao, Yang, Zhu (bb0105) 2008; 18
Di, Koutrakis, Schwartz (bb0235) 2016; 131
Myint, Gober, Brazel, Grossman-Clarke, Weng (bb0765) 2011; 115
Özerdem, Acar, Ekinci (bb0
Panda (10.1016/j.rse.2020.111716_bb0840) 2010; 2
Akhand (10.1016/j.rse.2020.111716_bb0015) 2016; 9975
Lee (10.1016/j.rse.2020.111716_bb0595) 2018; 56
Han (10.1016/j.rse.2020.111716_bb0365) 1997; 37
Kolios (10.1016/j.rse.2020.111716_bb0535) 2019; 11
Zhang (10.1016/j.rse.2020.111716_bb1445) 2018; 210
Bengio (10.1016/j.rse.2020.111716_bb0080) 2013; 35
Chai (10.1016/j.rse.2020.111716_bb0120) 2012; 33
Trajkovic (10.1016/j.rse.2020.111716_bb1165) 2005; 131
Deo (10.1016/j.rse.2020.111716_bb0215) 2017; 72
Santi (10.1016/j.rse.2020.111716_bb0975) 2018; 212
Zhong (10.1016/j.rse.2020.111716_bb1480) 2017; 55
Yang (10.1016/j.rse.2020.111716_bb1320) 2007; 8
Kuwata (10.1016/j.rse.2020.111716_bb0565) 2015
Jiao (10.1016/j.rse.2020.111716_bb0450) 2015; 162
Jiménez (10.1016/j.rse.2020.111716_bb0455) 2013; 118
Li (10.1016/j.rse.2020.111716_bb0615) 2010
Fang (10.1016/j.rse.2020.111716_bb0275) 2017; 44
Hong (10.1016/j.rse.2020.111716_bb0375) 2004; 43
Sudheer (10.1016/j.rse.2020.111716_bb1090) 2003; 129
Li (10.1016/j.rse.2020.111716_bb0635) 2018
Ma (10.1016/j.rse.2020.111716_bb0720) 2019; 152
Trajkovic (10.1016/j.rse.2020.111716_bb1175) 2003; 129
Wen (10.1016/j.rse.2020.111716_bb1240) 2019; 654
Ayzel (10.1016/j.rse.2020.111716_bb0050) 2019; 150
Xu (10.1016/j.rse.2020.111716_bb1300) 2018; 10
Shen (10.1016/j.rse.2020.111716_bb1030) 2018; 99
Davis (10.1016/j.rse.2020.111716_bb0205) 1993; 31
Xiao (10.1016/j.rse.2020.111716_bb1270) 2016; 54
Mao (10.1016/j.rse.2020.111716_bb0745) 2018; 28
Rodríguez-Fernández (10.1016/j.rse.2020.111716_bb0920) 2016; 8
Chu (10.1016/j.rse.2020.111716_bb0170) 2016; 7
Quesada-Ruiz (10.1016/j.rse.2020.111716_bb0880) 2015; 115
Kizil (10.1016/j.rse.2020.111716_bb0510) 2012; 99
Chai (10.1016/j.rse.2020.111716_bb0115) 2009; 2
Lu (10.1016/j.rse.2020.111716_bb0705) 2010; 114
Benediktsson (10.1016/j.rse.2020.111716_bb0075) 1997; 18
Mao (10.1016/j.rse.2020.111716_bb0740) 2008; 29
Reichstein (10.1016/j.rse.2020.111716_bb0900) 2019; 566
Han (10.1016/j.rse.2020.111716_bb0370) 2006; 19
Nagamani (10.1016/j.rse.2020.111716_bb0775) 2007; 35
Kussul (10.1016/j.rse.2020.111716_bb0560) 2017; 14
Santi (10.1016/j.rse.2020.111716_bb0965) 2014
Castellanos (10.1016/j.rse.2020.111716_bb0110) 2017
Crow (10.1016/j.rse.2020.111716_bb0185) 2012; 50
Lanzaco (10.1016/j.rse.2020.111716_bb0570) 2016; 16
Santi (10.1016/j.rse.2020.111716_bb0980) 2018; 65
Yang (10.1016/j.rse.2020.111716_bb1350) 2018; 15
Jo (10.1016/j.rse.2020.111716_bb0465) 2018; 26
Kumar (10.1016/j.rse.2020.111716_bb0545) 2002; 128
Schütt (10.1016/j.rse.2020.111716_bb0995) 2017; 8
Wolanin (10.1016/j.rse.2020.111716_bb1245) 2019; 225
Baghdadi (10.1016/j.rse.2020.111716_bb0055) 2002; 28
Mao (10.1016/j.rse.2020.111716_bb0735) 2008; 46
Rodríguez-Fernández (10.1016/j.rse.2020.111716_bb0925) 2017
Chen (10.1016/j.rse.2020.111716_bb0140) 2019; 46
Jin (10.1016/j.rse.2020.111716_bb0460) 2019; 8
Wang (10.1016/j.rse.2020.111716_bb1210) 2012; 124
Xie (10.1016/j.rse.2020.111716_bb1280) 2009; 220
Eroglu (10.1016/j.rse.2020.111716_bb0265) 2019; 11
Zhao (10.1016/j.rse.2020.111716_bb1455) 2016; 113
Zhang (10.1016/j.rse.2020.111716_bb1410) 2016; 4
Li (10.1016/j.rse.2020.111716_bb0645) 2018; 123
Jiang (10.1016/j.rse.2020.111716_bb0445) 2019; 114
Keiner (10.1016/j.rse.2020.111716_bb0490) 1999; 20
Nijhawan (10.1016/j.rse.2020.111716_bb0790) 2018
Xu (10.1016/j.rse.2020.111716_bb1295) 2017; 91
Li (10.1016/j.rse.2020.111716_bb0620) 2016; 37
Nock (10.1016/j.rse.2020.111716_bb0795) 2019
Notarnicola (10.1016/j.rse.2020.111716_bb0800) 2008; 46
Liou (10.1016/j.rse.2020.111716_bb0675) 2001; 39
Tao (10.1016/j.rse.2020.111716_bb1125) 2017; 18
Giménez (10.1016/j.rse.2020.111716_bb0340) 2008
Huang (10.1016/j.rse.2020.111716_bb0415) 2018; 214
O'Reilly (10.1016/j.rse.2020.111716_bb0810) 1998; 103
Wang (10.1016/j.rse.2020.111716_bb1205) 2009; 47
Goyal (10.1016/j.rse.2020.111716_bb0350) 2012; 32
Di Noia (10.1016/j.rse.2020.111716_bb0225) 2018
Qiu (10.1016/j.rse.2020.111716_bb0875) 2019; 154
Park (10.1016/j.rse.2020.111716_bb0855) 2020; 256
Çiftçi (10.1016/j.rse.2020.111716_bb0175) 2017; 4
Zang (10.1016/j.rse.2020.111716_bb1380) 2019; 658
Foody (10.1016/j.rse.2020.111716_bb0300) 1995; 9
Şenkal (10.1016/j.rse.2020.111716_bb1015) 2010; 35
Özerdem (10.1016/j.rse.2020.111716_bb0820) 2017; 9
Kaba (10.1016/j.rse.2020.111716_bb0475) 2018; 162
Zeiler (10.1016/j.rse.2020.111716_bb1385) 2014
Liu (10.1016/j.rse.2020.111716_bb0700) 2017; 189
Şahin (10.1016/j.rse.2020.111716_bb0955) 2014; 38
Zeng (10.1016/j.rse.2020.111716_bb1395) 2018; 141
Hsu (10.1016/j.rse.2020.111716_bb0390) 1997; 36
Evora (10.1016/j.rse.2020.111716_bb0270) 2008; 46
Krasnopolsky (10.1016/j.rse.2020.111716_bb0540) 2016; 2016
Tanikawa (10.1016/j.rse.2020.111716_bb1110) 2015; 23
Shwetha (10.1016/j.rse.2020.111716_bb1060) 2016; 117
Li (10.1016/j.rse.2020.111716_bb0605) 2007; 79
Yang (10.1016/j.rse.2020.111716_bb1340) 2013; 3
Liu (10.1016/j.rse.2020.111716_bb0690) 2002; 40
Tracewski (10.1016/j.rse.2020.111716_bb1160) 2017; 20
Gaetano (10.1016/j.rse.2020.111716_bb0320) 2018; 10
Scott (10.1016/j.rse.2020.111716_bb1000) 2017; 14
Huang (10.1016/j.rse.2020.111716_bb0410) 2011; 9
Yan (10.1016/j.rse.2020.111716_bb1315) 2006; 27
Boyd (10.1016/j.rse.2020.111716_bb0100) 2002; 22
Gruber (10.1016/j.rse.2020.111716_bb0355) 2014
Hu (10.1016/j.rse.2020.111716_bb0395) 2015; 7
Paloscia (10.1016/j.rse.2020.111716_bb0830) 2010; 31
Safa (10.1016/j.rse.2020.111716_bb0940) 2014; 2
Shen (10.1016/j.rse.2020.111716_bb1035) 2015; 3
Alemohammad (10.1016/j.rse.2020.111716_bb0020) 2018; 22
Bose (10.1016/j.rse.2020.111716_bb0095) 2016; 54
Savin (10.1016/j.rse.2020.111716_bb0985) 2007; 33
Cheng (10.1016/j.rse.2020.111716_bb0150) 2014; 92
Pierdicca (10.1016/j.rse.2020.111716_bb0865) 2008; 8
Wang (10.1016/j.rse.2020.111716_bb1230) 2019; 9
Zhao (10.1016/j.rse.2020.111716_bb1465) 2015; 36
Hosseini (10.1016/j.rse.2020.111716_bb0380) 2019; 83
Duro (10.1016/j.rse.2020.111716_bb0255) 2012; 118
Tao (10.1016/j.rse.2020.111716_bb1130) 2018; 19
Yadav (10.1016/j.rse.2020.111716_bb1310) 2014; 33
Wu (10.1016/j.rse.2020.111716_bb1260) 2019; 11
Augusteijn (10.1016/j.rse.2020.111716_bb0040) 1998; 19
Lipton (10.1016/j.rse.2020.111716_bb0680) 2015
Myint (10.1016/j.rse.2020.111716_bb0765) 2011; 115
Cho (10.1016/j.rse.2020.111716_bb0165) 2018; 215
Karpatne (10.1016/j.rse.2020.111716_bb0480) 2017
Zhao (10.1016/j.rse.2020.111716_bb1470) 2017; 14
Qin (10.1016/j.rse.2020.111716_bb0870) 2018; 10
Shen (10.1016/j.rse.2020.111716_bb1045) 2018; 22
Rodriguez-Fernandez (10.1016/j.rse.2020.111716_bb0915) 2015; 53
Zhang (10.1016/j.rse.2020.111716_bb1415) 2017; 6
Venkateshwarlu (10.1016/j.rse.2020.111716_bb1190) 2004; 3
Ball (10.1016/j.rse.2020.111716_bb0065) 2017; 11
Liao (10.1016/j.rse.2020.111716_bb0665) 2013; 7
Shen (10.1016/j.rse.2020.111716_bb1050) 2018; 123
Eissa (10.1016/j.rse.2020.111716_bb0260) 2013; 89
Sun (10.1016/j.rse.2020.111716_bb1095) 2019; 16
Jia (10.1016/j.rse.2020.111716_bb0435) 2016; 177
Marçais (10.1016/j.rse.2020.111716_bb0750) 2017; 55
Di (10.1016/j.rse.2020.111716_bb0235) 2016; 131
Scott (10.1016/j.rse.2020.111716_bb1005) 2017; 14
Li (10.1016/j.rse.2020.111716_bb0630) 2017; 152
Hou (10.1016/j.rse.2020.111716_bb0385) 2014; 52
Trajkovic (10.1016/j.rse.2020.111716_bb1170) 2000; 126
Ndikumana (10.1016/j.rse.2020.111716_bb0780) 2018; 10
Kolassa (10.1016/j.rse.2020.111716_bb0530) 2018; 204
Zhang (10.1016/j.rse.2020.111716_bb1405) 2016; 13
Wang (10.1016/j.rse.2020.111716_bb1225) 2019; 7
Paloscia (10.1016/j.rse.2020.111716_bb0825) 2008; 46
Yuan (10.1016/j.rse.2020.111716_bb1365) 2015
Li (10.1016/j.rse.2020.111716_bb0650) 2019; 173
Bellerby (10.1016/j.rse.2020.111716_bb0070) 2000; 39
García-Pedrero (10.1016/j.rse.2020.111716_bb0330) 2017
Jang (10.1016/j.rse.2020.111716_bb0430) 2004; 25
Kumar (10.1016/j.rse.2020.111716_bb0555) 2009; 14
Lee (10.1016/j.rse.2020.111716_bb0590) 2017; 26
Lanzaco (10.1016/j.rse.2020.111716_bb0575) 2017; 17
Dobreva (10.1016/j.rse.2020.111716_bb0245) 2011; 115
Jiang (10.1016/j.rse.2020.111716_bb0440) 2018
Vucetic (10.1016/j.rse.2020.111716_bb1195) 2008; 5
Panda (10.1016/j.rse.2020.111716_bb0845) 2018; 10
Peng (10.1016/j.rse.2020.111716_bb0860) 2017; 55
Snauffer (10.1016/j.rse.2020.111716_bb1070) 2018; 12
Tao (10.1016/j.rse.2020.111716_bb1120) 2016
Khoob (10.1016/j.rse.2020.111716_bb0495) 2008; 27
Lv (10.1016/j.rse.2020.111716_bb0710) 2015; 2015
Şahin (10.1016/j.rse.2020.111716_bb0950) 2013; 51
Smith (10.1016/j.rse.2020.111716_bb1065) 2006; 3
Del Frate (10.1016/j.rse.2020.111716_bb0210) 2003; 84
Hu (10.1016/j.rse.2020.111716_bb0405) 2018; XLII-3
Diao (10.1016/j.rse.2020.111716_bb0240) 2016; 13
Yeom (10.1016/j.rse.2020.111716_bb1355) 2019; 19
Zhang (10.1016/j.rse.2020.111716_bb1420) 2017; 70
Ristovski (10.1016/j.rse.2020.111716_bb0905) 2012; 50
Wang (10.1016/j.rse.2020.111716_bb1215) 2013; 34
Aires (10.1016/j.rse.2020.111716_bb0005) 2001; 106
Corsini (10.1016/j.rse.2020.111716_bb0180) 2003; 24
Levy (10.1016/j.rse.2020.111716_bb0600) 2007; 112
Cao (10.1016/j.rse.2020.111716_bb0105) 2008; 18
Kolassa (10.1016/j.rse.2020.111716_bb0515) 2013; 118
Srivastava (10.1016/j.rse.2020.111716_bb1085) 2013; 27
Blaschke (10.1016/j.rse.2020.111716_bb0090) 2010; 65
Kim (10.1016/j.rse.2020.111716_bb0505) 2019; 8
Scott (10.1016/j.rse.2020.111716_bb1010) 2018; 15
Frate (10.1016/j.rse.2020.111716_bb0310) 2004; 42
Kaul (10.1016/j.rse.2020.111716_bb0485) 2005; 85
Yuan (10.1016/j.rse.2020.111716_bb1370) 2020; 580
Li (10.1016/j.rse.2020.111716_bb0625) 2017; 44
Goodfellow (10.1016/j.rse.2020.111716_bb0345) 2016
Zhang (10.1016/j.rse.2020.111716_bb1425) 2018; 140
Liu (10.1016/j.rse.2020.111716_bb0695) 2010; 106
Rahimikhoob (10.1016/j.rse.2020.111716_bb0890) 2016; 30
Zhao (10.1016/j.rse.2020.111716_bb1460) 2007
Lary (10.1016/j.rse.2020.111716_bb0580) 2009; 6
Xing (10.1016/j.rse.2020.111716_bb1290) 2018; 141
Santi (10.1016/j.rse.2020.111716_bb0960) 2012; 16
Rahimikhoob (10.1016/j.rse.2020.111716_bb0885) 2010; 101
Ustaoglu (10.1016/j.rse.2020.111716_bb1185) 2008; 15
Chlingaryan (10.1016/j.rse.2020.111716_bb0155) 2018; 151
Das (10.1016/j.rse.2020.111716_bb0200) 2017; 10
Zhu (10.1016/j.rse.2020.111716_bb1485) 2017; 5
Yang (10.1016/j.rse.2020.111716_bb1335) 2012; 142
Taylor (10.1016/j.rse.2020.111716_bb1140) 2014; 7
Mahdianp
References_xml – start-page: 1349
  year: 2016
  end-page: 1355
  ident: bb1120
  article-title: Deep Neural Networks for Precipitation Estimation From Remotely Sensed Information
– volume: 241
  start-page: 654
  year: 2018
  end-page: 663
  ident: bb1375
  article-title: Estimating hourly PM1 concentrations from Himawari-8 aerosol optical depth in China
  publication-title: Environ. Pollut.
– volume: 36
  start-page: 3368
  year: 2015
  end-page: 3379
  ident: bb1465
  article-title: On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery
  publication-title: Int. J. Remote Sens.
– volume: 162
  start-page: 126
  year: 2018
  end-page: 135
  ident: bb0475
  article-title: Estimation of daily global solar radiation using deep learning model
  publication-title: Energy
– volume: 11
  start-page: 1022
  year: 2019
  ident: bb0535
  article-title: Quantitative aerosol optical depth detection during dust outbreaks from Meteosat imagery using an artificial neural network model
  publication-title: Remote Sens.
– volume: 124
  start-page: 61
  year: 2012
  end-page: 71
  ident: bb1210
  article-title: Consistent retrieval methods to estimate land surface shortwave and longwave radiative flux components under clear-sky conditions
  publication-title: Remote Sens. Environ.
– volume: 210
  start-page: 48
  year: 2018
  end-page: 64
  ident: bb1275
  article-title: Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 87
  year: 2019
  end-page: 97
  ident: bb0460
  article-title: Deep neural network algorithm for estimating maize biomass based on simulated Sentinel 2A vegetation indices and leaf area index
  publication-title: The Crop Journal
– volume: 21
  start-page: 5201
  year: 2017
  end-page: 5216
  ident: bb0930
  article-title: SMOS near-real-time soil moisture product: processor overview and first validation results
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 55
  start-page: 3516
  year: 2017
  end-page: 3530
  ident: bb1480
  article-title: Learning to diversify deep belief networks for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 46
  start-page: 1925
  year: 2008
  end-page: 1939
  ident: bb0270
  article-title: Combining artificial neural network models, geostatistics, and passive microwave data for snow water equivalent retrieval and mapping
  publication-title: IEEE Transactions on Geoscience Remote Sensing
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 11
  ident: bb0755
  article-title: Combined use of GF-3 and Landsat-8 satellite data for soil moisture retrieval over agricultural areas using artificial neural network
  publication-title: Adv. Meteorol.
– volume: 158
  start-page: 11
  year: 2019
  end-page: 22
  ident: bb0420
  article-title: Combining Sentinel-1 and Sentinel-2 satellite image time series for land cover mapping via a multi-source deep learning architecture
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 580
  start-page: 124351
  year: 2020
  ident: bb1370
  article-title: Estimating surface soil moisture from satellite observations using a generalized regression neural network trained on sparse ground-based measurements in the continental U.S.
  publication-title: J. Hydrol.
– volume: 102
  start-page: 148
  year: 2015
  end-page: 160
  ident: bb0130
  article-title: Spatio-temporal prediction of leaf area index of rubber plantation using HJ-1A/1B CCD images and recurrent neural network
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 79
  start-page: 9
  year: 2007
  ident: bb0605
  article-title: Estimating crop yield from multi-temporal satellite data using multivariate regression and neural network techniques
  publication-title: Photogramm. Eng. Remote Sens.
– start-page: 207
  year: 2018
  end-page: 210
  ident: bb1075
  article-title: Integration of convolutional neural network and thermal images into soil moisture estimation
  publication-title: 2018 1st International Conference on Data Intelligence and Security (ICDIS)
– volume: 52
  start-page: 5601
  year: 2014
  end-page: 5611
  ident: bb0385
  article-title: Improving mountainous snow cover fraction mapping via artificial neural networks combined with MODIS and ancillary topographic data
  publication-title: IEEE Transactions on Geoscience Remote Sensing
– year: 2018
  ident: bb0785
  article-title: Applying deep learning for agricultural classification using multitemporal SAR Sentinel-1 for Camargue, France
  publication-title: Image and Signal Processing for Remote Sensing Xxiv
– volume: 216
  start-page: 57
  year: 2018
  end-page: 70
  ident: bb1430
  article-title: An object-based convolutional neural network (OCNN) for urban land use classification
  publication-title: Remote Sens. Environ.
– volume: 103
  start-page: 24937
  year: 1998
  end-page: 24953
  ident: bb0810
  article-title: Ocean color chlorophyll algorithms for SeaWiFS
  publication-title: J. Geophys. Res. Oceans
– volume: 50
  start-page: 4712
  year: 2016
  end-page: 4721
  ident: bb0230
  article-title: Assessing PM2.5 exposures with high spatiotemporal resolution across the continental United States
  publication-title: Environ. Sci. Technol.
– year: 2005
  ident: bb0655
  article-title: Quantitative Remote Sensing of Land Surfaces
– volume: 8
  year: 2016
  ident: bb0920
  article-title: Long term global surface soil moisture fields using an SMOS-trained neural network applied to AMSR-E data
  publication-title: Remote Sens.
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: bb0080
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 99
  start-page: 1
  year: 2018
  ident: bb1030
  article-title: Deep learning: a next-generation big-data approach for hydrology
  publication-title: EOS
– volume: 10
  year: 2018
  ident: bb1300
  article-title: Quality improvement of satellite soil moisture products by fusing with in-situ measurements and GNSS-R estimates in the western continental U.S
  publication-title: Remote Sens.
– volume: 68
  start-page: 866
  year: 2018
  end-page: 886
  ident: bb0315
  article-title: Forecasting air quality time series using deep learning
  publication-title: J. Air Waste Manage. Assoc.
– volume: 10
  start-page: 5228
  year: 2017
  end-page: 5236
  ident: bb0200
  article-title: A deep-learning-based forecasting ensemble to predict missing data for remote sensing analysis
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 14
  start-page: 1638
  year: 2017
  end-page: 1642
  ident: bb1005
  article-title: Fusion of deep convolutional neural networks for land cover classification of high-resolution imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 17
  start-page: 1623
  year: 2017
  end-page: 1636
  ident: bb0575
  article-title: An improved aerosol optical depth map based on machine-learning and MODIS data: development and application in South America
  publication-title: Aerosol Air Qual. Res.
– volume: 4
  start-page: 22
  year: 2016
  end-page: 40
  ident: bb1410
  article-title: Deep learning for remote sensing data: a technical tutorial on the state of the art
  publication-title: IEEE Geoscience and Remote Sensing Magazine
– volume: 114
  year: 2009
  ident: bb0360
  article-title: Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. A neural network approach
  publication-title: J. Geophys. Res. Atmos.
– volume: 26
  start-page: 4843
  year: 2017
  end-page: 4855
  ident: bb0590
  article-title: Going deeper with contextual CNN for hyperspectral image classification
  publication-title: IEEE Trans. Image Process.
– start-page: 2455
  year: 2014
  end-page: 2458
  ident: bb0355
  article-title: Performance inter-comparison of soil moisture retrieval models for the MetOp-A ASCAT instrument
  publication-title: Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International
– volume: 15
  start-page: 1451
  year: 2018
  end-page: 1455
  ident: bb1010
  article-title: Enhanced fusion of deep neural networks for classification of benchmark high-resolution image data sets
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 20
  start-page: 252
  year: 2017
  end-page: 268
  ident: bb1160
  article-title: Repurposing a deep learning network to filter and classify volunteered photographs for land cover and land use characterization
  publication-title: Geo-spatial Information Science
– volume: 204
  start-page: 43
  year: 2018
  end-page: 59
  ident: bb0530
  article-title: Estimating surface soil moisture from SMAP observations using a neural network technique
  publication-title: Remote Sens. Environ.
– start-page: 6291
  year: 2018
  end-page: 6293
  ident: bb0335
  article-title: Snow-covered area using machine learning techniques
  publication-title: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium
– volume: 37
  start-page: 251
  year: 1997
  end-page: 260
  ident: bb0365
  article-title: Estimation of daily soil water evaporation using an artificial neural network
  publication-title: J. Arid Environ.
– volume: 28
  start-page: 701
  year: 2002
  end-page: 711
  ident: bb0055
  article-title: Retrieving surface roughness and soil moisture from synthetic aperture radar (SAR) data using neural networks
  publication-title: Can. J. Remote. Sens.
– volume: 2015
  year: 2015
  ident: bb0710
  article-title: Urban land use and land cover classification using remotely sensed SAR data through deep belief networks
  publication-title: Journal of Sensors
– volume: 218–219
  start-page: 74
  year: 2016
  end-page: 84
  ident: bb0470
  article-title: Crop yield forecasting on the Canadian prairies by remotely sensed vegetation indices and machine learning methods
  publication-title: Agric. For. Meteorol.
– volume: 72
  start-page: 828
  year: 2017
  end-page: 848
  ident: bb0215
  article-title: Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland
  publication-title: Renew. Sust. Energ. Rev.
– volume: 52
  year: 2014
  ident: bb1265
  article-title: Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 40
  start-page: 1260
  year: 2002
  end-page: 1268
  ident: bb0690
  article-title: Retrieval of crop biomass and soil moisture from measured 1.4 and 10.65 GHz brightness temperatures
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 38
  start-page: 205
  year: 2014
  end-page: 212
  ident: bb0955
  article-title: Application of extreme learning machine for estimating solar radiation from satellite data
  publication-title: Int. J. Energy Res.
– volume: 24
  start-page: 3917
  year: 2003
  end-page: 3931
  ident: bb0180
  article-title: Radial basis function and multilayer perceptron neural networks for sea water optically active parameter estimation in case II waters: a comparison
  publication-title: Int. J. Remote Sens.
– volume: 15
  start-page: 207
  year: 2018
  end-page: 211
  ident: bb1350
  article-title: A CFCC-LSTM model for sea surface temperature prediction
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 60
  start-page: 519
  year: 2004
  end-page: 530
  ident: bb1105
  article-title: Development of a neural network algorithm for retrieving concentrations of chlorophyll, suspended matter and yellow substance from radiance data of the ocean color and temperature scanner
  publication-title: J. Oceanogr.
– volume: 118
  start-page: 259
  year: 2012
  end-page: 272
  ident: bb0255
  article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery
  publication-title: Remote Sens. Environ.
– start-page: 1
  year: 2018
  end-page: 5
  ident: bb1220
  article-title: Deep transfer learning for crop yield prediction with remote sensing data
  publication-title: ACM SIGCAS Conference on Computing and Sustainable Societies (COMPASS)
– volume: 27
  start-page: 4039
  year: 2006
  end-page: 4055
  ident: bb1315
  article-title: Comparison of pixel-based and object-oriented image classification approaches—a case study in a coal fire area, Wuda, Inner Mongolia, China
  publication-title: Int. J. Remote Sens.
– volume: 9
  start-page: 2478
  year: 2016
  end-page: 2492
  ident: bb0970
  article-title: Robust assessment of an operational algorithm for the retrieval of soil moisture from AMSR-E data in central Italy
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 17
  start-page: 931
  year: 2016
  end-page: 945
  ident: bb1115
  article-title: A deep neural network modeling framework to reduce bias in satellite precipitation products
  publication-title: J. Hydrometeorol.
– start-page: 1
  year: 2018
  end-page: 15
  ident: bb0790
  article-title: A hybrid of deep learning and hand-crafted features based approach for snow cover mapping
  publication-title: Int. J. Remote Sens.
– volume: 210
  start-page: 59
  year: 2018
  end-page: 69
  ident: bb1445
  article-title: Accessible remote sensing data based reference evapotranspiration estimation modelling
  publication-title: Agric. Water Manag.
– volume: 173
  start-page: 73
  year: 2019
  end-page: 82
  ident: bb0650
  article-title: Snow depth reconstruction over last century: trend and distribution in the Tianshan Mountains, China
  publication-title: Glob. Planet. Chang.
– start-page: 2431
  year: 2014
  end-page: 2434
  ident: bb0910
  article-title: Soil moisture retrieval from SMOS observations using neural networks
  publication-title: Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International
– volume: 9
  start-page: 964
  year: 2011
  end-page: 973
  ident: bb0410
  article-title: Estimation of overstory and understory leaf area index by combining hyperion and panchromatic QuickBird data using neural network method
  publication-title: Sens. Lett.
– volume: 13
  start-page: 1895
  year: 2016
  end-page: 1899
  ident: bb1255
  article-title: Deep filter banks for land-use scene classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 106
  start-page: 14887
  year: 2001
  end-page: 14907
  ident: bb0005
  article-title: A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land
  publication-title: J. Geophys. Res.
– volume: 112
  year: 2007
  ident: bb0730
  article-title: An RM-NN algorithm for retrieving land surface temperature and emissivity from EOS/MODIS data
  publication-title: J. Geophys. Res. Atmos.
– volume: 10
  year: 2018
  ident: bb0845
  article-title: Automated geospatial models of varying complexities for pine forest evapotranspiration estimation with advanced data mining
  publication-title: Water
– volume: 10
  start-page: 1022
  year: 2018
  ident: bb0870
  article-title: Improving the estimation of daily aerosol optical depth and aerosol radiative effect using an optimized artificial neural network
  publication-title: Remote Sens.
– volume: 37
  start-page: 5632
  year: 2016
  end-page: 5646
  ident: bb0620
  article-title: Stacked autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping
  publication-title: Int. J. Remote Sens.
– volume: 7
  year: 2013
  ident: bb0665
  article-title: Biomass estimation of wetland vegetation in Poyang Lake area using ENVISAT advanced synthetic aperture radar data
  publication-title: J. Appl. Remote. Sens.
– volume: 154
  start-page: 151
  year: 2019
  end-page: 162
  ident: bb0875
  article-title: Local climate zone-based urban land cover classification from multi-seasonal Sentinel-2 images with a recurrent residual network
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 689
  year: 2018
  end-page: 692
  ident: bb0440
  article-title: Data augmentation with Gabor filter in deep convolutional neural networks for Sar target recognition
  publication-title: IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium
– volume: 27
  start-page: 35
  year: 2008
  end-page: 39
  ident: bb0495
  article-title: Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semi-arid environment
  publication-title: Irrig. Sci.
– volume: 115
  start-page: 3355
  year: 2011
  end-page: 3366
  ident: bb0245
  article-title: Fractional snow cover mapping through artificial neural network analysis of MODIS surface reflectance
  publication-title: Remote Sens. Environ.
– volume: 91
  start-page: 127
  year: 2017
  end-page: 134
  ident: bb1295
  article-title: Automatic land cover classification of geo-tagged field photos by deep learning
  publication-title: Environ. Model. Softw.
– volume: 11
  start-page: 300
  year: 2019
  ident: bb1260
  article-title: Reconstructing geostationary satellite land surface temperature imagery based on a multiscale feature connected convolutional neural network
  publication-title: Remote Sens.
– volume: 89
  start-page: 1
  year: 2013
  end-page: 16
  ident: bb0260
  article-title: Artificial neural network based model for retrieval of the direct normal, diffuse horizontal and global horizontal irradiances using SEVIRI images
  publication-title: Sol. Energy
– volume: 10
  start-page: 1746
  year: 2018
  ident: bb0320
  article-title: A two-branch CNN architecture for land cover classification of PAN and MS imagery
  publication-title: Remote Sens.
– volume: 15
  start-page: 431
  year: 2008
  end-page: 445
  ident: bb1185
  article-title: Forecast of daily mean, maximum and minimum temperature time series by three artificial neural network methods
  publication-title: Meteorol. Appl.
– volume: 51
  start-page: 891
  year: 2013
  end-page: 904
  ident: bb0950
  article-title: Comparison of ANN and MLR models for estimating solar radiation in Turkey using NOAA/AVHRR data
  publication-title: Adv. Space Res.
– volume: 32
  start-page: 552
  year: 2012
  end-page: 566
  ident: bb0350
  article-title: Downscaling of surface temperature for lake catchment in an arid region in India using linear multiple regression and neural networks
  publication-title: Int. J. Climatol.
– volume: 16
  start-page: 1509
  year: 2016
  end-page: 1522
  ident: bb0570
  article-title: A method to improve MODIS AOD values: application to South America
  publication-title: Aerosol Air Qual. Res.
– volume: 16
  start-page: 3659
  year: 2012
  end-page: 3676
  ident: bb0960
  article-title: An algorithm for generating soil moisture and snow depth maps from microwave spaceborne radiometers: HydroAlgo
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 7
  start-page: 129
  year: 2016
  ident: bb0170
  article-title: A review on predicting ground PM2.5 concentration using satellite aerosol optical depth
  publication-title: Atmosphere
– volume: 933
  year: 2019
  ident: bb1150
  article-title: Artificial Neural Network-based Crop Yield Prediction Using NDVI, SPI, VCI Feature Vectors
– volume: 114
  year: 2019
  ident: bb0445
  article-title: A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data
  publication-title: Renew. Sust. Energ. Rev.
– year: 2008
  ident: bb0035
  article-title: Application of neural networks to soil moisture retrievals from L-band radiometric data
  publication-title: Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008
– volume: 658
  start-page: 1256
  year: 2019
  end-page: 1264
  ident: bb1380
  article-title: Estimation of spatiotemporal PM1.0 distributions in China by combining PM2.5 observations with satellite aerosol optical depth
  publication-title: Sci. Total Environ.
– volume: 152
  start-page: 94
  year: 2019
  end-page: 108
  ident: bb1025
  article-title: Automatic land-water classification using multispectral airborne LiDAR data for near-shore and river environments
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 1574
  year: 2017
  end-page: 1577
  ident: bb0925
  article-title: Soil moisture retrieval using SMOS brightness temperatures and a neural network trained on in situ measurements
  publication-title: Geoscience and Remote Sensing Symposium (IGARSS), 2017 IEEE International
– volume: 156
  start-page: 403
  year: 2015
  end-page: 417
  ident: bb0195
  article-title: Fractional snow cover estimation in complex alpine-forested environments using an artificial neural network
  publication-title: Remote Sens. Environ.
– volume: 115
  start-page: 1145
  year: 2011
  end-page: 1161
  ident: bb0765
  article-title: Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery
  publication-title: Remote Sens. Environ.
– volume: 9975
  year: 2016
  ident: bb0015
  article-title: Using remote sensing satellite data and artificial neural network for prediction of potato yield in Bangladesh
  publication-title: Proc. SPIE, Remote Sensing and Modeling of Ecosystems for Sustainability
– volume: 2315
  start-page: 160
  year: 1994
  end-page: 171
  ident: bb0220
  article-title: Crop yield prediction using a CMAC neural network
  publication-title: Proc. SPIE Image and Signal Processing for Remote Sensing
– year: 2017
  ident: bb0480
  article-title: Physics-guided Neural Networks (PGNN): An Application in Lake Temperature Modeling
– volume: 11
  start-page: 1
  year: 2017
  ident: bb0065
  article-title: Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community
  publication-title: J. Appl. Remote. Sens.
– volume: 152
  start-page: 166
  year: 2019
  end-page: 177
  ident: bb0720
  article-title: Deep learning in remote sensing applications: a meta-analysis and review
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 33
  start-page: 772
  year: 2014
  end-page: 781
  ident: bb1310
  article-title: Solar radiation prediction using artificial neural network techniques: a review
  publication-title: Renew. Sust. Energ. Rev.
– volume: 3
  start-page: 875
  year: 2013
  end-page: 883
  ident: bb1340
  article-title: The role of satellite remote sensing in climate change studies
  publication-title: Nat. Clim. Chang.
– volume: 113
  start-page: 919
  year: 2009
  end-page: 927
  ident: bb0325
  article-title: Comparison of snow water equivalent retrieved from SSM/I passive microwave data using artificial neural network, projection pursuit and nonlinear regressions
  publication-title: Remote Sens. Environ.
– start-page: 104270P
  year: 2017
  ident: bb0330
  article-title: Convolutional neural networks for estimating spatially distributed evapotranspiration
  publication-title: Image and Signal Processing for Remote Sensing XXIII
– volume: 54
  start-page: 15
  year: 2016
  ident: bb1270
  article-title: Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 521
  start-page: 436
  year: 2015
  ident: bb0585
  article-title: Deep learning
  publication-title: Nature
– year: 2018
  ident: bb0640
  article-title: Geographically and Temporally Weighted Neural Networks for Satellite-based Mapping of Ground-level PM2.5
– volume: 212
  start-page: 21
  year: 2018
  end-page: 30
  ident: bb0975
  article-title: Integration of microwave data from SMAP and AMSR2 for soil moisture monitoring in Italy
  publication-title: Remote Sens. Environ.
– year: 2015
  ident: bb1365
  article-title: A Water Quality Assessment Method Based on Sparse Autoencoder
– volume: 217
  start-page: 144
  year: 2018
  end-page: 157
  ident: bb0400
  article-title: A novel co-training approach for urban land cover mapping with unclear Landsat time series imagery
  publication-title: Remote Sens. Environ.
– volume: 7
  start-page: 103
  year: 2012
  end-page: 111
  ident: bb0125
  article-title: An artificial neural network approach to estimate evapotranspiration from remote sensing and AmeriFlux data
  publication-title: Front. Earth Sci.
– volume: 177
  start-page: 184
  year: 2016
  end-page: 191
  ident: bb0435
  article-title: Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data
  publication-title: Remote Sens. Environ.
– volume: 29
  start-page: 6021
  year: 2008
  end-page: 6028
  ident: bb0740
  article-title: Near-surface air temperature estimation from ASTER data based on neural network algorithm
  publication-title: Int. J. Remote Sens.
– volume: 38
  start-page: 4631
  year: 2017
  end-page: 4644
  ident: bb0290
  article-title: Sugarcane yield prediction in Brazil using NDVI time series and neural networks ensemble
  publication-title: Int. J. Remote Sens.
– volume: 85
  start-page: 1
  year: 2005
  end-page: 18
  ident: bb0485
  article-title: Artificial neural networks for corn and soybean yield prediction
  publication-title: Agric. Syst.
– volume: 86
  start-page: 1222
  year: 2009
  end-page: 1228
  ident: bb1020
  article-title: Estimation of solar radiation over Turkey using artificial neural network and satellite data
  publication-title: Appl. Energy
– volume: 121
  start-page: 57
  year: 2016
  end-page: 65
  ident: bb0850
  article-title: Wheat yield prediction using machine learning and advanced sensing techniques
  publication-title: Comput. Electron. Agric.
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 11
  ident: bb0025
  article-title: Comparative study of M5 model tree and artificial neural network in estimating reference evapotranspiration using MODIS products
  publication-title: J. Climatol.
– volume: 65
  start-page: 2
  year: 2010
  end-page: 16
  ident: bb0090
  article-title: Object based image analysis for remote sensing
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 129
  start-page: 214
  year: 2003
  end-page: 218
  ident: bb1090
  article-title: Estimating actual evapotranspiration from limited climatic data using neural computing technique
  publication-title: J. Irrig. Drain. Eng.
– volume: 54
  start-page: 7135
  year: 2016
  end-page: 7148
  ident: bb1040
  article-title: An integrated framework for the spatio-temporal-spectral fusion of remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 44
  start-page: 2200
  year: 2011
  end-page: 2204
  ident: bb0660
  article-title: Study of sample temperature compensation in the measurement of soil moisture content
  publication-title: Measurement
– volume: 191
  start-page: 117
  year: 2017
  end-page: 130
  ident: bb0525
  article-title: Merging active and passive microwave observations in soil moisture data assimilation
  publication-title: Remote Sens. Environ.
– volume: 48
  start-page: 2170
  year: 2010
  end-page: 2178
  ident: bb1325
  article-title: A novel method to estimate subpixel temperature by fusing solar-reflective and thermal-infrared remote-sensing data with an artificial neural network
  publication-title: IEEE Transactions on Geoscience & Remote Sensing
– start-page: 110180Y
  year: 2019
  ident: bb0795
  article-title: Deep learning on hyperspectral data to obtain water properties and bottom depths
  publication-title: International Society for Optics and Photonics
– volume: 141
  start-page: 237
  year: 2018
  end-page: 251
  ident: bb1290
  article-title: Exploring geo-tagged photos for land cover validation with deep learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 56
  start-page: 4274
  year: 2018
  end-page: 4288
  ident: bb1435
  article-title: Missing data reconstruction in remote sensing image with a unified spatial–temporal–spectral deep convolutional neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 5
  start-page: 113
  year: 2008
  end-page: 117
  ident: bb1195
  article-title: A data-mining approach for the validation of aerosol retrievals
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 10
  start-page: 1119
  year: 2018
  ident: bb0725
  article-title: Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery
  publication-title: Remote Sens.
– volume: 28
  start-page: 1
  year: 2018
  end-page: 11
  ident: bb0745
  article-title: Retrieval of land-surface temperature from AMSR2 data using a deep dynamic learning neural network
  publication-title: Chin. Geogr. Sci.
– start-page: 176
  year: 2002
  end-page: 184
  ident: bb0760
  article-title: Neural Network-based Estimation of Chlorophyll-a Concentration in Coastal Waters
– volume: 22
  start-page: 5341
  year: 2018
  end-page: 5356
  ident: bb0020
  article-title: Global downscaling of remotely sensed soil moisture using neural networks
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 5
  start-page: 8
  year: 2017
  end-page: 36
  ident: bb1485
  article-title: Deep learning in remote sensing: a comprehensive review and list of resources
  publication-title: IEEE Geoscience and Remote Sensing Magazine
– volume: 57
  start-page: 2221
  year: 2019
  end-page: 2233
  ident: bb0285
  article-title: The value of SMAP for long-term soil moisture estimation with the help of deep learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 50
  year: 2012
  ident: bb0185
  article-title: Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products
  publication-title: Rev. Geophys.
– volume: 3
  year: 2004
  ident: bb1190
  article-title: Neural networks in land surface temperature mapping in urban areas from thermal infrared data
  publication-title: International Geoscience and Remote Sensing Symposium (IGARSS)
– volume: 9
  start-page: 527
  year: 1995
  end-page: 542
  ident: bb0300
  article-title: Land cover classification by an artificial neural network with ancillary information
  publication-title: Int. J. Geogr. Inf. Syst.
– volume: 7
  start-page: 14680
  year: 2015
  end-page: 14707
  ident: bb0395
  article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
  publication-title: Remote Sens.
– year: 2017
  ident: bb0085
  article-title: Modelling effects of forest disturbance history on carbon balance: a deep learning approach using Landsat-time series
  publication-title: AGU Fall Meeting Abstracts
– volume: 123
  start-page: 6777
  year: 2018
  end-page: 6803
  ident: bb0645
  article-title: Intercomparison of six upscaling evapotranspiration methods: from site to the satellite pixel
  publication-title: J. Geophys. Res. Atmos.
– start-page: 1905
  year: 2016
  end-page: 1914
  ident: bb1235
  article-title: Transfer knowledge between cities
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 26
  start-page: 102
  year: 2018
  end-page: 110
  ident: bb0465
  article-title: Chlorophyll concentration derived from microwave remote sensing measurements using artificial neural network algorithm
  publication-title: Journal of Marine Science and Technology-Taiwan
– volume: 123
  start-page: 8674
  year: 2018
  end-page: 8690
  ident: bb1305
  article-title: Evaluating different machine learning methods for upscaling evapotranspiration from flux towers to the regional scale
  publication-title: J. Geophys. Res. Atmos.
– volume: 43
  start-page: 1834
  year: 2004
  end-page: 1853
  ident: bb0375
  article-title: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system
  publication-title: J. Appl. Meteorol.
– volume: 256
  start-page: 13395
  year: 2020
  ident: bb0855
  article-title: Estimating PM2.5 concentration of the conterminous United States via interpretable convolutional neural networks
  publication-title: Environ. Pollut.
– volume: 46
  start-page: 200
  year: 2008
  end-page: 208
  ident: bb0735
  article-title: A neural network technique for separating land surface emissivity and temperature from ASTER imagery
  publication-title: IEEE Transactions on Geoscience & Remote Sensing
– volume: 12
  start-page: 891
  year: 2018
  end-page: 905
  ident: bb1070
  article-title: Improving gridded snow water equivalent products in British Columbia, Canada: multi-source data fusion by neural network models
  publication-title: Cryosphere
– volume: 42
  start-page: 11
  year: 2004
  ident: bb0310
  article-title: On neural network algorithms for retrieving forest biomass from SAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 39
  start-page: 1662
  year: 2001
  end-page: 1672
  ident: bb0675
  article-title: Retrieving soil moisture from simulated brightness temperatures by a neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 131
  start-page: 182
  year: 2013
  end-page: 194
  ident: bb1390
  article-title: Recovering missing pixels for Landsat ETM+ SLC-off imagery using multi-temporal regression analysis and a regularization method
  publication-title: Remote Sens. Environ.
– volume: 53
  start-page: 5991
  year: 2015
  end-page: 6007
  ident: bb0915
  article-title: Soil moisture retrieval using neural networks: application to SMOS
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 2016
  start-page: 29
  year: 2016
  ident: bb0540
  article-title: Neural networks technique for filling gaps in satellite measurements: application to ocean color observations
  publication-title: Computational intelligence and neuroscience
– volume: 18
  start-page: 356
  year: 2008
  end-page: 360
  ident: bb0105
  article-title: Retrieval snow depth by artificial neural network methodology from integrated AMSR-E and in-situ data—a case study in Qinghai-Tibet Plateau
  publication-title: Chin. Geogr. Sci.
– volume: 331
  start-page: 700
  year: 2011
  ident: bb0815
  article-title: Climate data challenges in the 21st century
  publication-title: Science
– volume: 3
  start-page: 61
  year: 2015
  end-page: 85
  ident: bb1035
  article-title: Missing information reconstruction of remote sensing data: a technical review
  publication-title: IEEE Geoscience and Remote Sensing Magazine
– volume: 112
  start-page: 203
  year: 2008
  end-page: 215
  ident: bb1180
  article-title: Multi-temporal vegetation canopy water content retrieval and interpretation using artificial neural networks for the continental USA
  publication-title: Remote Sens. Environ.
– volume: 83
  year: 2019
  ident: bb0380
  article-title: Synthetic aperture radar and optical satellite data for estimating the biomass of corn
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2017
  ident: bb0110
  article-title: The GEOS-5 neural network retrieval (NNR) for AOD
  publication-title: AGU Fall Meeting
– year: 2018
  ident: bb0635
  article-title: Autoencoder Based Residual Deep Networks for Robust Regression Prediction and Spatiotemporal Estimation
– start-page: 544
  year: 2010
  end-page: 547
  ident: bb0615
  article-title: A new method based on the BP neural network to improve the accuracy of inversion of the vegetation height
  publication-title: 2010 International Conference on Image Analysis and Signal Processing
– volume: 19
  start-page: 787
  year: 2006
  end-page: 795
  ident: bb0370
  article-title: A statistical complement to deterministic algorithms for the retrieval of aerosol optical thickness from radiance data
  publication-title: Eng. Appl. Artif. Intell.
– volume: 11
  start-page: 83
  year: 2004
  end-page: 91
  ident: bb1135
  article-title: Neural networks in satellite rainfall estimation
  publication-title: Meteorol. Appl.
– volume: 50
  start-page: 409
  year: 2012
  end-page: 414
  ident: bb0905
  article-title: Uncertainty analysis of neural-network-based aerosol retrieval
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 53
  start-page: 6008
  year: 2015
  end-page: 6021
  ident: bb1345
  article-title: A moving weighted harmonic analysis method for reconstructing high-quality SPOT VEGETATION NDVI time-series data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 20
  start-page: 189
  year: 1999
  end-page: 194
  ident: bb0490
  article-title: Estimating oceanic chlorophyll concentrations with neural networks
  publication-title: Int. J. Remote Sens.
– volume: 129
  start-page: 454
  year: 2003
  end-page: 457
  ident: bb1175
  article-title: Forecasting of reference evapotranspiration by artificial neural networks
  publication-title: J. Irrig. Drain. Eng.
– volume: 2
  start-page: 673
  year: 2010
  end-page: 696
  ident: bb0840
  article-title: Application of vegetation indices for agricultural crop yield prediction using neural network techniques
  publication-title: Remote Sens.
– start-page: 5
  year: 2014
  end-page: 9
  ident: bb0965
  article-title: A prototype ann based algorithm for the soil moisture retrieval from l-band in view of the incoming SMAP mission
  publication-title: Microwave Radiometry and Remote Sensing of the Environment (MicroRad), 2014 13th Specialist Meeting on
– volume: 19
  start-page: 2987
  year: 2019
  ident: bb1100
  article-title: Deep learning convolutional neural network for the retrieval of land surface temperature from AMSR2 data in China
  publication-title: Sensors
– volume: 221
  start-page: 173
  year: 2019
  end-page: 187
  ident: bb1450
  article-title: Joint deep learning for land cover and land use classification
  publication-title: Remote Sens. Environ.
– volume: 85
  start-page: 519
  year: 2013
  end-page: 532
  ident: bb0295
  article-title: Chlorophyll a spatial inference using artificial neural network from multispectral images and in situ measurements
  publication-title: An. Acad. Bras. Cienc.
– volume: 101
  start-page: 83
  year: 2010
  end-page: 91
  ident: bb0885
  article-title: Estimation of evapotranspiration based on only air temperature data using artificial neural networks for a subtropical climate in Iran
  publication-title: Theor. Appl. Climatol.
– volume: 19
  start-page: 1545
  year: 1998
  end-page: 1560
  ident: bb0040
  article-title: Wetland classification using optical and radar data and neural network classification
  publication-title: Int. J. Remote Sens.
– volume: 134
  start-page: 234
  year: 2013
  end-page: 248
  ident: bb0835
  article-title: Soil moisture mapping using Sentinel-1 images: algorithm and preliminary validation
  publication-title: Remote Sens. Environ.
– volume: 150
  start-page: 186
  year: 2019
  end-page: 192
  ident: bb0050
  article-title: All convolutional neural networks for radar-based precipitation nowcasting
  publication-title: Procedia Computer Science
– start-page: 818
  year: 2014
  end-page: 833
  ident: bb1385
  article-title: Visualizing and understanding convolutional networks
  publication-title: European Conference on Computer Vision
– volume: 11
  year: 2019
  ident: bb0145
  article-title: Strawberry yield prediction based on a deep neural network using high-resolution aerial orthoimages
  publication-title: Remote Sens.
– volume: 16
  start-page: 1343
  year: 2019
  end-page: 1347
  ident: bb1095
  article-title: Deep learning architecture for estimating hourly ground-level PM2.5 using satellite remote sensing
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 14
  start-page: 131
  year: 2009
  end-page: 140
  ident: bb0555
  article-title: Development and validation of GANN model for evapotranspiration estimation
  publication-title: J. Hydrol. Eng.
– volume: 31
  start-page: 2265
  year: 2010
  end-page: 2276
  ident: bb0830
  article-title: Generation of soil moisture maps from ENVISAT/ASAR images in mountainous areas: a case study
  publication-title: Int. J. Remote Sens.
– volume: 26
  start-page: 531
  year: 2008
  ident: bb0550
  article-title: Comparative study of conventional and artificial neural network-based ETo estimation models
  publication-title: Irrig. Sci.
– volume: 9
  year: 2017
  ident: bb0820
  article-title: Soil moisture estimation over vegetated agricultural areas: Tigris Basin, Turkey from Radarsat-2 data by polarimetric decomposition models and a generalized regression neural network
  publication-title: Remote Sens.
– volume: 25
  start-page: 4541
  year: 2004
  end-page: 4554
  ident: bb0430
  article-title: Neural network estimation of air temperatures from AVHRR data
  publication-title: Int. J. Remote Sens.
– volume: 189
  start-page: 596
  year: 2017
  ident: bb0700
  article-title: Integrating multiple vegetation indices via an artificial neural network model for estimating the leaf chlorophyll content of Spartina alterniflora under interspecies competition
  publication-title: Environ. Monit. Assess.
– volume: 3
  start-page: 179
  year: 2006
  end-page: 186
  ident: bb1065
  article-title: Improving air temperature prediction with artificial neural networks
  publication-title: Int. J. Comput. Intell.
– volume: XLII-3
  start-page: 583
  year: 2018
  end-page: 586
  ident: bb0405
  article-title: Soil moisture retrieval using convolutional neural networks: application to passive microwave remote sensing
  publication-title: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
– volume: 131
  start-page: 119
  year: 2013
  end-page: 139
  ident: bb1400
  article-title: Disaggregation of remotely sensed land surface temperature: literature survey, taxonomy, issues, and caveats
  publication-title: Remote Sens. Environ.
– volume: 92
  start-page: 54
  year: 2014
  end-page: 68
  ident: bb0150
  article-title: Cloud removal for remotely sensed images by similar pixel replacement guided with a spatio-temporal MRF model
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 654
  start-page: 1091
  year: 2019
  end-page: 1099
  ident: bb1240
  article-title: A novel spatiotemporal convolutional long short-term neural network for air pollution prediction
  publication-title: Sci. Total Environ.
– volume: 31
  start-page: 842
  year: 1993
  end-page: 852
  ident: bb0205
  article-title: Retrieval of snow parameters by iterative inversion of a neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 54
  start-page: 1138
  year: 2011
  end-page: 1144
  ident: bb1330
  article-title: The spatial continuity study of NDVI based on Kriging and BPNN algorithm
  publication-title: Math. Comput. Model.
– volume: 9
  year: 2019
  ident: bb1230
  article-title: Estimation of PM2.5 concentrations in China using a spatial back propagation neural network
  publication-title: Sci. Rep.
– year: 2015
  ident: bb0680
  article-title: A critical review of recurrent neural networks for sequence learning
– volume: 79
  start-page: 66
  year: 2014
  end-page: 73
  ident: bb0250
  article-title: Satellite image analysis and a hybrid ESSS/ANN model to forecast solar irradiance in the tropics
  publication-title: Energy Convers. Manag.
– volume: 220
  start-page: 1810
  year: 2009
  end-page: 1818
  ident: bb1280
  article-title: A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia, China
  publication-title: Ecol. Model.
– volume: 130
  start-page: 277
  year: 2017
  end-page: 293
  ident: bb0715
  article-title: A review of supervised object-based land-cover image classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 34
  start-page: 7508
  year: 2013
  end-page: 7533
  ident: bb0945
  article-title: Comparison of modelling ANN and ELM to estimate solar radiation over Turkey using NOAA satellite data
  publication-title: Int. J. Remote Sens.
– volume: 113
  start-page: 155
  year: 2016
  end-page: 165
  ident: bb1455
  article-title: Learning multiscale and deep representations for classifying remotely sensed imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 14
  start-page: 778
  year: 2017
  end-page: 782
  ident: bb0560
  article-title: Deep learning classification of land cover and crop types using remote sensing data
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 46
  start-page: 10669
  year: 2019
  end-page: 10678
  ident: bb0140
  article-title: Rainfall estimation from ground radar and TRMM precipitation radar using hybrid deep neural networks
  publication-title: Geophys. Res. Lett.
– year: 2008
  ident: bb0340
  article-title: Development of a Neural Network to Retrieve Chlorophyll Concentrations from MERIS Images in the Galician Coastal Waters
– volume: 36
  start-page: 1176
  year: 1997
  end-page: 1190
  ident: bb0390
  article-title: Precipitation estimation from remotely sensed information using artificial neural networks
  publication-title: J. Appl. Meteorol.
– volume: 23
  start-page: A1442
  year: 2015
  end-page: A1462
  ident: bb1110
  article-title: Retrieval of snow physical parameters by neural networks and optimal estimation: case study for ground-based spectral radiometer system
  publication-title: Opt. Express
– volume: 232
  start-page: 35
  year: 2017
  end-page: 47
  ident: bb1200
  article-title: Analysis and estimation of tallgrass prairie evapotranspiration in the central United States
  publication-title: Agric. For. Meteorol.
– volume: 7
  start-page: 597
  year: 2019
  end-page: 604
  ident: bb1225
  article-title: Soil moisture retrieval algorithm based on TFA and CNN
  publication-title: IEEE Access
– volume: 30
  start-page: 3063
  year: 2016
  end-page: 3075
  ident: bb0890
  article-title: Comparison of M5 model tree and artificial neural network’s methodologies in modelling daily reference evapotranspiration from NOAA satellite images
  publication-title: Water Resour. Manag.
– volume: 13
  start-page: 1359
  year: 2016
  end-page: 1363
  ident: bb1405
  article-title: Stacked sparse autoencoder in PolSAR data classification using local spatial information
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 24
  start-page: 60
  year: 2014
  end-page: 68
  ident: bb0045
  article-title: Sea water chlorophyll-a estimation using hyperspectral images and supervised artificial neural network
  publication-title: Ecological informatics
– volume: 27
  start-page: 3127
  year: 2013
  end-page: 3144
  ident: bb1085
  article-title: Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application
  publication-title: Water Resour. Manag.
– volume: 8
  start-page: 8181
  year: 2008
  end-page: 8200
  ident: bb0865
  article-title: Inversion of electromagnetic models for bare soil parameter estimation from multifrequency polarimetric SAR data
  publication-title: Sensors
– volume: 13
  start-page: 137
  year: 2016
  end-page: 141
  ident: bb0240
  article-title: Efficient saliency-based object detection in remote sensing images using deep belief networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 214
  start-page: 73
  year: 2018
  end-page: 86
  ident: bb0415
  article-title: Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 694
  year: 2009
  end-page: 698
  ident: bb0580
  article-title: Machine learning and Bias correction of MODIS aerosol optical depth
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 22
  start-page: 375
  year: 2002
  end-page: 392
  ident: bb0100
  article-title: Evaluation of approaches for forest cover estimation in the Pacific Northwest, USA, using remote sensing
  publication-title: Appl. Geogr.
– volume: 99
  start-page: 10
  year: 2012
  ident: bb0510
  article-title: Lettuce (Lactuca sativa L.) yield prediction under water stress using artificial neural network (ANN) model and vegetation indices
  publication-title: Zemdirbyste
– volume: 22
  year: 2018
  ident: bb1045
  article-title: HESS opinions: incubating deep-learning-powered hydrologic science advances as a community
  publication-title: Hydrol. Earth Syst. Sci.
– start-page: 1
  year: 2018
  end-page: 13
  ident: bb0280
  article-title: The value of SMAP for long-term soil moisture estimation with the help of deep learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 6
  start-page: 130
  year: 2017
  ident: bb1415
  article-title: Upscaling of surface soil moisture using a deep learning model with VIIRS RDR
  publication-title: ISPRS Int. J. Geo Inf.
– volume: 115
  start-page: 494
  year: 2015
  end-page: 504
  ident: bb0880
  article-title: An advanced ANN-based method to estimate hourly solar radiation from multi-spectral MSG imagery
  publication-title: Sol. Energy
– year: 1998
  ident: bb0030
  article-title: Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements
– year: 2017
  ident: bb1360
  article-title: Deep Gaussian process for crop yield prediction based on remote sensing data
  publication-title: Proceedings of the Thirty-first AAAI Conference on Artificial Intelligence
– volume: 44
  start-page: 11,030
  year: 2017
  end-page: 11,039
  ident: bb0275
  article-title: Prolongation of SMAP to spatiotemporally seamless coverage of continental U.S. using a deep learning neural network
  publication-title: Geophys. Res. Lett.
– start-page: 1705
  year: 2007
  end-page: 1708
  ident: bb1460
  article-title: A neural network algorithm to retrieve nearsurface air temperature from landsat ETM+ imagery over the Hanjiang River Basin, China
  publication-title: Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International
– volume: 46
  start-page: 547
  year: 2008
  end-page: 557
  ident: bb0800
  article-title: Soil moisture retrieval from remotely sensed data: neural network approach versus Bayesian method
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 11
  year: 2019
  ident: bb1475
  article-title: Evaluation of three deep learning models for early crop classification using Sentinel-1A imagery time series-a case study in Zhanjiang, China
  publication-title: Remote Sens.
– year: 2014
  ident: bb0160
  article-title: Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation
– volume: 18
  start-page: 1271
  year: 2017
  end-page: 1283
  ident: bb1125
  article-title: Precipitation identification with bispectral satellite information using deep learning approaches
  publication-title: J. Hydrometeorol.
– volume: 11
  start-page: 2272
  year: 2019
  ident: bb0265
  article-title: High spatio-temporal resolution CYGNSS soil moisture estimates using artificial neural networks
  publication-title: Remote Sens.
– volume: 140
  start-page: 133
  year: 2018
  end-page: 144
  ident: bb1425
  article-title: A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 14
  start-page: 549
  year: 2017
  end-page: 553
  ident: bb1000
  article-title: Training deep convolutional neural networks for land-cover classification of high-resolution imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 70
  start-page: 314
  year: 2017
  end-page: 329
  ident: bb1420
  article-title: A critical review of the models used to estimate solar radiation
  publication-title: Renew. Sust. Energ. Rev.
– volume: 33
  start-page: 361
  year: 2007
  end-page: 363
  ident: bb0985
  article-title: Prediction of crop yields with the use of neural networks
  publication-title: Russ. Agric. Sci.
– volume: 112
  year: 2007
  ident: bb0600
  article-title: Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance
  publication-title: J. Geophys. Res. Atmos.
– volume: 35
  start-page: 69
  year: 2018
  end-page: 84
  ident: bb0770
  article-title: Prediction of aerosol optical depth in West Asia using deterministic models and machine learning algorithms
  publication-title: Aeolian Res.
– volume: 90
  start-page: 76
  year: 2004
  end-page: 85
  ident: bb1145
  article-title: Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data
  publication-title: Remote Sens. Environ.
– volume: 14
  start-page: 1436
  year: 2017
  end-page: 1440
  ident: bb1470
  article-title: Transfer learning with fully pretrained deep convolution networks for land-use classification
  publication-title: IEEE Geoscience Remote Sensing Letters
– volume: 162
  start-page: 221
  year: 2015
  end-page: 237
  ident: bb0450
  article-title: Estimation of surface upward longwave radiation from MODIS and VIIRS clear-sky data in the Tibetan Plateau
  publication-title: Remote Sens. Environ.
– year: 2015
  ident: bb0565
  article-title: Estimating crop yields with deep learning and remotely sensed data
  publication-title: Geoscience & Remote Sensing Symposium
– volume: 10
  year: 2018
  ident: bb0780
  article-title: Deep recurrent neural network for agricultural classification using multitemporal SAR Sentinel-1 for Camargue, France
  publication-title: Remote Sens.
– volume: 2
  start-page: 352
  year: 2014
  end-page: 361
  ident: bb0940
  article-title: Artificial Neural Networks (ANNs) application to predict occurrence of phenological stages in wheat using climatic data
  publication-title: International Journal of Agricultural Policy and Research
– start-page: 279
  year: 2018
  end-page: 329
  ident: bb0225
  article-title: Neural networks and support vector machines and their application to aerosol and cloud remote sensing: a review
  publication-title: Springer Series in Light Scattering
– volume: 55
  start-page: 341
  year: 2017
  end-page: 366
  ident: bb0860
  article-title: A review of spatial downscaling of satellite remotely sensed soil moisture
  publication-title: Rev. Geophys.
– volume: 2
  start-page: 166
  year: 2009
  end-page: 190
  ident: bb0115
  article-title: Use of soil moisture variability in artificial neural network retrieval of soil moisture
  publication-title: Remote Sens.
– volume: 543
  start-page: 242
  year: 2016
  end-page: 254
  ident: bb0190
  article-title: Validation and reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau
  publication-title: J. Hydrol.
– volume: 173
  start-page: 1
  year: 2016
  end-page: 14
  ident: bb0520
  article-title: Soil moisture retrieval from AMSR-E and ASCAT microwave observation synergy. Part 1: satellite data analysis
  publication-title: Remote Sens. Environ.
– volume: 47
  start-page: 1559
  year: 2009
  end-page: 1570
  ident: bb1205
  article-title: Estimating high spatial resolution clear-sky land surface upwelling longwave radiation from MODIS data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 12
  start-page: 1579
  year: 2018
  end-page: 1594
  ident: bb0060
  article-title: Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan
  publication-title: Cryosphere
– volume: 106
  start-page: 223
  year: 2010
  end-page: 233
  ident: bb0695
  article-title: Neural-network model for estimating leaf chlorophyll concentration in rice under stress from heavy metals using four spectral indices
  publication-title: Biosyst. Eng.
– volume: 215
  start-page: 157
  year: 2018
  end-page: 163
  ident: bb0165
  article-title: Deep learning application to time-series prediction of daily chlorophyll-a concentration
  publication-title: WIT Trans. Ecol. Environ.
– volume: 65
  start-page: 114
  year: 2018
  end-page: 123
  ident: bb0980
  article-title: On the synergy of SMAP, AMSR2 AND SENTINEL-1 for retrieving soil moisture
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 117
  year: 2012
  ident: bb0805
  article-title: Estimating surface longwave radiative fluxes from satellites utilizing artificial neural networks
  publication-title: J. Geophys. Res. Atmos.
– volume: 9
  start-page: 857
  year: 2017
  ident: bb5000
  article-title: A Robust Algorithm for Estimating Surface Fractional Vegetation Cover from Landsat Data
  publication-title: Remote Sens.
– volume: 56
  start-page: 43
  year: 2018
  end-page: 67
  ident: bb0595
  article-title: Estimation of soil moisture using deep learning based on satellite data: a case study of South Korea
  publication-title: GIScience & Remote Sensing
– volume: 110
  year: 2005
  ident: bb0010
  article-title: Sensitivity of satellite microwave and infrared observations to soil moisture at a global scale: 2. Global statistical relationships
  publication-title: J. Geophys. Res. Atmos.
– volume: 118
  start-page: 6771
  year: 2013
  end-page: 6782
  ident: bb0455
  article-title: A joint analysis of modeled soil moisture fields and satellite observations
  publication-title: J. Geophys. Res. Atmos.
– volume: 54
  year: 2016
  ident: bb0095
  article-title: Spiking neural networks for crop yield estimation based on spatiotemporal analysis of image time series
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 20
  start-page: 2273
  year: 2019
  end-page: 2289
  ident: bb0935
  article-title: PERSIANN-CNN: precipitation estimation from remotely sensed information using artificial neural networks-convolutional neural networks
  publication-title: J. Hydrometeorol.
– volume: 35
  start-page: 4795
  year: 2010
  end-page: 4801
  ident: bb1015
  article-title: Modeling of solar radiation using remote sensing and artificial neural network in Turkey
  publication-title: Energy
– volume: 142
  year: 2012
  ident: bb1335
  article-title: On Grass Yield Remote Sensing Estimation Models of China’s Northern Farming-Pastoral Ecotone
  publication-title: Advances in Computational Environment Science. Advances in Intelligent and Soft Computing
– volume: 8
  year: 2017
  ident: bb0995
  article-title: Quantum-chemical insights from deep tensor neural networks
  publication-title: Nat. Commun.
– volume: 34
  start-page: 3485
  year: 2013
  end-page: 3502
  ident: bb1215
  article-title: Retrieval of atmospheric and land surface parameters from satellite-based thermal infrared hyperspectral data using a neural network technique
  publication-title: Int. J. Remote Sens.
– volume: 12
  start-page: 905
  year: 2011
  end-page: 923
  ident: bb0305
  article-title: Site-specific early season potato yield forecast by neural network in Eastern Canada
  publication-title: Precis. Agric.
– volume: 4
  start-page: 409
  year: 2018
  end-page: 419
  ident: bb0895
  article-title: Prediction of vegetation dynamics using NDVI time series data and LSTM
  publication-title: Model. Earth Syst. Environ.
– volume: 7
  start-page: 3151
  year: 2014
  end-page: 3175
  ident: bb1140
  article-title: Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peak
  publication-title: Atmospheric Measurement Techniques
– volume: 21
  start-page: 773
  year: 2001
  end-page: 790
  ident: bb0990
  article-title: Downscaling temperature and precipitation: a comparison of regression-based methods and artificial neural networks
  publication-title: Int. J. Climatol.
– volume: 8
  start-page: 734
  year: 2016
  end-page: 748
  ident: bb1080
  article-title: Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model
  publication-title: Journal of Arid Land
– volume: 9
  year: 2017
  ident: bb1285
  article-title: A machine learning based reconstruction method for satellite remote sensing of soil moisture images with in situ observations
  publication-title: Remote Sens.
– volume: 149
  start-page: 91
  year: 2019
  end-page: 104
  ident: bb0425
  article-title: DuPLO: a DUal view Point deep Learning architecture for time series classificatiOn
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 433
  start-page: 20
  year: 2012
  end-page: 30
  ident: bb1250
  article-title: Synergy of satellite and ground based observations in estimation of particulate matter in eastern China
  publication-title: Sci. Total Environ.
– volume: 225
  year: 2019
  ident: bb1245
  article-title: Estimating crop primary productivity with Sentinel-2 and Landsat 8 using machine learning methods trained with radiative transfer simulations
  publication-title: Remote Sens. Environ.
– start-page: 1
  year: 2019
  end-page: 2
  ident: bb0135
  article-title: A Deep Learning Approach to Dual-Polarization Radar Rainfall Estimation
– volume: 151
  start-page: 61
  year: 2018
  end-page: 69
  ident: bb0155
  article-title: Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review
  publication-title: Comput. Electron. Agric.
– volume: 61
  start-page: 636
  year: 2013
  end-page: 645
  ident: bb0670
  article-title: An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images
  publication-title: Energy
– volume: 4
  start-page: 179
  year: 2017
  ident: bb0175
  article-title: Fractional snow cover mapping by artificial neural networks and support vector machines
  publication-title: ISPRS Annals of the Photogrammetry, Remote Sensing Spatial Information Sciences
– volume: 237
  year: 2020
  ident: bb1155
  article-title: Land-cover classification with high-resolution remote sensing images using transferable deep models
  publication-title: Remote Sens. Environ.
– volume: 128
  start-page: 224
  year: 2002
  end-page: 233
  ident: bb0545
  article-title: Estimating evapotranspiration using artificial neural network
  publication-title: J. Irrig. Drain. Eng.
– volume: 15
  start-page: 1032
  year: 2018
  ident: bb1440
  article-title: A novel hybrid data-driven model for daily land surface temperature forecasting using long short-term memory neural network based on ensemble empirical mode decomposition
  publication-title: Int. J. Environ. Res. Public Health
– start-page: 331
  year: 2007
  end-page: 336
  ident: bb0610
  article-title: Soybean LAI estimation with in-situ collected hyperspectral data based on BP-neural networks
  publication-title: 2007 3rd International Conference on Recent Advances in Space Technologies
– volume: 44
  start-page: 11,985
  year: 2017
  end-page: 911,993
  ident: bb0625
  article-title: Estimating ground-level PM2.5 by fusing satellite and station observations: a geo-intelligent deep learning approach
  publication-title: Geophys. Res. Lett.
– volume: 114
  start-page: 1924
  year: 2010
  end-page: 1939
  ident: bb0705
  article-title: Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data
  publication-title: Remote Sens. Environ.
– volume: 566
  start-page: 195
  year: 2019
  end-page: 204
  ident: bb0900
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
– year: 2016
  ident: bb0345
  article-title: Deep Learning
– volume: 8
  year: 2019
  ident: bb0505
  article-title: A comparison between major artificial intelligence models for crop yield prediction: case study of the midwestern United States, 2006–2015
  publication-title: International Journal of Geo-information
– volume: 26
  start-page: 253
  year: 2008
  end-page: 259
  ident: bb0500
  article-title: Comparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semiarid environment
  publication-title: Irrig. Sci.
– year: 2020
  ident: bb1055
  article-title: Deep Learning-based Air Temperature Mapping by Fusing Remote Sensing, Station, Simulation and Socioeconomic Data
– volume: 141
  start-page: 30
  year: 2018
  end-page: 45
  ident: bb1395
  article-title: A two-step framework for reconstructing remotely sensed land surface temperatures contaminated by cloud
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 19
  start-page: 2082
  year: 2019
  ident: bb1355
  article-title: Spatial assessment of solar radiation by machine learning and deep neural network models using data provided by the COMS MI geostationary satellite: a case study in South Korea
  publication-title: Sensors
– volume: 35
  start-page: 201
  year: 2007
  end-page: 207
  ident: bb0775
  article-title: Estimation of chlorophyll-A concentration using an artificial neural network (ANN)-based algorithm with oceansat-I OCM data
  publication-title: Journal of the Indian Society of Remote Sensing
– volume: 117
  start-page: 40
  year: 2016
  end-page: 55
  ident: bb1060
  article-title: Prediction of high spatio-temporal resolution land surface temperature under cloudy conditions using microwave vegetation index and ANN
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 33
  start-page: 5712
  year: 2012
  end-page: 5731
  ident: bb0120
  article-title: Estimating time-series leaf area index based on recurrent nonlinear autoregressive neural networks with exogenous inputs
  publication-title: Int. J. Remote Sens.
– volume: 123
  start-page: 13,875
  year: 2018
  end-page: 813,886
  ident: bb1050
  article-title: Estimating regional ground-level PM2.5 directly from satellite top-of-atmosphere reflectance using deep belief networks
  publication-title: J. Geophys. Res. Atmos.
– volume: 39
  start-page: 2115
  year: 2000
  end-page: 2128
  ident: bb0070
  article-title: Rainfall estimation from a combination of TRMM precipitation radar and GOES multispectral satellite imagery through the use of an artificial neural network
  publication-title: J. Appl. Meteorol.
– volume: 152
  start-page: 477
  year: 2017
  end-page: 489
  ident: bb0630
  article-title: Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China: methods and assessment
  publication-title: Atmos. Environ.
– volume: 118
  start-page: 4847
  year: 2013
  end-page: 4859
  ident: bb0515
  article-title: Soil moisture retrieval from multi-instrument observations: information content analysis and retrieval methodology
  publication-title: J. Geophys. Res. Atmos.
– volume: 131
  start-page: 316
  year: 2005
  end-page: 323
  ident: bb1165
  article-title: Temperature-based approaches for estimating reference evapotranspiration
  publication-title: J. Irrig. Drain. Eng.
– volume: 8
  start-page: 883
  year: 2007
  end-page: 895
  ident: bb1320
  article-title: Estimation of vegetation biophysical parameters by remote sensing using radial basis function neural network
  publication-title: Journal of Zhejiang University-Science A
– volume: 84
  start-page: 174
  year: 2003
  end-page: 183
  ident: bb0210
  article-title: Retrieving soil moisture and agricultural variables by microwave radiometry using neural networks
  publication-title: Remote Sens. Environ.
– volume: 126
  start-page: 268
  year: 2000
  end-page: 270
  ident: bb1170
  article-title: Estimation of FAO Blaney-Criddle b factor by RBF network
  publication-title: J. Irrig. Drain. Eng.
– volume: 19
  start-page: 393
  year: 2018
  end-page: 408
  ident: bb1130
  article-title: A two-stage deep neural network framework for precipitation estimation from bispectral satellite information
  publication-title: J. Hydrometeorol.
– volume: 18
  start-page: 727
  year: 1997
  end-page: 740
  ident: bb0075
  article-title: Feature extraction for multisource data classification with artificial neural networks
  publication-title: Int. J. Remote Sens.
– volume: 46
  start-page: 3274
  year: 2008
  end-page: 3284
  ident: bb0825
  article-title: A comparison of algorithms for retrieving soil moisture from ENVISAT/ASAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 131
  start-page: 390
  year: 2016
  end-page: 399
  ident: bb0235
  article-title: A hybrid prediction model for PM2.5 mass and components using a chemical transport model and land use regression
  publication-title: Atmos. Environ.
– volume: 91
  start-page: 566
  year: 2016
  end-page: 575
  ident: bb0685
  article-title: Geological disaster recognition on optical remote sensing images using deep learning
  publication-title: Procedia Computer Science
– volume: 55
  start-page: 688
  year: 2017
  end-page: 692
  ident: bb0750
  article-title: Prospective interest of deep learning for hydrological inference
  publication-title: Groundwater
– volume: 152
  start-page: 166
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb0720
  article-title: Deep learning in remote sensing applications: a meta-analysis and review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.04.015
– volume: 22
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb1045
  article-title: HESS opinions: incubating deep-learning-powered hydrologic science advances as a community
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-5639-2018
– volume: 7
  start-page: 14680
  year: 2015
  ident: 10.1016/j.rse.2020.111716_bb0395
  article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs71114680
– volume: 131
  start-page: 316
  year: 2005
  ident: 10.1016/j.rse.2020.111716_bb1165
  article-title: Temperature-based approaches for estimating reference evapotranspiration
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2005)131:4(316)
– volume: 11
  start-page: 1022
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb0535
  article-title: Quantitative aerosol optical depth detection during dust outbreaks from Meteosat imagery using an artificial neural network model
  publication-title: Remote Sens.
  doi: 10.3390/rs11091022
– start-page: 544
  year: 2010
  ident: 10.1016/j.rse.2020.111716_bb0615
  article-title: A new method based on the BP neural network to improve the accuracy of inversion of the vegetation height
– volume: 6
  start-page: 130
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb1415
  article-title: Upscaling of surface soil moisture using a deep learning model with VIIRS RDR
  publication-title: ISPRS Int. J. Geo Inf.
  doi: 10.3390/ijgi6050130
– volume: 152
  start-page: 94
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb1025
  article-title: Automatic land-water classification using multispectral airborne LiDAR data for near-shore and river environments
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.04.005
– volume: 22
  start-page: 375
  year: 2002
  ident: 10.1016/j.rse.2020.111716_bb0100
  article-title: Evaluation of approaches for forest cover estimation in the Pacific Northwest, USA, using remote sensing
  publication-title: Appl. Geogr.
  doi: 10.1016/S0143-6228(02)00048-6
– volume: 33
  start-page: 361
  year: 2007
  ident: 10.1016/j.rse.2020.111716_bb0985
  article-title: Prediction of crop yields with the use of neural networks
  publication-title: Russ. Agric. Sci.
  doi: 10.3103/S1068367407060031
– volume: 131
  start-page: 119
  year: 2013
  ident: 10.1016/j.rse.2020.111716_bb1400
  article-title: Disaggregation of remotely sensed land surface temperature: literature survey, taxonomy, issues, and caveats
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.014
– volume: 42
  start-page: 11
  year: 2004
  ident: 10.1016/j.rse.2020.111716_bb0310
  article-title: On neural network algorithms for retrieving forest biomass from SAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 14
  start-page: 131
  year: 2009
  ident: 10.1016/j.rse.2020.111716_bb0555
  article-title: Development and validation of GANN model for evapotranspiration estimation
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2009)14:2(131)
– volume: 23
  start-page: A1442
  year: 2015
  ident: 10.1016/j.rse.2020.111716_bb1110
  article-title: Retrieval of snow physical parameters by neural networks and optimal estimation: case study for ground-based spectral radiometer system
  publication-title: Opt. Express
  doi: 10.1364/OE.23.0A1442
– volume: 85
  start-page: 1
  year: 2005
  ident: 10.1016/j.rse.2020.111716_bb0485
  article-title: Artificial neural networks for corn and soybean yield prediction
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2004.07.009
– volume: 10
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0780
  article-title: Deep recurrent neural network for agricultural classification using multitemporal SAR Sentinel-1 for Camargue, France
  publication-title: Remote Sens.
– volume: 27
  start-page: 4039
  year: 2006
  ident: 10.1016/j.rse.2020.111716_bb1315
  article-title: Comparison of pixel-based and object-oriented image classification approaches—a case study in a coal fire area, Wuda, Inner Mongolia, China
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600702632
– volume: 68
  start-page: 866
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0315
  article-title: Forecasting air quality time series using deep learning
  publication-title: J. Air Waste Manage. Assoc.
  doi: 10.1080/10962247.2018.1459956
– volume: 11
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb0145
  article-title: Strawberry yield prediction based on a deep neural network using high-resolution aerial orthoimages
  publication-title: Remote Sens.
– volume: 61
  start-page: 636
  year: 2013
  ident: 10.1016/j.rse.2020.111716_bb0670
  article-title: An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images
  publication-title: Energy
  doi: 10.1016/j.energy.2013.09.008
– volume: 241
  start-page: 654
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb1375
  article-title: Estimating hourly PM1 concentrations from Himawari-8 aerosol optical depth in China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.05.100
– volume: 60
  start-page: 519
  year: 2004
  ident: 10.1016/j.rse.2020.111716_bb1105
  article-title: Development of a neural network algorithm for retrieving concentrations of chlorophyll, suspended matter and yellow substance from radiance data of the ocean color and temperature scanner
  publication-title: J. Oceanogr.
  doi: 10.1023/B:JOCE.0000038345.99050.c0
– volume: 90
  start-page: 76
  year: 2004
  ident: 10.1016/j.rse.2020.111716_bb1145
  article-title: Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.12.002
– volume: 16
  start-page: 3659
  year: 2012
  ident: 10.1016/j.rse.2020.111716_bb0960
  article-title: An algorithm for generating soil moisture and snow depth maps from microwave spaceborne radiometers: HydroAlgo
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-16-3659-2012
– volume: 8
  start-page: 8181
  year: 2008
  ident: 10.1016/j.rse.2020.111716_bb0865
  article-title: Inversion of electromagnetic models for bare soil parameter estimation from multifrequency polarimetric SAR data
  publication-title: Sensors
  doi: 10.3390/s8128181
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0755
  article-title: Combined use of GF-3 and Landsat-8 satellite data for soil moisture retrieval over agricultural areas using artificial neural network
  publication-title: Adv. Meteorol.
  doi: 10.1155/2018/9315132
– volume: 7
  start-page: 103
  year: 2012
  ident: 10.1016/j.rse.2020.111716_bb0125
  article-title: An artificial neural network approach to estimate evapotranspiration from remote sensing and AmeriFlux data
  publication-title: Front. Earth Sci.
  doi: 10.1007/s11707-012-0346-7
– volume: 55
  start-page: 688
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb0750
  article-title: Prospective interest of deep learning for hydrological inference
  publication-title: Groundwater
  doi: 10.1111/gwat.12557
– volume: 20
  start-page: 252
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb1160
  article-title: Repurposing a deep learning network to filter and classify volunteered photographs for land cover and land use characterization
  publication-title: Geo-spatial Information Science
  doi: 10.1080/10095020.2017.1373955
– volume: 50
  year: 2012
  ident: 10.1016/j.rse.2020.111716_bb0185
  article-title: Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products
  publication-title: Rev. Geophys.
  doi: 10.1029/2011RG000372
– volume: 14
  start-page: 549
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb1000
  article-title: Training deep convolutional neural networks for land-cover classification of high-resolution imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2657778
– volume: 54
  start-page: 7135
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb1040
  article-title: An integrated framework for the spatio-temporal-spectral fusion of remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2596290
– volume: 216
  start-page: 57
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb1430
  article-title: An object-based convolutional neural network (OCNN) for urban land use classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.06.034
– volume: 37
  start-page: 251
  year: 1997
  ident: 10.1016/j.rse.2020.111716_bb0365
  article-title: Estimation of daily soil water evaporation using an artificial neural network
  publication-title: J. Arid Environ.
  doi: 10.1006/jare.1997.0269
– volume: 8
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb0995
  article-title: Quantum-chemical insights from deep tensor neural networks
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13890
– volume: 35
  start-page: 1798
  year: 2013
  ident: 10.1016/j.rse.2020.111716_bb0080
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– volume: 26
  start-page: 253
  year: 2008
  ident: 10.1016/j.rse.2020.111716_bb0500
  article-title: Comparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semiarid environment
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-007-0090-z
– volume: 3
  start-page: 875
  year: 2013
  ident: 10.1016/j.rse.2020.111716_bb1340
  article-title: The role of satellite remote sensing in climate change studies
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate1908
– year: 2017
  ident: 10.1016/j.rse.2020.111716_bb0085
  article-title: Modelling effects of forest disturbance history on carbon balance: a deep learning approach using Landsat-time series
– volume: 131
  start-page: 390
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb0235
  article-title: A hybrid prediction model for PM2.5 mass and components using a chemical transport model and land use regression
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.02.002
– year: 2017
  ident: 10.1016/j.rse.2020.111716_bb1360
  article-title: Deep Gaussian process for crop yield prediction based on remote sensing data
– start-page: 2455
  year: 2014
  ident: 10.1016/j.rse.2020.111716_bb0355
  article-title: Performance inter-comparison of soil moisture retrieval models for the MetOp-A ASCAT instrument
– volume: 128
  start-page: 224
  year: 2002
  ident: 10.1016/j.rse.2020.111716_bb0545
  article-title: Estimating evapotranspiration using artificial neural network
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2002)128:4(224)
– volume: 40
  start-page: 1260
  year: 2002
  ident: 10.1016/j.rse.2020.111716_bb0690
  article-title: Retrieval of crop biomass and soil moisture from measured 1.4 and 10.65 GHz brightness temperatures
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2002.800277
– volume: 8
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb0920
  article-title: Long term global surface soil moisture fields using an SMOS-trained neural network applied to AMSR-E data
  publication-title: Remote Sens.
  doi: 10.3390/rs8110959
– volume: 129
  start-page: 214
  year: 2003
  ident: 10.1016/j.rse.2020.111716_bb1090
  article-title: Estimating actual evapotranspiration from limited climatic data using neural computing technique
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2003)129:3(214)
– volume: 92
  start-page: 54
  year: 2014
  ident: 10.1016/j.rse.2020.111716_bb0150
  article-title: Cloud removal for remotely sensed images by similar pixel replacement guided with a spatio-temporal MRF model
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.02.015
– volume: 9
  start-page: 527
  year: 1995
  ident: 10.1016/j.rse.2020.111716_bb0300
  article-title: Land cover classification by an artificial neural network with ancillary information
  publication-title: Int. J. Geogr. Inf. Syst.
  doi: 10.1080/02693799508902054
– volume: 21
  start-page: 5201
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb0930
  article-title: SMOS near-real-time soil moisture product: processor overview and first validation results
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-21-5201-2017
– volume: 4
  start-page: 22
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb1410
  article-title: Deep learning for remote sensing data: a technical tutorial on the state of the art
  publication-title: IEEE Geoscience and Remote Sensing Magazine
  doi: 10.1109/MGRS.2016.2540798
– start-page: 207
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb1075
  article-title: Integration of convolutional neural network and thermal images into soil moisture estimation
– volume: 24
  start-page: 60
  year: 2014
  ident: 10.1016/j.rse.2020.111716_bb0045
  article-title: Sea water chlorophyll-a estimation using hyperspectral images and supervised artificial neural network
  publication-title: Ecological informatics
  doi: 10.1016/j.ecoinf.2014.07.004
– volume: 44
  start-page: 11,985
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb0625
  article-title: Estimating ground-level PM2.5 by fusing satellite and station observations: a geo-intelligent deep learning approach
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL075710
– volume: 237
  year: 2020
  ident: 10.1016/j.rse.2020.111716_bb1155
  article-title: Land-cover classification with high-resolution remote sensing images using transferable deep models
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111322
– volume: 8
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb0505
  article-title: A comparison between major artificial intelligence models for crop yield prediction: case study of the midwestern United States, 2006–2015
  publication-title: International Journal of Geo-information
– volume: 123
  start-page: 13,875
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb1050
  article-title: Estimating regional ground-level PM2.5 directly from satellite top-of-atmosphere reflectance using deep belief networks
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2018JD028759
– volume: 566
  start-page: 195
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb0900
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– volume: 14
  start-page: 778
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb0560
  article-title: Deep learning classification of land cover and crop types using remote sensing data
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2681128
– volume: 15
  start-page: 207
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb1350
  article-title: A CFCC-LSTM model for sea surface temperature prediction
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2780843
– volume: 55
  start-page: 341
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb0860
  article-title: A review of spatial downscaling of satellite remotely sensed soil moisture
  publication-title: Rev. Geophys.
  doi: 10.1002/2016RG000543
– volume: 56
  start-page: 43
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0595
  article-title: Estimation of soil moisture using deep learning based on satellite data: a case study of South Korea
  publication-title: GIScience & Remote Sensing
  doi: 10.1080/15481603.2018.1489943
– start-page: 1
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0790
  article-title: A hybrid of deep learning and hand-crafted features based approach for snow cover mapping
  publication-title: Int. J. Remote Sens.
– start-page: 1905
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb1235
  article-title: Transfer knowledge between cities
– year: 2008
  ident: 10.1016/j.rse.2020.111716_bb0035
  article-title: Application of neural networks to soil moisture retrievals from L-band radiometric data
– volume: 65
  start-page: 114
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0980
  article-title: On the synergy of SMAP, AMSR2 AND SENTINEL-1 for retrieving soil moisture
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2017.10.010
– volume: 18
  start-page: 727
  year: 1997
  ident: 10.1016/j.rse.2020.111716_bb0075
  article-title: Feature extraction for multisource data classification with artificial neural networks
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311697218728
– volume: 115
  start-page: 494
  year: 2015
  ident: 10.1016/j.rse.2020.111716_bb0880
  article-title: An advanced ANN-based method to estimate hourly solar radiation from multi-spectral MSG imagery
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.03.014
– volume: 30
  start-page: 3063
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb0890
  article-title: Comparison of M5 model tree and artificial neural network’s methodologies in modelling daily reference evapotranspiration from NOAA satellite images
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-016-1331-9
– volume: 218–219
  start-page: 74
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb0470
  article-title: Crop yield forecasting on the Canadian prairies by remotely sensed vegetation indices and machine learning methods
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.11.003
– volume: 3
  start-page: 61
  year: 2015
  ident: 10.1016/j.rse.2020.111716_bb1035
  article-title: Missing information reconstruction of remote sensing data: a technical review
  publication-title: IEEE Geoscience and Remote Sensing Magazine
  doi: 10.1109/MGRS.2015.2441912
– volume: 9
  start-page: 857
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb5000
  article-title: A Robust Algorithm for Estimating Surface Fractional Vegetation Cover from Landsat Data
  publication-title: Remote Sens.
  doi: 10.3390/rs9080857
– volume: 114
  year: 2009
  ident: 10.1016/j.rse.2020.111716_bb0360
  article-title: Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. A neural network approach
  publication-title: J. Geophys. Res. Atmos.
– volume: 331
  start-page: 700
  year: 2011
  ident: 10.1016/j.rse.2020.111716_bb0815
  article-title: Climate data challenges in the 21st century
  publication-title: Science
  doi: 10.1126/science.1197869
– volume: 654
  start-page: 1091
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb1240
  article-title: A novel spatiotemporal convolutional long short-term neural network for air pollution prediction
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.086
– volume: 27
  start-page: 35
  year: 2008
  ident: 10.1016/j.rse.2020.111716_bb0495
  article-title: Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semi-arid environment
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-008-0119-y
– volume: 16
  start-page: 1509
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb0570
  article-title: A method to improve MODIS AOD values: application to South America
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.2015.05.0375
– volume: 7
  start-page: 597
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb1225
  article-title: Soil moisture retrieval algorithm based on TFA and CNN
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2885565
– volume: 150
  start-page: 186
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb0050
  article-title: All convolutional neural networks for radar-based precipitation nowcasting
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2019.02.036
– volume: 35
  start-page: 201
  year: 2007
  ident: 10.1016/j.rse.2020.111716_bb0775
  article-title: Estimation of chlorophyll-A concentration using an artificial neural network (ANN)-based algorithm with oceansat-I OCM data
  publication-title: Journal of the Indian Society of Remote Sensing
  doi: 10.1007/BF03013488
– volume: 7
  start-page: 129
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb0170
  article-title: A review on predicting ground PM2.5 concentration using satellite aerosol optical depth
  publication-title: Atmosphere
  doi: 10.3390/atmos7100129
– volume: 20
  start-page: 189
  year: 1999
  ident: 10.1016/j.rse.2020.111716_bb0490
  article-title: Estimating oceanic chlorophyll concentrations with neural networks
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311699213695
– volume: 91
  start-page: 127
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb1295
  article-title: Automatic land cover classification of geo-tagged field photos by deep learning
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2017.02.004
– volume: 142
  year: 2012
  ident: 10.1016/j.rse.2020.111716_bb1335
  article-title: On Grass Yield Remote Sensing Estimation Models of China’s Northern Farming-Pastoral Ecotone
– volume: 28
  start-page: 701
  year: 2002
  ident: 10.1016/j.rse.2020.111716_bb0055
  article-title: Retrieving surface roughness and soil moisture from synthetic aperture radar (SAR) data using neural networks
  publication-title: Can. J. Remote. Sens.
  doi: 10.5589/m02-066
– volume: 54
  issue: 11
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb0095
  article-title: Spiking neural networks for crop yield estimation based on spatiotemporal analysis of image time series
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2586602
– volume: 85
  start-page: 519
  year: 2013
  ident: 10.1016/j.rse.2020.111716_bb0295
  article-title: Chlorophyll a spatial inference using artificial neural network from multispectral images and in situ measurements
  publication-title: An. Acad. Bras. Cienc.
  doi: 10.1590/S0001-37652013005000037
– volume: 134
  start-page: 234
  year: 2013
  ident: 10.1016/j.rse.2020.111716_bb0835
  article-title: Soil moisture mapping using Sentinel-1 images: algorithm and preliminary validation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.02.027
– start-page: 279
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0225
  article-title: Neural networks and support vector machines and their application to aerosol and cloud remote sensing: a review
  doi: 10.1007/978-3-319-70796-9_4
– volume: 130
  start-page: 277
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb0715
  article-title: A review of supervised object-based land-cover image classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.06.001
– volume: 28
  start-page: 1
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0745
  article-title: Retrieval of land-surface temperature from AMSR2 data using a deep dynamic learning neural network
  publication-title: Chin. Geogr. Sci.
  doi: 10.1007/s11769-018-0930-1
– volume: 10
  start-page: 1119
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0725
  article-title: Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs10071119
– volume: 72
  start-page: 828
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb0215
  article-title: Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2017.01.114
– volume: 35
  start-page: 4795
  year: 2010
  ident: 10.1016/j.rse.2020.111716_bb1015
  article-title: Modeling of solar radiation using remote sensing and artificial neural network in Turkey
  publication-title: Energy
  doi: 10.1016/j.energy.2010.09.009
– volume: 39
  start-page: 1662
  year: 2001
  ident: 10.1016/j.rse.2020.111716_bb0675
  article-title: Retrieving soil moisture from simulated brightness temperatures by a neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.942544
– year: 2005
  ident: 10.1016/j.rse.2020.111716_bb0655
– volume: 214
  start-page: 73
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0415
  article-title: Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.050
– year: 1998
  ident: 10.1016/j.rse.2020.111716_bb0030
– volume: 141
  start-page: 30
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb1395
  article-title: A two-step framework for reconstructing remotely sensed land surface temperatures contaminated by cloud
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.04.005
– volume: XLII-3
  start-page: 583
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0405
  article-title: Soil moisture retrieval using convolutional neural networks: application to passive microwave remote sensing
  publication-title: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  doi: 10.5194/isprs-archives-XLII-3-583-2018
– volume: 2
  start-page: 673
  year: 2010
  ident: 10.1016/j.rse.2020.111716_bb0840
  article-title: Application of vegetation indices for agricultural crop yield prediction using neural network techniques
  publication-title: Remote Sens.
  doi: 10.3390/rs2030673
– start-page: 1574
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb0925
  article-title: Soil moisture retrieval using SMOS brightness temperatures and a neural network trained on in situ measurements
– volume: 46
  start-page: 1925
  year: 2008
  ident: 10.1016/j.rse.2020.111716_bb0270
  article-title: Combining artificial neural network models, geostatistics, and passive microwave data for snow water equivalent retrieval and mapping
  publication-title: IEEE Transactions on Geoscience Remote Sensing
  doi: 10.1109/TGRS.2008.916632
– volume: 27
  start-page: 3127
  year: 2013
  ident: 10.1016/j.rse.2020.111716_bb1085
  article-title: Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-013-0337-9
– volume: 84
  start-page: 174
  year: 2003
  ident: 10.1016/j.rse.2020.111716_bb0210
  article-title: Retrieving soil moisture and agricultural variables by microwave radiometry using neural networks
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00105-0
– volume: 26
  start-page: 4843
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb0590
  article-title: Going deeper with contextual CNN for hyperspectral image classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2725580
– volume: 11
  start-page: 2272
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb0265
  article-title: High spatio-temporal resolution CYGNSS soil moisture estimates using artificial neural networks
  publication-title: Remote Sens.
  doi: 10.3390/rs11192272
– volume: 933
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb1150
– volume: 204
  start-page: 43
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0530
  article-title: Estimating surface soil moisture from SMAP observations using a neural network technique
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.10.045
– volume: 658
  start-page: 1256
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb1380
  article-title: Estimation of spatiotemporal PM1.0 distributions in China by combining PM2.5 observations with satellite aerosol optical depth
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.12.297
– volume: 33
  start-page: 5712
  year: 2012
  ident: 10.1016/j.rse.2020.111716_bb0120
  article-title: Estimating time-series leaf area index based on recurrent nonlinear autoregressive neural networks with exogenous inputs
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.671553
– start-page: 1705
  year: 2007
  ident: 10.1016/j.rse.2020.111716_bb1460
  article-title: A neural network algorithm to retrieve nearsurface air temperature from landsat ETM+ imagery over the Hanjiang River Basin, China
– year: 2008
  ident: 10.1016/j.rse.2020.111716_bb0340
– start-page: 104270P
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb0330
  article-title: Convolutional neural networks for estimating spatially distributed evapotranspiration
– volume: 217
  start-page: 144
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0400
  article-title: A novel co-training approach for urban land cover mapping with unclear Landsat time series imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.08.017
– volume: 25
  start-page: 4541
  year: 2004
  ident: 10.1016/j.rse.2020.111716_bb0430
  article-title: Neural network estimation of air temperatures from AVHRR data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160310001657533
– volume: 89
  start-page: 1
  year: 2013
  ident: 10.1016/j.rse.2020.111716_bb0260
  article-title: Artificial neural network based model for retrieval of the direct normal, diffuse horizontal and global horizontal irradiances using SEVIRI images
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2012.12.008
– volume: 56
  start-page: 4274
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb1435
  article-title: Missing data reconstruction in remote sensing image with a unified spatial–temporal–spectral deep convolutional neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2810208
– volume: 46
  start-page: 200
  year: 2008
  ident: 10.1016/j.rse.2020.111716_bb0735
  article-title: A neural network technique for separating land surface emissivity and temperature from ASTER imagery
  publication-title: IEEE Transactions on Geoscience & Remote Sensing
  doi: 10.1109/TGRS.2007.907333
– volume: 256
  start-page: 13395
  year: 2020
  ident: 10.1016/j.rse.2020.111716_bb0855
  article-title: Estimating PM2.5 concentration of the conterminous United States via interpretable convolutional neural networks
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.113395
– volume: 10
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0845
  article-title: Automated geospatial models of varying complexities for pine forest evapotranspiration estimation with advanced data mining
  publication-title: Water
  doi: 10.3390/w10111687
– volume: 44
  start-page: 2200
  year: 2011
  ident: 10.1016/j.rse.2020.111716_bb0660
  article-title: Study of sample temperature compensation in the measurement of soil moisture content
  publication-title: Measurement
  doi: 10.1016/j.measurement.2011.07.008
– volume: 173
  start-page: 73
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb0650
  article-title: Snow depth reconstruction over last century: trend and distribution in the Tianshan Mountains, China
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2018.12.008
– volume: 2
  start-page: 166
  year: 2009
  ident: 10.1016/j.rse.2020.111716_bb0115
  article-title: Use of soil moisture variability in artificial neural network retrieval of soil moisture
  publication-title: Remote Sens.
  doi: 10.3390/rs2010166
– volume: 162
  start-page: 221
  year: 2015
  ident: 10.1016/j.rse.2020.111716_bb0450
  article-title: Estimation of surface upward longwave radiation from MODIS and VIIRS clear-sky data in the Tibetan Plateau
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.02.021
– volume: 123
  start-page: 6777
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0645
  article-title: Intercomparison of six upscaling evapotranspiration methods: from site to the satellite pixel
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2018JD028422
– volume: 15
  start-page: 1451
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb1010
  article-title: Enhanced fusion of deep neural networks for classification of benchmark high-resolution image data sets
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2839092
– volume: 19
  start-page: 787
  year: 2006
  ident: 10.1016/j.rse.2020.111716_bb0370
  article-title: A statistical complement to deterministic algorithms for the retrieval of aerosol optical thickness from radiance data
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2006.05.009
– start-page: 818
  year: 2014
  ident: 10.1016/j.rse.2020.111716_bb1385
  article-title: Visualizing and understanding convolutional networks
– volume: 39
  start-page: 2115
  year: 2000
  ident: 10.1016/j.rse.2020.111716_bb0070
  article-title: Rainfall estimation from a combination of TRMM precipitation radar and GOES multispectral satellite imagery through the use of an artificial neural network
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(2001)040<2115:REFACO>2.0.CO;2
– volume: 110
  year: 2005
  ident: 10.1016/j.rse.2020.111716_bb0010
  article-title: Sensitivity of satellite microwave and infrared observations to soil moisture at a global scale: 2. Global statistical relationships
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2004JD005094
– volume: 2315
  start-page: 160
  year: 1994
  ident: 10.1016/j.rse.2020.111716_bb0220
  article-title: Crop yield prediction using a CMAC neural network
– volume: 9
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb0820
  article-title: Soil moisture estimation over vegetated agricultural areas: Tigris Basin, Turkey from Radarsat-2 data by polarimetric decomposition models and a generalized regression neural network
  publication-title: Remote Sens.
  doi: 10.3390/rs9040395
– year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0785
  article-title: Applying deep learning for agricultural classification using multitemporal SAR Sentinel-1 for Camargue, France
– volume: 9
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb1285
  article-title: A machine learning based reconstruction method for satellite remote sensing of soil moisture images with in situ observations
  publication-title: Remote Sens.
  doi: 10.3390/rs9050484
– volume: 51
  start-page: 891
  year: 2013
  ident: 10.1016/j.rse.2020.111716_bb0950
  article-title: Comparison of ANN and MLR models for estimating solar radiation in Turkey using NOAA/AVHRR data
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2012.10.010
– volume: 210
  start-page: 48
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb1275
  article-title: Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.03.008
– volume: 10
  start-page: 1022
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0870
  article-title: Improving the estimation of daily aerosol optical depth and aerosol radiative effect using an optimized artificial neural network
  publication-title: Remote Sens.
  doi: 10.3390/rs10071022
– volume: 115
  start-page: 3355
  year: 2011
  ident: 10.1016/j.rse.2020.111716_bb0245
  article-title: Fractional snow cover mapping through artificial neural network analysis of MODIS surface reflectance
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.07.018
– volume: 103
  start-page: 24937
  year: 1998
  ident: 10.1016/j.rse.2020.111716_bb0810
  article-title: Ocean color chlorophyll algorithms for SeaWiFS
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/98JC02160
– volume: 7
  year: 2013
  ident: 10.1016/j.rse.2020.111716_bb0665
  article-title: Biomass estimation of wetland vegetation in Poyang Lake area using ENVISAT advanced synthetic aperture radar data
  publication-title: J. Appl. Remote. Sens.
  doi: 10.1117/1.JRS.7.073579
– volume: 117
  year: 2012
  ident: 10.1016/j.rse.2020.111716_bb0805
  article-title: Estimating surface longwave radiative fluxes from satellites utilizing artificial neural networks
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2011JD017141
– volume: 19
  start-page: 2082
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb1355
  article-title: Spatial assessment of solar radiation by machine learning and deep neural network models using data provided by the COMS MI geostationary satellite: a case study in South Korea
  publication-title: Sensors
  doi: 10.3390/s19092082
– volume: 54
  start-page: 1138
  year: 2011
  ident: 10.1016/j.rse.2020.111716_bb1330
  article-title: The spatial continuity study of NDVI based on Kriging and BPNN algorithm
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2010.11.046
– volume: 162
  start-page: 126
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0475
  article-title: Estimation of daily global solar radiation using deep learning model
  publication-title: Energy
  doi: 10.1016/j.energy.2018.07.202
– volume: 22
  start-page: 5341
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0020
  article-title: Global downscaling of remotely sensed soil moisture using neural networks
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-5341-2018
– volume: 113
  start-page: 919
  year: 2009
  ident: 10.1016/j.rse.2020.111716_bb0325
  article-title: Comparison of snow water equivalent retrieved from SSM/I passive microwave data using artificial neural network, projection pursuit and nonlinear regressions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.01.004
– volume: 36
  start-page: 1176
  year: 1997
  ident: 10.1016/j.rse.2020.111716_bb0390
  article-title: Precipitation estimation from remotely sensed information using artificial neural networks
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2
– volume: 34
  start-page: 7508
  year: 2013
  ident: 10.1016/j.rse.2020.111716_bb0945
  article-title: Comparison of modelling ANN and ELM to estimate solar radiation over Turkey using NOAA satellite data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2013.822597
– year: 2020
  ident: 10.1016/j.rse.2020.111716_bb1055
– start-page: 1349
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb1120
– volume: 4
  start-page: 179
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb0175
  article-title: Fractional snow cover mapping by artificial neural networks and support vector machines
  publication-title: ISPRS Annals of the Photogrammetry, Remote Sensing Spatial Information Sciences
  doi: 10.5194/isprs-annals-IV-4-W4-179-2017
– volume: 580
  start-page: 124351
  year: 2020
  ident: 10.1016/j.rse.2020.111716_bb1370
  article-title: Estimating surface soil moisture from satellite observations using a generalized regression neural network trained on sparse ground-based measurements in the continental U.S.
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124351
– volume: 156
  start-page: 403
  year: 2015
  ident: 10.1016/j.rse.2020.111716_bb0195
  article-title: Fractional snow cover estimation in complex alpine-forested environments using an artificial neural network
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.09.026
– volume: 9
  start-page: 964
  year: 2011
  ident: 10.1016/j.rse.2020.111716_bb0410
  article-title: Estimation of overstory and understory leaf area index by combining hyperion and panchromatic QuickBird data using neural network method
  publication-title: Sens. Lett.
  doi: 10.1166/sl.2011.1380
– volume: 123
  start-page: 8674
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb1305
  article-title: Evaluating different machine learning methods for upscaling evapotranspiration from flux towers to the regional scale
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2018JD028447
– volume: 543
  start-page: 242
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb0190
  article-title: Validation and reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.10.005
– volume: 151
  start-page: 61
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0155
  article-title: Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.05.012
– volume: 189
  start-page: 596
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb0700
  article-title: Integrating multiple vegetation indices via an artificial neural network model for estimating the leaf chlorophyll content of Spartina alterniflora under interspecies competition
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-017-6323-6
– start-page: 1
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb0135
– volume: 38
  start-page: 4631
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb0290
  article-title: Sugarcane yield prediction in Brazil using NDVI time series and neural networks ensemble
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1325531
– volume: 99
  start-page: 10
  year: 2012
  ident: 10.1016/j.rse.2020.111716_bb0510
  article-title: Lettuce (Lactuca sativa L.) yield prediction under water stress using artificial neural network (ANN) model and vegetation indices
  publication-title: Zemdirbyste
– volume: 131
  start-page: 182
  year: 2013
  ident: 10.1016/j.rse.2020.111716_bb1390
  article-title: Recovering missing pixels for Landsat ETM+ SLC-off imagery using multi-temporal regression analysis and a regularization method
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.012
– volume: 112
  start-page: 203
  year: 2008
  ident: 10.1016/j.rse.2020.111716_bb1180
  article-title: Multi-temporal vegetation canopy water content retrieval and interpretation using artificial neural networks for the continental USA
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.04.013
– volume: 3
  year: 2004
  ident: 10.1016/j.rse.2020.111716_bb1190
  article-title: Neural networks in land surface temperature mapping in urban areas from thermal infrared data
  publication-title: International Geoscience and Remote Sensing Symposium (IGARSS)
– volume: 52
  year: 2014
  ident: 10.1016/j.rse.2020.111716_bb1265
  article-title: Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2237780
– volume: 83
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb0380
  article-title: Synthetic aperture radar and optical satellite data for estimating the biomass of corn
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2019.101933
– volume: 220
  start-page: 1810
  year: 2009
  ident: 10.1016/j.rse.2020.111716_bb1280
  article-title: A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia, China
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2009.04.025
– volume: 13
  start-page: 1359
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb1405
  article-title: Stacked sparse autoencoder in PolSAR data classification using local spatial information
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2586109
– volume: 50
  start-page: 409
  year: 2012
  ident: 10.1016/j.rse.2020.111716_bb0905
  article-title: Uncertainty analysis of neural-network-based aerosol retrieval
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2166120
– volume: 9
  start-page: 2478
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb0970
  article-title: Robust assessment of an operational algorithm for the retrieval of soil moisture from AMSR-E data in central Italy
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2016.2575361
– volume: 10
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb1300
  article-title: Quality improvement of satellite soil moisture products by fusing with in-situ measurements and GNSS-R estimates in the western continental U.S
  publication-title: Remote Sens.
  doi: 10.3390/rs10091351
– volume: 11
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb1475
  article-title: Evaluation of three deep learning models for early crop classification using Sentinel-1A imagery time series-a case study in Zhanjiang, China
  publication-title: Remote Sens.
  doi: 10.3390/rs11222673
– start-page: 1
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0280
  article-title: The value of SMAP for long-term soil moisture estimation with the help of deep learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 118
  start-page: 4847
  year: 2013
  ident: 10.1016/j.rse.2020.111716_bb0515
  article-title: Soil moisture retrieval from multi-instrument observations: information content analysis and retrieval methodology
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2012JD018150
– start-page: 110180Y
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb0795
  article-title: Deep learning on hyperspectral data to obtain water properties and bottom depths
– start-page: 176
  year: 2002
  ident: 10.1016/j.rse.2020.111716_bb0760
– volume: 19
  start-page: 1545
  year: 1998
  ident: 10.1016/j.rse.2020.111716_bb0040
  article-title: Wetland classification using optical and radar data and neural network classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311698215342
– volume: 16
  start-page: 1343
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb1095
  article-title: Deep learning architecture for estimating hourly ground-level PM2.5 using satellite remote sensing
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2900270
– volume: 46
  start-page: 3274
  year: 2008
  ident: 10.1016/j.rse.2020.111716_bb0825
  article-title: A comparison of algorithms for retrieving soil moisture from ENVISAT/ASAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.920370
– volume: 11
  start-page: 83
  year: 2004
  ident: 10.1016/j.rse.2020.111716_bb1135
  article-title: Neural networks in satellite rainfall estimation
  publication-title: Meteorol. Appl.
  doi: 10.1017/S1350482704001173
– volume: 36
  start-page: 3368
  year: 2015
  ident: 10.1016/j.rse.2020.111716_bb1465
  article-title: On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/2150704X.2015.1062157
– volume: 65
  start-page: 2
  year: 2010
  ident: 10.1016/j.rse.2020.111716_bb0090
  article-title: Object based image analysis for remote sensing
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2009.06.004
– volume: 129
  start-page: 454
  year: 2003
  ident: 10.1016/j.rse.2020.111716_bb1175
  article-title: Forecasting of reference evapotranspiration by artificial neural networks
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2003)129:6(454)
– volume: 33
  start-page: 772
  year: 2014
  ident: 10.1016/j.rse.2020.111716_bb1310
  article-title: Solar radiation prediction using artificial neural network techniques: a review
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2013.08.055
– volume: 26
  start-page: 102
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0465
  article-title: Chlorophyll concentration derived from microwave remote sensing measurements using artificial neural network algorithm
  publication-title: Journal of Marine Science and Technology-Taiwan
– volume: 102
  start-page: 148
  year: 2015
  ident: 10.1016/j.rse.2020.111716_bb0130
  article-title: Spatio-temporal prediction of leaf area index of rubber plantation using HJ-1A/1B CCD images and recurrent neural network
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.12.011
– volume: 14
  start-page: 1638
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb1005
  article-title: Fusion of deep convolutional neural networks for land cover classification of high-resolution imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2722988
– volume: 210
  start-page: 59
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb1445
  article-title: Accessible remote sensing data based reference evapotranspiration estimation modelling
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2018.07.039
– year: 2014
  ident: 10.1016/j.rse.2020.111716_bb0160
– volume: 70
  start-page: 314
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb1420
  article-title: A critical review of the models used to estimate solar radiation
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2016.11.124
– volume: 11
  start-page: 300
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb1260
  article-title: Reconstructing geostationary satellite land surface temperature imagery based on a multiscale feature connected convolutional neural network
  publication-title: Remote Sens.
  doi: 10.3390/rs11030300
– volume: 140
  start-page: 133
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb1425
  article-title: A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.07.014
– volume: 53
  start-page: 5991
  year: 2015
  ident: 10.1016/j.rse.2020.111716_bb0915
  article-title: Soil moisture retrieval using neural networks: application to SMOS
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2430845
– volume: 50
  start-page: 4712
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb0230
  article-title: Assessing PM2.5 exposures with high spatiotemporal resolution across the continental United States
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b06121
– start-page: 689
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0440
  article-title: Data augmentation with Gabor filter in deep convolutional neural networks for Sar target recognition
– volume: 114
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb0445
  article-title: A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2019.109327
– volume: 113
  start-page: 155
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb1455
  article-title: Learning multiscale and deep representations for classifying remotely sensed imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.004
– volume: 99
  start-page: 1
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb1030
  article-title: Deep learning: a next-generation big-data approach for hydrology
  publication-title: EOS
  doi: 10.1029/2018EO095649
– volume: 91
  start-page: 566
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb0685
  article-title: Geological disaster recognition on optical remote sensing images using deep learning
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2016.07.144
– volume: 2
  start-page: 352
  year: 2014
  ident: 10.1016/j.rse.2020.111716_bb0940
  article-title: Artificial Neural Networks (ANNs) application to predict occurrence of phenological stages in wheat using climatic data
  publication-title: International Journal of Agricultural Policy and Research
– volume: 121
  start-page: 57
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb0850
  article-title: Wheat yield prediction using machine learning and advanced sensing techniques
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.11.018
– volume: 10
  start-page: 1746
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0320
  article-title: A two-branch CNN architecture for land cover classification of PAN and MS imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs10111746
– volume: 18
  start-page: 356
  year: 2008
  ident: 10.1016/j.rse.2020.111716_bb0105
  article-title: Retrieval snow depth by artificial neural network methodology from integrated AMSR-E and in-situ data—a case study in Qinghai-Tibet Plateau
  publication-title: Chin. Geogr. Sci.
  doi: 10.1007/s11769-008-0356-2
– volume: 212
  start-page: 21
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0975
  article-title: Integration of microwave data from SMAP and AMSR2 for soil moisture monitoring in Italy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.039
– year: 2016
  ident: 10.1016/j.rse.2020.111716_bb0345
– volume: 177
  start-page: 184
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb0435
  article-title: Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.019
– volume: 11
  start-page: 1
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb0065
  article-title: Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community
  publication-title: J. Appl. Remote. Sens.
  doi: 10.1117/1.JRS.11.042609
– volume: 2015
  year: 2015
  ident: 10.1016/j.rse.2020.111716_bb0710
  article-title: Urban land use and land cover classification using remotely sensed SAR data through deep belief networks
  publication-title: Journal of Sensors
  doi: 10.1155/2015/538063
– start-page: 2431
  year: 2014
  ident: 10.1016/j.rse.2020.111716_bb0910
  article-title: Soil moisture retrieval from SMOS observations using neural networks
– volume: 17
  start-page: 931
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb1115
  article-title: A deep neural network modeling framework to reduce bias in satellite precipitation products
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-15-0075.1
– volume: 20
  start-page: 2273
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb0935
  article-title: PERSIANN-CNN: precipitation estimation from remotely sensed information using artificial neural networks-convolutional neural networks
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-19-0110.1
– volume: 215
  start-page: 157
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0165
  article-title: Deep learning application to time-series prediction of daily chlorophyll-a concentration
  publication-title: WIT Trans. Ecol. Environ.
  doi: 10.2495/EID180141
– volume: 15
  start-page: 431
  year: 2008
  ident: 10.1016/j.rse.2020.111716_bb1185
  article-title: Forecast of daily mean, maximum and minimum temperature time series by three artificial neural network methods
  publication-title: Meteorol. Appl.
  doi: 10.1002/met.83
– volume: 115
  start-page: 1145
  year: 2011
  ident: 10.1016/j.rse.2020.111716_bb0765
  article-title: Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.12.017
– volume: 57
  start-page: 2221
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb0285
  article-title: The value of SMAP for long-term soil moisture estimation with the help of deep learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2872131
– volume: 3
  start-page: 179
  year: 2006
  ident: 10.1016/j.rse.2020.111716_bb1065
  article-title: Improving air temperature prediction with artificial neural networks
  publication-title: Int. J. Comput. Intell.
– volume: 54
  start-page: 15
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb1270
  article-title: Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2560522
– volume: 12
  start-page: 1579
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0060
  article-title: Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan
  publication-title: Cryosphere
  doi: 10.5194/tc-12-1579-2018
– year: 2015
  ident: 10.1016/j.rse.2020.111716_bb0680
– volume: 117
  start-page: 40
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb1060
  article-title: Prediction of high spatio-temporal resolution land surface temperature under cloudy conditions using microwave vegetation index and ANN
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.03.011
– volume: 8
  start-page: 87
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb0460
  article-title: Deep neural network algorithm for estimating maize biomass based on simulated Sentinel 2A vegetation indices and leaf area index
  publication-title: The Crop Journal
  doi: 10.1016/j.cj.2019.06.005
– volume: 8
  start-page: 734
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb1080
  article-title: Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model
  publication-title: Journal of Arid Land
  doi: 10.1007/s40333-016-0049-0
– volume: 38
  start-page: 205
  year: 2014
  ident: 10.1016/j.rse.2020.111716_bb0955
  article-title: Application of extreme learning machine for estimating solar radiation from satellite data
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.3030
– volume: 433
  start-page: 20
  year: 2012
  ident: 10.1016/j.rse.2020.111716_bb1250
  article-title: Synergy of satellite and ground based observations in estimation of particulate matter in eastern China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.06.033
– start-page: 1
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb1220
  article-title: Deep transfer learning for crop yield prediction with remote sensing data
– volume: 232
  start-page: 35
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb1200
  article-title: Analysis and estimation of tallgrass prairie evapotranspiration in the central United States
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2016.08.005
– volume: 221
  start-page: 173
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb1450
  article-title: Joint deep learning for land cover and land use classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.014
– year: 2017
  ident: 10.1016/j.rse.2020.111716_bb0480
– volume: 12
  start-page: 905
  year: 2011
  ident: 10.1016/j.rse.2020.111716_bb0305
  article-title: Site-specific early season potato yield forecast by neural network in Eastern Canada
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-011-9233-6
– volume: 191
  start-page: 117
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb0525
  article-title: Merging active and passive microwave observations in soil moisture data assimilation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.01.015
– volume: 12
  start-page: 891
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb1070
  article-title: Improving gridded snow water equivalent products in British Columbia, Canada: multi-source data fusion by neural network models
  publication-title: Cryosphere
  doi: 10.5194/tc-12-891-2018
– volume: 46
  start-page: 10669
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb0140
  article-title: Rainfall estimation from ground radar and TRMM precipitation radar using hybrid deep neural networks
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2019GL084771
– volume: 8
  start-page: 883
  year: 2007
  ident: 10.1016/j.rse.2020.111716_bb1320
  article-title: Estimation of vegetation biophysical parameters by remote sensing using radial basis function neural network
  publication-title: Journal of Zhejiang University-Science A
  doi: 10.1631/jzus.2007.A0883
– volume: 19
  start-page: 2987
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb1100
  article-title: Deep learning convolutional neural network for the retrieval of land surface temperature from AMSR2 data in China
  publication-title: Sensors
  doi: 10.3390/s19132987
– volume: 4
  start-page: 409
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0895
  article-title: Prediction of vegetation dynamics using NDVI time series data and LSTM
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-018-0431-3
– volume: 114
  start-page: 1924
  year: 2010
  ident: 10.1016/j.rse.2020.111716_bb0705
  article-title: Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.04.001
– volume: 158
  start-page: 11
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb0420
  article-title: Combining Sentinel-1 and Sentinel-2 satellite image time series for land cover mapping via a multi-source deep learning architecture
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.09.016
– volume: 5
  start-page: 113
  year: 2008
  ident: 10.1016/j.rse.2020.111716_bb1195
  article-title: A data-mining approach for the validation of aerosol retrievals
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2007.912725
– volume: 9975
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb0015
  article-title: Using remote sensing satellite data and artificial neural network for prediction of potato yield in Bangladesh
  publication-title: Proc. SPIE, Remote Sensing and Modeling of Ecosystems for Sustainability
– volume: 44
  start-page: 11,030
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb0275
  article-title: Prolongation of SMAP to spatiotemporally seamless coverage of continental U.S. using a deep learning neural network
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL075619
– volume: 52
  start-page: 5601
  year: 2014
  ident: 10.1016/j.rse.2020.111716_bb0385
  article-title: Improving mountainous snow cover fraction mapping via artificial neural networks combined with MODIS and ancillary topographic data
  publication-title: IEEE Transactions on Geoscience Remote Sensing
  doi: 10.1109/TGRS.2013.2290996
– volume: 2014
  start-page: 1
  year: 2014
  ident: 10.1016/j.rse.2020.111716_bb0025
  article-title: Comparative study of M5 model tree and artificial neural network in estimating reference evapotranspiration using MODIS products
  publication-title: J. Climatol.
  doi: 10.1155/2014/839205
– year: 2017
  ident: 10.1016/j.rse.2020.111716_bb0110
  article-title: The GEOS-5 neural network retrieval (NNR) for AOD
– year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0635
– volume: 35
  start-page: 69
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0770
  article-title: Prediction of aerosol optical depth in West Asia using deterministic models and machine learning algorithms
  publication-title: Aeolian Res.
  doi: 10.1016/j.aeolia.2018.10.002
– volume: 106
  start-page: 14887
  year: 2001
  ident: 10.1016/j.rse.2020.111716_bb0005
  article-title: A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land
  publication-title: J. Geophys. Res.
  doi: 10.1029/2001JD900085
– volume: 101
  start-page: 83
  year: 2010
  ident: 10.1016/j.rse.2020.111716_bb0885
  article-title: Estimation of evapotranspiration based on only air temperature data using artificial neural networks for a subtropical climate in Iran
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-009-0204-z
– volume: 6
  start-page: 694
  year: 2009
  ident: 10.1016/j.rse.2020.111716_bb0580
  article-title: Machine learning and Bias correction of MODIS aerosol optical depth
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2009.2023605
– volume: 118
  start-page: 259
  year: 2012
  ident: 10.1016/j.rse.2020.111716_bb0255
  article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.020
– volume: 18
  start-page: 1271
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb1125
  article-title: Precipitation identification with bispectral satellite information using deep learning approaches
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-16-0176.1
– volume: 53
  start-page: 6008
  year: 2015
  ident: 10.1016/j.rse.2020.111716_bb1345
  article-title: A moving weighted harmonic analysis method for reconstructing high-quality SPOT VEGETATION NDVI time-series data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2431315
– year: 2015
  ident: 10.1016/j.rse.2020.111716_bb1365
– volume: 10
  start-page: 5228
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb0200
  article-title: A deep-learning-based forecasting ensemble to predict missing data for remote sensing analysis
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2017.2760202
– volume: 34
  start-page: 3485
  year: 2013
  ident: 10.1016/j.rse.2020.111716_bb1215
  article-title: Retrieval of atmospheric and land surface parameters from satellite-based thermal infrared hyperspectral data using a neural network technique
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.716536
– volume: 2016
  start-page: 29
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb0540
  article-title: Neural networks technique for filling gaps in satellite measurements: application to ocean color observations
  publication-title: Computational intelligence and neuroscience
  doi: 10.1155/2016/6156513
– volume: 9
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb1230
  article-title: Estimation of PM2.5 concentrations in China using a spatial back propagation neural network
  publication-title: Sci. Rep.
– volume: 124
  start-page: 61
  year: 2012
  ident: 10.1016/j.rse.2020.111716_bb1210
  article-title: Consistent retrieval methods to estimate land surface shortwave and longwave radiative flux components under clear-sky conditions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.04.026
– volume: 79
  start-page: 66
  year: 2014
  ident: 10.1016/j.rse.2020.111716_bb0250
  article-title: Satellite image analysis and a hybrid ESSS/ANN model to forecast solar irradiance in the tropics
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2013.11.043
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.rse.2020.111716_bb0585
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 126
  start-page: 268
  year: 2000
  ident: 10.1016/j.rse.2020.111716_bb1170
  article-title: Estimation of FAO Blaney-Criddle b factor by RBF network
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2000)126:4(268)
– year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0640
– volume: 24
  start-page: 3917
  year: 2003
  ident: 10.1016/j.rse.2020.111716_bb0180
  article-title: Radial basis function and multilayer perceptron neural networks for sea water optically active parameter estimation in case II waters: a comparison
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116031000103781
– volume: 112
  year: 2007
  ident: 10.1016/j.rse.2020.111716_bb0600
  article-title: Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2006JD007811
– start-page: 331
  year: 2007
  ident: 10.1016/j.rse.2020.111716_bb0610
  article-title: Soybean LAI estimation with in-situ collected hyperspectral data based on BP-neural networks
– volume: 31
  start-page: 2265
  year: 2010
  ident: 10.1016/j.rse.2020.111716_bb0830
  article-title: Generation of soil moisture maps from ENVISAT/ASAR images in mountainous areas: a case study
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160902953891
– volume: 13
  start-page: 1895
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb1255
  article-title: Deep filter banks for land-use scene classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2616440
– volume: 15
  start-page: 1032
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb1440
  article-title: A novel hybrid data-driven model for daily land surface temperature forecasting using long short-term memory neural network based on ensemble empirical mode decomposition
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph15051032
– volume: 19
  start-page: 393
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb1130
  article-title: A two-stage deep neural network framework for precipitation estimation from bispectral satellite information
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-17-0077.1
– volume: 141
  start-page: 237
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb1290
  article-title: Exploring geo-tagged photos for land cover validation with deep learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.04.025
– volume: 32
  start-page: 552
  year: 2012
  ident: 10.1016/j.rse.2020.111716_bb0350
  article-title: Downscaling of surface temperature for lake catchment in an arid region in India using linear multiple regression and neural networks
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.2286
– volume: 173
  start-page: 1
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb0520
  article-title: Soil moisture retrieval from AMSR-E and ASCAT microwave observation synergy. Part 1: satellite data analysis
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.11.011
– year: 2015
  ident: 10.1016/j.rse.2020.111716_bb0565
  article-title: Estimating crop yields with deep learning and remotely sensed data
– volume: 149
  start-page: 91
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb0425
  article-title: DuPLO: a DUal view Point deep Learning architecture for time series classificatiOn
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.01.011
– volume: 47
  start-page: 1559
  year: 2009
  ident: 10.1016/j.rse.2020.111716_bb1205
  article-title: Estimating high spatial resolution clear-sky land surface upwelling longwave radiation from MODIS data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.2005206
– volume: 7
  start-page: 3151
  year: 2014
  ident: 10.1016/j.rse.2020.111716_bb1140
  article-title: Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peak
  publication-title: Atmospheric Measurement Techniques
  doi: 10.5194/amt-7-3151-2014
– volume: 106
  start-page: 223
  year: 2010
  ident: 10.1016/j.rse.2020.111716_bb0695
  article-title: Neural-network model for estimating leaf chlorophyll concentration in rice under stress from heavy metals using four spectral indices
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2009.12.008
– volume: 5
  start-page: 8
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb1485
  article-title: Deep learning in remote sensing: a comprehensive review and list of resources
  publication-title: IEEE Geoscience and Remote Sensing Magazine
  doi: 10.1109/MGRS.2017.2762307
– volume: 48
  start-page: 2170
  year: 2010
  ident: 10.1016/j.rse.2020.111716_bb1325
  article-title: A novel method to estimate subpixel temperature by fusing solar-reflective and thermal-infrared remote-sensing data with an artificial neural network
  publication-title: IEEE Transactions on Geoscience & Remote Sensing
  doi: 10.1109/TGRS.2009.2033180
– volume: 152
  start-page: 477
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb0630
  article-title: Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China: methods and assessment
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2017.01.004
– volume: 225
  issue: 7
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb1245
  article-title: Estimating crop primary productivity with Sentinel-2 and Landsat 8 using machine learning methods trained with radiative transfer simulations
  publication-title: Remote Sens. Environ.
– volume: 112
  year: 2007
  ident: 10.1016/j.rse.2020.111716_bb0730
  article-title: An RM-NN algorithm for retrieving land surface temperature and emissivity from EOS/MODIS data
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2007JD008428
– volume: 31
  start-page: 842
  year: 1993
  ident: 10.1016/j.rse.2020.111716_bb0205
  article-title: Retrieval of snow parameters by iterative inversion of a neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.239907
– volume: 55
  start-page: 3516
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb1480
  article-title: Learning to diversify deep belief networks for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2675902
– volume: 43
  start-page: 1834
  year: 2004
  ident: 10.1016/j.rse.2020.111716_bb0375
  article-title: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/JAM2173.1
– volume: 86
  start-page: 1222
  year: 2009
  ident: 10.1016/j.rse.2020.111716_bb1020
  article-title: Estimation of solar radiation over Turkey using artificial neural network and satellite data
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2008.06.003
– volume: 118
  start-page: 6771
  year: 2013
  ident: 10.1016/j.rse.2020.111716_bb0455
  article-title: A joint analysis of modeled soil moisture fields and satellite observations
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/jgrd.50430
– start-page: 5
  year: 2014
  ident: 10.1016/j.rse.2020.111716_bb0965
  article-title: A prototype ann based algorithm for the soil moisture retrieval from l-band in view of the incoming SMAP mission
– volume: 14
  start-page: 1436
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb1470
  article-title: Transfer learning with fully pretrained deep convolution networks for land-use classification
  publication-title: IEEE Geoscience Remote Sensing Letters
  doi: 10.1109/LGRS.2017.2691013
– volume: 21
  start-page: 773
  year: 2001
  ident: 10.1016/j.rse.2020.111716_bb0990
  article-title: Downscaling temperature and precipitation: a comparison of regression-based methods and artificial neural networks
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.655
– volume: 29
  start-page: 6021
  year: 2008
  ident: 10.1016/j.rse.2020.111716_bb0740
  article-title: Near-surface air temperature estimation from ASTER data based on neural network algorithm
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160802192160
– volume: 46
  start-page: 547
  year: 2008
  ident: 10.1016/j.rse.2020.111716_bb0800
  article-title: Soil moisture retrieval from remotely sensed data: neural network approach versus Bayesian method
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.909951
– volume: 37
  start-page: 5632
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb0620
  article-title: Stacked autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1246775
– volume: 13
  start-page: 137
  year: 2016
  ident: 10.1016/j.rse.2020.111716_bb0240
  article-title: Efficient saliency-based object detection in remote sensing images using deep belief networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2498644
– volume: 79
  start-page: 9
  year: 2007
  ident: 10.1016/j.rse.2020.111716_bb0605
  article-title: Estimating crop yield from multi-temporal satellite data using multivariate regression and neural network techniques
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 154
  start-page: 151
  year: 2019
  ident: 10.1016/j.rse.2020.111716_bb0875
  article-title: Local climate zone-based urban land cover classification from multi-seasonal Sentinel-2 images with a recurrent residual network
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.05.004
– volume: 26
  start-page: 531
  year: 2008
  ident: 10.1016/j.rse.2020.111716_bb0550
  article-title: Comparative study of conventional and artificial neural network-based ETo estimation models
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-008-0114-3
– start-page: 6291
  year: 2018
  ident: 10.1016/j.rse.2020.111716_bb0335
  article-title: Snow-covered area using machine learning techniques
– volume: 17
  start-page: 1623
  year: 2017
  ident: 10.1016/j.rse.2020.111716_bb0575
  article-title: An improved aerosol optical depth map based on machine-learning and MODIS data: development and application in South America
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.2016.11.0484
SSID ssj0015871
Score 2.7284284
Snippet Various forms of machine learning (ML) methods have historically played a valuable role in environmental remote sensing research. With an increasing amount of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111716
SubjectTerms air
Air temperature
artificial intelligence
Atmospheric models
color
Data integration
Deep learning
Earth
environmental factors
Environmental monitoring
Environmental remote sensing
Evapotranspiration
Hydrology
Land cover
Land surface temperature
Learning algorithms
Machine learning
Mapping
Multisensor fusion
Neural network
Neural networks
Ocean color
Parameter retrieval
prediction
Remote sensing
Solar radiation
Surface temperature
vegetation
Title Deep learning in environmental remote sensing: Achievements and challenges
URI https://dx.doi.org/10.1016/j.rse.2020.111716
https://www.proquest.com/docview/2441309948
https://www.proquest.com/docview/2388747731
Volume 241
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH9CTNO4TKMM0VGQJ3FCymhs10m4VXysY4LTkLhZjvMCRShUTTn0wt_Oe4nTiWniwDGxrUTv05bf-_0ADuJSGzOULiqLNIu0kXmUoVQMIUqHBzRD5_igeHllJtf64mZ0swYnXS8Ml1WG2N_G9CZahzdHQZpHs-mUe3yVZouTZKeM084d7DphK__xvCrziEdp0rLmKR3x7O5ms6nxmteMlCmbwJEw5fn_c9M_UbpJPedf4HPYM4px-1ubsIZVD7bP_rao0WDw0boHnwKv-d2yBx9_NsS9yy24OEWcicARcSumlcBX6-dIOkNRcz17dXssxv5uig2W-KIWriqE71hX6q9wfX7252QSBR6FyKtRuogSmSe5TMsMlcs9lin5nM_iPDUoUWkaNTFpJfbSjRxtiWRRGFJsQnnMKOMLtQ3r1WOFOyDocJIbTB2iRu2Nz5zPGsxBzag5ruzDsJOg9QFknLkuHmxXTXZvSeiWhW5boffhcLVk1iJsvDVZd2qxr8zEUgZ4a9mgU6ENPlpb2thQAs8ynfbh-2qYvIuvTFyFj080R1EQ1kmi4m_v-_IubPBTWyI5gPXF_An3aBuzyPcbO92HD-NfvydXL2No7-0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BVQUX1G5BLFBqJHqpFNjYXidB4oB4Lc8TSNyM40yWRSisNouqvfRP9Q92nDhbUVUckLhm7MQZjz_PyOP5ALbCXCrV4SbIszgJpOJpkCAXroQoBQ-oOsa4QPHySvVu5Nlt93YGfjd3YVxapcf-GtMrtPZPdrw2d4aDgbvjK6SzOE526uq0-8zKc5z8pLit3Ds9pEn-zvnx0fVBL_DUAoEV3XgcRDyNUh7nCQqTWsxjMkObhGmskKOQJFUhDTS03HQNeQk8yxT9a0TQroSymaD3zsIHSXDhaBO2f03zSsJuHNU0fUIGbnjNUWqVVDYqXWlOXiFV5DjW_78Z_rMtVHvd8SdY9E4q26_18BlmsGjB8tHfO3Ek9KBQtmDeE6nfT1rw8aRiCp58gbNDxCHzpBR9NigYvug_QjISZKVLoC_6u2zf3g-wKl4-LpkpMmYbmpdyCW7eRbvLMFc8FbgCjKKhVGFsECVKq2xibFIVOZSuTI_J29BpNKitr2ruyDUedZO-9qBJ6dopXddKb8OPaZdhXdLjtcaymRb9wi41bTmvdVtvplB7UCg1eVLkMSSJjNuwORXTcnZnNKbAp2dqIwj1ZRSJcPVtX_4G873rywt9cXp1vgYLTlLnZ67D3Hj0jF_JhxqnG5XNMrh770XyB5ICK9I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+in+environmental+remote+sensing%3A+Achievements+and+challenges&rft.jtitle=Remote+sensing+of+environment&rft.au=Yuan%2C+Qiangqiang&rft.au=Shen%2C+Huanfeng&rft.au=Li%2C+Tongwen&rft.au=Li%2C+Zhiwei&rft.date=2020-05-01&rft.pub=Elsevier+BV&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=241&rft.spage=1&rft_id=info:doi/10.1016%2Fj.rse.2020.111716&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon