Deep learning in environmental remote sensing: Achievements and challenges
Various forms of machine learning (ML) methods have historically played a valuable role in environmental remote sensing research. With an increasing amount of “big data” from earth observation and rapid advances in ML, increasing opportunities for novel methods have emerged to aid in earth environme...
Saved in:
Published in | Remote sensing of environment Vol. 241; p. 111716 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
01.05.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Various forms of machine learning (ML) methods have historically played a valuable role in environmental remote sensing research. With an increasing amount of “big data” from earth observation and rapid advances in ML, increasing opportunities for novel methods have emerged to aid in earth environmental monitoring. Over the last decade, a typical and state-of-the-art ML framework named deep learning (DL), which is developed from the traditional neural network (NN), has outperformed traditional models with considerable improvement in performance. Substantial progress in developing a DL methodology for a variety of earth science applications has been observed. Therefore, this review will concentrate on the use of the traditional NN and DL methods to advance the environmental remote sensing process. First, the potential of DL in environmental remote sensing, including land cover mapping, environmental parameter retrieval, data fusion and downscaling, and information reconstruction and prediction, will be analyzed. A typical network structure will then be introduced. Afterward, the applications of DL environmental monitoring in the atmosphere, vegetation, hydrology, air and land surface temperature, evapotranspiration, solar radiation, and ocean color are specifically reviewed. Finally, challenges and future perspectives will be comprehensively analyzed and discussed.
•The potential of deep learning (DL) in environmental remote sensing is analyzed.•Typical DL network architectures in remote sensing applications are introduced.•Progress on DL in remote sensing of ten more environmental parameters is reviewed.•New insights on combining DL and physical/geographical laws are discussed. |
---|---|
AbstractList | Various forms of machine learning (ML) methods have historically played a valuable role in environmental remote sensing research. With an increasing amount of “big data” from earth observation and rapid advances in ML, increasing opportunities for novel methods have emerged to aid in earth environmental monitoring. Over the last decade, a typical and state-of-the-art ML framework named deep learning (DL), which is developed from the traditional neural network (NN), has outperformed traditional models with considerable improvement in performance. Substantial progress in developing a DL methodology for a variety of earth science applications has been observed. Therefore, this review will concentrate on the use of the traditional NN and DL methods to advance the environmental remote sensing process. First, the potential of DL in environmental remote sensing, including land cover mapping, environmental parameter retrieval, data fusion and downscaling, and information reconstruction and prediction, will be analyzed. A typical network structure will then be introduced. Afterward, the applications of DL environmental monitoring in the atmosphere, vegetation, hydrology, air and land surface temperature, evapotranspiration, solar radiation, and ocean color are specifically reviewed. Finally, challenges and future perspectives will be comprehensively analyzed and discussed.
•The potential of deep learning (DL) in environmental remote sensing is analyzed.•Typical DL network architectures in remote sensing applications are introduced.•Progress on DL in remote sensing of ten more environmental parameters is reviewed.•New insights on combining DL and physical/geographical laws are discussed. Various forms of machine learning (ML) methods have historically played a valuable role in environmental remote sensing research. With an increasing amount of "big data" from earth observation and rapid advances in ML, increasing opportunities for novel methods have emerged to aid in earth environmental monitoring. Over the last decade, a typical and state-of-the-art ML framework named deep learning (DL), which is developed from the traditional neural network (NN), has outperformed traditional models with considerable improvement in performance. Substantial progress in developing a DL methodology for a variety of earth science applications has been observed. Therefore, this review will concentrate on the use of the traditional NN and DL methods to advance the environmental remote sensing process. First, the potential of DL in environmental remote sensing, including land cover mapping, environmental parameter retrieval, data fusion and downscaling, and information reconstruction and prediction, will be analyzed. A typical network structure will then be introduced. Afterward, the applications of DL environmental monitoring in the atmosphere, vegetation, hydrology, air and land surface temperature, evapotranspiration, solar radiation, and ocean color are specifically reviewed. Finally, challenges and future perspectives will be comprehensively analyzed and discussed. |
ArticleNumber | 111716 |
Author | Yuan, Qiangqiang Gao, Jianhao Tan, Weiwei Yang, Qianqian Zhang, Liangpei Wang, Jiwen Li, Zhiwei Shen, Huanfeng Jiang, Yun Li, Tongwen Xu, Hongzhang Li, Shuwen |
Author_xml | – sequence: 1 givenname: Qiangqiang orcidid: 0000-0001-7140-2224 surname: Yuan fullname: Yuan, Qiangqiang organization: School of Geodesy and Geomatics, Wuhan University, Wuhan, China – sequence: 2 givenname: Huanfeng orcidid: 0000-0002-4140-1869 surname: Shen fullname: Shen, Huanfeng email: shenhf@whu.edu.cn organization: School of Resource and Environmental Sciences, Wuhan University, Wuhan, China – sequence: 3 givenname: Tongwen surname: Li fullname: Li, Tongwen organization: School of Resource and Environmental Sciences, Wuhan University, Wuhan, China – sequence: 4 givenname: Zhiwei orcidid: 0000-0001-5635-8499 surname: Li fullname: Li, Zhiwei organization: School of Resource and Environmental Sciences, Wuhan University, Wuhan, China – sequence: 5 givenname: Shuwen surname: Li fullname: Li, Shuwen organization: School of Geodesy and Geomatics, Wuhan University, Wuhan, China – sequence: 6 givenname: Yun surname: Jiang fullname: Jiang, Yun organization: School of Resource and Environmental Sciences, Wuhan University, Wuhan, China – sequence: 7 givenname: Hongzhang surname: Xu fullname: Xu, Hongzhang organization: School of Geodesy and Geomatics, Wuhan University, Wuhan, China – sequence: 8 givenname: Weiwei surname: Tan fullname: Tan, Weiwei organization: The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China – sequence: 9 givenname: Qianqian surname: Yang fullname: Yang, Qianqian organization: School of Geodesy and Geomatics, Wuhan University, Wuhan, China – sequence: 10 givenname: Jiwen surname: Wang fullname: Wang, Jiwen organization: School of Geodesy and Geomatics, Wuhan University, Wuhan, China – sequence: 11 givenname: Jianhao surname: Gao fullname: Gao, Jianhao organization: School of Geodesy and Geomatics, Wuhan University, Wuhan, China – sequence: 12 givenname: Liangpei orcidid: 0000-0001-6890-3650 surname: Zhang fullname: Zhang, Liangpei organization: The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China |
BookMark | eNp9kE1LwzAch4NMcJt-AG8FL14689ImqZ6G7zLwoueQpv9uGV0yk27gtzejnnbYKYTf84TwTNDIeQcIXRM8I5jwu_UsRJhRTNOdEEH4GRoTKaocC1yM0BhjVuQFLcUFmsS4xpiUUpAx-ngC2GYd6OCsW2bWZeD2Nni3AdfrLguw8T1kEVxM-302NysLezisMdOuycxKdx24JcRLdN7qLsLV_zlF3y_PX49v-eLz9f1xvsgNK2WfC1qLmsq2AqZrA63kTJqK1JIDBVaklRPgmBiqS01LTJuGG6MFF4nkpmFTdDu8uw3-ZwexVxsbDXSdduB3UVEmpSiEYCShN0fo2u-CS79TtCgIw1VVyESRgTLBxxigVdtgNzr8KoLVoa5aq1RXHeqqoW5yxJFjbK97610ftO1Omg-DCanR3kJQ0VhwBhobwPSq8faE_QdQOpW- |
CitedBy_id | crossref_primary_10_3390_rs15071922 crossref_primary_10_1016_j_rse_2023_113628 crossref_primary_10_1016_j_rse_2022_113106 crossref_primary_10_1007_s11769_022_1315_z crossref_primary_10_1016_j_ocecoaman_2023_106713 crossref_primary_10_1016_j_jag_2024_104334 crossref_primary_10_1016_j_jhazmat_2024_136285 crossref_primary_10_1016_j_atech_2024_100581 crossref_primary_10_3390_rs16244659 crossref_primary_10_1016_j_ecoinf_2021_101397 crossref_primary_10_1109_JSTARS_2020_3045516 crossref_primary_10_1109_TGRS_2020_3038878 crossref_primary_10_3390_rs15020327 crossref_primary_10_1016_j_isprsjprs_2023_11_015 crossref_primary_10_34133_2022_9757948 crossref_primary_10_3390_rs14030717 crossref_primary_10_3390_rs16234611 crossref_primary_10_1016_j_rse_2023_113856 crossref_primary_10_1109_TAES_2022_3197098 crossref_primary_10_1109_TGRS_2023_3247806 crossref_primary_10_1109_TGRS_2024_3464574 crossref_primary_10_1016_j_earscirev_2021_103858 crossref_primary_10_1016_j_isprsjprs_2022_08_010 crossref_primary_10_1016_j_compag_2024_109002 crossref_primary_10_1109_MGRS_2020_3043504 crossref_primary_10_1364_JOSAA_468627 crossref_primary_10_1016_j_rse_2022_113357 crossref_primary_10_3390_rs12244052 crossref_primary_10_1016_j_asr_2024_03_033 crossref_primary_10_1109_MGRS_2021_3136100 crossref_primary_10_1109_JSTARS_2021_3073719 crossref_primary_10_1016_j_jobe_2024_110473 crossref_primary_10_1016_j_jag_2024_104111 crossref_primary_10_1016_j_jag_2024_104113 crossref_primary_10_1109_JSTARS_2021_3098817 crossref_primary_10_1080_15481603_2023_2233756 crossref_primary_10_1109_TGRS_2021_3097336 crossref_primary_10_1109_JSTARS_2024_3454093 crossref_primary_10_1080_01431161_2024_2387132 crossref_primary_10_1016_j_rse_2023_113886 crossref_primary_10_1016_j_eswa_2024_125132 crossref_primary_10_3390_app122312392 crossref_primary_10_3390_f14030483 crossref_primary_10_1109_JSTARS_2023_3298946 crossref_primary_10_1109_TGRS_2025_3540710 crossref_primary_10_3390_rs16081392 crossref_primary_10_1007_s12517_023_11538_3 crossref_primary_10_1109_MGRS_2023_3293459 crossref_primary_10_1109_TGRS_2024_3429350 crossref_primary_10_3390_rs16081394 crossref_primary_10_1109_JSTARS_2023_3342986 crossref_primary_10_1038_s41612_023_00407_1 crossref_primary_10_1109_TGRS_2023_3337845 crossref_primary_10_1109_JPROC_2021_3087029 crossref_primary_10_1038_s41597_023_02844_2 crossref_primary_10_1109_TGRS_2024_3519371 crossref_primary_10_1007_s11119_024_10149_6 crossref_primary_10_1016_j_scs_2024_105393 crossref_primary_10_3390_rs13234902 crossref_primary_10_1016_j_ecoinf_2022_101883 crossref_primary_10_3390_math11020479 crossref_primary_10_1109_JSTARS_2022_3188788 crossref_primary_10_1371_journal_pone_0315127 crossref_primary_10_1016_j_jag_2021_102516 crossref_primary_10_1109_TGRS_2021_3099522 crossref_primary_10_3390_rs13050908 crossref_primary_10_3389_fpls_2023_1124939 crossref_primary_10_1007_s12145_024_01686_9 crossref_primary_10_1016_j_agrformet_2024_110136 crossref_primary_10_1016_j_gsf_2022_101499 crossref_primary_10_1007_s11119_022_09932_0 crossref_primary_10_1016_j_isprsjprs_2023_11_026 crossref_primary_10_1109_TGRS_2024_3373873 crossref_primary_10_3390_rs14195053 crossref_primary_10_1016_j_cemconcomp_2021_104159 crossref_primary_10_1016_j_compag_2021_106188 crossref_primary_10_3390_rs16050837 crossref_primary_10_1016_j_jag_2021_102511 crossref_primary_10_1016_j_isprsjprs_2023_10_017 crossref_primary_10_3390_stats6040077 crossref_primary_10_1186_s12889_024_20316_z crossref_primary_10_1016_j_jenvman_2023_119131 crossref_primary_10_1109_TGRS_2023_3336791 crossref_primary_10_3390_app14167152 crossref_primary_10_1039_D4NR01445F crossref_primary_10_1109_LGRS_2022_3213984 crossref_primary_10_1109_JSTARS_2023_3276977 crossref_primary_10_1109_TGRS_2024_3470800 crossref_primary_10_1139_cjfas_2020_0423 crossref_primary_10_1109_JSTARS_2024_3492177 crossref_primary_10_1016_j_rse_2023_113658 crossref_primary_10_1016_j_tifs_2023_02_010 crossref_primary_10_1016_j_isprsjprs_2023_10_004 crossref_primary_10_1080_10095020_2024_2440615 crossref_primary_10_1016_j_jhydrol_2021_125969 crossref_primary_10_1109_TGRS_2024_3361652 crossref_primary_10_1109_TGRS_2024_3443420 crossref_primary_10_2166_wqrj_2025_026 crossref_primary_10_1029_2022EF002723 crossref_primary_10_1016_j_rse_2023_113653 crossref_primary_10_1016_j_rse_2023_113655 crossref_primary_10_1109_TGRS_2022_3169216 crossref_primary_10_1016_j_engappai_2024_108921 crossref_primary_10_3390_rs14174378 crossref_primary_10_1016_j_rse_2025_114694 crossref_primary_10_3390_s22166124 crossref_primary_10_1109_JSTARS_2022_3144339 crossref_primary_10_1109_TGRS_2023_3296151 crossref_primary_10_1016_j_algal_2024_103649 crossref_primary_10_1109_TGRS_2022_3187095 crossref_primary_10_3390_drones9010032 crossref_primary_10_1109_ACCESS_2024_3411777 crossref_primary_10_1371_journal_pone_0268007 crossref_primary_10_3390_s25010244 crossref_primary_10_1016_j_jhydrol_2023_129466 crossref_primary_10_3390_rs12203324 crossref_primary_10_1007_s44163_024_00198_1 crossref_primary_10_3390_app122211457 crossref_primary_10_3390_rs16142676 crossref_primary_10_3390_rs13020249 crossref_primary_10_1007_s12524_024_01997_w crossref_primary_10_1109_TGRS_2022_3203071 crossref_primary_10_1016_j_jhydrol_2025_133086 crossref_primary_10_3390_rs16163106 crossref_primary_10_1080_20964471_2023_2177435 crossref_primary_10_1038_s41612_023_00353_y crossref_primary_10_1080_2150704X_2024_2343130 crossref_primary_10_1109_ACCESS_2021_3087206 crossref_primary_10_3934_environsci_2025004 crossref_primary_10_1109_JSTARS_2023_3276781 crossref_primary_10_1016_j_rse_2021_112818 crossref_primary_10_3390_app11041403 crossref_primary_10_3390_rs14194841 crossref_primary_10_1016_j_envsoft_2022_105467 crossref_primary_10_1016_j_agwat_2023_108405 crossref_primary_10_3390_s20123559 crossref_primary_10_1080_17538947_2022_2130460 crossref_primary_10_3390_electronics13245022 crossref_primary_10_3390_rs14205146 crossref_primary_10_1029_2022GL097947 crossref_primary_10_1016_j_seta_2024_104057 crossref_primary_10_1109_JSTARS_2022_3211857 crossref_primary_10_1016_j_jag_2025_104447 crossref_primary_10_3390_rs13183600 crossref_primary_10_1016_j_geoderma_2023_116589 crossref_primary_10_1109_TGRS_2023_3310521 crossref_primary_10_3390_rs15174193 crossref_primary_10_1016_j_jag_2021_102389 crossref_primary_10_3389_fenvs_2022_979133 crossref_primary_10_1109_TGRS_2020_3000684 crossref_primary_10_1080_10095020_2022_2162980 crossref_primary_10_3390_geosciences13120380 crossref_primary_10_1016_j_jag_2024_104182 crossref_primary_10_1109_MGRS_2022_3145854 crossref_primary_10_1109_TGRS_2024_3522152 crossref_primary_10_1016_j_compag_2023_107615 crossref_primary_10_1016_j_ejrs_2025_02_002 crossref_primary_10_1109_TGRS_2025_3525728 crossref_primary_10_1016_j_cosust_2020_10_013 crossref_primary_10_1016_j_jag_2021_102375 crossref_primary_10_1109_JSTARS_2024_3524443 crossref_primary_10_3390_ijgi10120813 crossref_primary_10_3390_rs16173193 crossref_primary_10_1109_JSTARS_2024_3408154 crossref_primary_10_3390_rs13214467 crossref_primary_10_1109_LGRS_2021_3116601 crossref_primary_10_1109_ACCESS_2025_3526180 crossref_primary_10_1016_j_rsase_2025_101498 crossref_primary_10_3390_atmos16010082 crossref_primary_10_1155_2020_8811630 crossref_primary_10_1109_TGRS_2023_3335820 crossref_primary_10_1016_j_jag_2021_102365 crossref_primary_10_3390_rs15143458 crossref_primary_10_3390_rs13132477 crossref_primary_10_1016_j_isprsjprs_2021_01_019 crossref_primary_10_3390_math10183392 crossref_primary_10_1016_j_isprsjprs_2023_05_032 crossref_primary_10_1155_2024_8854675 crossref_primary_10_1109_JSTARS_2024_3435739 crossref_primary_10_1109_JSTARS_2021_3104726 crossref_primary_10_3390_rs14051263 crossref_primary_10_1109_JSTARS_2024_3469728 crossref_primary_10_1155_2022_6994179 crossref_primary_10_1016_j_isprsjprs_2021_02_011 crossref_primary_10_1016_j_envint_2021_106392 crossref_primary_10_3390_atmos15070760 crossref_primary_10_3390_rs14143290 crossref_primary_10_1016_j_rse_2025_114637 crossref_primary_10_1080_22797254_2022_2062054 crossref_primary_10_1016_j_jag_2021_102599 crossref_primary_10_1007_s11042_024_19417_z crossref_primary_10_1109_LGRS_2024_3350211 crossref_primary_10_1016_j_envint_2025_109389 crossref_primary_10_1109_TGRS_2024_3462589 crossref_primary_10_3390_rs13112211 crossref_primary_10_1016_j_jag_2021_102356 crossref_primary_10_3390_rs15051203 crossref_primary_10_3390_geographies3020019 crossref_primary_10_32604_cmc_2023_036894 crossref_primary_10_3390_su15032741 crossref_primary_10_1038_s41597_024_03508_5 crossref_primary_10_1109_TGRS_2024_3430981 crossref_primary_10_1063_5_0246235 crossref_primary_10_3390_agronomy15020492 crossref_primary_10_3390_s21216996 crossref_primary_10_1016_j_rse_2021_112600 crossref_primary_10_1007_s00477_024_02728_w crossref_primary_10_1016_j_scitotenv_2024_176783 crossref_primary_10_1109_TGRS_2024_3394501 crossref_primary_10_3390_f14050913 crossref_primary_10_1016_j_agrformet_2024_109962 crossref_primary_10_1016_j_geodrs_2024_e00817 crossref_primary_10_3390_w13152003 crossref_primary_10_3390_rs15133232 crossref_primary_10_59324_ejtas_2024_2_3__53 crossref_primary_10_3390_w16131762 crossref_primary_10_3390_rs17040680 crossref_primary_10_1016_j_rse_2021_112830 crossref_primary_10_3390_rs16040655 crossref_primary_10_3390_rs16040654 crossref_primary_10_1016_j_jag_2024_104152 crossref_primary_10_1080_01431161_2024_2347526 crossref_primary_10_3390_agronomy13071723 crossref_primary_10_1109_LGRS_2022_3222836 crossref_primary_10_1109_JSTARS_2023_3347571 crossref_primary_10_1016_j_isprsjprs_2023_06_015 crossref_primary_10_1016_j_rse_2025_114609 crossref_primary_10_3390_app15073434 crossref_primary_10_1111_jiec_13356 crossref_primary_10_3390_w14213401 crossref_primary_10_1016_j_rse_2021_112826 crossref_primary_10_1016_j_isprsjprs_2023_12_011 crossref_primary_10_1016_j_jag_2022_102865 crossref_primary_10_1007_s12652_022_03788_y crossref_primary_10_1016_j_isprsjprs_2023_12_012 crossref_primary_10_1007_s00521_022_07019_5 crossref_primary_10_1016_j_jag_2021_102318 crossref_primary_10_3390_w17020199 crossref_primary_10_1016_j_catena_2021_105585 crossref_primary_10_1145_3649448 crossref_primary_10_1109_JSTARS_2024_3421622 crossref_primary_10_1016_j_heliyon_2024_e40683 crossref_primary_10_3390_agriculture15010036 crossref_primary_10_1016_j_hal_2023_102383 crossref_primary_10_1016_j_rse_2022_112934 crossref_primary_10_1080_01431161_2024_2305625 crossref_primary_10_1111_cgf_14978 crossref_primary_10_1016_j_rsase_2024_101394 crossref_primary_10_1109_TGRS_2024_3495508 crossref_primary_10_3390_rs12162659 crossref_primary_10_1109_ACCESS_2024_3379142 crossref_primary_10_17221_94_2022_SWR crossref_primary_10_3390_rs15245656 crossref_primary_10_1109_ACCESS_2023_3300967 crossref_primary_10_1016_j_rse_2021_112652 crossref_primary_10_1016_j_isprsjprs_2021_11_015 crossref_primary_10_1016_j_rse_2024_114432 crossref_primary_10_1016_j_jenvman_2024_123668 crossref_primary_10_1109_TGRS_2023_3257290 crossref_primary_10_1016_j_rse_2022_112947 crossref_primary_10_3390_rs14215455 crossref_primary_10_3390_s20185076 crossref_primary_10_1109_TGRS_2023_3257293 crossref_primary_10_3390_rs15010088 crossref_primary_10_1016_j_chaos_2023_114432 crossref_primary_10_1109_TGRS_2024_3387393 crossref_primary_10_1016_j_rse_2021_112408 crossref_primary_10_1016_j_resglo_2024_100245 crossref_primary_10_1016_j_isprsjprs_2024_08_015 crossref_primary_10_32604_iasc_2023_039057 crossref_primary_10_1016_j_srs_2023_100085 crossref_primary_10_1001_jamacardio_2024_0749 crossref_primary_10_1016_j_optlaseng_2025_108953 crossref_primary_10_3390_rs16020423 crossref_primary_10_1016_j_rse_2024_114200 crossref_primary_10_3390_rs14184631 crossref_primary_10_1109_TGRS_2024_3398038 crossref_primary_10_3390_rs13071284 crossref_primary_10_3390_su15054545 crossref_primary_10_1016_j_rse_2022_112913 crossref_primary_10_1016_j_compag_2022_107297 crossref_primary_10_1016_j_jag_2024_103704 crossref_primary_10_1109_TGRS_2024_3461717 crossref_primary_10_1016_j_isprsjprs_2020_08_016 crossref_primary_10_3390_rs13245005 crossref_primary_10_1007_s00779_022_01674_0 crossref_primary_10_1109_TGRS_2022_3232498 crossref_primary_10_1109_TGRS_2023_3274633 crossref_primary_10_58763_rc2025355 crossref_primary_10_1109_JSTARS_2024_3507023 crossref_primary_10_1016_j_cageo_2021_104932 crossref_primary_10_1109_TGRS_2024_3357774 crossref_primary_10_3390_app13169264 crossref_primary_10_1016_j_isprsjprs_2020_09_025 crossref_primary_10_1080_01431161_2022_2161856 crossref_primary_10_3390_rs13091804 crossref_primary_10_1016_j_pepi_2024_107283 crossref_primary_10_1038_s41559_022_01957_y crossref_primary_10_1016_j_jag_2022_103112 crossref_primary_10_1109_TGRS_2022_3166777 crossref_primary_10_3390_rs17010049 crossref_primary_10_1016_j_jhydrol_2022_128678 crossref_primary_10_3390_rs15153774 crossref_primary_10_1016_j_ecoinf_2024_102882 crossref_primary_10_1109_TGRS_2023_3326292 crossref_primary_10_1080_17538947_2024_2391952 crossref_primary_10_1016_j_srs_2024_100123 crossref_primary_10_1109_JSTARS_2024_3372113 crossref_primary_10_3390_rs16030437 crossref_primary_10_1109_TGRS_2021_3129853 crossref_primary_10_1007_s12524_024_01839_9 crossref_primary_10_3390_ijgi12070281 crossref_primary_10_1016_j_jhydrol_2022_127990 crossref_primary_10_1016_j_rsase_2022_100898 crossref_primary_10_1109_TGRS_2022_3140335 crossref_primary_10_3390_rs16101712 crossref_primary_10_61186_jgst_14_2_119 crossref_primary_10_3390_rs16020228 crossref_primary_10_1016_j_jenvman_2024_121299 crossref_primary_10_1016_j_scitotenv_2022_154223 crossref_primary_10_1109_JSTARS_2022_3219809 crossref_primary_10_1109_JSTARS_2023_3281892 crossref_primary_10_3390_rs15082102 crossref_primary_10_3390_rs12223825 crossref_primary_10_1016_j_cageo_2020_104678 crossref_primary_10_1364_OME_528010 crossref_primary_10_1109_JSTARS_2021_3122509 crossref_primary_10_3390_rs17050768 crossref_primary_10_1016_j_engappai_2024_109686 crossref_primary_10_1016_S1876_3804_24_60523_9 crossref_primary_10_3390_rs16020236 crossref_primary_10_1080_17538947_2022_2094001 crossref_primary_10_3390_rs16193568 crossref_primary_10_3390_rs15184491 crossref_primary_10_3390_app13169239 crossref_primary_10_1016_j_rse_2022_112985 crossref_primary_10_1109_TGRS_2023_3303336 crossref_primary_10_3390_rs14215413 crossref_primary_10_1002_esp_5981 crossref_primary_10_1007_s10479_021_04377_6 crossref_primary_10_3390_rs13132450 crossref_primary_10_3390_rs14081826 crossref_primary_10_3390_rs15143552 crossref_primary_10_14358_PERS_23_00005R3 crossref_primary_10_3390_rs13071250 crossref_primary_10_1016_j_rse_2024_114484 crossref_primary_10_1016_j_ecoinf_2023_102333 crossref_primary_10_3390_rs13163125 crossref_primary_10_1016_j_rse_2021_112680 crossref_primary_10_1016_j_envadv_2024_100539 crossref_primary_10_1016_j_rse_2020_112113 crossref_primary_10_1016_j_rsase_2021_100599 crossref_primary_10_3390_rs13071246 crossref_primary_10_3390_rs16203888 crossref_primary_10_3390_rs16234586 crossref_primary_10_3389_fenvs_2022_1014155 crossref_primary_10_3390_s24103258 crossref_primary_10_1016_j_jag_2022_102695 crossref_primary_10_3390_rs13142693 crossref_primary_10_1016_j_rse_2024_114252 crossref_primary_10_1007_s00521_025_11003_0 crossref_primary_10_1016_j_gloplacha_2023_104209 crossref_primary_10_1109_TGRS_2024_3357730 crossref_primary_10_1109_JSTARS_2021_3110994 crossref_primary_10_1080_01431161_2024_2406035 crossref_primary_10_1016_j_rse_2021_112665 crossref_primary_10_3390_su152115444 crossref_primary_10_1016_j_geoderma_2024_116941 crossref_primary_10_1016_j_rse_2022_112969 crossref_primary_10_1002_esp_5961 crossref_primary_10_22761_GD_2024_0036 crossref_primary_10_3390_w14213363 crossref_primary_10_3390_s23198162 crossref_primary_10_1109_TGRS_2022_3233385 crossref_primary_10_1007_s11269_023_03659_x crossref_primary_10_1016_j_isprsjprs_2021_11_023 crossref_primary_10_1016_j_watres_2024_121181 crossref_primary_10_3390_rs14215624 crossref_primary_10_1007_s41324_021_00425_2 crossref_primary_10_3389_frsen_2025_1531097 crossref_primary_10_3390_rs15020299 crossref_primary_10_1002_joc_7926 crossref_primary_10_3390_rs13010070 crossref_primary_10_1109_LGRS_2022_3149045 crossref_primary_10_3390_s20216070 crossref_primary_10_1016_j_jenvman_2022_114560 crossref_primary_10_1029_2021WR030827 crossref_primary_10_3390_rs14040925 crossref_primary_10_3788_AI_2024_20001 crossref_primary_10_1109_JSTARS_2022_3221098 crossref_primary_10_1007_s00500_023_09352_w crossref_primary_10_1016_j_asr_2022_05_038 crossref_primary_10_3390_rs16020275 crossref_primary_10_1109_JSTARS_2023_3237500 crossref_primary_10_3390_rs14071665 crossref_primary_10_1109_TGRS_2024_3380914 crossref_primary_10_3390_rs13163319 crossref_primary_10_1016_j_agwat_2022_107827 crossref_primary_10_3390_rs16122185 crossref_primary_10_3390_land12061125 crossref_primary_10_3390_rs16020260 crossref_primary_10_1109_LGRS_2021_3133872 crossref_primary_10_1016_j_resconrec_2022_106813 crossref_primary_10_1016_j_rse_2024_114281 crossref_primary_10_3390_rs14010051 crossref_primary_10_1109_TGRS_2021_3121272 crossref_primary_10_3390_rs14071676 crossref_primary_10_1016_j_rse_2023_113924 crossref_primary_10_1016_j_earscirev_2023_104461 crossref_primary_10_3390_electronics13050949 crossref_primary_10_3390_rs12060932 crossref_primary_10_1007_s11760_023_02823_5 crossref_primary_10_1016_j_uclim_2023_101494 crossref_primary_10_1093_forestry_cpad049 crossref_primary_10_1109_JSTARS_2023_3321776 crossref_primary_10_1145_3651163 crossref_primary_10_3390_rs16122194 crossref_primary_10_1016_j_ijmecsci_2024_109419 crossref_primary_10_1016_j_geoderma_2025_117222 crossref_primary_10_1016_j_atmosenv_2022_118972 crossref_primary_10_1016_j_rse_2024_114290 crossref_primary_10_34133_icomputing_0007 crossref_primary_10_1016_j_isprsjprs_2020_06_019 crossref_primary_10_1111_tgis_13284 crossref_primary_10_1016_j_isprsjprs_2024_10_002 crossref_primary_10_1016_j_jag_2024_103799 crossref_primary_10_1016_j_geoderma_2022_115695 crossref_primary_10_1109_TGRS_2020_3042974 crossref_primary_10_1016_j_isprsjprs_2024_10_004 crossref_primary_10_3390_rs15010227 crossref_primary_10_1016_j_ecoinf_2024_102804 crossref_primary_10_1016_j_ecoinf_2024_102808 crossref_primary_10_1109_JSTARS_2023_3236662 crossref_primary_10_1007_s40747_023_01129_w crossref_primary_10_3390_rs15092320 crossref_primary_10_1007_s11042_022_13692_4 crossref_primary_10_3390_rs12244125 crossref_primary_10_1109_JSTARS_2024_3354103 crossref_primary_10_3390_rs16010028 crossref_primary_10_1109_JSTARS_2024_3450301 crossref_primary_10_3390_rs15184406 crossref_primary_10_1109_TGRS_2024_3360276 crossref_primary_10_1109_TGRS_2024_3388604 crossref_primary_10_3390_w16223194 crossref_primary_10_3390_rs14184441 crossref_primary_10_1109_JSTARS_2023_3310617 crossref_primary_10_1016_j_paerosci_2021_100727 crossref_primary_10_5194_essd_16_3795_2024 crossref_primary_10_5194_essd_14_3137_2022 crossref_primary_10_1111_tgis_70029 crossref_primary_10_1360_SSTe_2022_0089 crossref_primary_10_1080_17538947_2024_2372317 crossref_primary_10_1007_s11069_023_05972_5 crossref_primary_10_3390_rs15010047 crossref_primary_10_1109_JSTARS_2023_3339295 crossref_primary_10_1109_MGRS_2022_3171836 crossref_primary_10_1016_j_chemosphere_2022_134817 crossref_primary_10_21015_vtcs_v12i1_1655 crossref_primary_10_3390_rs15184420 crossref_primary_10_1109_JSTARS_2024_3486906 crossref_primary_10_1155_2022_1973777 crossref_primary_10_3389_fpls_2024_1499875 crossref_primary_10_1109_TGRS_2023_3309949 crossref_primary_10_3390_rs16234529 crossref_primary_10_1109_TGRS_2023_3269622 crossref_primary_10_1016_j_rse_2023_113968 crossref_primary_10_1109_TGRS_2024_3432397 crossref_primary_10_3390_drones5020031 crossref_primary_10_1016_j_geomorph_2020_107558 crossref_primary_10_1109_TGRS_2023_3307764 crossref_primary_10_3389_feart_2023_1090185 crossref_primary_10_1016_j_rse_2023_113723 crossref_primary_10_1016_j_eng_2021_11_021 crossref_primary_10_1016_j_geoderma_2021_115366 crossref_primary_10_1016_j_agrformet_2022_108985 crossref_primary_10_3390_rs13010054 crossref_primary_10_1007_s12524_024_02022_w crossref_primary_10_55529_jipirs_44_30_40 crossref_primary_10_1109_ACCESS_2021_3109216 crossref_primary_10_1016_j_inffus_2024_102649 crossref_primary_10_3390_rs14225812 crossref_primary_10_1039_D4AY01200C crossref_primary_10_1038_s41597_023_02696_w crossref_primary_10_1109_JSTARS_2023_3286912 crossref_primary_10_1016_j_scitotenv_2023_164921 crossref_primary_10_3390_rs14225821 crossref_primary_10_1117_1_JRS_18_022204 crossref_primary_10_1109_JSTARS_2024_3422078 crossref_primary_10_1016_j_agwat_2024_108692 crossref_primary_10_3390_rs14225828 crossref_primary_10_3390_rs16060945 crossref_primary_10_3390_rs14010033 crossref_primary_10_1109_TGRS_2023_3281511 crossref_primary_10_5194_acp_23_5233_2023 crossref_primary_10_1029_2022EA002804 crossref_primary_10_1016_j_inffus_2020_07_004 crossref_primary_10_1029_2024WR038931 crossref_primary_10_3390_agronomy12102404 crossref_primary_10_1109_JSTARS_2023_3261326 crossref_primary_10_3390_rs16244777 crossref_primary_10_1109_LGRS_2025_3533557 crossref_primary_10_1016_j_isprsjprs_2024_05_022 crossref_primary_10_1016_j_jag_2022_102948 crossref_primary_10_3390_ijerph17249333 crossref_primary_10_1016_j_ecoinf_2022_101552 crossref_primary_10_3390_rs14030610 crossref_primary_10_1016_j_cej_2025_160780 crossref_primary_10_3390_s21144867 crossref_primary_10_1016_j_rse_2022_113223 crossref_primary_10_1080_15481603_2025_2478689 crossref_primary_10_3390_rs14174283 crossref_primary_10_3390_rs16010076 crossref_primary_10_1016_j_jag_2020_102163 crossref_primary_10_1109_MGRS_2022_3161377 crossref_primary_10_1109_TGRS_2024_3489974 crossref_primary_10_1016_j_jhydrol_2023_129561 crossref_primary_10_1016_j_isprsjprs_2022_01_018 crossref_primary_10_1016_j_jag_2021_102664 crossref_primary_10_1155_2021_7613511 crossref_primary_10_3390_rs15102641 crossref_primary_10_3390_rs16050764 crossref_primary_10_1016_j_isprsjprs_2021_06_002 crossref_primary_10_1109_TGRS_2020_2999943 crossref_primary_10_1016_j_agrformet_2021_108582 crossref_primary_10_1002_ael2_20134 crossref_primary_10_1016_j_geomorph_2024_109369 crossref_primary_10_1016_j_rse_2022_113234 crossref_primary_10_1371_journal_pone_0292260 crossref_primary_10_1016_j_rse_2022_113205 crossref_primary_10_1007_s11053_023_10249_6 crossref_primary_10_3390_rs12244149 crossref_primary_10_1109_TGRS_2024_3397989 crossref_primary_10_1109_JSTARS_2022_3188201 crossref_primary_10_3390_rs16010044 crossref_primary_10_3390_rs13010133 crossref_primary_10_3390_rs14225732 crossref_primary_10_1016_j_isprsjprs_2021_06_018 crossref_primary_10_1016_j_isprsjprs_2022_01_021 crossref_primary_10_1016_j_rse_2023_113522 crossref_primary_10_1038_s41598_023_31394_1 crossref_primary_10_1002_ldr_4360 crossref_primary_10_1016_j_ophoto_2025_100084 crossref_primary_10_1016_j_rse_2023_113519 crossref_primary_10_3390_rs17030550 crossref_primary_10_1016_j_ecoinf_2025_103111 crossref_primary_10_1109_JSTARS_2024_3492033 crossref_primary_10_3390_rs16152778 crossref_primary_10_1016_j_isprsjprs_2024_04_013 crossref_primary_10_1109_TGRS_2024_3485595 crossref_primary_10_3390_rs13122392 crossref_primary_10_3390_rs13112121 crossref_primary_10_1016_j_jag_2021_102640 crossref_primary_10_1016_j_eswa_2023_119980 crossref_primary_10_1016_j_jag_2021_102400 crossref_primary_10_1109_TGRS_2023_3309690 crossref_primary_10_3390_f16030449 crossref_primary_10_3390_app11052238 crossref_primary_10_1016_j_jhydrol_2023_129308 crossref_primary_10_3390_su16188277 crossref_primary_10_1109_JSTARS_2021_3123163 crossref_primary_10_1109_LGRS_2022_3171973 crossref_primary_10_1016_j_jhydrol_2024_130649 crossref_primary_10_1016_j_wen_2023_09_001 crossref_primary_10_1007_s12517_022_09677_0 crossref_primary_10_1016_j_marpolbul_2021_112639 crossref_primary_10_1080_09640568_2023_2298249 crossref_primary_10_3390_rs17020318 crossref_primary_10_1109_JSTARS_2023_3328315 crossref_primary_10_1038_s41467_023_37136_1 crossref_primary_10_3390_rs14122874 crossref_primary_10_1016_j_rse_2022_113262 crossref_primary_10_1109_JSTARS_2024_3366178 crossref_primary_10_1016_j_cj_2021_12_011 crossref_primary_10_1016_j_rse_2022_113267 crossref_primary_10_1039_D4NR00321G crossref_primary_10_1109_TGRS_2024_3369023 crossref_primary_10_1007_s11430_022_9999_9 crossref_primary_10_5194_amt_17_7129_2024 crossref_primary_10_5194_essd_14_1193_2022 crossref_primary_10_1109_TGRS_2023_3344283 crossref_primary_10_1016_j_isprsjprs_2024_12_017 crossref_primary_10_1080_01431161_2022_2048319 crossref_primary_10_3390_rs14225760 crossref_primary_10_54097_ajst_v4i3_4785 crossref_primary_10_1016_j_ecolind_2020_106394 crossref_primary_10_1007_s11368_024_03747_4 crossref_primary_10_1080_10106049_2022_2040601 crossref_primary_10_3390_rs17061044 crossref_primary_10_1016_j_atmosenv_2022_118969 crossref_primary_10_1109_JSTARS_2022_3176031 crossref_primary_10_3390_land10121382 crossref_primary_10_15446_ing_investig_108609 crossref_primary_10_1080_17538947_2024_2402425 crossref_primary_10_1016_j_dwt_2025_101037 crossref_primary_10_1080_01431161_2022_2026521 crossref_primary_10_25046_aj060170 crossref_primary_10_1016_j_ejrh_2023_101438 crossref_primary_10_1016_j_ejrh_2023_101431 crossref_primary_10_1109_ACCESS_2020_3041645 crossref_primary_10_3390_app14093545 crossref_primary_10_3390_rs13234839 crossref_primary_10_3390_rs14143318 crossref_primary_10_1049_rsn2_12484 crossref_primary_10_1029_2023EA003227 crossref_primary_10_1109_JSTARS_2024_3359647 crossref_primary_10_1016_j_isprsjprs_2022_02_023 crossref_primary_10_1109_JSTARS_2025_3531886 crossref_primary_10_1002_rse2_194 crossref_primary_10_1016_j_atmosres_2022_106339 crossref_primary_10_1109_TGRS_2021_3074569 crossref_primary_10_3390_rs13234822 crossref_primary_10_3390_rs16142548 crossref_primary_10_5194_essd_14_2315_2022 crossref_primary_10_1109_JSTARS_2023_3275995 crossref_primary_10_1109_TGRS_2025_3531930 crossref_primary_10_3390_en14102960 crossref_primary_10_3390_electronics13081590 crossref_primary_10_1016_j_jhydrol_2021_126586 crossref_primary_10_1038_s41598_024_69022_1 crossref_primary_10_1109_ACCESS_2024_3425654 crossref_primary_10_3390_app14167235 crossref_primary_10_1016_j_jhydrol_2025_132900 crossref_primary_10_1109_JSTARS_2024_3413838 crossref_primary_10_1016_j_jag_2024_104290 crossref_primary_10_1109_JSTARS_2023_3328997 crossref_primary_10_1016_j_isprsjprs_2022_03_015 crossref_primary_10_1007_s11676_024_01700_2 crossref_primary_10_1109_TGRS_2024_3511118 crossref_primary_10_3390_rs16030509 crossref_primary_10_1109_JSTARS_2024_3420148 crossref_primary_10_1016_j_rsase_2021_100627 crossref_primary_10_1016_j_simpa_2023_100518 crossref_primary_10_3390_rs12213493 crossref_primary_10_1016_j_eiar_2023_107073 crossref_primary_10_59717_j_xinn_geo_2024_100118 crossref_primary_10_1007_s13131_023_2203_9 crossref_primary_10_1016_j_isprsjprs_2025_01_025 crossref_primary_10_1007_s10661_021_09561_6 crossref_primary_10_1016_j_ecolind_2022_109417 crossref_primary_10_3390_rs15030674 crossref_primary_10_1016_j_rse_2022_113070 crossref_primary_10_1007_s10346_023_02089_5 crossref_primary_10_3390_rs16071293 crossref_primary_10_1109_TGRS_2021_3107542 crossref_primary_10_1080_2150704X_2020_1842540 crossref_primary_10_1016_j_isprsjprs_2022_03_002 crossref_primary_10_1080_10106049_2023_2252389 crossref_primary_10_3390_rs14051166 crossref_primary_10_1016_j_optlastec_2023_109627 crossref_primary_10_1016_j_rse_2022_113079 crossref_primary_10_1109_LGRS_2021_3062453 crossref_primary_10_1109_TGRS_2021_3119537 crossref_primary_10_3390_land12122142 crossref_primary_10_1080_01431161_2020_1809742 crossref_primary_10_1080_10106049_2023_2246939 crossref_primary_10_1016_j_jhydrol_2025_132921 crossref_primary_10_1007_s00376_024_3222_y crossref_primary_10_1109_MGRS_2024_3495516 crossref_primary_10_1016_j_jag_2024_104073 crossref_primary_10_1007_s13218_022_00796_0 crossref_primary_10_1016_j_rse_2022_113044 crossref_primary_10_1109_JSEN_2023_3343080 crossref_primary_10_1007_s10661_023_11562_6 crossref_primary_10_1029_2024JH000165 crossref_primary_10_1016_j_cviu_2023_103909 crossref_primary_10_1109_ACCESS_2022_3149052 crossref_primary_10_3390_rs14143353 crossref_primary_10_1007_s00521_023_08497_x crossref_primary_10_3390_rs15041101 crossref_primary_10_1016_j_compag_2023_107989 crossref_primary_10_1002_wat2_1533 crossref_primary_10_3390_rs15041103 crossref_primary_10_1016_j_jhydrol_2022_127982 crossref_primary_10_3390_rs14205232 crossref_primary_10_1109_TGRS_2022_3147513 crossref_primary_10_1117_1_JRS_17_044509 crossref_primary_10_1016_j_isprsjprs_2022_03_020 crossref_primary_10_1007_s10462_021_09994_y crossref_primary_10_1016_j_jhydrol_2022_128835 crossref_primary_10_1109_TGRS_2022_3204885 crossref_primary_10_1109_JSTARS_2022_3232409 crossref_primary_10_3390_w14142211 crossref_primary_10_1007_s11270_023_06324_6 crossref_primary_10_1016_j_isprsjprs_2022_11_006 crossref_primary_10_1080_24694452_2023_2206469 crossref_primary_10_1016_j_jhydrol_2022_127749 crossref_primary_10_1029_2023GL106580 crossref_primary_10_1109_JSTARS_2024_3361556 crossref_primary_10_1007_s10479_023_05247_z crossref_primary_10_1016_j_geomorph_2023_108626 crossref_primary_10_1016_j_rse_2024_114518 crossref_primary_10_3390_rs14205221 crossref_primary_10_1016_j_ecoinf_2024_102576 crossref_primary_10_1016_j_jag_2021_102475 crossref_primary_10_1016_j_jag_2021_102477 crossref_primary_10_1109_TGRS_2021_3094321 crossref_primary_10_3390_rs15112882 crossref_primary_10_3390_math10173043 crossref_primary_10_3390_su16020832 crossref_primary_10_1016_j_isprsjprs_2022_04_026 crossref_primary_10_1016_j_procs_2021_08_059 crossref_primary_10_3390_rs13214372 crossref_primary_10_1109_LGRS_2021_3125429 crossref_primary_10_3390_rs13051024 crossref_primary_10_3390_app122010439 crossref_primary_10_1016_j_jag_2022_102764 crossref_primary_10_3390_rs15051308 crossref_primary_10_3390_w16050732 crossref_primary_10_1109_LGRS_2025_3527450 crossref_primary_10_3390_rs13245092 crossref_primary_10_1109_JSTARS_2024_3396883 crossref_primary_10_1016_j_scs_2024_105455 crossref_primary_10_3390_rs15164071 crossref_primary_10_3390_s21123954 crossref_primary_10_1145_3635153 crossref_primary_10_1109_TGRS_2023_3321595 crossref_primary_10_1016_j_marpolbul_2023_114598 crossref_primary_10_1016_j_wasman_2023_12_014 crossref_primary_10_1109_TGRS_2023_3276853 crossref_primary_10_1016_j_jag_2021_102456 crossref_primary_10_1016_j_jag_2022_102734 crossref_primary_10_3390_rs15082046 crossref_primary_10_1021_acs_est_3c03237 crossref_primary_10_1109_LGRS_2023_3244324 crossref_primary_10_3390_rs13122368 crossref_primary_10_1093_icesjms_fsad100 crossref_primary_10_1002_ldr_4721 crossref_primary_10_1109_TGRS_2021_3107352 crossref_primary_10_3390_rs15225385 crossref_primary_10_1016_j_compag_2023_107946 crossref_primary_10_1109_JSTARS_2024_3360458 crossref_primary_10_1016_j_jag_2022_102744 crossref_primary_10_1109_JSTARS_2025_3528650 crossref_primary_10_1016_j_future_2024_107691 crossref_primary_10_1016_j_acags_2024_100198 crossref_primary_10_3390_rs15133332 crossref_primary_10_1007_s11356_021_13503_7 crossref_primary_10_1109_ACCESS_2022_3210218 crossref_primary_10_3389_fnbot_2024_1488337 crossref_primary_10_3390_rs15164053 crossref_primary_10_1109_JSTARS_2023_3302571 crossref_primary_10_1109_ACCESS_2021_3075159 crossref_primary_10_1080_10095020_2022_2072775 crossref_primary_10_3390_rs17010159 crossref_primary_10_3389_frsen_2024_1481848 crossref_primary_10_1038_s41598_022_19357_4 crossref_primary_10_3390_rs14215584 crossref_primary_10_1109_JSTARS_2022_3148448 crossref_primary_10_1016_j_isprsjprs_2021_03_016 crossref_primary_10_1080_01431161_2024_2365811 crossref_primary_10_3390_rs14102429 crossref_primary_10_1080_01431161_2023_2297178 crossref_primary_10_1109_TGRS_2022_3209340 crossref_primary_10_1109_LGRS_2021_3109484 crossref_primary_10_1016_j_rse_2025_114711 crossref_primary_10_1016_j_rse_2024_114315 crossref_primary_10_1109_JSTARS_2024_3421990 crossref_primary_10_3390_w14111792 crossref_primary_10_3389_frsen_2021_770431 crossref_primary_10_3390_s23125505 crossref_primary_10_3390_rs15245785 crossref_primary_10_1016_j_isprsjprs_2024_01_009 crossref_primary_10_1016_j_apenergy_2024_123585 crossref_primary_10_3390_rs13040694 crossref_primary_10_3390_systems12050171 crossref_primary_10_1007_s10980_023_01753_4 crossref_primary_10_1016_j_rse_2024_114324 crossref_primary_10_1109_JSTARS_2024_3365971 crossref_primary_10_1016_j_agwat_2023_108499 crossref_primary_10_1016_j_jag_2024_103809 crossref_primary_10_1109_TAES_2023_3328853 crossref_primary_10_1109_MGRS_2024_3393010 crossref_primary_10_3390_w16182704 crossref_primary_10_1016_j_compag_2024_108627 crossref_primary_10_1016_j_jag_2024_103822 crossref_primary_10_1109_ACCESS_2022_3194507 crossref_primary_10_3390_rs15205050 crossref_primary_10_3390_systems13010031 crossref_primary_10_1029_2024MS004341 crossref_primary_10_1109_JSTARS_2020_3025451 crossref_primary_10_1080_22797254_2024_2367221 crossref_primary_10_1016_j_jag_2023_103540 crossref_primary_10_3390_rs14020384 crossref_primary_10_1117_1_JRS_18_014513 crossref_primary_10_1109_TGRS_2025_3540173 crossref_primary_10_1016_j_rse_2024_114575 crossref_primary_10_3390_agronomy14071355 crossref_primary_10_3390_electronics12143201 crossref_primary_10_3390_rs15082014 crossref_primary_10_1016_j_envpol_2023_122914 crossref_primary_10_1038_s41598_024_66699_2 crossref_primary_10_1109_JSTARS_2023_3326967 crossref_primary_10_1016_j_rse_2024_114100 crossref_primary_10_1016_j_rsase_2024_101243 crossref_primary_10_1016_j_ufug_2023_127943 crossref_primary_10_1016_j_rse_2024_114119 crossref_primary_10_1016_j_compag_2022_107396 crossref_primary_10_1016_j_jhydrol_2021_127354 crossref_primary_10_1016_j_atmosenv_2022_119370 crossref_primary_10_1109_MGRS_2021_3050782 crossref_primary_10_1016_j_ecoinf_2024_102974 crossref_primary_10_1016_j_scitotenv_2021_146602 crossref_primary_10_3390_rs14194763 crossref_primary_10_1016_j_isprsjprs_2022_12_027 crossref_primary_10_1109_JSTARS_2023_3268326 crossref_primary_10_1590_01047760202127012769 crossref_primary_10_3389_fmars_2023_1077623 crossref_primary_10_3390_rs15112920 crossref_primary_10_1016_j_ophoto_2024_100064 crossref_primary_10_1016_j_rse_2021_112566 crossref_primary_10_1109_TGRS_2023_3308902 crossref_primary_10_1007_s00704_023_04493_2 crossref_primary_10_1029_2022EA002338 crossref_primary_10_3390_rs14102456 crossref_primary_10_1016_j_jenvman_2022_117127 crossref_primary_10_1016_j_isprsjprs_2022_12_011 crossref_primary_10_3390_rs16234497 crossref_primary_10_3390_rs17050882 crossref_primary_10_3390_rs13193904 crossref_primary_10_1088_1748_9326_ad7043 crossref_primary_10_1109_TASE_2021_3077689 crossref_primary_10_3390_rs13091713 crossref_primary_10_1016_j_ecoinf_2024_102507 crossref_primary_10_3390_rs16162953 crossref_primary_10_3390_rs15164112 crossref_primary_10_3390_rs14020328 crossref_primary_10_3390_atmos13020255 crossref_primary_10_1016_j_apenergy_2024_123308 crossref_primary_10_1080_15481603_2024_2327146 crossref_primary_10_20659_jjfp_55_1_3 crossref_primary_10_1016_j_scitotenv_2024_176910 crossref_primary_10_1111_gfs_12607 crossref_primary_10_3390_rs15061540 crossref_primary_10_1016_j_ecoinf_2024_102954 crossref_primary_10_1007_s11356_021_16004_9 crossref_primary_10_1007_s41062_022_00981_y crossref_primary_10_1109_JSTARS_2021_3076470 crossref_primary_10_1016_j_uclim_2023_101736 crossref_primary_10_1016_j_ophoto_2024_100080 crossref_primary_10_1109_TGRS_2024_3446042 crossref_primary_10_1080_17538947_2021_1980125 crossref_primary_10_1016_j_rse_2024_114378 crossref_primary_10_1155_2023_8552624 crossref_primary_10_3390_rs14081929 crossref_primary_10_1016_j_compag_2023_108518 crossref_primary_10_1016_j_patter_2025_101186 crossref_primary_10_3390_rs12162514 crossref_primary_10_1016_j_tecto_2021_229140 crossref_primary_10_3390_rs13245156 crossref_primary_10_3390_rs16061083 crossref_primary_10_3390_rs14215517 crossref_primary_10_1109_TGRS_2025_3525811 crossref_primary_10_1007_s40808_023_01822_2 crossref_primary_10_1016_j_ecoinf_2021_101547 crossref_primary_10_14358_PERS_24_00001R2 crossref_primary_10_1016_j_apr_2023_101866 crossref_primary_10_1016_j_rse_2024_114141 crossref_primary_10_3390_agronomy12071583 crossref_primary_10_1021_acs_estlett_1c01025 crossref_primary_10_3390_rs15082205 crossref_primary_10_1109_TGRS_2024_3452700 crossref_primary_10_1016_j_rsase_2022_100790 crossref_primary_10_1109_TGRS_2023_3318590 crossref_primary_10_1016_j_rse_2024_114386 crossref_primary_10_1109_TGRS_2022_3154406 crossref_primary_10_1109_JSTARS_2023_3336930 crossref_primary_10_1016_j_jconhyd_2023_104235 crossref_primary_10_1109_TGRS_2025_3541871 crossref_primary_10_1155_2022_8750648 crossref_primary_10_1109_TGRS_2025_3526247 crossref_primary_10_3390_f15112010 crossref_primary_10_1016_j_cageo_2021_104879 crossref_primary_10_3390_rs13173495 crossref_primary_10_1007_s13218_023_00801_0 crossref_primary_10_3390_rs13091749 crossref_primary_10_3390_ijgi13120437 crossref_primary_10_1016_j_jhydrol_2023_129964 crossref_primary_10_3390_rs14102494 crossref_primary_10_1002_rse2_415 crossref_primary_10_3390_rs15010124 crossref_primary_10_1016_j_geoderma_2024_117056 crossref_primary_10_3390_ijgi11020097 crossref_primary_10_1109_TCYB_2020_3029787 crossref_primary_10_1109_TGRS_2024_3492505 crossref_primary_10_3390_rs14010171 crossref_primary_10_1007_s00477_022_02378_w crossref_primary_10_1016_j_rse_2021_112364 crossref_primary_10_1109_TGRS_2024_3492500 crossref_primary_10_3390_rs15071780 crossref_primary_10_1016_j_jhydrol_2022_128388 crossref_primary_10_1109_TGRS_2023_3268232 crossref_primary_10_1109_TGRS_2024_3367850 crossref_primary_10_1109_TGRS_2022_3210990 crossref_primary_10_3389_fenvs_2024_1392469 crossref_primary_10_3390_f14091705 crossref_primary_10_1080_15481603_2024_2330185 crossref_primary_10_38016_jista_772145 crossref_primary_10_1007_s11760_025_03913_2 crossref_primary_10_1109_TGRS_2023_3280591 crossref_primary_10_3390_a17050182 crossref_primary_10_1007_s12144_024_06261_5 crossref_primary_10_1016_j_rse_2021_112590 crossref_primary_10_3390_rs14040829 crossref_primary_10_3390_rs14092224 crossref_primary_10_1016_j_scitotenv_2024_169992 crossref_primary_10_1016_j_jag_2023_103379 crossref_primary_10_3390_photonics11020190 crossref_primary_10_1109_TGRS_2023_3288073 crossref_primary_10_1016_j_jhydrol_2022_128158 crossref_primary_10_1080_14680629_2022_2150276 crossref_primary_10_1016_j_rse_2024_114190 crossref_primary_10_1007_s44196_023_00364_w crossref_primary_10_1109_TGRS_2022_3229361 crossref_primary_10_1016_j_srs_2022_100047 crossref_primary_10_3390_su151813724 crossref_primary_10_3390_rs15153805 crossref_primary_10_3390_min13091153 crossref_primary_10_3390_rs13020195 crossref_primary_10_3390_rs15071723 crossref_primary_10_1016_j_jag_2023_103569 crossref_primary_10_1016_j_ejrh_2024_101776 crossref_primary_10_1080_10106049_2023_2190622 crossref_primary_10_3390_agronomy13112741 crossref_primary_10_1080_17538947_2023_2210312 crossref_primary_10_34133_remotesensing_0285 crossref_primary_10_1016_j_jag_2024_103847 crossref_primary_10_1109_LGRS_2023_3302906 crossref_primary_10_4236_jgis_2022_146034 crossref_primary_10_3390_s25020531 crossref_primary_10_1029_2023EA003162 crossref_primary_10_1155_2022_2076633 crossref_primary_10_3390_rs13010155 crossref_primary_10_1007_s11227_023_05087_5 crossref_primary_10_5194_gmd_16_4137_2023 crossref_primary_10_1093_aobpla_plac061 crossref_primary_10_1111_2041_210X_14046 crossref_primary_10_1016_j_clpl_2024_100088 crossref_primary_10_3390_rs14071744 crossref_primary_10_1016_j_earscirev_2023_104370 crossref_primary_10_1515_geo_2022_0351 crossref_primary_10_3390_a14040109 crossref_primary_10_1016_j_eswa_2024_124583 crossref_primary_10_1080_08982112_2024_2448477 crossref_primary_10_1016_j_isprsjprs_2024_02_003 crossref_primary_10_1016_j_isprsjprs_2024_02_002 crossref_primary_10_1080_19475683_2024_2309866 crossref_primary_10_1109_TGRS_2025_3540573 crossref_primary_10_3390_app11209691 crossref_primary_10_3389_fenvs_2025_1549209 crossref_primary_10_1364_OE_499743 crossref_primary_10_1080_05704928_2024_2369570 crossref_primary_10_1109_JSTARS_2021_3079357 crossref_primary_10_1016_j_catena_2023_107228 crossref_primary_10_34133_remotesensing_0289 crossref_primary_10_1080_10095020_2022_2085633 crossref_primary_10_1038_s44287_024_00116_8 crossref_primary_10_1109_ACCESS_2021_3057057 crossref_primary_10_3389_fenvs_2022_917590 crossref_primary_10_1016_j_scs_2024_105809 crossref_primary_10_1080_10106049_2024_2400493 crossref_primary_10_5194_acp_23_375_2023 crossref_primary_10_1002_sat_1482 crossref_primary_10_1016_j_rse_2023_113609 crossref_primary_10_1016_j_lithos_2025_107947 crossref_primary_10_3390_rs15081990 crossref_primary_10_3390_rs15184551 crossref_primary_10_1117_1_JRS_18_024517 crossref_primary_10_1007_s00226_021_01309_2 crossref_primary_10_1016_j_inffus_2022_10_005 crossref_primary_10_1016_j_rse_2023_113842 crossref_primary_10_1109_TGRS_2023_3315472 crossref_primary_10_1016_j_isprsjprs_2021_07_010 crossref_primary_10_1111_tgis_13193 crossref_primary_10_1016_j_xinn_2021_100179 crossref_primary_10_1016_j_jag_2022_103030 crossref_primary_10_3390_rs14153622 crossref_primary_10_22430_22565337_3017 crossref_primary_10_1016_j_scitotenv_2023_162855 crossref_primary_10_1007_s40031_024_01084_1 crossref_primary_10_1109_JSTARS_2022_3166978 crossref_primary_10_1080_17538947_2022_2133184 crossref_primary_10_1109_JSTARS_2024_3404781 crossref_primary_10_1080_17538947_2022_2159553 crossref_primary_10_1016_j_jhazmat_2025_137369 crossref_primary_10_3390_w13182523 crossref_primary_10_1109_JSTARS_2024_3364020 crossref_primary_10_3390_rs15153846 |
Cites_doi | 10.1016/j.isprsjprs.2019.04.015 10.5194/hess-22-5639-2018 10.3390/rs71114680 10.1061/(ASCE)0733-9437(2005)131:4(316) 10.3390/rs11091022 10.3390/ijgi6050130 10.1016/j.isprsjprs.2019.04.005 10.1016/S0143-6228(02)00048-6 10.3103/S1068367407060031 10.1016/j.rse.2012.12.014 10.1061/(ASCE)1084-0699(2009)14:2(131) 10.1364/OE.23.0A1442 10.1016/j.agsy.2004.07.009 10.1080/01431160600702632 10.1080/10962247.2018.1459956 10.1016/j.energy.2013.09.008 10.1016/j.envpol.2018.05.100 10.1023/B:JOCE.0000038345.99050.c0 10.1016/j.rse.2003.12.002 10.5194/hess-16-3659-2012 10.3390/s8128181 10.1155/2018/9315132 10.1007/s11707-012-0346-7 10.1111/gwat.12557 10.1080/10095020.2017.1373955 10.1029/2011RG000372 10.1109/LGRS.2017.2657778 10.1109/TGRS.2016.2596290 10.1016/j.rse.2018.06.034 10.1006/jare.1997.0269 10.1038/ncomms13890 10.1109/TPAMI.2013.50 10.1007/s00271-007-0090-z 10.1038/nclimate1908 10.1016/j.atmosenv.2016.02.002 10.1061/(ASCE)0733-9437(2002)128:4(224) 10.1109/TGRS.2002.800277 10.3390/rs8110959 10.1061/(ASCE)0733-9437(2003)129:3(214) 10.1016/j.isprsjprs.2014.02.015 10.1080/02693799508902054 10.5194/hess-21-5201-2017 10.1109/MGRS.2016.2540798 10.1016/j.ecoinf.2014.07.004 10.1002/2017GL075710 10.1016/j.rse.2019.111322 10.1029/2018JD028759 10.1038/s41586-019-0912-1 10.1109/LGRS.2017.2681128 10.1109/LGRS.2017.2780843 10.1002/2016RG000543 10.1080/15481603.2018.1489943 10.1016/j.jag.2017.10.010 10.1080/014311697218728 10.1016/j.solener.2015.03.014 10.1007/s11269-016-1331-9 10.1016/j.agrformet.2015.11.003 10.1109/MGRS.2015.2441912 10.3390/rs9080857 10.1126/science.1197869 10.1016/j.scitotenv.2018.11.086 10.1007/s00271-008-0119-y 10.4209/aaqr.2015.05.0375 10.1109/ACCESS.2018.2885565 10.1016/j.procs.2019.02.036 10.1007/BF03013488 10.3390/atmos7100129 10.1080/014311699213695 10.1016/j.envsoft.2017.02.004 10.5589/m02-066 10.1109/TGRS.2016.2586602 10.1590/S0001-37652013005000037 10.1016/j.rse.2013.02.027 10.1007/978-3-319-70796-9_4 10.1016/j.isprsjprs.2017.06.001 10.1007/s11769-018-0930-1 10.3390/rs10071119 10.1016/j.rser.2017.01.114 10.1016/j.energy.2010.09.009 10.1109/36.942544 10.1016/j.rse.2018.04.050 10.1016/j.isprsjprs.2018.04.005 10.5194/isprs-archives-XLII-3-583-2018 10.3390/rs2030673 10.1109/TGRS.2008.916632 10.1007/s11269-013-0337-9 10.1016/S0034-4257(02)00105-0 10.1109/TIP.2017.2725580 10.3390/rs11192272 10.1016/j.rse.2017.10.045 10.1016/j.scitotenv.2018.12.297 10.1080/01431161.2012.671553 10.1016/j.rse.2018.08.017 10.1080/01431160310001657533 10.1016/j.solener.2012.12.008 10.1109/TGRS.2018.2810208 10.1109/TGRS.2007.907333 10.1016/j.envpol.2019.113395 10.3390/w10111687 10.1016/j.measurement.2011.07.008 10.1016/j.gloplacha.2018.12.008 10.3390/rs2010166 10.1016/j.rse.2015.02.021 10.1029/2018JD028422 10.1109/LGRS.2018.2839092 10.1016/j.engappai.2006.05.009 10.1175/1520-0450(2001)040<2115:REFACO>2.0.CO;2 10.1029/2004JD005094 10.3390/rs9040395 10.3390/rs9050484 10.1016/j.asr.2012.10.010 10.1016/j.rse.2018.03.008 10.3390/rs10071022 10.1016/j.rse.2011.07.018 10.1029/98JC02160 10.1117/1.JRS.7.073579 10.1029/2011JD017141 10.3390/s19092082 10.1016/j.mcm.2010.11.046 10.1016/j.energy.2018.07.202 10.5194/hess-22-5341-2018 10.1016/j.rse.2009.01.004 10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2 10.1080/01431161.2013.822597 10.5194/isprs-annals-IV-4-W4-179-2017 10.1016/j.jhydrol.2019.124351 10.1016/j.rse.2014.09.026 10.1166/sl.2011.1380 10.1029/2018JD028447 10.1016/j.jhydrol.2016.10.005 10.1016/j.compag.2018.05.012 10.1007/s10661-017-6323-6 10.1080/01431161.2017.1325531 10.1016/j.rse.2012.12.012 10.1016/j.rse.2007.04.013 10.1109/TGRS.2013.2237780 10.1016/j.jag.2019.101933 10.1016/j.ecolmodel.2009.04.025 10.1109/LGRS.2016.2586109 10.1109/TGRS.2011.2166120 10.1109/JSTARS.2016.2575361 10.3390/rs10091351 10.3390/rs11222673 10.1029/2012JD018150 10.1080/014311698215342 10.1109/LGRS.2019.2900270 10.1109/TGRS.2008.920370 10.1017/S1350482704001173 10.1080/2150704X.2015.1062157 10.1016/j.isprsjprs.2009.06.004 10.1061/(ASCE)0733-9437(2003)129:6(454) 10.1016/j.rser.2013.08.055 10.1016/j.isprsjprs.2014.12.011 10.1109/LGRS.2017.2722988 10.1016/j.agwat.2018.07.039 10.1016/j.rser.2016.11.124 10.3390/rs11030300 10.1016/j.isprsjprs.2017.07.014 10.1109/TGRS.2015.2430845 10.1021/acs.est.5b06121 10.1016/j.rser.2019.109327 10.1016/j.isprsjprs.2016.01.004 10.1029/2018EO095649 10.1016/j.procs.2016.07.144 10.1016/j.compag.2015.11.018 10.3390/rs10111746 10.1007/s11769-008-0356-2 10.1016/j.rse.2018.04.039 10.1016/j.rse.2016.02.019 10.1117/1.JRS.11.042609 10.1155/2015/538063 10.1175/JHM-D-15-0075.1 10.1175/JHM-D-19-0110.1 10.2495/EID180141 10.1002/met.83 10.1016/j.rse.2010.12.017 10.1109/TGRS.2018.2872131 10.1109/TGRS.2016.2560522 10.5194/tc-12-1579-2018 10.1016/j.isprsjprs.2016.03.011 10.1016/j.cj.2019.06.005 10.1007/s40333-016-0049-0 10.1002/er.3030 10.1016/j.scitotenv.2012.06.033 10.1016/j.agrformet.2016.08.005 10.1016/j.rse.2018.11.014 10.1007/s11119-011-9233-6 10.1016/j.rse.2017.01.015 10.5194/tc-12-891-2018 10.1029/2019GL084771 10.1631/jzus.2007.A0883 10.3390/s19132987 10.1007/s40808-018-0431-3 10.1016/j.rse.2010.04.001 10.1016/j.isprsjprs.2019.09.016 10.1109/LGRS.2007.912725 10.1002/2017GL075619 10.1109/TGRS.2013.2290996 10.1155/2014/839205 10.1016/j.aeolia.2018.10.002 10.1029/2001JD900085 10.1007/s00704-009-0204-z 10.1109/LGRS.2009.2023605 10.1016/j.rse.2011.11.020 10.1175/JHM-D-16-0176.1 10.1109/TGRS.2015.2431315 10.1109/JSTARS.2017.2760202 10.1080/01431161.2012.716536 10.1155/2016/6156513 10.1016/j.rse.2012.04.026 10.1016/j.enconman.2013.11.043 10.1038/nature14539 10.1061/(ASCE)0733-9437(2000)126:4(268) 10.1080/0143116031000103781 10.1029/2006JD007811 10.1080/01431160902953891 10.1109/LGRS.2016.2616440 10.3390/ijerph15051032 10.1175/JHM-D-17-0077.1 10.1016/j.isprsjprs.2018.04.025 10.1002/joc.2286 10.1016/j.rse.2015.11.011 10.1016/j.isprsjprs.2019.01.011 10.1109/TGRS.2008.2005206 10.5194/amt-7-3151-2014 10.1016/j.biosystemseng.2009.12.008 10.1109/MGRS.2017.2762307 10.1109/TGRS.2009.2033180 10.1016/j.atmosenv.2017.01.004 10.1029/2007JD008428 10.1109/36.239907 10.1109/TGRS.2017.2675902 10.1175/JAM2173.1 10.1016/j.apenergy.2008.06.003 10.1002/jgrd.50430 10.1109/LGRS.2017.2691013 10.1002/joc.655 10.1080/01431160802192160 10.1109/TGRS.2007.909951 10.1080/01431161.2016.1246775 10.1109/LGRS.2015.2498644 10.1016/j.isprsjprs.2019.05.004 10.1007/s00271-008-0114-3 10.4209/aaqr.2016.11.0484 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright Elsevier BV May 2020 |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright Elsevier BV May 2020 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
DOI | 10.1016/j.rse.2020.111716 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Environmental Sciences |
EISSN | 1879-0704 |
ExternalDocumentID | 10_1016_j_rse_2020_111716 S0034425720300857 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 41~ 457 4G. 53G 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ VOH WH7 WUQ XOL ZCA ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K EFKBS F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
ID | FETCH-LOGICAL-c358t-72b7b28f9e3abcef8638c91b86e2e342b761e601c2a5a2502dd6cca7678636cd3 |
IEDL.DBID | .~1 |
ISSN | 0034-4257 |
IngestDate | Fri Jul 11 05:11:19 EDT 2025 Wed Aug 13 06:16:46 EDT 2025 Tue Jul 01 03:51:23 EDT 2025 Thu Apr 24 23:07:51 EDT 2025 Fri Feb 23 02:48:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Environmental remote sensing Neural network Parameter retrieval |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-72b7b28f9e3abcef8638c91b86e2e342b761e601c2a5a2502dd6cca7678636cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5635-8499 0000-0002-4140-1869 0000-0001-6890-3650 0000-0001-7140-2224 |
PQID | 2441309948 |
PQPubID | 2045405 |
ParticipantIDs | proquest_miscellaneous_2388747731 proquest_journals_2441309948 crossref_primary_10_1016_j_rse_2020_111716 crossref_citationtrail_10_1016_j_rse_2020_111716 elsevier_sciencedirect_doi_10_1016_j_rse_2020_111716 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2020 2020-05-00 20200501 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Remote sensing of environment |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Zhang, Zhang, Huang, Hong, Meng (bb1415) 2017; 6 Baghdadi, Gaultier, King (bb0055) 2002; 28 Shen, Meng, Zhang (bb1040) 2016; 54 Yang, Shen, Zhang, He, Li (bb1345) 2015; 53 Savin, Stathakis, Negre, Isaev (bb0985) 2007; 33 Wang, Li, Tang, Zeng, Li (bb1215) 2013; 34 Karpatne, Watkins, Read, Kumar (bb0480) 2017 Venkateshwarlu, Gopal, Prakash (bb1190) 2004; 3 Yang, Zhu, Zhao, Liu, Tong (bb1330) 2011; 54 Huang, Zeng, Wu, Mao, Xu, Su (bb0410) 2011; 9 Pierdicca, Castracane, Pulvirenti (bb0865) 2008; 8 Cho, van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (bb0160) 2014 Çiftçi, Kuter, Akyürek, Weber (bb0175) 2017; 4 Şenkal (bb1015) 2010; 35 Tedesco, Pulliainen, Takala, Hallikainen, Pampaloni (bb1145) 2004; 90 Liu, Shi, Zhang, Zeng, Wang, Tao, Gao (bb0700) 2017; 189 Xiao, Liang, Wang, Xiang, Zhao, Song (bb1270) 2016; 54 Eroglu, Kurum, Boyd, Gurbuz (bb0265) 2019; 11 Li, Yang, Zhang, Qi, Li (bb0650) 2019; 173 Zhang, Zhang, Du (bb1410) 2016; 4 Yuan, Jia (bb1365) 2015 Lu, Zhuang (bb0705) 2010; 114 Peng, Loew, Merlin, Verhoest (bb0860) 2017; 55 Aires, Prigent, Rossow (bb0010) 2005; 110 Zeng, Shen, Zhang (bb1390) 2013; 131 Chai, Qu, Zhang, Liang, Wang (bb0120) 2012; 33 Hsu, Gao, Sorooshian, Gupta (bb0390) 1997; 36 Liou, Liu, Wang (bb0675) 2001; 39 Li, Shen, Yuan, Zhang (bb0640) 2018 Sobayo, Wu, Ray, Qian (bb1075) 2018 Xiao, Zhang, Zhong, Shao, Li (bb1275) 2018; 210 Davis, Chen, Tsang, Hwang, Chang (bb0205) 1993; 31 Notarnicola, Angiulli, Posa (bb0800) 2008; 46 Jang, Viau, Anctil (bb0430) 2004; 25 Wang, Liang, Augustine (bb1205) 2009; 47 Panda, Ames, Panigrahi (bb0840) 2010; 2 Freeman, Taylor, Gharabaghi, The (bb0315) 2018; 68 Trajkovic, Stankovic, Todorovic (bb1170) 2000; 126 Khoob (bb0500) 2008; 26 Schütt, Arbabzadah, Chmiela, Müller, Tkatchenko (bb0995) 2017; 8 Hu, Huang, Li, Zhang (bb0400) 2018; 217 Zang, Mao, Guo, Wang, Pan, Shen, Zhu, Wang (bb1380) 2019; 658 Duro, Franklin, Dubé (bb0255) 2012; 118 Eissa, Marpu, Gherboudj, Ghedira, Ouarda, Chiesa (bb0260) 2013; 89 Crow, Berg, Cosh, Loew, Mohanty, Panciera, de Rosnay, Ryu, Walker (bb0185) 2012; 50 Tapiador, Kidd, Hsu, Marzano (bb1135) 2004; 11 Liao, Shen, Dong (bb0665) 2013; 7 Shaker, Yan, LaRocque (bb1025) 2019; 152 Reddy, Prasad (bb0895) 2018; 4 Shen, Laloy, Elshorbagy, Albert, Bales, Chang, Ganguly, Hsu, Kifer, Fang (bb1045) 2018; 22 Zhang, Zhang, Zhang, Nie, Gui, Que (bb1440) 2018; 15 Di, Kloog, Koutrakis, Lyapustin, Wang, Schwartz (bb0230) 2016; 50 Wang, Tran, Desai, Lobell, Ermon (bb1220) 2018 Qin, Wang, Lin, Zhang, Bilal (bb0870) 2018; 10 Fang, Pan, Shen (bb0280) 2018 Li, Liang, Wang, Qin (bb0605) 2007; 79 Trombetti, Riano, Rubio, Cheng, Ustin (bb1180) 2008; 112 Kuwata, Shibasaki (bb0565) 2015 Rodríguez-Fernández, de Souza, Kerr, Richaume, Al Bitar (bb0925) 2017 Goodfellow, Bengio, Courville (bb0345) 2016 Huang, Zhao, Song (bb0415) 2018; 214 Benediktsson, Sveinsson (bb0075) 1997; 18 Hosseini, McNairn, Mitchell, Robertson, Davidson, Homayouni (bb0380) 2019; 83 Cui, Long, Hong, Zeng, Zhou, Han, Liu, Wan (bb0190) 2016; 543 Tanikawa, Li, Kuchiki, Aoki, Hori, Stamnes (bb1110) 2015; 23 Zhang, Sargent, Pan, Li, Gardiner, Hare, Atkinson (bb1450) 2019; 221 Şahin, Kaya, Uyar, Yıldırım (bb0955) 2014; 38 Zhang, Pan, Li, Gardiner, Sargent, Hare, Atkinson (bb1425) 2018; 140 Nabavi, Haimberger, Abbasi, Samimi (bb0770) 2018; 35 Wagle, Xiao, Gowda, Basara, Brunsell, Steiner, K.C (bb1200) 2017; 232 Kaba, Sarıgül, Avcı, Kandırmaz (bb0475) 2018; 162 Liang (bb0655) 2005 Shen, Jiang, Li, Cheng, Zeng, Zhang (bb1055) 2020 Alipour, Yarahmadi, Mahdavi (bb0025) 2014; 2014 O'Reilly, Maritorena, Mitchell, Siegel, Carder, Garver, Kahru, McClain (bb0810) 1998; 103 Srivastava, Han, Ramirez, Islam (bb1085) 2013; 27 Deo, Mehmet (bb0215) 2017; 72 Frate, Solimini (bb0310) 2004; 42 Jo, Kim, Kim (bb0465) 2018; 26 Shwetha, Kumar (bb1060) 2016; 117 Zhao, Huang, Zhong (bb1470) 2017; 14 Yan, Mas, Maathuis, Xiangmin, Van Dijk (bb1315) 2006; 27 Mao, Shi, Tang, Li, Wang, Chen (bb0735) 2008; 46 Besnard, Carvalhais, Clevers, Dutrieux, Gans, Herold, Reichstein, Jung (bb0085) 2017 Santi, Paloscia, Pettinato, Brocca, Ciabatta (bb0970) 2016; 9 Musavi, Miller, Ressom, Natarajan (bb0760) 2002 Tao, Gao, Ihler, Sorooshian, Hsu (bb1125) 2017; 18 Das, Ghosh (bb0200) 2017; 10 Jiménez, Clark, Kolassa, Aires, Prigent (bb0455) 2013; 118 Kumar, Raghuwanshi, Singh (bb0555) 2009; 14 Liang, Li, Lei, Wang, Gao (bb0660) 2011; 44 Hu, Xu, Yu (bb0405) 2018; XLII-3 Taylor, Kazadzis, Tsekeri, Gkikas, Amiridis (bb1140) 2014; 7 Zhang, Zhao, Deng, Xu, Zhang (bb1420) 2017; 70 Tao, Hsu, Ihler, Gao, Sorooshian (bb1130) 2018; 19 Nock, Gilmour, Elmore, Leadbetter, Sweeney, Petry (bb0795) 2019 Mahdianpari, Salehi, Rezaee, Mohammadimanesh, Zhang (bb0725) 2018; 10 Foody (bb0300) 1995; 9 García-Pedrero, Gonzalo-Martín, Lillo-Saavedra, Rodriguéz-Esparragón, Menasalvas (bb0330) 2017 Gatebe, Li, Chen, Fan, Poudyal, Brucker, Stamnes (bb0335) 2018 Tao, Gao, Ihler, Hsu, Sorooshian (bb1120) 2016 Yang, Huang, Wang, Wang, Liu (bb1320) 2007; 8 Goyal, Ojha (bb0350) 2012; 32 Li, Shen, Yuan, Zhang, Zhang (bb0625) 2017; 44 Kolassa, Aires, Polcher, Prigent, Jimenez, Pereira (bb0515) 2013; 118 Meng, Zhang, Xie, Yao, Chen, Zhang (bb0755) 2018; 2018 Castellanos, Silva (bb0110) 2017 Tanaka, Kishino, Doerffer, Schiller, Oishi, Kubota (bb1105) 2004; 60 Trajkovic (bb1165) 2005; 131 Xie, Sha, Yu, Bai, Zhang (bb1280) 2009; 220 Xiao, Liang, Wang, Chen, Yin, Zhang, Song (bb1265) 2014; 52 Bellerby, Todd, Kniveton, Kidd (bb0070) 2000; 39 Del Frate, Ferrazzoli, Schiavon (bb0210) 2003; 84 Ayzel, Heistermann, Sorokin, Nikitin, Lukyanova (bb0050) 2019; 150 Yang, Jia, Liang, Wei, Yao, Zhang (bb5000) 2017; 9 Chen, Lee, Gan, Peres, Fraisse, Zhang, He (bb0145) 2019; 11 Paloscia, Pettinato, Santi, Notarnicola, Pasolli, Reppucci (bb0835) 2013; 134 Overpeck, Meehl, Bony, Easterling (bb0815) 2011; 331 Ndikumana, Dinh Ho Tong, Baghdadi, Courault, Hossard (bb0780) 2018; 10 Santi, Paloscia, Pettinato, Brocca, Ciabatta, Entekhabi (bb0975) 2018; 212 Santi, Paloscia, Pettinato, Brocca, Ciabatta, Entekhabi (bb0980) 2018; 65 Johnson, Hsieh, Cannon, Davidson, Bédard (bb0470) 2016; 218–219 Linares-rodriguez, Ruiz-arias, Pozo-vazquez, Tovar-pescador (bb0670) 2013; 61 Yang, Dong, Sun, Lima, Mu, Wang (bb1350) 2018; 15 Lanzaco, Olcese, Palancar, Toselli (bb0575) 2017; 17 Schoof, Pryor (bb0990) 2001; 21 Xu, Zhu, Fu, Dong, Xiao (bb1295) 2017; 91 Wen, Liu, Yao, Peng, Li, Hu, Chi (bb1240) 2019; 654 Zhan, Chen, Zhou, Wang, Liu, Voogt, Zhu (bb1400) 2013; 131 Nagamani, Chauhan, Dwivedi (bb0775) 2007; 35 Dong, Yang, Reindl, Walsh (bb0250) 2014; 79 Marçais, de Dreuzy (bb0750) 2017; 55 Li, Fang, Wu, Wang (bb0635) 2018 Yang, Gong, Fu, Zhang, Chen, Liang, Xu, Shi, Dickinson (bb1340) 2013; 3 Chen, Chandrasekar, Tan, Cifelli (bb0140) 2019; 46 Kolassa, Reichle, Draper (bb0525) 2017; 191 Snauffer, Hsieh, Cannon, Schnorbus (bb1070) 2018; 12 Şahin (bb0945) 2013; 34 Pantazi, Moshou, Alexandridis, Whetton, Mouazen (bb0850) 2016; 121 Zhang, Sargent, Pan, Li, Gardiner, Hare, Atkinson (bb1430) 2018; 216 Liu, Wu (bb0685) 2016; 91 Ienco, Interdonato, Gaetano, Minh (bb0420) 2019; 158 Chai, Walker, Makarynskyy, Kuhn, Veenendaal, West (bb0115) 2009; 2 Ustaoglu, Cigizoglu, Karaca (bb1185) 2008; 15 Xu, Yuan, Li, Shen, Zhang, Jiang (bb1300) 2018; 10 Akhand, Nizamuddin, Roytman, Kogan (bb0015) 2016; 9975 Jiang, Cui, Zhou, Cao, Ieee (bb0440) 2018 Park, Kwon, Heo, Hu, Liu, Moon (bb0855) 2020; 256 Yeom, Park, Chae, Kim, Lee (bb1355) 2019; 19 Jiang, Lu, Qin, Tang, Yao (bb0445) 2019; 114 Gaetano, Ienco, Ose, Cresson (bb0320) 2018; 10 Santi, Paloscia, Pettinato, Fontanelli (bb0965) 2014 Interdonato, Ienco, Gaetano, Ose (bb0425) 2019; 149 Wei, Zheng, Yang (bb1235) 2016 Yadav, Chandel (bb1310) 2014; 33 Lipton, Berkowitz, Elkan (bb0680) 2015 Nijhawan, Das, Raman (bb0790) 2018 Sudheer, Gosain, Ramasastri (bb1090) 2003; 129 Ma, Liu, Zhang, Ye, Yin, Johnson (bb0720) 2019; 152 Yang, Pu, Huang, Wang, Zhao (bb1325) 2010; 48 Chlingaryan, Sukkarieh, Whelan (bb0155) 2018; 151 Lanzaco, Olcese, Palancar, Toselli (bb0570) 2016; 16 Aires, Prigent, Rothstein (bb0005) 2001; 106 Wolanin, Camps-Valls, Gómez-Chova, Mateo-Garcí, Tol, Zhang, Guanter (bb1245) 2019; 225 Wang, Liang, Liu (bb1225) 2019; 7 Ndikumana, Minh, Baghdadi, Courault, Hossard (bb0785) 2018 Ma, Li, Ma, Cheng, Du, Liu (bb0715) 2017; 130 Ball, Anderson, Chan (bb0065) 2017; 11 Krasnopolsky, Nadiga, Mehra, Bayler, Behringer (bb0540) 2016; 2016 Bengio, Courville, Vincent (bb0080) 2013; 35 Paloscia, Pampaloni, Pettinato, Santi (bb0830) 2010; 31 Di Noia, Hasekamp (bb0225) 2018 Xing, Chen, Zhang, Gong (bb1285) 2017; 9 Chu, Liu, Li, Liu, Lu, Lu, Mao, Chen, Li, Ren (bb0170) 2016; 7 Qiu, Mou, Schmitt, Zhu (bb0875) 2019; 154 Vucetic, Han, Mi, Li, Obradovic (bb1195) 2008; 5 Diao, Sun, Zheng, Dou, Wang, Fu (bb0240) 2016; 13 Tong, Xia, Lu, Shen, Li, You, Zhang (bb1155) 2020; 237 Trajkovic, Todorovic, Stankovic (bb1175) 2003; 129 Scott, Marcum, Davis, Nivin (bb1005) 2017; 14 Awad (bb0045) 2014; 24 Zhong, Gong, Li, Schönlieb (bb1480) 2017; 55 Wang, Yan, Chen (bb1210) 2012; 124 Jia, Liang, Gu, Baret, Wei, Wang, Yao, Yang, Li (bb0435) 2016; 177 Lv, Dou, Niu, Xu, Xu, Xia (bb0710) 2015; 2015 Kizil, Genç, Inalpulat, Şapolyo, Mirik (bb0510) 2012; 99 Tao, Gao, Hsu, Sorooshian, Ihler (bb1115) 2016; 17 Li, Liang, Huang, Zhu (bb0615) 2010 Gupta, Christopher (bb0360) 2009; 114 Cho, Choi, Park (bb0165) 2018; 215 Zhang, Gong, Wang (bb1445) 2018; 210 Liu, Liu, Li, Fang, Chi (bb0695) 2010; 106 Zhao, Guo, Yue, Zhang, Luo (bb1465) 2015; 36 Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais, Prabhat (bb0900) 2019; 566 Nussbaumer, Pinker (bb0805) 2012; 117 Zhang, Ma, Zhang (bb1405) 2016; 13 Ristovski, Vucetic, Obradovic (bb0905) 2012; 50 Corsini, Diani, Grasso, De Martino, Mantero, Serpico (bb0180) 2003; 24 Liu, Liou, Wang, Wigneron, Lee (bb0690) 2002; 40 Bose, Kasabov, Bruzzone, Hartono (bb0095) 2016; 54 Xu, Guo, Liu, He, Meng, Xu, Xia, Xiao, Zhang, Ma (bb1305) 2018; 123 Hong, Hsu, Sorooshian, Gao (bb0375) 2004; 43 Zeiler, Fergus (bb1385) 2014 Cao, Yang, Zhu (bb0105) 2008; 18 Di, Koutrakis, Schwartz (bb0235) 2016; 131 Myint, Gober, Brazel, Grossman-Clarke, Weng (bb0765) 2011; 115 Özerdem, Acar, Ekinci (bb0 Panda (10.1016/j.rse.2020.111716_bb0840) 2010; 2 Akhand (10.1016/j.rse.2020.111716_bb0015) 2016; 9975 Lee (10.1016/j.rse.2020.111716_bb0595) 2018; 56 Han (10.1016/j.rse.2020.111716_bb0365) 1997; 37 Kolios (10.1016/j.rse.2020.111716_bb0535) 2019; 11 Zhang (10.1016/j.rse.2020.111716_bb1445) 2018; 210 Bengio (10.1016/j.rse.2020.111716_bb0080) 2013; 35 Chai (10.1016/j.rse.2020.111716_bb0120) 2012; 33 Trajkovic (10.1016/j.rse.2020.111716_bb1165) 2005; 131 Deo (10.1016/j.rse.2020.111716_bb0215) 2017; 72 Santi (10.1016/j.rse.2020.111716_bb0975) 2018; 212 Zhong (10.1016/j.rse.2020.111716_bb1480) 2017; 55 Yang (10.1016/j.rse.2020.111716_bb1320) 2007; 8 Kuwata (10.1016/j.rse.2020.111716_bb0565) 2015 Jiao (10.1016/j.rse.2020.111716_bb0450) 2015; 162 Jiménez (10.1016/j.rse.2020.111716_bb0455) 2013; 118 Li (10.1016/j.rse.2020.111716_bb0615) 2010 Fang (10.1016/j.rse.2020.111716_bb0275) 2017; 44 Hong (10.1016/j.rse.2020.111716_bb0375) 2004; 43 Sudheer (10.1016/j.rse.2020.111716_bb1090) 2003; 129 Li (10.1016/j.rse.2020.111716_bb0635) 2018 Ma (10.1016/j.rse.2020.111716_bb0720) 2019; 152 Trajkovic (10.1016/j.rse.2020.111716_bb1175) 2003; 129 Wen (10.1016/j.rse.2020.111716_bb1240) 2019; 654 Ayzel (10.1016/j.rse.2020.111716_bb0050) 2019; 150 Xu (10.1016/j.rse.2020.111716_bb1300) 2018; 10 Shen (10.1016/j.rse.2020.111716_bb1030) 2018; 99 Davis (10.1016/j.rse.2020.111716_bb0205) 1993; 31 Xiao (10.1016/j.rse.2020.111716_bb1270) 2016; 54 Mao (10.1016/j.rse.2020.111716_bb0745) 2018; 28 Rodríguez-Fernández (10.1016/j.rse.2020.111716_bb0920) 2016; 8 Chu (10.1016/j.rse.2020.111716_bb0170) 2016; 7 Quesada-Ruiz (10.1016/j.rse.2020.111716_bb0880) 2015; 115 Kizil (10.1016/j.rse.2020.111716_bb0510) 2012; 99 Chai (10.1016/j.rse.2020.111716_bb0115) 2009; 2 Lu (10.1016/j.rse.2020.111716_bb0705) 2010; 114 Benediktsson (10.1016/j.rse.2020.111716_bb0075) 1997; 18 Mao (10.1016/j.rse.2020.111716_bb0740) 2008; 29 Reichstein (10.1016/j.rse.2020.111716_bb0900) 2019; 566 Han (10.1016/j.rse.2020.111716_bb0370) 2006; 19 Nagamani (10.1016/j.rse.2020.111716_bb0775) 2007; 35 Kussul (10.1016/j.rse.2020.111716_bb0560) 2017; 14 Santi (10.1016/j.rse.2020.111716_bb0965) 2014 Castellanos (10.1016/j.rse.2020.111716_bb0110) 2017 Crow (10.1016/j.rse.2020.111716_bb0185) 2012; 50 Lanzaco (10.1016/j.rse.2020.111716_bb0570) 2016; 16 Santi (10.1016/j.rse.2020.111716_bb0980) 2018; 65 Yang (10.1016/j.rse.2020.111716_bb1350) 2018; 15 Jo (10.1016/j.rse.2020.111716_bb0465) 2018; 26 Kumar (10.1016/j.rse.2020.111716_bb0545) 2002; 128 Schütt (10.1016/j.rse.2020.111716_bb0995) 2017; 8 Wolanin (10.1016/j.rse.2020.111716_bb1245) 2019; 225 Baghdadi (10.1016/j.rse.2020.111716_bb0055) 2002; 28 Mao (10.1016/j.rse.2020.111716_bb0735) 2008; 46 Rodríguez-Fernández (10.1016/j.rse.2020.111716_bb0925) 2017 Chen (10.1016/j.rse.2020.111716_bb0140) 2019; 46 Jin (10.1016/j.rse.2020.111716_bb0460) 2019; 8 Wang (10.1016/j.rse.2020.111716_bb1210) 2012; 124 Xie (10.1016/j.rse.2020.111716_bb1280) 2009; 220 Eroglu (10.1016/j.rse.2020.111716_bb0265) 2019; 11 Zhao (10.1016/j.rse.2020.111716_bb1455) 2016; 113 Zhang (10.1016/j.rse.2020.111716_bb1410) 2016; 4 Li (10.1016/j.rse.2020.111716_bb0645) 2018; 123 Jiang (10.1016/j.rse.2020.111716_bb0445) 2019; 114 Keiner (10.1016/j.rse.2020.111716_bb0490) 1999; 20 Nijhawan (10.1016/j.rse.2020.111716_bb0790) 2018 Xu (10.1016/j.rse.2020.111716_bb1295) 2017; 91 Li (10.1016/j.rse.2020.111716_bb0620) 2016; 37 Nock (10.1016/j.rse.2020.111716_bb0795) 2019 Notarnicola (10.1016/j.rse.2020.111716_bb0800) 2008; 46 Liou (10.1016/j.rse.2020.111716_bb0675) 2001; 39 Tao (10.1016/j.rse.2020.111716_bb1125) 2017; 18 Giménez (10.1016/j.rse.2020.111716_bb0340) 2008 Huang (10.1016/j.rse.2020.111716_bb0415) 2018; 214 O'Reilly (10.1016/j.rse.2020.111716_bb0810) 1998; 103 Wang (10.1016/j.rse.2020.111716_bb1205) 2009; 47 Goyal (10.1016/j.rse.2020.111716_bb0350) 2012; 32 Di Noia (10.1016/j.rse.2020.111716_bb0225) 2018 Qiu (10.1016/j.rse.2020.111716_bb0875) 2019; 154 Park (10.1016/j.rse.2020.111716_bb0855) 2020; 256 Çiftçi (10.1016/j.rse.2020.111716_bb0175) 2017; 4 Zang (10.1016/j.rse.2020.111716_bb1380) 2019; 658 Foody (10.1016/j.rse.2020.111716_bb0300) 1995; 9 Şenkal (10.1016/j.rse.2020.111716_bb1015) 2010; 35 Özerdem (10.1016/j.rse.2020.111716_bb0820) 2017; 9 Kaba (10.1016/j.rse.2020.111716_bb0475) 2018; 162 Zeiler (10.1016/j.rse.2020.111716_bb1385) 2014 Liu (10.1016/j.rse.2020.111716_bb0700) 2017; 189 Şahin (10.1016/j.rse.2020.111716_bb0955) 2014; 38 Zeng (10.1016/j.rse.2020.111716_bb1395) 2018; 141 Hsu (10.1016/j.rse.2020.111716_bb0390) 1997; 36 Evora (10.1016/j.rse.2020.111716_bb0270) 2008; 46 Krasnopolsky (10.1016/j.rse.2020.111716_bb0540) 2016; 2016 Tanikawa (10.1016/j.rse.2020.111716_bb1110) 2015; 23 Shwetha (10.1016/j.rse.2020.111716_bb1060) 2016; 117 Li (10.1016/j.rse.2020.111716_bb0605) 2007; 79 Yang (10.1016/j.rse.2020.111716_bb1340) 2013; 3 Liu (10.1016/j.rse.2020.111716_bb0690) 2002; 40 Tracewski (10.1016/j.rse.2020.111716_bb1160) 2017; 20 Gaetano (10.1016/j.rse.2020.111716_bb0320) 2018; 10 Scott (10.1016/j.rse.2020.111716_bb1000) 2017; 14 Huang (10.1016/j.rse.2020.111716_bb0410) 2011; 9 Yan (10.1016/j.rse.2020.111716_bb1315) 2006; 27 Boyd (10.1016/j.rse.2020.111716_bb0100) 2002; 22 Gruber (10.1016/j.rse.2020.111716_bb0355) 2014 Hu (10.1016/j.rse.2020.111716_bb0395) 2015; 7 Paloscia (10.1016/j.rse.2020.111716_bb0830) 2010; 31 Safa (10.1016/j.rse.2020.111716_bb0940) 2014; 2 Shen (10.1016/j.rse.2020.111716_bb1035) 2015; 3 Alemohammad (10.1016/j.rse.2020.111716_bb0020) 2018; 22 Bose (10.1016/j.rse.2020.111716_bb0095) 2016; 54 Savin (10.1016/j.rse.2020.111716_bb0985) 2007; 33 Cheng (10.1016/j.rse.2020.111716_bb0150) 2014; 92 Pierdicca (10.1016/j.rse.2020.111716_bb0865) 2008; 8 Wang (10.1016/j.rse.2020.111716_bb1230) 2019; 9 Zhao (10.1016/j.rse.2020.111716_bb1465) 2015; 36 Hosseini (10.1016/j.rse.2020.111716_bb0380) 2019; 83 Duro (10.1016/j.rse.2020.111716_bb0255) 2012; 118 Tao (10.1016/j.rse.2020.111716_bb1130) 2018; 19 Yadav (10.1016/j.rse.2020.111716_bb1310) 2014; 33 Wu (10.1016/j.rse.2020.111716_bb1260) 2019; 11 Augusteijn (10.1016/j.rse.2020.111716_bb0040) 1998; 19 Lipton (10.1016/j.rse.2020.111716_bb0680) 2015 Myint (10.1016/j.rse.2020.111716_bb0765) 2011; 115 Cho (10.1016/j.rse.2020.111716_bb0165) 2018; 215 Karpatne (10.1016/j.rse.2020.111716_bb0480) 2017 Zhao (10.1016/j.rse.2020.111716_bb1470) 2017; 14 Qin (10.1016/j.rse.2020.111716_bb0870) 2018; 10 Shen (10.1016/j.rse.2020.111716_bb1045) 2018; 22 Rodriguez-Fernandez (10.1016/j.rse.2020.111716_bb0915) 2015; 53 Zhang (10.1016/j.rse.2020.111716_bb1415) 2017; 6 Venkateshwarlu (10.1016/j.rse.2020.111716_bb1190) 2004; 3 Ball (10.1016/j.rse.2020.111716_bb0065) 2017; 11 Liao (10.1016/j.rse.2020.111716_bb0665) 2013; 7 Shen (10.1016/j.rse.2020.111716_bb1050) 2018; 123 Eissa (10.1016/j.rse.2020.111716_bb0260) 2013; 89 Sun (10.1016/j.rse.2020.111716_bb1095) 2019; 16 Jia (10.1016/j.rse.2020.111716_bb0435) 2016; 177 Marçais (10.1016/j.rse.2020.111716_bb0750) 2017; 55 Di (10.1016/j.rse.2020.111716_bb0235) 2016; 131 Scott (10.1016/j.rse.2020.111716_bb1005) 2017; 14 Li (10.1016/j.rse.2020.111716_bb0630) 2017; 152 Hou (10.1016/j.rse.2020.111716_bb0385) 2014; 52 Trajkovic (10.1016/j.rse.2020.111716_bb1170) 2000; 126 Ndikumana (10.1016/j.rse.2020.111716_bb0780) 2018; 10 Kolassa (10.1016/j.rse.2020.111716_bb0530) 2018; 204 Zhang (10.1016/j.rse.2020.111716_bb1405) 2016; 13 Wang (10.1016/j.rse.2020.111716_bb1225) 2019; 7 Paloscia (10.1016/j.rse.2020.111716_bb0825) 2008; 46 Yuan (10.1016/j.rse.2020.111716_bb1365) 2015 Li (10.1016/j.rse.2020.111716_bb0650) 2019; 173 Bellerby (10.1016/j.rse.2020.111716_bb0070) 2000; 39 García-Pedrero (10.1016/j.rse.2020.111716_bb0330) 2017 Jang (10.1016/j.rse.2020.111716_bb0430) 2004; 25 Kumar (10.1016/j.rse.2020.111716_bb0555) 2009; 14 Lee (10.1016/j.rse.2020.111716_bb0590) 2017; 26 Lanzaco (10.1016/j.rse.2020.111716_bb0575) 2017; 17 Dobreva (10.1016/j.rse.2020.111716_bb0245) 2011; 115 Jiang (10.1016/j.rse.2020.111716_bb0440) 2018 Vucetic (10.1016/j.rse.2020.111716_bb1195) 2008; 5 Panda (10.1016/j.rse.2020.111716_bb0845) 2018; 10 Peng (10.1016/j.rse.2020.111716_bb0860) 2017; 55 Snauffer (10.1016/j.rse.2020.111716_bb1070) 2018; 12 Tao (10.1016/j.rse.2020.111716_bb1120) 2016 Khoob (10.1016/j.rse.2020.111716_bb0495) 2008; 27 Lv (10.1016/j.rse.2020.111716_bb0710) 2015; 2015 Şahin (10.1016/j.rse.2020.111716_bb0950) 2013; 51 Smith (10.1016/j.rse.2020.111716_bb1065) 2006; 3 Del Frate (10.1016/j.rse.2020.111716_bb0210) 2003; 84 Hu (10.1016/j.rse.2020.111716_bb0405) 2018; XLII-3 Diao (10.1016/j.rse.2020.111716_bb0240) 2016; 13 Yeom (10.1016/j.rse.2020.111716_bb1355) 2019; 19 Zhang (10.1016/j.rse.2020.111716_bb1420) 2017; 70 Ristovski (10.1016/j.rse.2020.111716_bb0905) 2012; 50 Wang (10.1016/j.rse.2020.111716_bb1215) 2013; 34 Aires (10.1016/j.rse.2020.111716_bb0005) 2001; 106 Corsini (10.1016/j.rse.2020.111716_bb0180) 2003; 24 Levy (10.1016/j.rse.2020.111716_bb0600) 2007; 112 Cao (10.1016/j.rse.2020.111716_bb0105) 2008; 18 Kolassa (10.1016/j.rse.2020.111716_bb0515) 2013; 118 Srivastava (10.1016/j.rse.2020.111716_bb1085) 2013; 27 Blaschke (10.1016/j.rse.2020.111716_bb0090) 2010; 65 Kim (10.1016/j.rse.2020.111716_bb0505) 2019; 8 Scott (10.1016/j.rse.2020.111716_bb1010) 2018; 15 Frate (10.1016/j.rse.2020.111716_bb0310) 2004; 42 Kaul (10.1016/j.rse.2020.111716_bb0485) 2005; 85 Yuan (10.1016/j.rse.2020.111716_bb1370) 2020; 580 Li (10.1016/j.rse.2020.111716_bb0625) 2017; 44 Goodfellow (10.1016/j.rse.2020.111716_bb0345) 2016 Zhang (10.1016/j.rse.2020.111716_bb1425) 2018; 140 Liu (10.1016/j.rse.2020.111716_bb0695) 2010; 106 Rahimikhoob (10.1016/j.rse.2020.111716_bb0890) 2016; 30 Zhao (10.1016/j.rse.2020.111716_bb1460) 2007 Lary (10.1016/j.rse.2020.111716_bb0580) 2009; 6 Xing (10.1016/j.rse.2020.111716_bb1290) 2018; 141 Santi (10.1016/j.rse.2020.111716_bb0960) 2012; 16 Rahimikhoob (10.1016/j.rse.2020.111716_bb0885) 2010; 101 Ustaoglu (10.1016/j.rse.2020.111716_bb1185) 2008; 15 Chlingaryan (10.1016/j.rse.2020.111716_bb0155) 2018; 151 Das (10.1016/j.rse.2020.111716_bb0200) 2017; 10 Zhu (10.1016/j.rse.2020.111716_bb1485) 2017; 5 Yang (10.1016/j.rse.2020.111716_bb1335) 2012; 142 Taylor (10.1016/j.rse.2020.111716_bb1140) 2014; 7 Mahdianp |
References_xml | – start-page: 1349 year: 2016 end-page: 1355 ident: bb1120 article-title: Deep Neural Networks for Precipitation Estimation From Remotely Sensed Information – volume: 241 start-page: 654 year: 2018 end-page: 663 ident: bb1375 article-title: Estimating hourly PM1 concentrations from Himawari-8 aerosol optical depth in China publication-title: Environ. Pollut. – volume: 36 start-page: 3368 year: 2015 end-page: 3379 ident: bb1465 article-title: On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery publication-title: Int. J. Remote Sens. – volume: 162 start-page: 126 year: 2018 end-page: 135 ident: bb0475 article-title: Estimation of daily global solar radiation using deep learning model publication-title: Energy – volume: 11 start-page: 1022 year: 2019 ident: bb0535 article-title: Quantitative aerosol optical depth detection during dust outbreaks from Meteosat imagery using an artificial neural network model publication-title: Remote Sens. – volume: 124 start-page: 61 year: 2012 end-page: 71 ident: bb1210 article-title: Consistent retrieval methods to estimate land surface shortwave and longwave radiative flux components under clear-sky conditions publication-title: Remote Sens. Environ. – volume: 210 start-page: 48 year: 2018 end-page: 64 ident: bb1275 article-title: Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data publication-title: Remote Sens. Environ. – volume: 8 start-page: 87 year: 2019 end-page: 97 ident: bb0460 article-title: Deep neural network algorithm for estimating maize biomass based on simulated Sentinel 2A vegetation indices and leaf area index publication-title: The Crop Journal – volume: 21 start-page: 5201 year: 2017 end-page: 5216 ident: bb0930 article-title: SMOS near-real-time soil moisture product: processor overview and first validation results publication-title: Hydrol. Earth Syst. Sci. – volume: 55 start-page: 3516 year: 2017 end-page: 3530 ident: bb1480 article-title: Learning to diversify deep belief networks for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 46 start-page: 1925 year: 2008 end-page: 1939 ident: bb0270 article-title: Combining artificial neural network models, geostatistics, and passive microwave data for snow water equivalent retrieval and mapping publication-title: IEEE Transactions on Geoscience Remote Sensing – volume: 2018 start-page: 1 year: 2018 end-page: 11 ident: bb0755 article-title: Combined use of GF-3 and Landsat-8 satellite data for soil moisture retrieval over agricultural areas using artificial neural network publication-title: Adv. Meteorol. – volume: 158 start-page: 11 year: 2019 end-page: 22 ident: bb0420 article-title: Combining Sentinel-1 and Sentinel-2 satellite image time series for land cover mapping via a multi-source deep learning architecture publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 580 start-page: 124351 year: 2020 ident: bb1370 article-title: Estimating surface soil moisture from satellite observations using a generalized regression neural network trained on sparse ground-based measurements in the continental U.S. publication-title: J. Hydrol. – volume: 102 start-page: 148 year: 2015 end-page: 160 ident: bb0130 article-title: Spatio-temporal prediction of leaf area index of rubber plantation using HJ-1A/1B CCD images and recurrent neural network publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 79 start-page: 9 year: 2007 ident: bb0605 article-title: Estimating crop yield from multi-temporal satellite data using multivariate regression and neural network techniques publication-title: Photogramm. Eng. Remote Sens. – start-page: 207 year: 2018 end-page: 210 ident: bb1075 article-title: Integration of convolutional neural network and thermal images into soil moisture estimation publication-title: 2018 1st International Conference on Data Intelligence and Security (ICDIS) – volume: 52 start-page: 5601 year: 2014 end-page: 5611 ident: bb0385 article-title: Improving mountainous snow cover fraction mapping via artificial neural networks combined with MODIS and ancillary topographic data publication-title: IEEE Transactions on Geoscience Remote Sensing – year: 2018 ident: bb0785 article-title: Applying deep learning for agricultural classification using multitemporal SAR Sentinel-1 for Camargue, France publication-title: Image and Signal Processing for Remote Sensing Xxiv – volume: 216 start-page: 57 year: 2018 end-page: 70 ident: bb1430 article-title: An object-based convolutional neural network (OCNN) for urban land use classification publication-title: Remote Sens. Environ. – volume: 103 start-page: 24937 year: 1998 end-page: 24953 ident: bb0810 article-title: Ocean color chlorophyll algorithms for SeaWiFS publication-title: J. Geophys. Res. Oceans – volume: 50 start-page: 4712 year: 2016 end-page: 4721 ident: bb0230 article-title: Assessing PM2.5 exposures with high spatiotemporal resolution across the continental United States publication-title: Environ. Sci. Technol. – year: 2005 ident: bb0655 article-title: Quantitative Remote Sensing of Land Surfaces – volume: 8 year: 2016 ident: bb0920 article-title: Long term global surface soil moisture fields using an SMOS-trained neural network applied to AMSR-E data publication-title: Remote Sens. – volume: 35 start-page: 1798 year: 2013 end-page: 1828 ident: bb0080 article-title: Representation learning: a review and new perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 99 start-page: 1 year: 2018 ident: bb1030 article-title: Deep learning: a next-generation big-data approach for hydrology publication-title: EOS – volume: 10 year: 2018 ident: bb1300 article-title: Quality improvement of satellite soil moisture products by fusing with in-situ measurements and GNSS-R estimates in the western continental U.S publication-title: Remote Sens. – volume: 68 start-page: 866 year: 2018 end-page: 886 ident: bb0315 article-title: Forecasting air quality time series using deep learning publication-title: J. Air Waste Manage. Assoc. – volume: 10 start-page: 5228 year: 2017 end-page: 5236 ident: bb0200 article-title: A deep-learning-based forecasting ensemble to predict missing data for remote sensing analysis publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 14 start-page: 1638 year: 2017 end-page: 1642 ident: bb1005 article-title: Fusion of deep convolutional neural networks for land cover classification of high-resolution imagery publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 17 start-page: 1623 year: 2017 end-page: 1636 ident: bb0575 article-title: An improved aerosol optical depth map based on machine-learning and MODIS data: development and application in South America publication-title: Aerosol Air Qual. Res. – volume: 4 start-page: 22 year: 2016 end-page: 40 ident: bb1410 article-title: Deep learning for remote sensing data: a technical tutorial on the state of the art publication-title: IEEE Geoscience and Remote Sensing Magazine – volume: 114 year: 2009 ident: bb0360 article-title: Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. A neural network approach publication-title: J. Geophys. Res. Atmos. – volume: 26 start-page: 4843 year: 2017 end-page: 4855 ident: bb0590 article-title: Going deeper with contextual CNN for hyperspectral image classification publication-title: IEEE Trans. Image Process. – start-page: 2455 year: 2014 end-page: 2458 ident: bb0355 article-title: Performance inter-comparison of soil moisture retrieval models for the MetOp-A ASCAT instrument publication-title: Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International – volume: 15 start-page: 1451 year: 2018 end-page: 1455 ident: bb1010 article-title: Enhanced fusion of deep neural networks for classification of benchmark high-resolution image data sets publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 20 start-page: 252 year: 2017 end-page: 268 ident: bb1160 article-title: Repurposing a deep learning network to filter and classify volunteered photographs for land cover and land use characterization publication-title: Geo-spatial Information Science – volume: 204 start-page: 43 year: 2018 end-page: 59 ident: bb0530 article-title: Estimating surface soil moisture from SMAP observations using a neural network technique publication-title: Remote Sens. Environ. – start-page: 6291 year: 2018 end-page: 6293 ident: bb0335 article-title: Snow-covered area using machine learning techniques publication-title: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium – volume: 37 start-page: 251 year: 1997 end-page: 260 ident: bb0365 article-title: Estimation of daily soil water evaporation using an artificial neural network publication-title: J. Arid Environ. – volume: 28 start-page: 701 year: 2002 end-page: 711 ident: bb0055 article-title: Retrieving surface roughness and soil moisture from synthetic aperture radar (SAR) data using neural networks publication-title: Can. J. Remote. Sens. – volume: 2015 year: 2015 ident: bb0710 article-title: Urban land use and land cover classification using remotely sensed SAR data through deep belief networks publication-title: Journal of Sensors – volume: 218–219 start-page: 74 year: 2016 end-page: 84 ident: bb0470 article-title: Crop yield forecasting on the Canadian prairies by remotely sensed vegetation indices and machine learning methods publication-title: Agric. For. Meteorol. – volume: 72 start-page: 828 year: 2017 end-page: 848 ident: bb0215 article-title: Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland publication-title: Renew. Sust. Energ. Rev. – volume: 52 year: 2014 ident: bb1265 article-title: Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 40 start-page: 1260 year: 2002 end-page: 1268 ident: bb0690 article-title: Retrieval of crop biomass and soil moisture from measured 1.4 and 10.65 GHz brightness temperatures publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 38 start-page: 205 year: 2014 end-page: 212 ident: bb0955 article-title: Application of extreme learning machine for estimating solar radiation from satellite data publication-title: Int. J. Energy Res. – volume: 24 start-page: 3917 year: 2003 end-page: 3931 ident: bb0180 article-title: Radial basis function and multilayer perceptron neural networks for sea water optically active parameter estimation in case II waters: a comparison publication-title: Int. J. Remote Sens. – volume: 15 start-page: 207 year: 2018 end-page: 211 ident: bb1350 article-title: A CFCC-LSTM model for sea surface temperature prediction publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 60 start-page: 519 year: 2004 end-page: 530 ident: bb1105 article-title: Development of a neural network algorithm for retrieving concentrations of chlorophyll, suspended matter and yellow substance from radiance data of the ocean color and temperature scanner publication-title: J. Oceanogr. – volume: 118 start-page: 259 year: 2012 end-page: 272 ident: bb0255 article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery publication-title: Remote Sens. Environ. – start-page: 1 year: 2018 end-page: 5 ident: bb1220 article-title: Deep transfer learning for crop yield prediction with remote sensing data publication-title: ACM SIGCAS Conference on Computing and Sustainable Societies (COMPASS) – volume: 27 start-page: 4039 year: 2006 end-page: 4055 ident: bb1315 article-title: Comparison of pixel-based and object-oriented image classification approaches—a case study in a coal fire area, Wuda, Inner Mongolia, China publication-title: Int. J. Remote Sens. – volume: 9 start-page: 2478 year: 2016 end-page: 2492 ident: bb0970 article-title: Robust assessment of an operational algorithm for the retrieval of soil moisture from AMSR-E data in central Italy publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 17 start-page: 931 year: 2016 end-page: 945 ident: bb1115 article-title: A deep neural network modeling framework to reduce bias in satellite precipitation products publication-title: J. Hydrometeorol. – start-page: 1 year: 2018 end-page: 15 ident: bb0790 article-title: A hybrid of deep learning and hand-crafted features based approach for snow cover mapping publication-title: Int. J. Remote Sens. – volume: 210 start-page: 59 year: 2018 end-page: 69 ident: bb1445 article-title: Accessible remote sensing data based reference evapotranspiration estimation modelling publication-title: Agric. Water Manag. – volume: 173 start-page: 73 year: 2019 end-page: 82 ident: bb0650 article-title: Snow depth reconstruction over last century: trend and distribution in the Tianshan Mountains, China publication-title: Glob. Planet. Chang. – start-page: 2431 year: 2014 end-page: 2434 ident: bb0910 article-title: Soil moisture retrieval from SMOS observations using neural networks publication-title: Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International – volume: 9 start-page: 964 year: 2011 end-page: 973 ident: bb0410 article-title: Estimation of overstory and understory leaf area index by combining hyperion and panchromatic QuickBird data using neural network method publication-title: Sens. Lett. – volume: 13 start-page: 1895 year: 2016 end-page: 1899 ident: bb1255 article-title: Deep filter banks for land-use scene classification publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 106 start-page: 14887 year: 2001 end-page: 14907 ident: bb0005 article-title: A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land publication-title: J. Geophys. Res. – volume: 112 year: 2007 ident: bb0730 article-title: An RM-NN algorithm for retrieving land surface temperature and emissivity from EOS/MODIS data publication-title: J. Geophys. Res. Atmos. – volume: 10 year: 2018 ident: bb0845 article-title: Automated geospatial models of varying complexities for pine forest evapotranspiration estimation with advanced data mining publication-title: Water – volume: 10 start-page: 1022 year: 2018 ident: bb0870 article-title: Improving the estimation of daily aerosol optical depth and aerosol radiative effect using an optimized artificial neural network publication-title: Remote Sens. – volume: 37 start-page: 5632 year: 2016 end-page: 5646 ident: bb0620 article-title: Stacked autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping publication-title: Int. J. Remote Sens. – volume: 7 year: 2013 ident: bb0665 article-title: Biomass estimation of wetland vegetation in Poyang Lake area using ENVISAT advanced synthetic aperture radar data publication-title: J. Appl. Remote. Sens. – volume: 154 start-page: 151 year: 2019 end-page: 162 ident: bb0875 article-title: Local climate zone-based urban land cover classification from multi-seasonal Sentinel-2 images with a recurrent residual network publication-title: ISPRS J. Photogramm. Remote Sens. – start-page: 689 year: 2018 end-page: 692 ident: bb0440 article-title: Data augmentation with Gabor filter in deep convolutional neural networks for Sar target recognition publication-title: IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium – volume: 27 start-page: 35 year: 2008 end-page: 39 ident: bb0495 article-title: Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semi-arid environment publication-title: Irrig. Sci. – volume: 115 start-page: 3355 year: 2011 end-page: 3366 ident: bb0245 article-title: Fractional snow cover mapping through artificial neural network analysis of MODIS surface reflectance publication-title: Remote Sens. Environ. – volume: 91 start-page: 127 year: 2017 end-page: 134 ident: bb1295 article-title: Automatic land cover classification of geo-tagged field photos by deep learning publication-title: Environ. Model. Softw. – volume: 11 start-page: 300 year: 2019 ident: bb1260 article-title: Reconstructing geostationary satellite land surface temperature imagery based on a multiscale feature connected convolutional neural network publication-title: Remote Sens. – volume: 89 start-page: 1 year: 2013 end-page: 16 ident: bb0260 article-title: Artificial neural network based model for retrieval of the direct normal, diffuse horizontal and global horizontal irradiances using SEVIRI images publication-title: Sol. Energy – volume: 10 start-page: 1746 year: 2018 ident: bb0320 article-title: A two-branch CNN architecture for land cover classification of PAN and MS imagery publication-title: Remote Sens. – volume: 15 start-page: 431 year: 2008 end-page: 445 ident: bb1185 article-title: Forecast of daily mean, maximum and minimum temperature time series by three artificial neural network methods publication-title: Meteorol. Appl. – volume: 51 start-page: 891 year: 2013 end-page: 904 ident: bb0950 article-title: Comparison of ANN and MLR models for estimating solar radiation in Turkey using NOAA/AVHRR data publication-title: Adv. Space Res. – volume: 32 start-page: 552 year: 2012 end-page: 566 ident: bb0350 article-title: Downscaling of surface temperature for lake catchment in an arid region in India using linear multiple regression and neural networks publication-title: Int. J. Climatol. – volume: 16 start-page: 1509 year: 2016 end-page: 1522 ident: bb0570 article-title: A method to improve MODIS AOD values: application to South America publication-title: Aerosol Air Qual. Res. – volume: 16 start-page: 3659 year: 2012 end-page: 3676 ident: bb0960 article-title: An algorithm for generating soil moisture and snow depth maps from microwave spaceborne radiometers: HydroAlgo publication-title: Hydrol. Earth Syst. Sci. – volume: 7 start-page: 129 year: 2016 ident: bb0170 article-title: A review on predicting ground PM2.5 concentration using satellite aerosol optical depth publication-title: Atmosphere – volume: 933 year: 2019 ident: bb1150 article-title: Artificial Neural Network-based Crop Yield Prediction Using NDVI, SPI, VCI Feature Vectors – volume: 114 year: 2019 ident: bb0445 article-title: A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data publication-title: Renew. Sust. Energ. Rev. – year: 2008 ident: bb0035 article-title: Application of neural networks to soil moisture retrievals from L-band radiometric data publication-title: Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008 – volume: 658 start-page: 1256 year: 2019 end-page: 1264 ident: bb1380 article-title: Estimation of spatiotemporal PM1.0 distributions in China by combining PM2.5 observations with satellite aerosol optical depth publication-title: Sci. Total Environ. – volume: 152 start-page: 94 year: 2019 end-page: 108 ident: bb1025 article-title: Automatic land-water classification using multispectral airborne LiDAR data for near-shore and river environments publication-title: ISPRS J. Photogramm. Remote Sens. – start-page: 1574 year: 2017 end-page: 1577 ident: bb0925 article-title: Soil moisture retrieval using SMOS brightness temperatures and a neural network trained on in situ measurements publication-title: Geoscience and Remote Sensing Symposium (IGARSS), 2017 IEEE International – volume: 156 start-page: 403 year: 2015 end-page: 417 ident: bb0195 article-title: Fractional snow cover estimation in complex alpine-forested environments using an artificial neural network publication-title: Remote Sens. Environ. – volume: 115 start-page: 1145 year: 2011 end-page: 1161 ident: bb0765 article-title: Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery publication-title: Remote Sens. Environ. – volume: 9975 year: 2016 ident: bb0015 article-title: Using remote sensing satellite data and artificial neural network for prediction of potato yield in Bangladesh publication-title: Proc. SPIE, Remote Sensing and Modeling of Ecosystems for Sustainability – volume: 2315 start-page: 160 year: 1994 end-page: 171 ident: bb0220 article-title: Crop yield prediction using a CMAC neural network publication-title: Proc. SPIE Image and Signal Processing for Remote Sensing – year: 2017 ident: bb0480 article-title: Physics-guided Neural Networks (PGNN): An Application in Lake Temperature Modeling – volume: 11 start-page: 1 year: 2017 ident: bb0065 article-title: Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community publication-title: J. Appl. Remote. Sens. – volume: 152 start-page: 166 year: 2019 end-page: 177 ident: bb0720 article-title: Deep learning in remote sensing applications: a meta-analysis and review publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 33 start-page: 772 year: 2014 end-page: 781 ident: bb1310 article-title: Solar radiation prediction using artificial neural network techniques: a review publication-title: Renew. Sust. Energ. Rev. – volume: 3 start-page: 875 year: 2013 end-page: 883 ident: bb1340 article-title: The role of satellite remote sensing in climate change studies publication-title: Nat. Clim. Chang. – volume: 113 start-page: 919 year: 2009 end-page: 927 ident: bb0325 article-title: Comparison of snow water equivalent retrieved from SSM/I passive microwave data using artificial neural network, projection pursuit and nonlinear regressions publication-title: Remote Sens. Environ. – start-page: 104270P year: 2017 ident: bb0330 article-title: Convolutional neural networks for estimating spatially distributed evapotranspiration publication-title: Image and Signal Processing for Remote Sensing XXIII – volume: 54 start-page: 15 year: 2016 ident: bb1270 article-title: Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 521 start-page: 436 year: 2015 ident: bb0585 article-title: Deep learning publication-title: Nature – year: 2018 ident: bb0640 article-title: Geographically and Temporally Weighted Neural Networks for Satellite-based Mapping of Ground-level PM2.5 – volume: 212 start-page: 21 year: 2018 end-page: 30 ident: bb0975 article-title: Integration of microwave data from SMAP and AMSR2 for soil moisture monitoring in Italy publication-title: Remote Sens. Environ. – year: 2015 ident: bb1365 article-title: A Water Quality Assessment Method Based on Sparse Autoencoder – volume: 217 start-page: 144 year: 2018 end-page: 157 ident: bb0400 article-title: A novel co-training approach for urban land cover mapping with unclear Landsat time series imagery publication-title: Remote Sens. Environ. – volume: 7 start-page: 103 year: 2012 end-page: 111 ident: bb0125 article-title: An artificial neural network approach to estimate evapotranspiration from remote sensing and AmeriFlux data publication-title: Front. Earth Sci. – volume: 177 start-page: 184 year: 2016 end-page: 191 ident: bb0435 article-title: Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data publication-title: Remote Sens. Environ. – volume: 29 start-page: 6021 year: 2008 end-page: 6028 ident: bb0740 article-title: Near-surface air temperature estimation from ASTER data based on neural network algorithm publication-title: Int. J. Remote Sens. – volume: 38 start-page: 4631 year: 2017 end-page: 4644 ident: bb0290 article-title: Sugarcane yield prediction in Brazil using NDVI time series and neural networks ensemble publication-title: Int. J. Remote Sens. – volume: 85 start-page: 1 year: 2005 end-page: 18 ident: bb0485 article-title: Artificial neural networks for corn and soybean yield prediction publication-title: Agric. Syst. – volume: 86 start-page: 1222 year: 2009 end-page: 1228 ident: bb1020 article-title: Estimation of solar radiation over Turkey using artificial neural network and satellite data publication-title: Appl. Energy – volume: 121 start-page: 57 year: 2016 end-page: 65 ident: bb0850 article-title: Wheat yield prediction using machine learning and advanced sensing techniques publication-title: Comput. Electron. Agric. – volume: 2014 start-page: 1 year: 2014 end-page: 11 ident: bb0025 article-title: Comparative study of M5 model tree and artificial neural network in estimating reference evapotranspiration using MODIS products publication-title: J. Climatol. – volume: 65 start-page: 2 year: 2010 end-page: 16 ident: bb0090 article-title: Object based image analysis for remote sensing publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 129 start-page: 214 year: 2003 end-page: 218 ident: bb1090 article-title: Estimating actual evapotranspiration from limited climatic data using neural computing technique publication-title: J. Irrig. Drain. Eng. – volume: 54 start-page: 7135 year: 2016 end-page: 7148 ident: bb1040 article-title: An integrated framework for the spatio-temporal-spectral fusion of remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 44 start-page: 2200 year: 2011 end-page: 2204 ident: bb0660 article-title: Study of sample temperature compensation in the measurement of soil moisture content publication-title: Measurement – volume: 191 start-page: 117 year: 2017 end-page: 130 ident: bb0525 article-title: Merging active and passive microwave observations in soil moisture data assimilation publication-title: Remote Sens. Environ. – volume: 48 start-page: 2170 year: 2010 end-page: 2178 ident: bb1325 article-title: A novel method to estimate subpixel temperature by fusing solar-reflective and thermal-infrared remote-sensing data with an artificial neural network publication-title: IEEE Transactions on Geoscience & Remote Sensing – start-page: 110180Y year: 2019 ident: bb0795 article-title: Deep learning on hyperspectral data to obtain water properties and bottom depths publication-title: International Society for Optics and Photonics – volume: 141 start-page: 237 year: 2018 end-page: 251 ident: bb1290 article-title: Exploring geo-tagged photos for land cover validation with deep learning publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 56 start-page: 4274 year: 2018 end-page: 4288 ident: bb1435 article-title: Missing data reconstruction in remote sensing image with a unified spatial–temporal–spectral deep convolutional neural network publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 5 start-page: 113 year: 2008 end-page: 117 ident: bb1195 article-title: A data-mining approach for the validation of aerosol retrievals publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 10 start-page: 1119 year: 2018 ident: bb0725 article-title: Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery publication-title: Remote Sens. – volume: 28 start-page: 1 year: 2018 end-page: 11 ident: bb0745 article-title: Retrieval of land-surface temperature from AMSR2 data using a deep dynamic learning neural network publication-title: Chin. Geogr. Sci. – start-page: 176 year: 2002 end-page: 184 ident: bb0760 article-title: Neural Network-based Estimation of Chlorophyll-a Concentration in Coastal Waters – volume: 22 start-page: 5341 year: 2018 end-page: 5356 ident: bb0020 article-title: Global downscaling of remotely sensed soil moisture using neural networks publication-title: Hydrol. Earth Syst. Sci. – volume: 5 start-page: 8 year: 2017 end-page: 36 ident: bb1485 article-title: Deep learning in remote sensing: a comprehensive review and list of resources publication-title: IEEE Geoscience and Remote Sensing Magazine – volume: 57 start-page: 2221 year: 2019 end-page: 2233 ident: bb0285 article-title: The value of SMAP for long-term soil moisture estimation with the help of deep learning publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 50 year: 2012 ident: bb0185 article-title: Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products publication-title: Rev. Geophys. – volume: 3 year: 2004 ident: bb1190 article-title: Neural networks in land surface temperature mapping in urban areas from thermal infrared data publication-title: International Geoscience and Remote Sensing Symposium (IGARSS) – volume: 9 start-page: 527 year: 1995 end-page: 542 ident: bb0300 article-title: Land cover classification by an artificial neural network with ancillary information publication-title: Int. J. Geogr. Inf. Syst. – volume: 7 start-page: 14680 year: 2015 end-page: 14707 ident: bb0395 article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery publication-title: Remote Sens. – year: 2017 ident: bb0085 article-title: Modelling effects of forest disturbance history on carbon balance: a deep learning approach using Landsat-time series publication-title: AGU Fall Meeting Abstracts – volume: 123 start-page: 6777 year: 2018 end-page: 6803 ident: bb0645 article-title: Intercomparison of six upscaling evapotranspiration methods: from site to the satellite pixel publication-title: J. Geophys. Res. Atmos. – start-page: 1905 year: 2016 end-page: 1914 ident: bb1235 article-title: Transfer knowledge between cities publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 26 start-page: 102 year: 2018 end-page: 110 ident: bb0465 article-title: Chlorophyll concentration derived from microwave remote sensing measurements using artificial neural network algorithm publication-title: Journal of Marine Science and Technology-Taiwan – volume: 123 start-page: 8674 year: 2018 end-page: 8690 ident: bb1305 article-title: Evaluating different machine learning methods for upscaling evapotranspiration from flux towers to the regional scale publication-title: J. Geophys. Res. Atmos. – volume: 43 start-page: 1834 year: 2004 end-page: 1853 ident: bb0375 article-title: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system publication-title: J. Appl. Meteorol. – volume: 256 start-page: 13395 year: 2020 ident: bb0855 article-title: Estimating PM2.5 concentration of the conterminous United States via interpretable convolutional neural networks publication-title: Environ. Pollut. – volume: 46 start-page: 200 year: 2008 end-page: 208 ident: bb0735 article-title: A neural network technique for separating land surface emissivity and temperature from ASTER imagery publication-title: IEEE Transactions on Geoscience & Remote Sensing – volume: 12 start-page: 891 year: 2018 end-page: 905 ident: bb1070 article-title: Improving gridded snow water equivalent products in British Columbia, Canada: multi-source data fusion by neural network models publication-title: Cryosphere – volume: 42 start-page: 11 year: 2004 ident: bb0310 article-title: On neural network algorithms for retrieving forest biomass from SAR data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 39 start-page: 1662 year: 2001 end-page: 1672 ident: bb0675 article-title: Retrieving soil moisture from simulated brightness temperatures by a neural network publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 131 start-page: 182 year: 2013 end-page: 194 ident: bb1390 article-title: Recovering missing pixels for Landsat ETM+ SLC-off imagery using multi-temporal regression analysis and a regularization method publication-title: Remote Sens. Environ. – volume: 53 start-page: 5991 year: 2015 end-page: 6007 ident: bb0915 article-title: Soil moisture retrieval using neural networks: application to SMOS publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 2016 start-page: 29 year: 2016 ident: bb0540 article-title: Neural networks technique for filling gaps in satellite measurements: application to ocean color observations publication-title: Computational intelligence and neuroscience – volume: 18 start-page: 356 year: 2008 end-page: 360 ident: bb0105 article-title: Retrieval snow depth by artificial neural network methodology from integrated AMSR-E and in-situ data—a case study in Qinghai-Tibet Plateau publication-title: Chin. Geogr. Sci. – volume: 331 start-page: 700 year: 2011 ident: bb0815 article-title: Climate data challenges in the 21st century publication-title: Science – volume: 3 start-page: 61 year: 2015 end-page: 85 ident: bb1035 article-title: Missing information reconstruction of remote sensing data: a technical review publication-title: IEEE Geoscience and Remote Sensing Magazine – volume: 112 start-page: 203 year: 2008 end-page: 215 ident: bb1180 article-title: Multi-temporal vegetation canopy water content retrieval and interpretation using artificial neural networks for the continental USA publication-title: Remote Sens. Environ. – volume: 83 year: 2019 ident: bb0380 article-title: Synthetic aperture radar and optical satellite data for estimating the biomass of corn publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 2017 ident: bb0110 article-title: The GEOS-5 neural network retrieval (NNR) for AOD publication-title: AGU Fall Meeting – year: 2018 ident: bb0635 article-title: Autoencoder Based Residual Deep Networks for Robust Regression Prediction and Spatiotemporal Estimation – start-page: 544 year: 2010 end-page: 547 ident: bb0615 article-title: A new method based on the BP neural network to improve the accuracy of inversion of the vegetation height publication-title: 2010 International Conference on Image Analysis and Signal Processing – volume: 19 start-page: 787 year: 2006 end-page: 795 ident: bb0370 article-title: A statistical complement to deterministic algorithms for the retrieval of aerosol optical thickness from radiance data publication-title: Eng. Appl. Artif. Intell. – volume: 11 start-page: 83 year: 2004 end-page: 91 ident: bb1135 article-title: Neural networks in satellite rainfall estimation publication-title: Meteorol. Appl. – volume: 50 start-page: 409 year: 2012 end-page: 414 ident: bb0905 article-title: Uncertainty analysis of neural-network-based aerosol retrieval publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 53 start-page: 6008 year: 2015 end-page: 6021 ident: bb1345 article-title: A moving weighted harmonic analysis method for reconstructing high-quality SPOT VEGETATION NDVI time-series data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 20 start-page: 189 year: 1999 end-page: 194 ident: bb0490 article-title: Estimating oceanic chlorophyll concentrations with neural networks publication-title: Int. J. Remote Sens. – volume: 129 start-page: 454 year: 2003 end-page: 457 ident: bb1175 article-title: Forecasting of reference evapotranspiration by artificial neural networks publication-title: J. Irrig. Drain. Eng. – volume: 2 start-page: 673 year: 2010 end-page: 696 ident: bb0840 article-title: Application of vegetation indices for agricultural crop yield prediction using neural network techniques publication-title: Remote Sens. – start-page: 5 year: 2014 end-page: 9 ident: bb0965 article-title: A prototype ann based algorithm for the soil moisture retrieval from l-band in view of the incoming SMAP mission publication-title: Microwave Radiometry and Remote Sensing of the Environment (MicroRad), 2014 13th Specialist Meeting on – volume: 19 start-page: 2987 year: 2019 ident: bb1100 article-title: Deep learning convolutional neural network for the retrieval of land surface temperature from AMSR2 data in China publication-title: Sensors – volume: 221 start-page: 173 year: 2019 end-page: 187 ident: bb1450 article-title: Joint deep learning for land cover and land use classification publication-title: Remote Sens. Environ. – volume: 85 start-page: 519 year: 2013 end-page: 532 ident: bb0295 article-title: Chlorophyll a spatial inference using artificial neural network from multispectral images and in situ measurements publication-title: An. Acad. Bras. Cienc. – volume: 101 start-page: 83 year: 2010 end-page: 91 ident: bb0885 article-title: Estimation of evapotranspiration based on only air temperature data using artificial neural networks for a subtropical climate in Iran publication-title: Theor. Appl. Climatol. – volume: 19 start-page: 1545 year: 1998 end-page: 1560 ident: bb0040 article-title: Wetland classification using optical and radar data and neural network classification publication-title: Int. J. Remote Sens. – volume: 134 start-page: 234 year: 2013 end-page: 248 ident: bb0835 article-title: Soil moisture mapping using Sentinel-1 images: algorithm and preliminary validation publication-title: Remote Sens. Environ. – volume: 150 start-page: 186 year: 2019 end-page: 192 ident: bb0050 article-title: All convolutional neural networks for radar-based precipitation nowcasting publication-title: Procedia Computer Science – start-page: 818 year: 2014 end-page: 833 ident: bb1385 article-title: Visualizing and understanding convolutional networks publication-title: European Conference on Computer Vision – volume: 11 year: 2019 ident: bb0145 article-title: Strawberry yield prediction based on a deep neural network using high-resolution aerial orthoimages publication-title: Remote Sens. – volume: 16 start-page: 1343 year: 2019 end-page: 1347 ident: bb1095 article-title: Deep learning architecture for estimating hourly ground-level PM2.5 using satellite remote sensing publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 14 start-page: 131 year: 2009 end-page: 140 ident: bb0555 article-title: Development and validation of GANN model for evapotranspiration estimation publication-title: J. Hydrol. Eng. – volume: 31 start-page: 2265 year: 2010 end-page: 2276 ident: bb0830 article-title: Generation of soil moisture maps from ENVISAT/ASAR images in mountainous areas: a case study publication-title: Int. J. Remote Sens. – volume: 26 start-page: 531 year: 2008 ident: bb0550 article-title: Comparative study of conventional and artificial neural network-based ETo estimation models publication-title: Irrig. Sci. – volume: 9 year: 2017 ident: bb0820 article-title: Soil moisture estimation over vegetated agricultural areas: Tigris Basin, Turkey from Radarsat-2 data by polarimetric decomposition models and a generalized regression neural network publication-title: Remote Sens. – volume: 25 start-page: 4541 year: 2004 end-page: 4554 ident: bb0430 article-title: Neural network estimation of air temperatures from AVHRR data publication-title: Int. J. Remote Sens. – volume: 189 start-page: 596 year: 2017 ident: bb0700 article-title: Integrating multiple vegetation indices via an artificial neural network model for estimating the leaf chlorophyll content of Spartina alterniflora under interspecies competition publication-title: Environ. Monit. Assess. – volume: 3 start-page: 179 year: 2006 end-page: 186 ident: bb1065 article-title: Improving air temperature prediction with artificial neural networks publication-title: Int. J. Comput. Intell. – volume: XLII-3 start-page: 583 year: 2018 end-page: 586 ident: bb0405 article-title: Soil moisture retrieval using convolutional neural networks: application to passive microwave remote sensing publication-title: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – volume: 131 start-page: 119 year: 2013 end-page: 139 ident: bb1400 article-title: Disaggregation of remotely sensed land surface temperature: literature survey, taxonomy, issues, and caveats publication-title: Remote Sens. Environ. – volume: 92 start-page: 54 year: 2014 end-page: 68 ident: bb0150 article-title: Cloud removal for remotely sensed images by similar pixel replacement guided with a spatio-temporal MRF model publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 654 start-page: 1091 year: 2019 end-page: 1099 ident: bb1240 article-title: A novel spatiotemporal convolutional long short-term neural network for air pollution prediction publication-title: Sci. Total Environ. – volume: 31 start-page: 842 year: 1993 end-page: 852 ident: bb0205 article-title: Retrieval of snow parameters by iterative inversion of a neural network publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 54 start-page: 1138 year: 2011 end-page: 1144 ident: bb1330 article-title: The spatial continuity study of NDVI based on Kriging and BPNN algorithm publication-title: Math. Comput. Model. – volume: 9 year: 2019 ident: bb1230 article-title: Estimation of PM2.5 concentrations in China using a spatial back propagation neural network publication-title: Sci. Rep. – year: 2015 ident: bb0680 article-title: A critical review of recurrent neural networks for sequence learning – volume: 79 start-page: 66 year: 2014 end-page: 73 ident: bb0250 article-title: Satellite image analysis and a hybrid ESSS/ANN model to forecast solar irradiance in the tropics publication-title: Energy Convers. Manag. – volume: 220 start-page: 1810 year: 2009 end-page: 1818 ident: bb1280 article-title: A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia, China publication-title: Ecol. Model. – volume: 130 start-page: 277 year: 2017 end-page: 293 ident: bb0715 article-title: A review of supervised object-based land-cover image classification publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 34 start-page: 7508 year: 2013 end-page: 7533 ident: bb0945 article-title: Comparison of modelling ANN and ELM to estimate solar radiation over Turkey using NOAA satellite data publication-title: Int. J. Remote Sens. – volume: 113 start-page: 155 year: 2016 end-page: 165 ident: bb1455 article-title: Learning multiscale and deep representations for classifying remotely sensed imagery publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 14 start-page: 778 year: 2017 end-page: 782 ident: bb0560 article-title: Deep learning classification of land cover and crop types using remote sensing data publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 46 start-page: 10669 year: 2019 end-page: 10678 ident: bb0140 article-title: Rainfall estimation from ground radar and TRMM precipitation radar using hybrid deep neural networks publication-title: Geophys. Res. Lett. – year: 2008 ident: bb0340 article-title: Development of a Neural Network to Retrieve Chlorophyll Concentrations from MERIS Images in the Galician Coastal Waters – volume: 36 start-page: 1176 year: 1997 end-page: 1190 ident: bb0390 article-title: Precipitation estimation from remotely sensed information using artificial neural networks publication-title: J. Appl. Meteorol. – volume: 23 start-page: A1442 year: 2015 end-page: A1462 ident: bb1110 article-title: Retrieval of snow physical parameters by neural networks and optimal estimation: case study for ground-based spectral radiometer system publication-title: Opt. Express – volume: 232 start-page: 35 year: 2017 end-page: 47 ident: bb1200 article-title: Analysis and estimation of tallgrass prairie evapotranspiration in the central United States publication-title: Agric. For. Meteorol. – volume: 7 start-page: 597 year: 2019 end-page: 604 ident: bb1225 article-title: Soil moisture retrieval algorithm based on TFA and CNN publication-title: IEEE Access – volume: 30 start-page: 3063 year: 2016 end-page: 3075 ident: bb0890 article-title: Comparison of M5 model tree and artificial neural network’s methodologies in modelling daily reference evapotranspiration from NOAA satellite images publication-title: Water Resour. Manag. – volume: 13 start-page: 1359 year: 2016 end-page: 1363 ident: bb1405 article-title: Stacked sparse autoencoder in PolSAR data classification using local spatial information publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 24 start-page: 60 year: 2014 end-page: 68 ident: bb0045 article-title: Sea water chlorophyll-a estimation using hyperspectral images and supervised artificial neural network publication-title: Ecological informatics – volume: 27 start-page: 3127 year: 2013 end-page: 3144 ident: bb1085 article-title: Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application publication-title: Water Resour. Manag. – volume: 8 start-page: 8181 year: 2008 end-page: 8200 ident: bb0865 article-title: Inversion of electromagnetic models for bare soil parameter estimation from multifrequency polarimetric SAR data publication-title: Sensors – volume: 13 start-page: 137 year: 2016 end-page: 141 ident: bb0240 article-title: Efficient saliency-based object detection in remote sensing images using deep belief networks publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 214 start-page: 73 year: 2018 end-page: 86 ident: bb0415 article-title: Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery publication-title: Remote Sens. Environ. – volume: 6 start-page: 694 year: 2009 end-page: 698 ident: bb0580 article-title: Machine learning and Bias correction of MODIS aerosol optical depth publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 22 start-page: 375 year: 2002 end-page: 392 ident: bb0100 article-title: Evaluation of approaches for forest cover estimation in the Pacific Northwest, USA, using remote sensing publication-title: Appl. Geogr. – volume: 99 start-page: 10 year: 2012 ident: bb0510 article-title: Lettuce (Lactuca sativa L.) yield prediction under water stress using artificial neural network (ANN) model and vegetation indices publication-title: Zemdirbyste – volume: 22 year: 2018 ident: bb1045 article-title: HESS opinions: incubating deep-learning-powered hydrologic science advances as a community publication-title: Hydrol. Earth Syst. Sci. – start-page: 1 year: 2018 end-page: 13 ident: bb0280 article-title: The value of SMAP for long-term soil moisture estimation with the help of deep learning publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 6 start-page: 130 year: 2017 ident: bb1415 article-title: Upscaling of surface soil moisture using a deep learning model with VIIRS RDR publication-title: ISPRS Int. J. Geo Inf. – volume: 115 start-page: 494 year: 2015 end-page: 504 ident: bb0880 article-title: An advanced ANN-based method to estimate hourly solar radiation from multi-spectral MSG imagery publication-title: Sol. Energy – year: 1998 ident: bb0030 article-title: Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements – year: 2017 ident: bb1360 article-title: Deep Gaussian process for crop yield prediction based on remote sensing data publication-title: Proceedings of the Thirty-first AAAI Conference on Artificial Intelligence – volume: 44 start-page: 11,030 year: 2017 end-page: 11,039 ident: bb0275 article-title: Prolongation of SMAP to spatiotemporally seamless coverage of continental U.S. using a deep learning neural network publication-title: Geophys. Res. Lett. – start-page: 1705 year: 2007 end-page: 1708 ident: bb1460 article-title: A neural network algorithm to retrieve nearsurface air temperature from landsat ETM+ imagery over the Hanjiang River Basin, China publication-title: Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International – volume: 46 start-page: 547 year: 2008 end-page: 557 ident: bb0800 article-title: Soil moisture retrieval from remotely sensed data: neural network approach versus Bayesian method publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 11 year: 2019 ident: bb1475 article-title: Evaluation of three deep learning models for early crop classification using Sentinel-1A imagery time series-a case study in Zhanjiang, China publication-title: Remote Sens. – year: 2014 ident: bb0160 article-title: Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation – volume: 18 start-page: 1271 year: 2017 end-page: 1283 ident: bb1125 article-title: Precipitation identification with bispectral satellite information using deep learning approaches publication-title: J. Hydrometeorol. – volume: 11 start-page: 2272 year: 2019 ident: bb0265 article-title: High spatio-temporal resolution CYGNSS soil moisture estimates using artificial neural networks publication-title: Remote Sens. – volume: 140 start-page: 133 year: 2018 end-page: 144 ident: bb1425 article-title: A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 14 start-page: 549 year: 2017 end-page: 553 ident: bb1000 article-title: Training deep convolutional neural networks for land-cover classification of high-resolution imagery publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 70 start-page: 314 year: 2017 end-page: 329 ident: bb1420 article-title: A critical review of the models used to estimate solar radiation publication-title: Renew. Sust. Energ. Rev. – volume: 33 start-page: 361 year: 2007 end-page: 363 ident: bb0985 article-title: Prediction of crop yields with the use of neural networks publication-title: Russ. Agric. Sci. – volume: 112 year: 2007 ident: bb0600 article-title: Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance publication-title: J. Geophys. Res. Atmos. – volume: 35 start-page: 69 year: 2018 end-page: 84 ident: bb0770 article-title: Prediction of aerosol optical depth in West Asia using deterministic models and machine learning algorithms publication-title: Aeolian Res. – volume: 90 start-page: 76 year: 2004 end-page: 85 ident: bb1145 article-title: Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data publication-title: Remote Sens. Environ. – volume: 14 start-page: 1436 year: 2017 end-page: 1440 ident: bb1470 article-title: Transfer learning with fully pretrained deep convolution networks for land-use classification publication-title: IEEE Geoscience Remote Sensing Letters – volume: 162 start-page: 221 year: 2015 end-page: 237 ident: bb0450 article-title: Estimation of surface upward longwave radiation from MODIS and VIIRS clear-sky data in the Tibetan Plateau publication-title: Remote Sens. Environ. – year: 2015 ident: bb0565 article-title: Estimating crop yields with deep learning and remotely sensed data publication-title: Geoscience & Remote Sensing Symposium – volume: 10 year: 2018 ident: bb0780 article-title: Deep recurrent neural network for agricultural classification using multitemporal SAR Sentinel-1 for Camargue, France publication-title: Remote Sens. – volume: 2 start-page: 352 year: 2014 end-page: 361 ident: bb0940 article-title: Artificial Neural Networks (ANNs) application to predict occurrence of phenological stages in wheat using climatic data publication-title: International Journal of Agricultural Policy and Research – start-page: 279 year: 2018 end-page: 329 ident: bb0225 article-title: Neural networks and support vector machines and their application to aerosol and cloud remote sensing: a review publication-title: Springer Series in Light Scattering – volume: 55 start-page: 341 year: 2017 end-page: 366 ident: bb0860 article-title: A review of spatial downscaling of satellite remotely sensed soil moisture publication-title: Rev. Geophys. – volume: 2 start-page: 166 year: 2009 end-page: 190 ident: bb0115 article-title: Use of soil moisture variability in artificial neural network retrieval of soil moisture publication-title: Remote Sens. – volume: 543 start-page: 242 year: 2016 end-page: 254 ident: bb0190 article-title: Validation and reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau publication-title: J. Hydrol. – volume: 173 start-page: 1 year: 2016 end-page: 14 ident: bb0520 article-title: Soil moisture retrieval from AMSR-E and ASCAT microwave observation synergy. Part 1: satellite data analysis publication-title: Remote Sens. Environ. – volume: 47 start-page: 1559 year: 2009 end-page: 1570 ident: bb1205 article-title: Estimating high spatial resolution clear-sky land surface upwelling longwave radiation from MODIS data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 12 start-page: 1579 year: 2018 end-page: 1594 ident: bb0060 article-title: Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan publication-title: Cryosphere – volume: 106 start-page: 223 year: 2010 end-page: 233 ident: bb0695 article-title: Neural-network model for estimating leaf chlorophyll concentration in rice under stress from heavy metals using four spectral indices publication-title: Biosyst. Eng. – volume: 215 start-page: 157 year: 2018 end-page: 163 ident: bb0165 article-title: Deep learning application to time-series prediction of daily chlorophyll-a concentration publication-title: WIT Trans. Ecol. Environ. – volume: 65 start-page: 114 year: 2018 end-page: 123 ident: bb0980 article-title: On the synergy of SMAP, AMSR2 AND SENTINEL-1 for retrieving soil moisture publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 117 year: 2012 ident: bb0805 article-title: Estimating surface longwave radiative fluxes from satellites utilizing artificial neural networks publication-title: J. Geophys. Res. Atmos. – volume: 9 start-page: 857 year: 2017 ident: bb5000 article-title: A Robust Algorithm for Estimating Surface Fractional Vegetation Cover from Landsat Data publication-title: Remote Sens. – volume: 56 start-page: 43 year: 2018 end-page: 67 ident: bb0595 article-title: Estimation of soil moisture using deep learning based on satellite data: a case study of South Korea publication-title: GIScience & Remote Sensing – volume: 110 year: 2005 ident: bb0010 article-title: Sensitivity of satellite microwave and infrared observations to soil moisture at a global scale: 2. Global statistical relationships publication-title: J. Geophys. Res. Atmos. – volume: 118 start-page: 6771 year: 2013 end-page: 6782 ident: bb0455 article-title: A joint analysis of modeled soil moisture fields and satellite observations publication-title: J. Geophys. Res. Atmos. – volume: 54 year: 2016 ident: bb0095 article-title: Spiking neural networks for crop yield estimation based on spatiotemporal analysis of image time series publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 20 start-page: 2273 year: 2019 end-page: 2289 ident: bb0935 article-title: PERSIANN-CNN: precipitation estimation from remotely sensed information using artificial neural networks-convolutional neural networks publication-title: J. Hydrometeorol. – volume: 35 start-page: 4795 year: 2010 end-page: 4801 ident: bb1015 article-title: Modeling of solar radiation using remote sensing and artificial neural network in Turkey publication-title: Energy – volume: 142 year: 2012 ident: bb1335 article-title: On Grass Yield Remote Sensing Estimation Models of China’s Northern Farming-Pastoral Ecotone publication-title: Advances in Computational Environment Science. Advances in Intelligent and Soft Computing – volume: 8 year: 2017 ident: bb0995 article-title: Quantum-chemical insights from deep tensor neural networks publication-title: Nat. Commun. – volume: 34 start-page: 3485 year: 2013 end-page: 3502 ident: bb1215 article-title: Retrieval of atmospheric and land surface parameters from satellite-based thermal infrared hyperspectral data using a neural network technique publication-title: Int. J. Remote Sens. – volume: 12 start-page: 905 year: 2011 end-page: 923 ident: bb0305 article-title: Site-specific early season potato yield forecast by neural network in Eastern Canada publication-title: Precis. Agric. – volume: 4 start-page: 409 year: 2018 end-page: 419 ident: bb0895 article-title: Prediction of vegetation dynamics using NDVI time series data and LSTM publication-title: Model. Earth Syst. Environ. – volume: 7 start-page: 3151 year: 2014 end-page: 3175 ident: bb1140 article-title: Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peak publication-title: Atmospheric Measurement Techniques – volume: 21 start-page: 773 year: 2001 end-page: 790 ident: bb0990 article-title: Downscaling temperature and precipitation: a comparison of regression-based methods and artificial neural networks publication-title: Int. J. Climatol. – volume: 8 start-page: 734 year: 2016 end-page: 748 ident: bb1080 article-title: Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model publication-title: Journal of Arid Land – volume: 9 year: 2017 ident: bb1285 article-title: A machine learning based reconstruction method for satellite remote sensing of soil moisture images with in situ observations publication-title: Remote Sens. – volume: 149 start-page: 91 year: 2019 end-page: 104 ident: bb0425 article-title: DuPLO: a DUal view Point deep Learning architecture for time series classificatiOn publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 433 start-page: 20 year: 2012 end-page: 30 ident: bb1250 article-title: Synergy of satellite and ground based observations in estimation of particulate matter in eastern China publication-title: Sci. Total Environ. – volume: 225 year: 2019 ident: bb1245 article-title: Estimating crop primary productivity with Sentinel-2 and Landsat 8 using machine learning methods trained with radiative transfer simulations publication-title: Remote Sens. Environ. – start-page: 1 year: 2019 end-page: 2 ident: bb0135 article-title: A Deep Learning Approach to Dual-Polarization Radar Rainfall Estimation – volume: 151 start-page: 61 year: 2018 end-page: 69 ident: bb0155 article-title: Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review publication-title: Comput. Electron. Agric. – volume: 61 start-page: 636 year: 2013 end-page: 645 ident: bb0670 article-title: An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images publication-title: Energy – volume: 4 start-page: 179 year: 2017 ident: bb0175 article-title: Fractional snow cover mapping by artificial neural networks and support vector machines publication-title: ISPRS Annals of the Photogrammetry, Remote Sensing Spatial Information Sciences – volume: 237 year: 2020 ident: bb1155 article-title: Land-cover classification with high-resolution remote sensing images using transferable deep models publication-title: Remote Sens. Environ. – volume: 128 start-page: 224 year: 2002 end-page: 233 ident: bb0545 article-title: Estimating evapotranspiration using artificial neural network publication-title: J. Irrig. Drain. Eng. – volume: 15 start-page: 1032 year: 2018 ident: bb1440 article-title: A novel hybrid data-driven model for daily land surface temperature forecasting using long short-term memory neural network based on ensemble empirical mode decomposition publication-title: Int. J. Environ. Res. Public Health – start-page: 331 year: 2007 end-page: 336 ident: bb0610 article-title: Soybean LAI estimation with in-situ collected hyperspectral data based on BP-neural networks publication-title: 2007 3rd International Conference on Recent Advances in Space Technologies – volume: 44 start-page: 11,985 year: 2017 end-page: 911,993 ident: bb0625 article-title: Estimating ground-level PM2.5 by fusing satellite and station observations: a geo-intelligent deep learning approach publication-title: Geophys. Res. Lett. – volume: 114 start-page: 1924 year: 2010 end-page: 1939 ident: bb0705 article-title: Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data publication-title: Remote Sens. Environ. – volume: 566 start-page: 195 year: 2019 end-page: 204 ident: bb0900 article-title: Deep learning and process understanding for data-driven Earth system science publication-title: Nature – year: 2016 ident: bb0345 article-title: Deep Learning – volume: 8 year: 2019 ident: bb0505 article-title: A comparison between major artificial intelligence models for crop yield prediction: case study of the midwestern United States, 2006–2015 publication-title: International Journal of Geo-information – volume: 26 start-page: 253 year: 2008 end-page: 259 ident: bb0500 article-title: Comparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semiarid environment publication-title: Irrig. Sci. – year: 2020 ident: bb1055 article-title: Deep Learning-based Air Temperature Mapping by Fusing Remote Sensing, Station, Simulation and Socioeconomic Data – volume: 141 start-page: 30 year: 2018 end-page: 45 ident: bb1395 article-title: A two-step framework for reconstructing remotely sensed land surface temperatures contaminated by cloud publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 19 start-page: 2082 year: 2019 ident: bb1355 article-title: Spatial assessment of solar radiation by machine learning and deep neural network models using data provided by the COMS MI geostationary satellite: a case study in South Korea publication-title: Sensors – volume: 35 start-page: 201 year: 2007 end-page: 207 ident: bb0775 article-title: Estimation of chlorophyll-A concentration using an artificial neural network (ANN)-based algorithm with oceansat-I OCM data publication-title: Journal of the Indian Society of Remote Sensing – volume: 117 start-page: 40 year: 2016 end-page: 55 ident: bb1060 article-title: Prediction of high spatio-temporal resolution land surface temperature under cloudy conditions using microwave vegetation index and ANN publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 33 start-page: 5712 year: 2012 end-page: 5731 ident: bb0120 article-title: Estimating time-series leaf area index based on recurrent nonlinear autoregressive neural networks with exogenous inputs publication-title: Int. J. Remote Sens. – volume: 123 start-page: 13,875 year: 2018 end-page: 813,886 ident: bb1050 article-title: Estimating regional ground-level PM2.5 directly from satellite top-of-atmosphere reflectance using deep belief networks publication-title: J. Geophys. Res. Atmos. – volume: 39 start-page: 2115 year: 2000 end-page: 2128 ident: bb0070 article-title: Rainfall estimation from a combination of TRMM precipitation radar and GOES multispectral satellite imagery through the use of an artificial neural network publication-title: J. Appl. Meteorol. – volume: 152 start-page: 477 year: 2017 end-page: 489 ident: bb0630 article-title: Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China: methods and assessment publication-title: Atmos. Environ. – volume: 118 start-page: 4847 year: 2013 end-page: 4859 ident: bb0515 article-title: Soil moisture retrieval from multi-instrument observations: information content analysis and retrieval methodology publication-title: J. Geophys. Res. Atmos. – volume: 131 start-page: 316 year: 2005 end-page: 323 ident: bb1165 article-title: Temperature-based approaches for estimating reference evapotranspiration publication-title: J. Irrig. Drain. Eng. – volume: 8 start-page: 883 year: 2007 end-page: 895 ident: bb1320 article-title: Estimation of vegetation biophysical parameters by remote sensing using radial basis function neural network publication-title: Journal of Zhejiang University-Science A – volume: 84 start-page: 174 year: 2003 end-page: 183 ident: bb0210 article-title: Retrieving soil moisture and agricultural variables by microwave radiometry using neural networks publication-title: Remote Sens. Environ. – volume: 126 start-page: 268 year: 2000 end-page: 270 ident: bb1170 article-title: Estimation of FAO Blaney-Criddle b factor by RBF network publication-title: J. Irrig. Drain. Eng. – volume: 19 start-page: 393 year: 2018 end-page: 408 ident: bb1130 article-title: A two-stage deep neural network framework for precipitation estimation from bispectral satellite information publication-title: J. Hydrometeorol. – volume: 18 start-page: 727 year: 1997 end-page: 740 ident: bb0075 article-title: Feature extraction for multisource data classification with artificial neural networks publication-title: Int. J. Remote Sens. – volume: 46 start-page: 3274 year: 2008 end-page: 3284 ident: bb0825 article-title: A comparison of algorithms for retrieving soil moisture from ENVISAT/ASAR images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 131 start-page: 390 year: 2016 end-page: 399 ident: bb0235 article-title: A hybrid prediction model for PM2.5 mass and components using a chemical transport model and land use regression publication-title: Atmos. Environ. – volume: 91 start-page: 566 year: 2016 end-page: 575 ident: bb0685 article-title: Geological disaster recognition on optical remote sensing images using deep learning publication-title: Procedia Computer Science – volume: 55 start-page: 688 year: 2017 end-page: 692 ident: bb0750 article-title: Prospective interest of deep learning for hydrological inference publication-title: Groundwater – volume: 152 start-page: 166 year: 2019 ident: 10.1016/j.rse.2020.111716_bb0720 article-title: Deep learning in remote sensing applications: a meta-analysis and review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.04.015 – volume: 22 year: 2018 ident: 10.1016/j.rse.2020.111716_bb1045 article-title: HESS opinions: incubating deep-learning-powered hydrologic science advances as a community publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-5639-2018 – volume: 7 start-page: 14680 year: 2015 ident: 10.1016/j.rse.2020.111716_bb0395 article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery publication-title: Remote Sens. doi: 10.3390/rs71114680 – volume: 131 start-page: 316 year: 2005 ident: 10.1016/j.rse.2020.111716_bb1165 article-title: Temperature-based approaches for estimating reference evapotranspiration publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2005)131:4(316) – volume: 11 start-page: 1022 year: 2019 ident: 10.1016/j.rse.2020.111716_bb0535 article-title: Quantitative aerosol optical depth detection during dust outbreaks from Meteosat imagery using an artificial neural network model publication-title: Remote Sens. doi: 10.3390/rs11091022 – start-page: 544 year: 2010 ident: 10.1016/j.rse.2020.111716_bb0615 article-title: A new method based on the BP neural network to improve the accuracy of inversion of the vegetation height – volume: 6 start-page: 130 year: 2017 ident: 10.1016/j.rse.2020.111716_bb1415 article-title: Upscaling of surface soil moisture using a deep learning model with VIIRS RDR publication-title: ISPRS Int. J. Geo Inf. doi: 10.3390/ijgi6050130 – volume: 152 start-page: 94 year: 2019 ident: 10.1016/j.rse.2020.111716_bb1025 article-title: Automatic land-water classification using multispectral airborne LiDAR data for near-shore and river environments publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.04.005 – volume: 22 start-page: 375 year: 2002 ident: 10.1016/j.rse.2020.111716_bb0100 article-title: Evaluation of approaches for forest cover estimation in the Pacific Northwest, USA, using remote sensing publication-title: Appl. Geogr. doi: 10.1016/S0143-6228(02)00048-6 – volume: 33 start-page: 361 year: 2007 ident: 10.1016/j.rse.2020.111716_bb0985 article-title: Prediction of crop yields with the use of neural networks publication-title: Russ. Agric. Sci. doi: 10.3103/S1068367407060031 – volume: 131 start-page: 119 year: 2013 ident: 10.1016/j.rse.2020.111716_bb1400 article-title: Disaggregation of remotely sensed land surface temperature: literature survey, taxonomy, issues, and caveats publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.014 – volume: 42 start-page: 11 year: 2004 ident: 10.1016/j.rse.2020.111716_bb0310 article-title: On neural network algorithms for retrieving forest biomass from SAR data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 14 start-page: 131 year: 2009 ident: 10.1016/j.rse.2020.111716_bb0555 article-title: Development and validation of GANN model for evapotranspiration estimation publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2009)14:2(131) – volume: 23 start-page: A1442 year: 2015 ident: 10.1016/j.rse.2020.111716_bb1110 article-title: Retrieval of snow physical parameters by neural networks and optimal estimation: case study for ground-based spectral radiometer system publication-title: Opt. Express doi: 10.1364/OE.23.0A1442 – volume: 85 start-page: 1 year: 2005 ident: 10.1016/j.rse.2020.111716_bb0485 article-title: Artificial neural networks for corn and soybean yield prediction publication-title: Agric. Syst. doi: 10.1016/j.agsy.2004.07.009 – volume: 10 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0780 article-title: Deep recurrent neural network for agricultural classification using multitemporal SAR Sentinel-1 for Camargue, France publication-title: Remote Sens. – volume: 27 start-page: 4039 year: 2006 ident: 10.1016/j.rse.2020.111716_bb1315 article-title: Comparison of pixel-based and object-oriented image classification approaches—a case study in a coal fire area, Wuda, Inner Mongolia, China publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600702632 – volume: 68 start-page: 866 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0315 article-title: Forecasting air quality time series using deep learning publication-title: J. Air Waste Manage. Assoc. doi: 10.1080/10962247.2018.1459956 – volume: 11 year: 2019 ident: 10.1016/j.rse.2020.111716_bb0145 article-title: Strawberry yield prediction based on a deep neural network using high-resolution aerial orthoimages publication-title: Remote Sens. – volume: 61 start-page: 636 year: 2013 ident: 10.1016/j.rse.2020.111716_bb0670 article-title: An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images publication-title: Energy doi: 10.1016/j.energy.2013.09.008 – volume: 241 start-page: 654 year: 2018 ident: 10.1016/j.rse.2020.111716_bb1375 article-title: Estimating hourly PM1 concentrations from Himawari-8 aerosol optical depth in China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.05.100 – volume: 60 start-page: 519 year: 2004 ident: 10.1016/j.rse.2020.111716_bb1105 article-title: Development of a neural network algorithm for retrieving concentrations of chlorophyll, suspended matter and yellow substance from radiance data of the ocean color and temperature scanner publication-title: J. Oceanogr. doi: 10.1023/B:JOCE.0000038345.99050.c0 – volume: 90 start-page: 76 year: 2004 ident: 10.1016/j.rse.2020.111716_bb1145 article-title: Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.12.002 – volume: 16 start-page: 3659 year: 2012 ident: 10.1016/j.rse.2020.111716_bb0960 article-title: An algorithm for generating soil moisture and snow depth maps from microwave spaceborne radiometers: HydroAlgo publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-16-3659-2012 – volume: 8 start-page: 8181 year: 2008 ident: 10.1016/j.rse.2020.111716_bb0865 article-title: Inversion of electromagnetic models for bare soil parameter estimation from multifrequency polarimetric SAR data publication-title: Sensors doi: 10.3390/s8128181 – volume: 2018 start-page: 1 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0755 article-title: Combined use of GF-3 and Landsat-8 satellite data for soil moisture retrieval over agricultural areas using artificial neural network publication-title: Adv. Meteorol. doi: 10.1155/2018/9315132 – volume: 7 start-page: 103 year: 2012 ident: 10.1016/j.rse.2020.111716_bb0125 article-title: An artificial neural network approach to estimate evapotranspiration from remote sensing and AmeriFlux data publication-title: Front. Earth Sci. doi: 10.1007/s11707-012-0346-7 – volume: 55 start-page: 688 year: 2017 ident: 10.1016/j.rse.2020.111716_bb0750 article-title: Prospective interest of deep learning for hydrological inference publication-title: Groundwater doi: 10.1111/gwat.12557 – volume: 20 start-page: 252 year: 2017 ident: 10.1016/j.rse.2020.111716_bb1160 article-title: Repurposing a deep learning network to filter and classify volunteered photographs for land cover and land use characterization publication-title: Geo-spatial Information Science doi: 10.1080/10095020.2017.1373955 – volume: 50 year: 2012 ident: 10.1016/j.rse.2020.111716_bb0185 article-title: Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products publication-title: Rev. Geophys. doi: 10.1029/2011RG000372 – volume: 14 start-page: 549 year: 2017 ident: 10.1016/j.rse.2020.111716_bb1000 article-title: Training deep convolutional neural networks for land-cover classification of high-resolution imagery publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2657778 – volume: 54 start-page: 7135 year: 2016 ident: 10.1016/j.rse.2020.111716_bb1040 article-title: An integrated framework for the spatio-temporal-spectral fusion of remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2596290 – volume: 216 start-page: 57 year: 2018 ident: 10.1016/j.rse.2020.111716_bb1430 article-title: An object-based convolutional neural network (OCNN) for urban land use classification publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.06.034 – volume: 37 start-page: 251 year: 1997 ident: 10.1016/j.rse.2020.111716_bb0365 article-title: Estimation of daily soil water evaporation using an artificial neural network publication-title: J. Arid Environ. doi: 10.1006/jare.1997.0269 – volume: 8 year: 2017 ident: 10.1016/j.rse.2020.111716_bb0995 article-title: Quantum-chemical insights from deep tensor neural networks publication-title: Nat. Commun. doi: 10.1038/ncomms13890 – volume: 35 start-page: 1798 year: 2013 ident: 10.1016/j.rse.2020.111716_bb0080 article-title: Representation learning: a review and new perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 – volume: 26 start-page: 253 year: 2008 ident: 10.1016/j.rse.2020.111716_bb0500 article-title: Comparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semiarid environment publication-title: Irrig. Sci. doi: 10.1007/s00271-007-0090-z – volume: 3 start-page: 875 year: 2013 ident: 10.1016/j.rse.2020.111716_bb1340 article-title: The role of satellite remote sensing in climate change studies publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate1908 – year: 2017 ident: 10.1016/j.rse.2020.111716_bb0085 article-title: Modelling effects of forest disturbance history on carbon balance: a deep learning approach using Landsat-time series – volume: 131 start-page: 390 year: 2016 ident: 10.1016/j.rse.2020.111716_bb0235 article-title: A hybrid prediction model for PM2.5 mass and components using a chemical transport model and land use regression publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.02.002 – year: 2017 ident: 10.1016/j.rse.2020.111716_bb1360 article-title: Deep Gaussian process for crop yield prediction based on remote sensing data – start-page: 2455 year: 2014 ident: 10.1016/j.rse.2020.111716_bb0355 article-title: Performance inter-comparison of soil moisture retrieval models for the MetOp-A ASCAT instrument – volume: 128 start-page: 224 year: 2002 ident: 10.1016/j.rse.2020.111716_bb0545 article-title: Estimating evapotranspiration using artificial neural network publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2002)128:4(224) – volume: 40 start-page: 1260 year: 2002 ident: 10.1016/j.rse.2020.111716_bb0690 article-title: Retrieval of crop biomass and soil moisture from measured 1.4 and 10.65 GHz brightness temperatures publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2002.800277 – volume: 8 year: 2016 ident: 10.1016/j.rse.2020.111716_bb0920 article-title: Long term global surface soil moisture fields using an SMOS-trained neural network applied to AMSR-E data publication-title: Remote Sens. doi: 10.3390/rs8110959 – volume: 129 start-page: 214 year: 2003 ident: 10.1016/j.rse.2020.111716_bb1090 article-title: Estimating actual evapotranspiration from limited climatic data using neural computing technique publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2003)129:3(214) – volume: 92 start-page: 54 year: 2014 ident: 10.1016/j.rse.2020.111716_bb0150 article-title: Cloud removal for remotely sensed images by similar pixel replacement guided with a spatio-temporal MRF model publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.02.015 – volume: 9 start-page: 527 year: 1995 ident: 10.1016/j.rse.2020.111716_bb0300 article-title: Land cover classification by an artificial neural network with ancillary information publication-title: Int. J. Geogr. Inf. Syst. doi: 10.1080/02693799508902054 – volume: 21 start-page: 5201 year: 2017 ident: 10.1016/j.rse.2020.111716_bb0930 article-title: SMOS near-real-time soil moisture product: processor overview and first validation results publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-21-5201-2017 – volume: 4 start-page: 22 year: 2016 ident: 10.1016/j.rse.2020.111716_bb1410 article-title: Deep learning for remote sensing data: a technical tutorial on the state of the art publication-title: IEEE Geoscience and Remote Sensing Magazine doi: 10.1109/MGRS.2016.2540798 – start-page: 207 year: 2018 ident: 10.1016/j.rse.2020.111716_bb1075 article-title: Integration of convolutional neural network and thermal images into soil moisture estimation – volume: 24 start-page: 60 year: 2014 ident: 10.1016/j.rse.2020.111716_bb0045 article-title: Sea water chlorophyll-a estimation using hyperspectral images and supervised artificial neural network publication-title: Ecological informatics doi: 10.1016/j.ecoinf.2014.07.004 – volume: 44 start-page: 11,985 year: 2017 ident: 10.1016/j.rse.2020.111716_bb0625 article-title: Estimating ground-level PM2.5 by fusing satellite and station observations: a geo-intelligent deep learning approach publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL075710 – volume: 237 year: 2020 ident: 10.1016/j.rse.2020.111716_bb1155 article-title: Land-cover classification with high-resolution remote sensing images using transferable deep models publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111322 – volume: 8 year: 2019 ident: 10.1016/j.rse.2020.111716_bb0505 article-title: A comparison between major artificial intelligence models for crop yield prediction: case study of the midwestern United States, 2006–2015 publication-title: International Journal of Geo-information – volume: 123 start-page: 13,875 year: 2018 ident: 10.1016/j.rse.2020.111716_bb1050 article-title: Estimating regional ground-level PM2.5 directly from satellite top-of-atmosphere reflectance using deep belief networks publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2018JD028759 – volume: 566 start-page: 195 year: 2019 ident: 10.1016/j.rse.2020.111716_bb0900 article-title: Deep learning and process understanding for data-driven Earth system science publication-title: Nature doi: 10.1038/s41586-019-0912-1 – volume: 14 start-page: 778 year: 2017 ident: 10.1016/j.rse.2020.111716_bb0560 article-title: Deep learning classification of land cover and crop types using remote sensing data publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2681128 – volume: 15 start-page: 207 year: 2018 ident: 10.1016/j.rse.2020.111716_bb1350 article-title: A CFCC-LSTM model for sea surface temperature prediction publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2780843 – volume: 55 start-page: 341 year: 2017 ident: 10.1016/j.rse.2020.111716_bb0860 article-title: A review of spatial downscaling of satellite remotely sensed soil moisture publication-title: Rev. Geophys. doi: 10.1002/2016RG000543 – volume: 56 start-page: 43 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0595 article-title: Estimation of soil moisture using deep learning based on satellite data: a case study of South Korea publication-title: GIScience & Remote Sensing doi: 10.1080/15481603.2018.1489943 – start-page: 1 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0790 article-title: A hybrid of deep learning and hand-crafted features based approach for snow cover mapping publication-title: Int. J. Remote Sens. – start-page: 1905 year: 2016 ident: 10.1016/j.rse.2020.111716_bb1235 article-title: Transfer knowledge between cities – year: 2008 ident: 10.1016/j.rse.2020.111716_bb0035 article-title: Application of neural networks to soil moisture retrievals from L-band radiometric data – volume: 65 start-page: 114 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0980 article-title: On the synergy of SMAP, AMSR2 AND SENTINEL-1 for retrieving soil moisture publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2017.10.010 – volume: 18 start-page: 727 year: 1997 ident: 10.1016/j.rse.2020.111716_bb0075 article-title: Feature extraction for multisource data classification with artificial neural networks publication-title: Int. J. Remote Sens. doi: 10.1080/014311697218728 – volume: 115 start-page: 494 year: 2015 ident: 10.1016/j.rse.2020.111716_bb0880 article-title: An advanced ANN-based method to estimate hourly solar radiation from multi-spectral MSG imagery publication-title: Sol. Energy doi: 10.1016/j.solener.2015.03.014 – volume: 30 start-page: 3063 year: 2016 ident: 10.1016/j.rse.2020.111716_bb0890 article-title: Comparison of M5 model tree and artificial neural network’s methodologies in modelling daily reference evapotranspiration from NOAA satellite images publication-title: Water Resour. Manag. doi: 10.1007/s11269-016-1331-9 – volume: 218–219 start-page: 74 year: 2016 ident: 10.1016/j.rse.2020.111716_bb0470 article-title: Crop yield forecasting on the Canadian prairies by remotely sensed vegetation indices and machine learning methods publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.11.003 – volume: 3 start-page: 61 year: 2015 ident: 10.1016/j.rse.2020.111716_bb1035 article-title: Missing information reconstruction of remote sensing data: a technical review publication-title: IEEE Geoscience and Remote Sensing Magazine doi: 10.1109/MGRS.2015.2441912 – volume: 9 start-page: 857 year: 2017 ident: 10.1016/j.rse.2020.111716_bb5000 article-title: A Robust Algorithm for Estimating Surface Fractional Vegetation Cover from Landsat Data publication-title: Remote Sens. doi: 10.3390/rs9080857 – volume: 114 year: 2009 ident: 10.1016/j.rse.2020.111716_bb0360 article-title: Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. A neural network approach publication-title: J. Geophys. Res. Atmos. – volume: 331 start-page: 700 year: 2011 ident: 10.1016/j.rse.2020.111716_bb0815 article-title: Climate data challenges in the 21st century publication-title: Science doi: 10.1126/science.1197869 – volume: 654 start-page: 1091 year: 2019 ident: 10.1016/j.rse.2020.111716_bb1240 article-title: A novel spatiotemporal convolutional long short-term neural network for air pollution prediction publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.086 – volume: 27 start-page: 35 year: 2008 ident: 10.1016/j.rse.2020.111716_bb0495 article-title: Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semi-arid environment publication-title: Irrig. Sci. doi: 10.1007/s00271-008-0119-y – volume: 16 start-page: 1509 year: 2016 ident: 10.1016/j.rse.2020.111716_bb0570 article-title: A method to improve MODIS AOD values: application to South America publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.2015.05.0375 – volume: 7 start-page: 597 year: 2019 ident: 10.1016/j.rse.2020.111716_bb1225 article-title: Soil moisture retrieval algorithm based on TFA and CNN publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2885565 – volume: 150 start-page: 186 year: 2019 ident: 10.1016/j.rse.2020.111716_bb0050 article-title: All convolutional neural networks for radar-based precipitation nowcasting publication-title: Procedia Computer Science doi: 10.1016/j.procs.2019.02.036 – volume: 35 start-page: 201 year: 2007 ident: 10.1016/j.rse.2020.111716_bb0775 article-title: Estimation of chlorophyll-A concentration using an artificial neural network (ANN)-based algorithm with oceansat-I OCM data publication-title: Journal of the Indian Society of Remote Sensing doi: 10.1007/BF03013488 – volume: 7 start-page: 129 year: 2016 ident: 10.1016/j.rse.2020.111716_bb0170 article-title: A review on predicting ground PM2.5 concentration using satellite aerosol optical depth publication-title: Atmosphere doi: 10.3390/atmos7100129 – volume: 20 start-page: 189 year: 1999 ident: 10.1016/j.rse.2020.111716_bb0490 article-title: Estimating oceanic chlorophyll concentrations with neural networks publication-title: Int. J. Remote Sens. doi: 10.1080/014311699213695 – volume: 91 start-page: 127 year: 2017 ident: 10.1016/j.rse.2020.111716_bb1295 article-title: Automatic land cover classification of geo-tagged field photos by deep learning publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2017.02.004 – volume: 142 year: 2012 ident: 10.1016/j.rse.2020.111716_bb1335 article-title: On Grass Yield Remote Sensing Estimation Models of China’s Northern Farming-Pastoral Ecotone – volume: 28 start-page: 701 year: 2002 ident: 10.1016/j.rse.2020.111716_bb0055 article-title: Retrieving surface roughness and soil moisture from synthetic aperture radar (SAR) data using neural networks publication-title: Can. J. Remote. Sens. doi: 10.5589/m02-066 – volume: 54 issue: 11 year: 2016 ident: 10.1016/j.rse.2020.111716_bb0095 article-title: Spiking neural networks for crop yield estimation based on spatiotemporal analysis of image time series publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2586602 – volume: 85 start-page: 519 year: 2013 ident: 10.1016/j.rse.2020.111716_bb0295 article-title: Chlorophyll a spatial inference using artificial neural network from multispectral images and in situ measurements publication-title: An. Acad. Bras. Cienc. doi: 10.1590/S0001-37652013005000037 – volume: 134 start-page: 234 year: 2013 ident: 10.1016/j.rse.2020.111716_bb0835 article-title: Soil moisture mapping using Sentinel-1 images: algorithm and preliminary validation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.02.027 – start-page: 279 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0225 article-title: Neural networks and support vector machines and their application to aerosol and cloud remote sensing: a review doi: 10.1007/978-3-319-70796-9_4 – volume: 130 start-page: 277 year: 2017 ident: 10.1016/j.rse.2020.111716_bb0715 article-title: A review of supervised object-based land-cover image classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.06.001 – volume: 28 start-page: 1 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0745 article-title: Retrieval of land-surface temperature from AMSR2 data using a deep dynamic learning neural network publication-title: Chin. Geogr. Sci. doi: 10.1007/s11769-018-0930-1 – volume: 10 start-page: 1119 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0725 article-title: Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery publication-title: Remote Sens. doi: 10.3390/rs10071119 – volume: 72 start-page: 828 year: 2017 ident: 10.1016/j.rse.2020.111716_bb0215 article-title: Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2017.01.114 – volume: 35 start-page: 4795 year: 2010 ident: 10.1016/j.rse.2020.111716_bb1015 article-title: Modeling of solar radiation using remote sensing and artificial neural network in Turkey publication-title: Energy doi: 10.1016/j.energy.2010.09.009 – volume: 39 start-page: 1662 year: 2001 ident: 10.1016/j.rse.2020.111716_bb0675 article-title: Retrieving soil moisture from simulated brightness temperatures by a neural network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.942544 – year: 2005 ident: 10.1016/j.rse.2020.111716_bb0655 – volume: 214 start-page: 73 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0415 article-title: Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.04.050 – year: 1998 ident: 10.1016/j.rse.2020.111716_bb0030 – volume: 141 start-page: 30 year: 2018 ident: 10.1016/j.rse.2020.111716_bb1395 article-title: A two-step framework for reconstructing remotely sensed land surface temperatures contaminated by cloud publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.04.005 – volume: XLII-3 start-page: 583 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0405 article-title: Soil moisture retrieval using convolutional neural networks: application to passive microwave remote sensing publication-title: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences doi: 10.5194/isprs-archives-XLII-3-583-2018 – volume: 2 start-page: 673 year: 2010 ident: 10.1016/j.rse.2020.111716_bb0840 article-title: Application of vegetation indices for agricultural crop yield prediction using neural network techniques publication-title: Remote Sens. doi: 10.3390/rs2030673 – start-page: 1574 year: 2017 ident: 10.1016/j.rse.2020.111716_bb0925 article-title: Soil moisture retrieval using SMOS brightness temperatures and a neural network trained on in situ measurements – volume: 46 start-page: 1925 year: 2008 ident: 10.1016/j.rse.2020.111716_bb0270 article-title: Combining artificial neural network models, geostatistics, and passive microwave data for snow water equivalent retrieval and mapping publication-title: IEEE Transactions on Geoscience Remote Sensing doi: 10.1109/TGRS.2008.916632 – volume: 27 start-page: 3127 year: 2013 ident: 10.1016/j.rse.2020.111716_bb1085 article-title: Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application publication-title: Water Resour. Manag. doi: 10.1007/s11269-013-0337-9 – volume: 84 start-page: 174 year: 2003 ident: 10.1016/j.rse.2020.111716_bb0210 article-title: Retrieving soil moisture and agricultural variables by microwave radiometry using neural networks publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00105-0 – volume: 26 start-page: 4843 year: 2017 ident: 10.1016/j.rse.2020.111716_bb0590 article-title: Going deeper with contextual CNN for hyperspectral image classification publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2725580 – volume: 11 start-page: 2272 year: 2019 ident: 10.1016/j.rse.2020.111716_bb0265 article-title: High spatio-temporal resolution CYGNSS soil moisture estimates using artificial neural networks publication-title: Remote Sens. doi: 10.3390/rs11192272 – volume: 933 year: 2019 ident: 10.1016/j.rse.2020.111716_bb1150 – volume: 204 start-page: 43 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0530 article-title: Estimating surface soil moisture from SMAP observations using a neural network technique publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.10.045 – volume: 658 start-page: 1256 year: 2019 ident: 10.1016/j.rse.2020.111716_bb1380 article-title: Estimation of spatiotemporal PM1.0 distributions in China by combining PM2.5 observations with satellite aerosol optical depth publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.12.297 – volume: 33 start-page: 5712 year: 2012 ident: 10.1016/j.rse.2020.111716_bb0120 article-title: Estimating time-series leaf area index based on recurrent nonlinear autoregressive neural networks with exogenous inputs publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2012.671553 – start-page: 1705 year: 2007 ident: 10.1016/j.rse.2020.111716_bb1460 article-title: A neural network algorithm to retrieve nearsurface air temperature from landsat ETM+ imagery over the Hanjiang River Basin, China – year: 2008 ident: 10.1016/j.rse.2020.111716_bb0340 – start-page: 104270P year: 2017 ident: 10.1016/j.rse.2020.111716_bb0330 article-title: Convolutional neural networks for estimating spatially distributed evapotranspiration – volume: 217 start-page: 144 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0400 article-title: A novel co-training approach for urban land cover mapping with unclear Landsat time series imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.08.017 – volume: 25 start-page: 4541 year: 2004 ident: 10.1016/j.rse.2020.111716_bb0430 article-title: Neural network estimation of air temperatures from AVHRR data publication-title: Int. J. Remote Sens. doi: 10.1080/01431160310001657533 – volume: 89 start-page: 1 year: 2013 ident: 10.1016/j.rse.2020.111716_bb0260 article-title: Artificial neural network based model for retrieval of the direct normal, diffuse horizontal and global horizontal irradiances using SEVIRI images publication-title: Sol. Energy doi: 10.1016/j.solener.2012.12.008 – volume: 56 start-page: 4274 year: 2018 ident: 10.1016/j.rse.2020.111716_bb1435 article-title: Missing data reconstruction in remote sensing image with a unified spatial–temporal–spectral deep convolutional neural network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2810208 – volume: 46 start-page: 200 year: 2008 ident: 10.1016/j.rse.2020.111716_bb0735 article-title: A neural network technique for separating land surface emissivity and temperature from ASTER imagery publication-title: IEEE Transactions on Geoscience & Remote Sensing doi: 10.1109/TGRS.2007.907333 – volume: 256 start-page: 13395 year: 2020 ident: 10.1016/j.rse.2020.111716_bb0855 article-title: Estimating PM2.5 concentration of the conterminous United States via interpretable convolutional neural networks publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.113395 – volume: 10 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0845 article-title: Automated geospatial models of varying complexities for pine forest evapotranspiration estimation with advanced data mining publication-title: Water doi: 10.3390/w10111687 – volume: 44 start-page: 2200 year: 2011 ident: 10.1016/j.rse.2020.111716_bb0660 article-title: Study of sample temperature compensation in the measurement of soil moisture content publication-title: Measurement doi: 10.1016/j.measurement.2011.07.008 – volume: 173 start-page: 73 year: 2019 ident: 10.1016/j.rse.2020.111716_bb0650 article-title: Snow depth reconstruction over last century: trend and distribution in the Tianshan Mountains, China publication-title: Glob. Planet. Chang. doi: 10.1016/j.gloplacha.2018.12.008 – volume: 2 start-page: 166 year: 2009 ident: 10.1016/j.rse.2020.111716_bb0115 article-title: Use of soil moisture variability in artificial neural network retrieval of soil moisture publication-title: Remote Sens. doi: 10.3390/rs2010166 – volume: 162 start-page: 221 year: 2015 ident: 10.1016/j.rse.2020.111716_bb0450 article-title: Estimation of surface upward longwave radiation from MODIS and VIIRS clear-sky data in the Tibetan Plateau publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.02.021 – volume: 123 start-page: 6777 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0645 article-title: Intercomparison of six upscaling evapotranspiration methods: from site to the satellite pixel publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2018JD028422 – volume: 15 start-page: 1451 year: 2018 ident: 10.1016/j.rse.2020.111716_bb1010 article-title: Enhanced fusion of deep neural networks for classification of benchmark high-resolution image data sets publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2839092 – volume: 19 start-page: 787 year: 2006 ident: 10.1016/j.rse.2020.111716_bb0370 article-title: A statistical complement to deterministic algorithms for the retrieval of aerosol optical thickness from radiance data publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2006.05.009 – start-page: 818 year: 2014 ident: 10.1016/j.rse.2020.111716_bb1385 article-title: Visualizing and understanding convolutional networks – volume: 39 start-page: 2115 year: 2000 ident: 10.1016/j.rse.2020.111716_bb0070 article-title: Rainfall estimation from a combination of TRMM precipitation radar and GOES multispectral satellite imagery through the use of an artificial neural network publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(2001)040<2115:REFACO>2.0.CO;2 – volume: 110 year: 2005 ident: 10.1016/j.rse.2020.111716_bb0010 article-title: Sensitivity of satellite microwave and infrared observations to soil moisture at a global scale: 2. Global statistical relationships publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2004JD005094 – volume: 2315 start-page: 160 year: 1994 ident: 10.1016/j.rse.2020.111716_bb0220 article-title: Crop yield prediction using a CMAC neural network – volume: 9 year: 2017 ident: 10.1016/j.rse.2020.111716_bb0820 article-title: Soil moisture estimation over vegetated agricultural areas: Tigris Basin, Turkey from Radarsat-2 data by polarimetric decomposition models and a generalized regression neural network publication-title: Remote Sens. doi: 10.3390/rs9040395 – year: 2018 ident: 10.1016/j.rse.2020.111716_bb0785 article-title: Applying deep learning for agricultural classification using multitemporal SAR Sentinel-1 for Camargue, France – volume: 9 year: 2017 ident: 10.1016/j.rse.2020.111716_bb1285 article-title: A machine learning based reconstruction method for satellite remote sensing of soil moisture images with in situ observations publication-title: Remote Sens. doi: 10.3390/rs9050484 – volume: 51 start-page: 891 year: 2013 ident: 10.1016/j.rse.2020.111716_bb0950 article-title: Comparison of ANN and MLR models for estimating solar radiation in Turkey using NOAA/AVHRR data publication-title: Adv. Space Res. doi: 10.1016/j.asr.2012.10.010 – volume: 210 start-page: 48 year: 2018 ident: 10.1016/j.rse.2020.111716_bb1275 article-title: Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.03.008 – volume: 10 start-page: 1022 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0870 article-title: Improving the estimation of daily aerosol optical depth and aerosol radiative effect using an optimized artificial neural network publication-title: Remote Sens. doi: 10.3390/rs10071022 – volume: 115 start-page: 3355 year: 2011 ident: 10.1016/j.rse.2020.111716_bb0245 article-title: Fractional snow cover mapping through artificial neural network analysis of MODIS surface reflectance publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.07.018 – volume: 103 start-page: 24937 year: 1998 ident: 10.1016/j.rse.2020.111716_bb0810 article-title: Ocean color chlorophyll algorithms for SeaWiFS publication-title: J. Geophys. Res. Oceans doi: 10.1029/98JC02160 – volume: 7 year: 2013 ident: 10.1016/j.rse.2020.111716_bb0665 article-title: Biomass estimation of wetland vegetation in Poyang Lake area using ENVISAT advanced synthetic aperture radar data publication-title: J. Appl. Remote. Sens. doi: 10.1117/1.JRS.7.073579 – volume: 117 year: 2012 ident: 10.1016/j.rse.2020.111716_bb0805 article-title: Estimating surface longwave radiative fluxes from satellites utilizing artificial neural networks publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2011JD017141 – volume: 19 start-page: 2082 year: 2019 ident: 10.1016/j.rse.2020.111716_bb1355 article-title: Spatial assessment of solar radiation by machine learning and deep neural network models using data provided by the COMS MI geostationary satellite: a case study in South Korea publication-title: Sensors doi: 10.3390/s19092082 – volume: 54 start-page: 1138 year: 2011 ident: 10.1016/j.rse.2020.111716_bb1330 article-title: The spatial continuity study of NDVI based on Kriging and BPNN algorithm publication-title: Math. Comput. Model. doi: 10.1016/j.mcm.2010.11.046 – volume: 162 start-page: 126 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0475 article-title: Estimation of daily global solar radiation using deep learning model publication-title: Energy doi: 10.1016/j.energy.2018.07.202 – volume: 22 start-page: 5341 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0020 article-title: Global downscaling of remotely sensed soil moisture using neural networks publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-5341-2018 – volume: 113 start-page: 919 year: 2009 ident: 10.1016/j.rse.2020.111716_bb0325 article-title: Comparison of snow water equivalent retrieved from SSM/I passive microwave data using artificial neural network, projection pursuit and nonlinear regressions publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.01.004 – volume: 36 start-page: 1176 year: 1997 ident: 10.1016/j.rse.2020.111716_bb0390 article-title: Precipitation estimation from remotely sensed information using artificial neural networks publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2 – volume: 34 start-page: 7508 year: 2013 ident: 10.1016/j.rse.2020.111716_bb0945 article-title: Comparison of modelling ANN and ELM to estimate solar radiation over Turkey using NOAA satellite data publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2013.822597 – year: 2020 ident: 10.1016/j.rse.2020.111716_bb1055 – start-page: 1349 year: 2016 ident: 10.1016/j.rse.2020.111716_bb1120 – volume: 4 start-page: 179 year: 2017 ident: 10.1016/j.rse.2020.111716_bb0175 article-title: Fractional snow cover mapping by artificial neural networks and support vector machines publication-title: ISPRS Annals of the Photogrammetry, Remote Sensing Spatial Information Sciences doi: 10.5194/isprs-annals-IV-4-W4-179-2017 – volume: 580 start-page: 124351 year: 2020 ident: 10.1016/j.rse.2020.111716_bb1370 article-title: Estimating surface soil moisture from satellite observations using a generalized regression neural network trained on sparse ground-based measurements in the continental U.S. publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124351 – volume: 156 start-page: 403 year: 2015 ident: 10.1016/j.rse.2020.111716_bb0195 article-title: Fractional snow cover estimation in complex alpine-forested environments using an artificial neural network publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.09.026 – volume: 9 start-page: 964 year: 2011 ident: 10.1016/j.rse.2020.111716_bb0410 article-title: Estimation of overstory and understory leaf area index by combining hyperion and panchromatic QuickBird data using neural network method publication-title: Sens. Lett. doi: 10.1166/sl.2011.1380 – volume: 123 start-page: 8674 year: 2018 ident: 10.1016/j.rse.2020.111716_bb1305 article-title: Evaluating different machine learning methods for upscaling evapotranspiration from flux towers to the regional scale publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2018JD028447 – volume: 543 start-page: 242 year: 2016 ident: 10.1016/j.rse.2020.111716_bb0190 article-title: Validation and reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.10.005 – volume: 151 start-page: 61 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0155 article-title: Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.05.012 – volume: 189 start-page: 596 year: 2017 ident: 10.1016/j.rse.2020.111716_bb0700 article-title: Integrating multiple vegetation indices via an artificial neural network model for estimating the leaf chlorophyll content of Spartina alterniflora under interspecies competition publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-017-6323-6 – start-page: 1 year: 2019 ident: 10.1016/j.rse.2020.111716_bb0135 – volume: 38 start-page: 4631 year: 2017 ident: 10.1016/j.rse.2020.111716_bb0290 article-title: Sugarcane yield prediction in Brazil using NDVI time series and neural networks ensemble publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1325531 – volume: 99 start-page: 10 year: 2012 ident: 10.1016/j.rse.2020.111716_bb0510 article-title: Lettuce (Lactuca sativa L.) yield prediction under water stress using artificial neural network (ANN) model and vegetation indices publication-title: Zemdirbyste – volume: 131 start-page: 182 year: 2013 ident: 10.1016/j.rse.2020.111716_bb1390 article-title: Recovering missing pixels for Landsat ETM+ SLC-off imagery using multi-temporal regression analysis and a regularization method publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.012 – volume: 112 start-page: 203 year: 2008 ident: 10.1016/j.rse.2020.111716_bb1180 article-title: Multi-temporal vegetation canopy water content retrieval and interpretation using artificial neural networks for the continental USA publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.04.013 – volume: 3 year: 2004 ident: 10.1016/j.rse.2020.111716_bb1190 article-title: Neural networks in land surface temperature mapping in urban areas from thermal infrared data publication-title: International Geoscience and Remote Sensing Symposium (IGARSS) – volume: 52 year: 2014 ident: 10.1016/j.rse.2020.111716_bb1265 article-title: Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2237780 – volume: 83 year: 2019 ident: 10.1016/j.rse.2020.111716_bb0380 article-title: Synthetic aperture radar and optical satellite data for estimating the biomass of corn publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2019.101933 – volume: 220 start-page: 1810 year: 2009 ident: 10.1016/j.rse.2020.111716_bb1280 article-title: A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia, China publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2009.04.025 – volume: 13 start-page: 1359 year: 2016 ident: 10.1016/j.rse.2020.111716_bb1405 article-title: Stacked sparse autoencoder in PolSAR data classification using local spatial information publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2586109 – volume: 50 start-page: 409 year: 2012 ident: 10.1016/j.rse.2020.111716_bb0905 article-title: Uncertainty analysis of neural-network-based aerosol retrieval publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2166120 – volume: 9 start-page: 2478 year: 2016 ident: 10.1016/j.rse.2020.111716_bb0970 article-title: Robust assessment of an operational algorithm for the retrieval of soil moisture from AMSR-E data in central Italy publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2016.2575361 – volume: 10 year: 2018 ident: 10.1016/j.rse.2020.111716_bb1300 article-title: Quality improvement of satellite soil moisture products by fusing with in-situ measurements and GNSS-R estimates in the western continental U.S publication-title: Remote Sens. doi: 10.3390/rs10091351 – volume: 11 year: 2019 ident: 10.1016/j.rse.2020.111716_bb1475 article-title: Evaluation of three deep learning models for early crop classification using Sentinel-1A imagery time series-a case study in Zhanjiang, China publication-title: Remote Sens. doi: 10.3390/rs11222673 – start-page: 1 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0280 article-title: The value of SMAP for long-term soil moisture estimation with the help of deep learning publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 118 start-page: 4847 year: 2013 ident: 10.1016/j.rse.2020.111716_bb0515 article-title: Soil moisture retrieval from multi-instrument observations: information content analysis and retrieval methodology publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2012JD018150 – start-page: 110180Y year: 2019 ident: 10.1016/j.rse.2020.111716_bb0795 article-title: Deep learning on hyperspectral data to obtain water properties and bottom depths – start-page: 176 year: 2002 ident: 10.1016/j.rse.2020.111716_bb0760 – volume: 19 start-page: 1545 year: 1998 ident: 10.1016/j.rse.2020.111716_bb0040 article-title: Wetland classification using optical and radar data and neural network classification publication-title: Int. J. Remote Sens. doi: 10.1080/014311698215342 – volume: 16 start-page: 1343 year: 2019 ident: 10.1016/j.rse.2020.111716_bb1095 article-title: Deep learning architecture for estimating hourly ground-level PM2.5 using satellite remote sensing publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2900270 – volume: 46 start-page: 3274 year: 2008 ident: 10.1016/j.rse.2020.111716_bb0825 article-title: A comparison of algorithms for retrieving soil moisture from ENVISAT/ASAR images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.920370 – volume: 11 start-page: 83 year: 2004 ident: 10.1016/j.rse.2020.111716_bb1135 article-title: Neural networks in satellite rainfall estimation publication-title: Meteorol. Appl. doi: 10.1017/S1350482704001173 – volume: 36 start-page: 3368 year: 2015 ident: 10.1016/j.rse.2020.111716_bb1465 article-title: On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery publication-title: Int. J. Remote Sens. doi: 10.1080/2150704X.2015.1062157 – volume: 65 start-page: 2 year: 2010 ident: 10.1016/j.rse.2020.111716_bb0090 article-title: Object based image analysis for remote sensing publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2009.06.004 – volume: 129 start-page: 454 year: 2003 ident: 10.1016/j.rse.2020.111716_bb1175 article-title: Forecasting of reference evapotranspiration by artificial neural networks publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2003)129:6(454) – volume: 33 start-page: 772 year: 2014 ident: 10.1016/j.rse.2020.111716_bb1310 article-title: Solar radiation prediction using artificial neural network techniques: a review publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2013.08.055 – volume: 26 start-page: 102 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0465 article-title: Chlorophyll concentration derived from microwave remote sensing measurements using artificial neural network algorithm publication-title: Journal of Marine Science and Technology-Taiwan – volume: 102 start-page: 148 year: 2015 ident: 10.1016/j.rse.2020.111716_bb0130 article-title: Spatio-temporal prediction of leaf area index of rubber plantation using HJ-1A/1B CCD images and recurrent neural network publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.12.011 – volume: 14 start-page: 1638 year: 2017 ident: 10.1016/j.rse.2020.111716_bb1005 article-title: Fusion of deep convolutional neural networks for land cover classification of high-resolution imagery publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2722988 – volume: 210 start-page: 59 year: 2018 ident: 10.1016/j.rse.2020.111716_bb1445 article-title: Accessible remote sensing data based reference evapotranspiration estimation modelling publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2018.07.039 – year: 2014 ident: 10.1016/j.rse.2020.111716_bb0160 – volume: 70 start-page: 314 year: 2017 ident: 10.1016/j.rse.2020.111716_bb1420 article-title: A critical review of the models used to estimate solar radiation publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2016.11.124 – volume: 11 start-page: 300 year: 2019 ident: 10.1016/j.rse.2020.111716_bb1260 article-title: Reconstructing geostationary satellite land surface temperature imagery based on a multiscale feature connected convolutional neural network publication-title: Remote Sens. doi: 10.3390/rs11030300 – volume: 140 start-page: 133 year: 2018 ident: 10.1016/j.rse.2020.111716_bb1425 article-title: A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.07.014 – volume: 53 start-page: 5991 year: 2015 ident: 10.1016/j.rse.2020.111716_bb0915 article-title: Soil moisture retrieval using neural networks: application to SMOS publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2430845 – volume: 50 start-page: 4712 year: 2016 ident: 10.1016/j.rse.2020.111716_bb0230 article-title: Assessing PM2.5 exposures with high spatiotemporal resolution across the continental United States publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b06121 – start-page: 689 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0440 article-title: Data augmentation with Gabor filter in deep convolutional neural networks for Sar target recognition – volume: 114 year: 2019 ident: 10.1016/j.rse.2020.111716_bb0445 article-title: A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2019.109327 – volume: 113 start-page: 155 year: 2016 ident: 10.1016/j.rse.2020.111716_bb1455 article-title: Learning multiscale and deep representations for classifying remotely sensed imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.004 – volume: 99 start-page: 1 year: 2018 ident: 10.1016/j.rse.2020.111716_bb1030 article-title: Deep learning: a next-generation big-data approach for hydrology publication-title: EOS doi: 10.1029/2018EO095649 – volume: 91 start-page: 566 year: 2016 ident: 10.1016/j.rse.2020.111716_bb0685 article-title: Geological disaster recognition on optical remote sensing images using deep learning publication-title: Procedia Computer Science doi: 10.1016/j.procs.2016.07.144 – volume: 2 start-page: 352 year: 2014 ident: 10.1016/j.rse.2020.111716_bb0940 article-title: Artificial Neural Networks (ANNs) application to predict occurrence of phenological stages in wheat using climatic data publication-title: International Journal of Agricultural Policy and Research – volume: 121 start-page: 57 year: 2016 ident: 10.1016/j.rse.2020.111716_bb0850 article-title: Wheat yield prediction using machine learning and advanced sensing techniques publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2015.11.018 – volume: 10 start-page: 1746 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0320 article-title: A two-branch CNN architecture for land cover classification of PAN and MS imagery publication-title: Remote Sens. doi: 10.3390/rs10111746 – volume: 18 start-page: 356 year: 2008 ident: 10.1016/j.rse.2020.111716_bb0105 article-title: Retrieval snow depth by artificial neural network methodology from integrated AMSR-E and in-situ data—a case study in Qinghai-Tibet Plateau publication-title: Chin. Geogr. Sci. doi: 10.1007/s11769-008-0356-2 – volume: 212 start-page: 21 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0975 article-title: Integration of microwave data from SMAP and AMSR2 for soil moisture monitoring in Italy publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.04.039 – year: 2016 ident: 10.1016/j.rse.2020.111716_bb0345 – volume: 177 start-page: 184 year: 2016 ident: 10.1016/j.rse.2020.111716_bb0435 article-title: Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.019 – volume: 11 start-page: 1 year: 2017 ident: 10.1016/j.rse.2020.111716_bb0065 article-title: Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community publication-title: J. Appl. Remote. Sens. doi: 10.1117/1.JRS.11.042609 – volume: 2015 year: 2015 ident: 10.1016/j.rse.2020.111716_bb0710 article-title: Urban land use and land cover classification using remotely sensed SAR data through deep belief networks publication-title: Journal of Sensors doi: 10.1155/2015/538063 – start-page: 2431 year: 2014 ident: 10.1016/j.rse.2020.111716_bb0910 article-title: Soil moisture retrieval from SMOS observations using neural networks – volume: 17 start-page: 931 year: 2016 ident: 10.1016/j.rse.2020.111716_bb1115 article-title: A deep neural network modeling framework to reduce bias in satellite precipitation products publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-15-0075.1 – volume: 20 start-page: 2273 year: 2019 ident: 10.1016/j.rse.2020.111716_bb0935 article-title: PERSIANN-CNN: precipitation estimation from remotely sensed information using artificial neural networks-convolutional neural networks publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-19-0110.1 – volume: 215 start-page: 157 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0165 article-title: Deep learning application to time-series prediction of daily chlorophyll-a concentration publication-title: WIT Trans. Ecol. Environ. doi: 10.2495/EID180141 – volume: 15 start-page: 431 year: 2008 ident: 10.1016/j.rse.2020.111716_bb1185 article-title: Forecast of daily mean, maximum and minimum temperature time series by three artificial neural network methods publication-title: Meteorol. Appl. doi: 10.1002/met.83 – volume: 115 start-page: 1145 year: 2011 ident: 10.1016/j.rse.2020.111716_bb0765 article-title: Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.12.017 – volume: 57 start-page: 2221 year: 2019 ident: 10.1016/j.rse.2020.111716_bb0285 article-title: The value of SMAP for long-term soil moisture estimation with the help of deep learning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2872131 – volume: 3 start-page: 179 year: 2006 ident: 10.1016/j.rse.2020.111716_bb1065 article-title: Improving air temperature prediction with artificial neural networks publication-title: Int. J. Comput. Intell. – volume: 54 start-page: 15 year: 2016 ident: 10.1016/j.rse.2020.111716_bb1270 article-title: Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2560522 – volume: 12 start-page: 1579 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0060 article-title: Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan publication-title: Cryosphere doi: 10.5194/tc-12-1579-2018 – year: 2015 ident: 10.1016/j.rse.2020.111716_bb0680 – volume: 117 start-page: 40 year: 2016 ident: 10.1016/j.rse.2020.111716_bb1060 article-title: Prediction of high spatio-temporal resolution land surface temperature under cloudy conditions using microwave vegetation index and ANN publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.03.011 – volume: 8 start-page: 87 year: 2019 ident: 10.1016/j.rse.2020.111716_bb0460 article-title: Deep neural network algorithm for estimating maize biomass based on simulated Sentinel 2A vegetation indices and leaf area index publication-title: The Crop Journal doi: 10.1016/j.cj.2019.06.005 – volume: 8 start-page: 734 year: 2016 ident: 10.1016/j.rse.2020.111716_bb1080 article-title: Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model publication-title: Journal of Arid Land doi: 10.1007/s40333-016-0049-0 – volume: 38 start-page: 205 year: 2014 ident: 10.1016/j.rse.2020.111716_bb0955 article-title: Application of extreme learning machine for estimating solar radiation from satellite data publication-title: Int. J. Energy Res. doi: 10.1002/er.3030 – volume: 433 start-page: 20 year: 2012 ident: 10.1016/j.rse.2020.111716_bb1250 article-title: Synergy of satellite and ground based observations in estimation of particulate matter in eastern China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.06.033 – start-page: 1 year: 2018 ident: 10.1016/j.rse.2020.111716_bb1220 article-title: Deep transfer learning for crop yield prediction with remote sensing data – volume: 232 start-page: 35 year: 2017 ident: 10.1016/j.rse.2020.111716_bb1200 article-title: Analysis and estimation of tallgrass prairie evapotranspiration in the central United States publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2016.08.005 – volume: 221 start-page: 173 year: 2019 ident: 10.1016/j.rse.2020.111716_bb1450 article-title: Joint deep learning for land cover and land use classification publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.11.014 – year: 2017 ident: 10.1016/j.rse.2020.111716_bb0480 – volume: 12 start-page: 905 year: 2011 ident: 10.1016/j.rse.2020.111716_bb0305 article-title: Site-specific early season potato yield forecast by neural network in Eastern Canada publication-title: Precis. Agric. doi: 10.1007/s11119-011-9233-6 – volume: 191 start-page: 117 year: 2017 ident: 10.1016/j.rse.2020.111716_bb0525 article-title: Merging active and passive microwave observations in soil moisture data assimilation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.01.015 – volume: 12 start-page: 891 year: 2018 ident: 10.1016/j.rse.2020.111716_bb1070 article-title: Improving gridded snow water equivalent products in British Columbia, Canada: multi-source data fusion by neural network models publication-title: Cryosphere doi: 10.5194/tc-12-891-2018 – volume: 46 start-page: 10669 year: 2019 ident: 10.1016/j.rse.2020.111716_bb0140 article-title: Rainfall estimation from ground radar and TRMM precipitation radar using hybrid deep neural networks publication-title: Geophys. Res. Lett. doi: 10.1029/2019GL084771 – volume: 8 start-page: 883 year: 2007 ident: 10.1016/j.rse.2020.111716_bb1320 article-title: Estimation of vegetation biophysical parameters by remote sensing using radial basis function neural network publication-title: Journal of Zhejiang University-Science A doi: 10.1631/jzus.2007.A0883 – volume: 19 start-page: 2987 year: 2019 ident: 10.1016/j.rse.2020.111716_bb1100 article-title: Deep learning convolutional neural network for the retrieval of land surface temperature from AMSR2 data in China publication-title: Sensors doi: 10.3390/s19132987 – volume: 4 start-page: 409 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0895 article-title: Prediction of vegetation dynamics using NDVI time series data and LSTM publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-018-0431-3 – volume: 114 start-page: 1924 year: 2010 ident: 10.1016/j.rse.2020.111716_bb0705 article-title: Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.04.001 – volume: 158 start-page: 11 year: 2019 ident: 10.1016/j.rse.2020.111716_bb0420 article-title: Combining Sentinel-1 and Sentinel-2 satellite image time series for land cover mapping via a multi-source deep learning architecture publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.09.016 – volume: 5 start-page: 113 year: 2008 ident: 10.1016/j.rse.2020.111716_bb1195 article-title: A data-mining approach for the validation of aerosol retrievals publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2007.912725 – volume: 9975 year: 2016 ident: 10.1016/j.rse.2020.111716_bb0015 article-title: Using remote sensing satellite data and artificial neural network for prediction of potato yield in Bangladesh publication-title: Proc. SPIE, Remote Sensing and Modeling of Ecosystems for Sustainability – volume: 44 start-page: 11,030 year: 2017 ident: 10.1016/j.rse.2020.111716_bb0275 article-title: Prolongation of SMAP to spatiotemporally seamless coverage of continental U.S. using a deep learning neural network publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL075619 – volume: 52 start-page: 5601 year: 2014 ident: 10.1016/j.rse.2020.111716_bb0385 article-title: Improving mountainous snow cover fraction mapping via artificial neural networks combined with MODIS and ancillary topographic data publication-title: IEEE Transactions on Geoscience Remote Sensing doi: 10.1109/TGRS.2013.2290996 – volume: 2014 start-page: 1 year: 2014 ident: 10.1016/j.rse.2020.111716_bb0025 article-title: Comparative study of M5 model tree and artificial neural network in estimating reference evapotranspiration using MODIS products publication-title: J. Climatol. doi: 10.1155/2014/839205 – year: 2017 ident: 10.1016/j.rse.2020.111716_bb0110 article-title: The GEOS-5 neural network retrieval (NNR) for AOD – year: 2018 ident: 10.1016/j.rse.2020.111716_bb0635 – volume: 35 start-page: 69 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0770 article-title: Prediction of aerosol optical depth in West Asia using deterministic models and machine learning algorithms publication-title: Aeolian Res. doi: 10.1016/j.aeolia.2018.10.002 – volume: 106 start-page: 14887 year: 2001 ident: 10.1016/j.rse.2020.111716_bb0005 article-title: A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land publication-title: J. Geophys. Res. doi: 10.1029/2001JD900085 – volume: 101 start-page: 83 year: 2010 ident: 10.1016/j.rse.2020.111716_bb0885 article-title: Estimation of evapotranspiration based on only air temperature data using artificial neural networks for a subtropical climate in Iran publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-009-0204-z – volume: 6 start-page: 694 year: 2009 ident: 10.1016/j.rse.2020.111716_bb0580 article-title: Machine learning and Bias correction of MODIS aerosol optical depth publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2009.2023605 – volume: 118 start-page: 259 year: 2012 ident: 10.1016/j.rse.2020.111716_bb0255 article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.11.020 – volume: 18 start-page: 1271 year: 2017 ident: 10.1016/j.rse.2020.111716_bb1125 article-title: Precipitation identification with bispectral satellite information using deep learning approaches publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-16-0176.1 – volume: 53 start-page: 6008 year: 2015 ident: 10.1016/j.rse.2020.111716_bb1345 article-title: A moving weighted harmonic analysis method for reconstructing high-quality SPOT VEGETATION NDVI time-series data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2431315 – year: 2015 ident: 10.1016/j.rse.2020.111716_bb1365 – volume: 10 start-page: 5228 year: 2017 ident: 10.1016/j.rse.2020.111716_bb0200 article-title: A deep-learning-based forecasting ensemble to predict missing data for remote sensing analysis publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2017.2760202 – volume: 34 start-page: 3485 year: 2013 ident: 10.1016/j.rse.2020.111716_bb1215 article-title: Retrieval of atmospheric and land surface parameters from satellite-based thermal infrared hyperspectral data using a neural network technique publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2012.716536 – volume: 2016 start-page: 29 year: 2016 ident: 10.1016/j.rse.2020.111716_bb0540 article-title: Neural networks technique for filling gaps in satellite measurements: application to ocean color observations publication-title: Computational intelligence and neuroscience doi: 10.1155/2016/6156513 – volume: 9 year: 2019 ident: 10.1016/j.rse.2020.111716_bb1230 article-title: Estimation of PM2.5 concentrations in China using a spatial back propagation neural network publication-title: Sci. Rep. – volume: 124 start-page: 61 year: 2012 ident: 10.1016/j.rse.2020.111716_bb1210 article-title: Consistent retrieval methods to estimate land surface shortwave and longwave radiative flux components under clear-sky conditions publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.04.026 – volume: 79 start-page: 66 year: 2014 ident: 10.1016/j.rse.2020.111716_bb0250 article-title: Satellite image analysis and a hybrid ESSS/ANN model to forecast solar irradiance in the tropics publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.11.043 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.rse.2020.111716_bb0585 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 126 start-page: 268 year: 2000 ident: 10.1016/j.rse.2020.111716_bb1170 article-title: Estimation of FAO Blaney-Criddle b factor by RBF network publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2000)126:4(268) – year: 2018 ident: 10.1016/j.rse.2020.111716_bb0640 – volume: 24 start-page: 3917 year: 2003 ident: 10.1016/j.rse.2020.111716_bb0180 article-title: Radial basis function and multilayer perceptron neural networks for sea water optically active parameter estimation in case II waters: a comparison publication-title: Int. J. Remote Sens. doi: 10.1080/0143116031000103781 – volume: 112 year: 2007 ident: 10.1016/j.rse.2020.111716_bb0600 article-title: Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2006JD007811 – start-page: 331 year: 2007 ident: 10.1016/j.rse.2020.111716_bb0610 article-title: Soybean LAI estimation with in-situ collected hyperspectral data based on BP-neural networks – volume: 31 start-page: 2265 year: 2010 ident: 10.1016/j.rse.2020.111716_bb0830 article-title: Generation of soil moisture maps from ENVISAT/ASAR images in mountainous areas: a case study publication-title: Int. J. Remote Sens. doi: 10.1080/01431160902953891 – volume: 13 start-page: 1895 year: 2016 ident: 10.1016/j.rse.2020.111716_bb1255 article-title: Deep filter banks for land-use scene classification publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2616440 – volume: 15 start-page: 1032 year: 2018 ident: 10.1016/j.rse.2020.111716_bb1440 article-title: A novel hybrid data-driven model for daily land surface temperature forecasting using long short-term memory neural network based on ensemble empirical mode decomposition publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph15051032 – volume: 19 start-page: 393 year: 2018 ident: 10.1016/j.rse.2020.111716_bb1130 article-title: A two-stage deep neural network framework for precipitation estimation from bispectral satellite information publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-17-0077.1 – volume: 141 start-page: 237 year: 2018 ident: 10.1016/j.rse.2020.111716_bb1290 article-title: Exploring geo-tagged photos for land cover validation with deep learning publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.04.025 – volume: 32 start-page: 552 year: 2012 ident: 10.1016/j.rse.2020.111716_bb0350 article-title: Downscaling of surface temperature for lake catchment in an arid region in India using linear multiple regression and neural networks publication-title: Int. J. Climatol. doi: 10.1002/joc.2286 – volume: 173 start-page: 1 year: 2016 ident: 10.1016/j.rse.2020.111716_bb0520 article-title: Soil moisture retrieval from AMSR-E and ASCAT microwave observation synergy. Part 1: satellite data analysis publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.11.011 – year: 2015 ident: 10.1016/j.rse.2020.111716_bb0565 article-title: Estimating crop yields with deep learning and remotely sensed data – volume: 149 start-page: 91 year: 2019 ident: 10.1016/j.rse.2020.111716_bb0425 article-title: DuPLO: a DUal view Point deep Learning architecture for time series classificatiOn publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.01.011 – volume: 47 start-page: 1559 year: 2009 ident: 10.1016/j.rse.2020.111716_bb1205 article-title: Estimating high spatial resolution clear-sky land surface upwelling longwave radiation from MODIS data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.2005206 – volume: 7 start-page: 3151 year: 2014 ident: 10.1016/j.rse.2020.111716_bb1140 article-title: Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peak publication-title: Atmospheric Measurement Techniques doi: 10.5194/amt-7-3151-2014 – volume: 106 start-page: 223 year: 2010 ident: 10.1016/j.rse.2020.111716_bb0695 article-title: Neural-network model for estimating leaf chlorophyll concentration in rice under stress from heavy metals using four spectral indices publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2009.12.008 – volume: 5 start-page: 8 year: 2017 ident: 10.1016/j.rse.2020.111716_bb1485 article-title: Deep learning in remote sensing: a comprehensive review and list of resources publication-title: IEEE Geoscience and Remote Sensing Magazine doi: 10.1109/MGRS.2017.2762307 – volume: 48 start-page: 2170 year: 2010 ident: 10.1016/j.rse.2020.111716_bb1325 article-title: A novel method to estimate subpixel temperature by fusing solar-reflective and thermal-infrared remote-sensing data with an artificial neural network publication-title: IEEE Transactions on Geoscience & Remote Sensing doi: 10.1109/TGRS.2009.2033180 – volume: 152 start-page: 477 year: 2017 ident: 10.1016/j.rse.2020.111716_bb0630 article-title: Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China: methods and assessment publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2017.01.004 – volume: 225 issue: 7 year: 2019 ident: 10.1016/j.rse.2020.111716_bb1245 article-title: Estimating crop primary productivity with Sentinel-2 and Landsat 8 using machine learning methods trained with radiative transfer simulations publication-title: Remote Sens. Environ. – volume: 112 year: 2007 ident: 10.1016/j.rse.2020.111716_bb0730 article-title: An RM-NN algorithm for retrieving land surface temperature and emissivity from EOS/MODIS data publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2007JD008428 – volume: 31 start-page: 842 year: 1993 ident: 10.1016/j.rse.2020.111716_bb0205 article-title: Retrieval of snow parameters by iterative inversion of a neural network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.239907 – volume: 55 start-page: 3516 year: 2017 ident: 10.1016/j.rse.2020.111716_bb1480 article-title: Learning to diversify deep belief networks for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2675902 – volume: 43 start-page: 1834 year: 2004 ident: 10.1016/j.rse.2020.111716_bb0375 article-title: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system publication-title: J. Appl. Meteorol. doi: 10.1175/JAM2173.1 – volume: 86 start-page: 1222 year: 2009 ident: 10.1016/j.rse.2020.111716_bb1020 article-title: Estimation of solar radiation over Turkey using artificial neural network and satellite data publication-title: Appl. Energy doi: 10.1016/j.apenergy.2008.06.003 – volume: 118 start-page: 6771 year: 2013 ident: 10.1016/j.rse.2020.111716_bb0455 article-title: A joint analysis of modeled soil moisture fields and satellite observations publication-title: J. Geophys. Res. Atmos. doi: 10.1002/jgrd.50430 – start-page: 5 year: 2014 ident: 10.1016/j.rse.2020.111716_bb0965 article-title: A prototype ann based algorithm for the soil moisture retrieval from l-band in view of the incoming SMAP mission – volume: 14 start-page: 1436 year: 2017 ident: 10.1016/j.rse.2020.111716_bb1470 article-title: Transfer learning with fully pretrained deep convolution networks for land-use classification publication-title: IEEE Geoscience Remote Sensing Letters doi: 10.1109/LGRS.2017.2691013 – volume: 21 start-page: 773 year: 2001 ident: 10.1016/j.rse.2020.111716_bb0990 article-title: Downscaling temperature and precipitation: a comparison of regression-based methods and artificial neural networks publication-title: Int. J. Climatol. doi: 10.1002/joc.655 – volume: 29 start-page: 6021 year: 2008 ident: 10.1016/j.rse.2020.111716_bb0740 article-title: Near-surface air temperature estimation from ASTER data based on neural network algorithm publication-title: Int. J. Remote Sens. doi: 10.1080/01431160802192160 – volume: 46 start-page: 547 year: 2008 ident: 10.1016/j.rse.2020.111716_bb0800 article-title: Soil moisture retrieval from remotely sensed data: neural network approach versus Bayesian method publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2007.909951 – volume: 37 start-page: 5632 year: 2016 ident: 10.1016/j.rse.2020.111716_bb0620 article-title: Stacked autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1246775 – volume: 13 start-page: 137 year: 2016 ident: 10.1016/j.rse.2020.111716_bb0240 article-title: Efficient saliency-based object detection in remote sensing images using deep belief networks publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2498644 – volume: 79 start-page: 9 year: 2007 ident: 10.1016/j.rse.2020.111716_bb0605 article-title: Estimating crop yield from multi-temporal satellite data using multivariate regression and neural network techniques publication-title: Photogramm. Eng. Remote Sens. – volume: 154 start-page: 151 year: 2019 ident: 10.1016/j.rse.2020.111716_bb0875 article-title: Local climate zone-based urban land cover classification from multi-seasonal Sentinel-2 images with a recurrent residual network publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.05.004 – volume: 26 start-page: 531 year: 2008 ident: 10.1016/j.rse.2020.111716_bb0550 article-title: Comparative study of conventional and artificial neural network-based ETo estimation models publication-title: Irrig. Sci. doi: 10.1007/s00271-008-0114-3 – start-page: 6291 year: 2018 ident: 10.1016/j.rse.2020.111716_bb0335 article-title: Snow-covered area using machine learning techniques – volume: 17 start-page: 1623 year: 2017 ident: 10.1016/j.rse.2020.111716_bb0575 article-title: An improved aerosol optical depth map based on machine-learning and MODIS data: development and application in South America publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.2016.11.0484 |
SSID | ssj0015871 |
Score | 2.7284284 |
Snippet | Various forms of machine learning (ML) methods have historically played a valuable role in environmental remote sensing research. With an increasing amount of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 111716 |
SubjectTerms | air Air temperature artificial intelligence Atmospheric models color Data integration Deep learning Earth environmental factors Environmental monitoring Environmental remote sensing Evapotranspiration Hydrology Land cover Land surface temperature Learning algorithms Machine learning Mapping Multisensor fusion Neural network Neural networks Ocean color Parameter retrieval prediction Remote sensing Solar radiation Surface temperature vegetation |
Title | Deep learning in environmental remote sensing: Achievements and challenges |
URI | https://dx.doi.org/10.1016/j.rse.2020.111716 https://www.proquest.com/docview/2441309948 https://www.proquest.com/docview/2388747731 |
Volume | 241 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH9CTNO4TKMM0VGQJ3FCymhs10m4VXysY4LTkLhZjvMCRShUTTn0wt_Oe4nTiWniwDGxrUTv05bf-_0ADuJSGzOULiqLNIu0kXmUoVQMIUqHBzRD5_igeHllJtf64mZ0swYnXS8Ml1WG2N_G9CZahzdHQZpHs-mUe3yVZouTZKeM084d7DphK__xvCrziEdp0rLmKR3x7O5ms6nxmteMlCmbwJEw5fn_c9M_UbpJPedf4HPYM4px-1ubsIZVD7bP_rao0WDw0boHnwKv-d2yBx9_NsS9yy24OEWcicARcSumlcBX6-dIOkNRcz17dXssxv5uig2W-KIWriqE71hX6q9wfX7252QSBR6FyKtRuogSmSe5TMsMlcs9lin5nM_iPDUoUWkaNTFpJfbSjRxtiWRRGFJsQnnMKOMLtQ3r1WOFOyDocJIbTB2iRu2Nz5zPGsxBzag5ruzDsJOg9QFknLkuHmxXTXZvSeiWhW5boffhcLVk1iJsvDVZd2qxr8zEUgZ4a9mgU6ENPlpb2thQAs8ynfbh-2qYvIuvTFyFj080R1EQ1kmi4m_v-_IubPBTWyI5gPXF_An3aBuzyPcbO92HD-NfvydXL2No7-0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BVQUX1G5BLFBqJHqpFNjYXidB4oB4Lc8TSNyM40yWRSisNouqvfRP9Q92nDhbUVUckLhm7MQZjz_PyOP5ALbCXCrV4SbIszgJpOJpkCAXroQoBQ-oOsa4QPHySvVu5Nlt93YGfjd3YVxapcf-GtMrtPZPdrw2d4aDgbvjK6SzOE526uq0-8zKc5z8pLit3Ds9pEn-zvnx0fVBL_DUAoEV3XgcRDyNUh7nCQqTWsxjMkObhGmskKOQJFUhDTS03HQNeQk8yxT9a0TQroSymaD3zsIHSXDhaBO2f03zSsJuHNU0fUIGbnjNUWqVVDYqXWlOXiFV5DjW_78Z_rMtVHvd8SdY9E4q26_18BlmsGjB8tHfO3Ek9KBQtmDeE6nfT1rw8aRiCp58gbNDxCHzpBR9NigYvug_QjISZKVLoC_6u2zf3g-wKl4-LpkpMmYbmpdyCW7eRbvLMFc8FbgCjKKhVGFsECVKq2xibFIVOZSuTI_J29BpNKitr2ruyDUedZO-9qBJ6dopXddKb8OPaZdhXdLjtcaymRb9wi41bTmvdVtvplB7UCg1eVLkMSSJjNuwORXTcnZnNKbAp2dqIwj1ZRSJcPVtX_4G873rywt9cXp1vgYLTlLnZ67D3Hj0jF_JhxqnG5XNMrh770XyB5ICK9I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+in+environmental+remote+sensing%3A+Achievements+and+challenges&rft.jtitle=Remote+sensing+of+environment&rft.au=Yuan%2C+Qiangqiang&rft.au=Shen%2C+Huanfeng&rft.au=Li%2C+Tongwen&rft.au=Li%2C+Zhiwei&rft.date=2020-05-01&rft.pub=Elsevier+BV&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=241&rft.spage=1&rft_id=info:doi/10.1016%2Fj.rse.2020.111716&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |