The transcriptional coactivator Eya1 exerts transcriptional repressive activity by interacting with REST corepressors and REST-binding sequences to maintain nephron progenitor identity

Eya1 is critical for establishing and maintaining nephron progenitor cells (NPCs). It belongs to a family of proteins called phosphatase-transcriptional activators but without intrinsic DNA-binding activity. However, the spectrum of the Eya1-centered networks is underexplored. Here, we combined tran...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 50; no. 18; pp. 10343 - 10359
Main Authors Li, Jun, Cheng, Chunming, Xu, Jinshu, Zhang, Ting, Tokat, Bengu, Dolios, Georgia, Ramakrishnan, Aarthi, Shen, Li, Wang, Rong, Xu, Pin-Xian
Format Journal Article
LanguageEnglish
Published Oxford University Press 14.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Eya1 is critical for establishing and maintaining nephron progenitor cells (NPCs). It belongs to a family of proteins called phosphatase-transcriptional activators but without intrinsic DNA-binding activity. However, the spectrum of the Eya1-centered networks is underexplored. Here, we combined transcriptomic, genomic and proteomic approaches to characterize gene regulation by Eya1 in the NPCs. We identified Eya1 target genes, associated cis-regulatory elements and partner proteins. Eya1 preferentially occupies promoter sequences and interacts with general transcription factors (TFs), RNA polymerases, different types of TFs, chromatin-remodeling factors with ATPase or helicase activity, and DNA replication/repair proteins. Intriguingly, we identified REST-binding motifs in 76% of Eya1-occupied sites without H3K27ac-deposition, which were present in many Eya1 target genes upregulated in Eya1-deficient NPCs. Eya1 copurified REST-interacting chromatin-remodeling factors, histone deacetylase/lysine demethylase, and corepressors. Coimmunoprecipitation validated physical interaction between Eya1 and Rest/Hdac1/Cdyl/Hltf in the kidneys. Collectively, our results suggest that through interactions with chromatin-remodeling factors and specialized DNA-binding proteins, Eya1 may modify chromatin structure to facilitate the assembly of regulatory complexes that regulate transcription positively or negatively. These findings provide a mechanistic basis for how Eya1 exerts its activity by forming unique multiprotein complexes in various biological processes to maintain the cellular state of NPCs.
AbstractList Eya1 is critical for establishing and maintaining nephron progenitor cells (NPCs). It belongs to a family of proteins called phosphatase-transcriptional activators but without intrinsic DNA-binding activity. However, the spectrum of the Eya1-centered networks is underexplored. Here, we combined transcriptomic, genomic and proteomic approaches to characterize gene regulation by Eya1 in the NPCs. We identified Eya1 target genes, associated cis -regulatory elements and partner proteins. Eya1 preferentially occupies promoter sequences and interacts with general transcription factors (TFs), RNA polymerases, different types of TFs, chromatin-remodeling factors with ATPase or helicase activity, and DNA replication/repair proteins. Intriguingly, we identified REST-binding motifs in 76% of Eya1-occupied sites without H3K27ac-deposition, which were present in many Eya1 target genes upregulated in Eya1 -deficient NPCs. Eya1 copurified REST-interacting chromatin-remodeling factors, histone deacetylase/lysine demethylase, and corepressors. Coimmunoprecipitation validated physical interaction between Eya1 and Rest/Hdac1/Cdyl/Hltf in the kidneys. Collectively, our results suggest that through interactions with chromatin-remodeling factors and specialized DNA-binding proteins, Eya1 may modify chromatin structure to facilitate the assembly of regulatory complexes that regulate transcription positively or negatively. These findings provide a mechanistic basis for how Eya1 exerts its activity by forming unique multiprotein complexes in various biological processes to maintain the cellular state of NPCs.
Eya1 is critical for establishing and maintaining nephron progenitor cells (NPCs). It belongs to a family of proteins called phosphatase-transcriptional activators but without intrinsic DNA-binding activity. However, the spectrum of the Eya1-centered networks is underexplored. Here, we combined transcriptomic, genomic and proteomic approaches to characterize gene regulation by Eya1 in the NPCs. We identified Eya1 target genes, associated cis-regulatory elements and partner proteins. Eya1 preferentially occupies promoter sequences and interacts with general transcription factors (TFs), RNA polymerases, different types of TFs, chromatin-remodeling factors with ATPase or helicase activity, and DNA replication/repair proteins. Intriguingly, we identified REST-binding motifs in 76% of Eya1-occupied sites without H3K27ac-deposition, which were present in many Eya1 target genes upregulated in Eya1-deficient NPCs. Eya1 copurified REST-interacting chromatin-remodeling factors, histone deacetylase/lysine demethylase, and corepressors. Coimmunoprecipitation validated physical interaction between Eya1 and Rest/Hdac1/Cdyl/Hltf in the kidneys. Collectively, our results suggest that through interactions with chromatin-remodeling factors and specialized DNA-binding proteins, Eya1 may modify chromatin structure to facilitate the assembly of regulatory complexes that regulate transcription positively or negatively. These findings provide a mechanistic basis for how Eya1 exerts its activity by forming unique multiprotein complexes in various biological processes to maintain the cellular state of NPCs.
Eya1 is critical for establishing and maintaining nephron progenitor cells (NPCs). It belongs to a family of proteins called phosphatase-transcriptional activators but without intrinsic DNA-binding activity. However, the spectrum of the Eya1-centered networks is underexplored. Here, we combined transcriptomic, genomic and proteomic approaches to characterize gene regulation by Eya1 in the NPCs. We identified Eya1 target genes, associated cis-regulatory elements and partner proteins. Eya1 preferentially occupies promoter sequences and interacts with general transcription factors (TFs), RNA polymerases, different types of TFs, chromatin-remodeling factors with ATPase or helicase activity, and DNA replication/repair proteins. Intriguingly, we identified REST-binding motifs in 76% of Eya1-occupied sites without H3K27ac-deposition, which were present in many Eya1 target genes upregulated in Eya1-deficient NPCs. Eya1 copurified REST-interacting chromatin-remodeling factors, histone deacetylase/lysine demethylase, and corepressors. Coimmunoprecipitation validated physical interaction between Eya1 and Rest/Hdac1/Cdyl/Hltf in the kidneys. Collectively, our results suggest that through interactions with chromatin-remodeling factors and specialized DNA-binding proteins, Eya1 may modify chromatin structure to facilitate the assembly of regulatory complexes that regulate transcription positively or negatively. These findings provide a mechanistic basis for how Eya1 exerts its activity by forming unique multiprotein complexes in various biological processes to maintain the cellular state of NPCs.Eya1 is critical for establishing and maintaining nephron progenitor cells (NPCs). It belongs to a family of proteins called phosphatase-transcriptional activators but without intrinsic DNA-binding activity. However, the spectrum of the Eya1-centered networks is underexplored. Here, we combined transcriptomic, genomic and proteomic approaches to characterize gene regulation by Eya1 in the NPCs. We identified Eya1 target genes, associated cis-regulatory elements and partner proteins. Eya1 preferentially occupies promoter sequences and interacts with general transcription factors (TFs), RNA polymerases, different types of TFs, chromatin-remodeling factors with ATPase or helicase activity, and DNA replication/repair proteins. Intriguingly, we identified REST-binding motifs in 76% of Eya1-occupied sites without H3K27ac-deposition, which were present in many Eya1 target genes upregulated in Eya1-deficient NPCs. Eya1 copurified REST-interacting chromatin-remodeling factors, histone deacetylase/lysine demethylase, and corepressors. Coimmunoprecipitation validated physical interaction between Eya1 and Rest/Hdac1/Cdyl/Hltf in the kidneys. Collectively, our results suggest that through interactions with chromatin-remodeling factors and specialized DNA-binding proteins, Eya1 may modify chromatin structure to facilitate the assembly of regulatory complexes that regulate transcription positively or negatively. These findings provide a mechanistic basis for how Eya1 exerts its activity by forming unique multiprotein complexes in various biological processes to maintain the cellular state of NPCs.
Author Li, Jun
Xu, Jinshu
Ramakrishnan, Aarthi
Zhang, Ting
Dolios, Georgia
Wang, Rong
Tokat, Bengu
Shen, Li
Cheng, Chunming
Xu, Pin-Xian
Author_xml – sequence: 1
  givenname: Jun
  surname: Li
  fullname: Li, Jun
– sequence: 2
  givenname: Chunming
  orcidid: 0000-0001-9036-1683
  surname: Cheng
  fullname: Cheng, Chunming
– sequence: 3
  givenname: Jinshu
  surname: Xu
  fullname: Xu, Jinshu
– sequence: 4
  givenname: Ting
  orcidid: 0000-0001-9231-1604
  surname: Zhang
  fullname: Zhang, Ting
– sequence: 5
  givenname: Bengu
  surname: Tokat
  fullname: Tokat, Bengu
– sequence: 6
  givenname: Georgia
  surname: Dolios
  fullname: Dolios, Georgia
– sequence: 7
  givenname: Aarthi
  surname: Ramakrishnan
  fullname: Ramakrishnan, Aarthi
– sequence: 8
  givenname: Li
  surname: Shen
  fullname: Shen, Li
– sequence: 9
  givenname: Rong
  surname: Wang
  fullname: Wang, Rong
– sequence: 10
  givenname: Pin-Xian
  orcidid: 0000-0002-8957-6780
  surname: Xu
  fullname: Xu, Pin-Xian
BookMark eNptkcFu1DAQhi1URLeFEy_gIxIKtWPHSS5IqFpapEpIZTlbE2eya8jawfZu2Tfr49VpV0hQDpal8Tf_P57_jJw475CQt5x94KwVFw7CxfonmFqxF2TBhSoL2aryhCyYYFXBmWxOyVmMPxjjklfyFTkVigtWNnJB7lcbpCmAiybYKVnvYKTGg0l2D8kHujwAp_gbQ4rPuIBTwBjtHuljg00H2h2odQnDXHBremfTht4uv62y6BH3IVJw_WO16KzrZy7irx06g9nE0y1kiXyow2kTvKNT8Gt0dp7H9uhSNnpNXg4wRnxzvM_J98_L1eV1cfP16svlp5vCiKpJRWVASOzrqhvaoZZQlxKVaDoYWl5xNBwHhUJ0zcCGpsr7zGsRJR_6TpheKSHOyccn3WnXbbE32T3AqKdgtxAO2oPVf784u9Frv9dtpXipWBZ4dxQIPv8xJr210eA4gkO_i7qsuWpFKds2o--fUBN8jAGHPzac6TlrnbPWx6wzzf-hjU0wR5PnsON_ex4AWhq3cg
CitedBy_id crossref_primary_10_1186_s12920_024_01858_y
crossref_primary_10_3389_fcell_2023_1126968
crossref_primary_10_1016_j_dnarep_2024_103729
crossref_primary_10_1200_PO_24_00188
crossref_primary_10_3390_cells12091314
crossref_primary_10_1016_j_omtn_2024_102199
Cites_doi 10.1242/dev.124.1.219
10.1016/S0092-8674(00)80480-8
10.1186/s13059-014-0550-8
10.7554/eLife.30126
10.1242/dev.00536
10.1073/pnas.0308475101
10.1242/dev.153619
10.1128/MCB.21.14.4460-4469.2001
10.1146/annurev-genet-112618-043633
10.1038/nature05284
10.1016/j.ydbio.2006.06.049
10.1016/j.conb.2005.08.015
10.1038/sj.onc.1206678
10.1016/j.devcel.2014.10.015
10.1016/j.stem.2008.05.020
10.1016/j.molcel.2008.10.025
10.1126/science.1139621
10.1242/dev.071670
10.1038/nmeth.3317
10.1038/nbt.1630
10.1101/gad.305482.117
10.1038/ng0297-157
10.1093/nar/gkw1258
10.1093/nar/gkaa012
10.1016/j.ydbio.2005.05.029
10.1158/0008-5472.CAN-12-4078
10.1681/ASN.2021040525
10.1158/1541-7786.MCR-18-0262
10.1186/s12859-018-2486-6
10.1093/hmg/10.24.2775
10.1038/12722
10.1016/j.heares.2012.09.009
10.1038/nature02083
10.1038/s41388-019-1028-7
10.1016/S0092-8674(00)80481-X
10.1080/10409238.2020.1796922
10.1007/s00018-012-1144-9
10.1093/bioinformatics/btu638
10.1038/nature08138
10.1038/ng.3440
10.1038/s41467-017-02210-y
10.1016/S0896-6273(01)00371-3
10.1681/ASN.2006111282
10.1172/JCI74085
10.1371/journal.pbio.0060271
10.1186/gb-2008-9-9-r137
10.1128/MCB.23.24.9104-9116.2003
10.1038/nature02097
10.1038/nature07849
10.1128/MCB.00499-16
10.1681/ASN.2021020231
10.1242/dev.01437
10.1038/s41588-020-00729-3
10.1038/nature07668
10.1016/j.devcel.2015.01.033
10.1007/s00467-012-2246-1
10.1038/sj.emboj.7601381
10.1128/MCB.01516-12
10.1016/j.molcel.2010.05.004
10.1073/pnas.94.22.11974
10.1074/jbc.C900032200
10.1074/jbc.M111.303719
10.1038/s41467-018-08127-4
10.1016/j.stem.2016.05.025
10.1093/nar/gkaa625
10.1242/dev.127175
10.1002/dvdy.24282
10.3389/fcell.2022.815249
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022
DBID AAYXX
CITATION
7X8
5PM
DOI 10.1093/nar/gkac760
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 10359
ExternalDocumentID PMC9561260
10_1093_nar_gkac760
GrantInformation_xml – fundername: ;
  grantid: RO1 DK064640
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAVAP
AAYXX
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFYAG
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
CAG
CIDKT
CITATION
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVT
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
7X8
5PM
ID FETCH-LOGICAL-c358t-5ca34ed75bf9f74a724e638baf9151ec1ef6e33b8f0f85109028321fdb3cd6633
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 18:39:57 EDT 2025
Thu Jul 10 18:09:21 EDT 2025
Tue Jul 01 02:59:18 EDT 2025
Thu Apr 24 22:50:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License https://creativecommons.org/licenses/by/4.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c358t-5ca34ed75bf9f74a724e638baf9151ec1ef6e33b8f0f85109028321fdb3cd6633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.
ORCID 0000-0001-9036-1683
0000-0002-8957-6780
0000-0001-9231-1604
OpenAccessLink http://dx.doi.org/10.1093/nar/gkac760
PMID 36130284
PQID 2716932499
PQPubID 23479
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9561260
proquest_miscellaneous_2716932499
crossref_primary_10_1093_nar_gkac760
crossref_citationtrail_10_1093_nar_gkac760
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-14
PublicationDateYYYYMMDD 2022-10-14
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-14
  day: 14
PublicationDecade 2020
PublicationTitle Nucleic acids research
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Lemeille (2022101405180737100_B66) 2020; 48
Pignoni (2022101405180737100_B10) 1997; 91
Zhang (2022101405180737100_B33) 2008; 9
Krishnan (2022101405180737100_B48) 2009; 284
Wu (2022101405180737100_B24) 2013; 73
Ballas (2022101405180737100_B42) 2005; 15
Nicolai (2022101405180737100_B58) 2020; 39
Tessari (2022101405180737100_B39) 2003; 23
Muhammad (2022101405180737100_B61) 2018; 16
Zhang (2022101405180737100_B47) 2017; 45
Zhang (2022101405180737100_B46) 2017; 8
Aratani (2022101405180737100_B38) 2001; 21
Wang (2022101405180737100_B57) 2006; 444
Xu (2022101405180737100_B7) 1997; 94
Tootle (2022101405180737100_B64) 2003; 426
Mulligan (2022101405180737100_B55) 2008; 32
Weber (2022101405180737100_B17) 2008; 19
Xu (2022101405180737100_B14) 2022; 10
Fidalgo (2022101405180737100_B60) 2016; 19
Sun (2022101405180737100_B41) 2013; 33
Xu (2022101405180737100_B12) 2003; 130
O’Brien (2022101405180737100_B68) 2016; 143
Yermalovich (2022101405180737100_B37) 2019; 10
Li (2022101405180737100_B18) 2021; 32
Tadjuidje (2022101405180737100_B6) 2013; 70
Yatskevich (2022101405180737100_B50) 2019; 53
Xu (2022101405180737100_B4) 2014; 31
Kobayashi (2022101405180737100_B20) 2008; 3
Xu (2022101405180737100_B5) 2013; 28
Xu (2022101405180737100_B8) 1997; 124
Zou (2022101405180737100_B22) 2006; 298
Ahmed (2022101405180737100_B36) 2012; 139
Li (2022101405180737100_B65) 2003; 426
Ballas (2022101405180737100_B62) 2001; 31
Love (2022101405180737100_B31) 2014; 15
Chen (2022101405180737100_B9) 1997; 91
Li (2022101405180737100_B26) 2017; 37
Fan (2022101405180737100_B40) 2020; 52
Sajithlal (2022101405180737100_B1) 2005; 284
Xu (2022101405180737100_B3) 1999; 23
Magassa (2022101405180737100_B45) 2021; 32
Xiao (2022101405180737100_B49) 2009; 457
Eisner (2022101405180737100_B28) 2015; 33
Hegde (2022101405180737100_B54) 2020; 55
Cook (2022101405180737100_B23) 2009; 458
Hochstatter (2022101405180737100_B56) 2012; 287
Yuan (2022101405180737100_B25) 2014; 124
Self (2022101405180737100_B19) 2006; 25
Ruf (2022101405180737100_B15) 2004; 101
McLean (2022101405180737100_B35) 2010; 28
Heinz (2022101405180737100_B34) 2010; 38
Liu (2022101405180737100_B63) 2018; 145
Hermanson (2022101405180737100_B43) 2008; 6
Okabe (2022101405180737100_B53) 2009; 460
Kim (2022101405180737100_B51) 2007; 316
Wong (2022101405180737100_B11) 2013; 297
Abdelhak (2022101405180737100_B16) 1997; 15
Ge (2022101405180737100_B32) 2018; 19
Buller (2022101405180737100_B13) 2001; 10
Powell (2022101405180737100_B52) 2003; 22
Zhang (2022101405180737100_B27) 2017; 6
Mahamdallie (2022101405180737100_B44) 2015; 47
Zou (2022101405180737100_B21) 2004; 131
Anders (2022101405180737100_B30) 2015; 31
Xu (2022101405180737100_B2) 2015; 244
Zhou (2022101405180737100_B59) 2017; 31
Li (2022101405180737100_B67) 2020; 48
Kim (2022101405180737100_B29) 2015; 12
References_xml – volume: 124
  start-page: 219
  year: 1997
  ident: 2022101405180737100_B8
  article-title: Mouse eya homologues of the drosophila eyes absent gene require pax6 for expression in lens and nasal placode
  publication-title: Development
  doi: 10.1242/dev.124.1.219
– volume: 91
  start-page: 881
  year: 1997
  ident: 2022101405180737100_B10
  article-title: The eye-specification proteins so and eya form a complex and regulate multiple steps in drosophila eye development
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80480-8
– volume: 15
  start-page: 550
  year: 2014
  ident: 2022101405180737100_B31
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 6
  start-page: e30126
  year: 2017
  ident: 2022101405180737100_B27
  article-title: An eya1-notch axis specifies bipotential epibranchial differentiation in mammalian craniofacial morphogenesis
  publication-title: Elife
  doi: 10.7554/eLife.30126
– volume: 130
  start-page: 3085
  year: 2003
  ident: 2022101405180737100_B12
  article-title: Six1 is required for the early organogenesis of mammalian kidney
  publication-title: Development
  doi: 10.1242/dev.00536
– volume: 101
  start-page: 8090
  year: 2004
  ident: 2022101405180737100_B15
  article-title: SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0308475101
– volume: 145
  start-page: dev153619
  year: 2018
  ident: 2022101405180737100_B63
  article-title: Histone deacetylases 1 and 2 regulate the transcriptional programs of nephron progenitors and renal vesicles
  publication-title: Development
  doi: 10.1242/dev.153619
– volume: 21
  start-page: 4460
  year: 2001
  ident: 2022101405180737100_B38
  article-title: Dual roles of RNA helicase a in CREB-dependent transcription
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.21.14.4460-4469.2001
– volume: 53
  start-page: 445
  year: 2019
  ident: 2022101405180737100_B50
  article-title: Organization of chromosomal DNA by SMC complexes
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-112618-043633
– volume: 444
  start-page: 364
  year: 2006
  ident: 2022101405180737100_B57
  article-title: A protein interaction network for pluripotency of embryonic stem cells
  publication-title: Nature
  doi: 10.1038/nature05284
– volume: 298
  start-page: 430
  year: 2006
  ident: 2022101405180737100_B22
  article-title: Eya1 regulates the growth of otic epithelium and interacts with pax2 during the development of all sensory areas in the inner ear
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2006.06.049
– volume: 15
  start-page: 500
  year: 2005
  ident: 2022101405180737100_B42
  article-title: The many faces of REST oversee epigenetic programming of neuronal genes
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2005.08.015
– volume: 22
  start-page: 5784
  year: 2003
  ident: 2022101405180737100_B52
  article-title: Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1206678
– volume: 31
  start-page: 434
  year: 2014
  ident: 2022101405180737100_B4
  article-title: Eya1 interacts with six2 and myc to regulate expansion of the nephron progenitor pool during nephrogenesis
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2014.10.015
– volume: 3
  start-page: 169
  year: 2008
  ident: 2022101405180737100_B20
  article-title: Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development
  publication-title: Cell Stem. Cell
  doi: 10.1016/j.stem.2008.05.020
– volume: 32
  start-page: 718
  year: 2008
  ident: 2022101405180737100_B55
  article-title: CDYL bridges REST and histone methyltransferases for gene repression and suppression of cellular transformation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.10.025
– volume: 316
  start-page: 1202
  year: 2007
  ident: 2022101405180737100_B51
  article-title: Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response
  publication-title: Science
  doi: 10.1126/science.1139621
– volume: 139
  start-page: 1965
  year: 2012
  ident: 2022101405180737100_B36
  article-title: EYA1 and SIX1 drive the neuronal developmental program in cooperation with the SWI/SNF chromatin-remodeling complex and SOX2 in the mammalian inner ear
  publication-title: Development
  doi: 10.1242/dev.071670
– volume: 12
  start-page: 357
  year: 2015
  ident: 2022101405180737100_B29
  article-title: HISAT: a fast spliced aligner with low memory requirements
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3317
– volume: 28
  start-page: 495
  year: 2010
  ident: 2022101405180737100_B35
  article-title: GREAT improves functional interpretation of cis-regulatory regions
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1630
– volume: 31
  start-page: 1770
  year: 2017
  ident: 2022101405180737100_B59
  article-title: ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression
  publication-title: Genes Dev.
  doi: 10.1101/gad.305482.117
– volume: 15
  start-page: 157
  year: 1997
  ident: 2022101405180737100_B16
  article-title: A human homologue of the drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family
  publication-title: Nat. Genet.
  doi: 10.1038/ng0297-157
– volume: 45
  start-page: 3102
  year: 2017
  ident: 2022101405180737100_B47
  article-title: Non-CpG methylation by DNMT3B facilitates REST binding and gene silencing in developing mouse hearts
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1258
– volume: 48
  start-page: 2880
  year: 2020
  ident: 2022101405180737100_B67
  article-title: Dynamic changes in cis-regulatory occupancy by six1 and its cooperative interactions with distinct cofactors drive lineage-specific gene expression programs during progressive differentiation of the auditory sensory epithelium
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa012
– volume: 284
  start-page: 323
  year: 2005
  ident: 2022101405180737100_B1
  article-title: Eya 1 acts as a critical regulator for specifying the metanephric mesenchyme
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2005.05.029
– volume: 73
  start-page: 4488
  year: 2013
  ident: 2022101405180737100_B24
  article-title: EYA1 phosphatase function is essential to drive breast cancer cell proliferation through cyclin d1
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-4078
– volume: 32
  start-page: 2815
  year: 2021
  ident: 2022101405180737100_B18
  article-title: Chromatin remodelers interact with eya1 and six2 to target enhancers to control nephron progenitor cell maintenance
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2021040525
– volume: 16
  start-page: 1977
  year: 2018
  ident: 2022101405180737100_B61
  article-title: FLYWCH1, a novel suppressor of nuclear beta-Catenin, regulates migration and morphology in colorectal cancer
  publication-title: Mol. Cancer Res.
  doi: 10.1158/1541-7786.MCR-18-0262
– volume: 19
  start-page: 534
  year: 2018
  ident: 2022101405180737100_B32
  article-title: iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-018-2486-6
– volume: 10
  start-page: 2775
  year: 2001
  ident: 2022101405180737100_B13
  article-title: Molecular effects of eya1 domain mutations causing organ defects in BOR syndrome
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/10.24.2775
– volume: 23
  start-page: 113
  year: 1999
  ident: 2022101405180737100_B3
  article-title: Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia
  publication-title: Nat. Genet.
  doi: 10.1038/12722
– volume: 297
  start-page: 13
  year: 2013
  ident: 2022101405180737100_B11
  article-title: EYA1-SIX1 complex in neurosensory cell fate induction in the mammalian inner ear
  publication-title: Hear Res.
  doi: 10.1016/j.heares.2012.09.009
– volume: 426
  start-page: 247
  year: 2003
  ident: 2022101405180737100_B65
  article-title: Eya protein phosphatase activity regulates six1-dach-eya transcriptional effects in mammalian organogenesis
  publication-title: Nature
  doi: 10.1038/nature02083
– volume: 39
  start-page: 754
  year: 2020
  ident: 2022101405180737100_B58
  article-title: ZNF281 is recruited on DNA breaks to facilitate DNA repair by non-homologous end joining
  publication-title: Oncogene
  doi: 10.1038/s41388-019-1028-7
– volume: 91
  start-page: 893
  year: 1997
  ident: 2022101405180737100_B9
  article-title: Dachshund and eyes absent proteins form a complex and function synergistically to induce ectopic eye development in drosophila
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80481-X
– volume: 55
  start-page: 372
  year: 2020
  ident: 2022101405180737100_B54
  article-title: The multi-functional eyes absent proteins
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.1080/10409238.2020.1796922
– volume: 70
  start-page: 1897
  year: 2013
  ident: 2022101405180737100_B6
  article-title: The eyes absent proteins in development and disease
  publication-title: Cell Mol. Life Sci.
  doi: 10.1007/s00018-012-1144-9
– volume: 31
  start-page: 166
  year: 2015
  ident: 2022101405180737100_B30
  article-title: HTSeq–a python framework to work with high-throughput sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu638
– volume: 460
  start-page: 520
  year: 2009
  ident: 2022101405180737100_B53
  article-title: Regulation of the innate immune response by threonine-phosphatase of eyes absent
  publication-title: Nature
  doi: 10.1038/nature08138
– volume: 47
  start-page: 1471
  year: 2015
  ident: 2022101405180737100_B44
  article-title: Mutations in the transcriptional repressor REST predispose to wilms tumor
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3440
– volume: 8
  start-page: 1979
  year: 2017
  ident: 2022101405180737100_B46
  article-title: REST regulates the cell cycle for cardiac development and regeneration
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02210-y
– volume: 31
  start-page: 353
  year: 2001
  ident: 2022101405180737100_B62
  article-title: Regulation of neuronal traits by a novel transcriptional complex
  publication-title: Neuron
  doi: 10.1016/S0896-6273(01)00371-3
– volume: 19
  start-page: 891
  year: 2008
  ident: 2022101405180737100_B17
  article-title: SIX2 and BMP4 mutations associate with anomalous kidney development
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2006111282
– volume: 124
  start-page: 3378
  year: 2014
  ident: 2022101405180737100_B25
  article-title: A phosphotyrosine switch determines the antitumor activity of ERbeta
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI74085
– volume: 6
  start-page: e271
  year: 2008
  ident: 2022101405180737100_B43
  article-title: Stem cells have different needs for REST
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060271
– volume: 9
  start-page: R137
  year: 2008
  ident: 2022101405180737100_B33
  article-title: Model-based analysis of chip-Seq (MACS)
  publication-title: Genome Biol.
  doi: 10.1186/gb-2008-9-9-r137
– volume: 23
  start-page: 9104
  year: 2003
  ident: 2022101405180737100_B39
  article-title: Transcriptional activation of the cyclin a gene by the architectural transcription factor HMGA2
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.23.24.9104-9116.2003
– volume: 426
  start-page: 299
  year: 2003
  ident: 2022101405180737100_B64
  article-title: The transcription factor eyes absent is a protein tyrosine phosphatase
  publication-title: Nature
  doi: 10.1038/nature02097
– volume: 458
  start-page: 591
  year: 2009
  ident: 2022101405180737100_B23
  article-title: Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions
  publication-title: Nature
  doi: 10.1038/nature07849
– volume: 37
  start-page: e00499-16
  year: 2017
  ident: 2022101405180737100_B26
  article-title: EYA1’s conformation specificity in dephosphorylating phosphothreonine in myc and its activity on myc stabilization in breast cancer
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00499-16
– volume: 32
  start-page: 1974
  year: 2021
  ident: 2022101405180737100_B45
  article-title: REST and stress resistance in the aging kidney
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2021020231
– volume: 131
  start-page: 5561
  year: 2004
  ident: 2022101405180737100_B21
  article-title: Eya1 and six1 are essential for early steps of sensory neurogenesis in mammalian cranial placodes
  publication-title: Development
  doi: 10.1242/dev.01437
– volume: 52
  start-page: 1384
  year: 2020
  ident: 2022101405180737100_B40
  article-title: BAHCC1 binds H3K27me3 via a conserved BAH module to mediate gene silencing and oncogenesis
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-00729-3
– volume: 457
  start-page: 57
  year: 2009
  ident: 2022101405180737100_B49
  article-title: WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity
  publication-title: Nature
  doi: 10.1038/nature07668
– volume: 33
  start-page: 22
  year: 2015
  ident: 2022101405180737100_B28
  article-title: The eya1 phosphatase promotes shh signaling during hindbrain development and oncogenesis
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2015.01.033
– volume: 28
  start-page: 843
  year: 2013
  ident: 2022101405180737100_B5
  article-title: The EYA-SO/SIX complex in development and disease
  publication-title: Pediatr Nephrol.
  doi: 10.1007/s00467-012-2246-1
– volume: 25
  start-page: 5214
  year: 2006
  ident: 2022101405180737100_B19
  article-title: Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601381
– volume: 33
  start-page: 927
  year: 2013
  ident: 2022101405180737100_B41
  article-title: The phosphatase-transcription activator EYA1 is targeted by anaphase-promoting complex/Cdh1 for degradation at M-to-G1 transition
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.01516-12
– volume: 38
  start-page: 576
  year: 2010
  ident: 2022101405180737100_B34
  article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and b cell identities
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.05.004
– volume: 94
  start-page: 11974
  year: 1997
  ident: 2022101405180737100_B7
  article-title: Mouse eya genes are expressed during limb tendon development and encode a transcriptional activation function
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.94.22.11974
– volume: 284
  start-page: 16066
  year: 2009
  ident: 2022101405180737100_B48
  article-title: Dephosphorylation of the C-terminal tyrosyl residue of the DNA Damage-related histone H2A.X is mediated by the protein phosphatase eyes absent
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C900032200
– volume: 287
  start-page: 24365
  year: 2012
  ident: 2022101405180737100_B56
  article-title: Myb-binding protein 1a (Mybbp1a) regulates levels and processing of pre-ribosomal RNA
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.303719
– volume: 10
  start-page: 168
  year: 2019
  ident: 2022101405180737100_B37
  article-title: Lin28 and let-7 regulate the timing of cessation of murine nephrogenesis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-08127-4
– volume: 19
  start-page: 355
  year: 2016
  ident: 2022101405180737100_B60
  article-title: Zfp281 coordinates opposing functions of tet1 and tet2 in pluripotent states
  publication-title: Cell Stem. Cell
  doi: 10.1016/j.stem.2016.05.025
– volume: 48
  start-page: 9019
  year: 2020
  ident: 2022101405180737100_B66
  article-title: Interplay of RFX transcription factors 1, 2 and 3 in motile ciliogenesis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa625
– volume: 143
  start-page: 595
  year: 2016
  ident: 2022101405180737100_B68
  article-title: Differential regulation of mouse and human nephron progenitors by the six family of transcriptional regulators
  publication-title: Development
  doi: 10.1242/dev.127175
– volume: 244
  start-page: 866
  year: 2015
  ident: 2022101405180737100_B2
  article-title: Eya-six are necessary for survival of nephrogenic cord progenitors and inducing nephric duct development before ureteric bud formation
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.24282
– volume: 10
  start-page: 815249
  year: 2022
  ident: 2022101405180737100_B14
  article-title: Six1 and six2 of the sine oculis homeobox subfamily are not functionally interchangeable in mouse nephron formation
  publication-title: Front Cell Dev. Biol.
  doi: 10.3389/fcell.2022.815249
SSID ssj0014154
Score 2.447637
Snippet Eya1 is critical for establishing and maintaining nephron progenitor cells (NPCs). It belongs to a family of proteins called phosphatase-transcriptional...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 10343
SubjectTerms Gene regulation, Chromatin and Epigenetics
Title The transcriptional coactivator Eya1 exerts transcriptional repressive activity by interacting with REST corepressors and REST-binding sequences to maintain nephron progenitor identity
URI https://www.proquest.com/docview/2716932499
https://pubmed.ncbi.nlm.nih.gov/PMC9561260
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7cFNpcSpu01H2EKYQeapRIXsmyjsE4hEJCDw74JrTyqjapZWNLAfeX9Y_13pl9yFLsQhuDhZFGWsx8mp3ZnfmGsVOJny61SU1Cz3f8NPCdaBJwp0ezV68fCKHq1q5vele3_tdxMG61fteylspCnKU_99aVPEareA71SlWy_6HZ6qF4An-jfvGIGsbjP-u4oMnGvvqK7INKFe4plu4MN4mnmioV6x25lUmBvdd8GqqFhNgo-ghVOGXXaFFDow5xXSpxas2jShrxLAXVqiSmSscmR3ae4CPw28nlkoh3VQaYJMOx6sx0VXBjJ_mGCJWJNDadTWgLo7a6RnlCM106UkF4MJXaOg2mZT638y5eGJdKcpavp-XOavjICpr1DQyNKV1ku775l7rJmpnkiktV83WeSW3GVS1Y1LTzmuDW4rlfs9qeyzVXlHEBPOI13Du_aO6tnHLfL7_fJWmomyHUsLacK7Bxisu6uvvdA0Lvb9cDqibGQPIJe9rF6IbMc-gOq80vfEs065n5Y6asFMc-x5HPzbiH7JkdpOlTbQOlZppvzW8avWQvTMADFxq9r1hL5kfs-CJHgM438BlUCrLa2zlizwe2_eAx-4XghgeghRq4gcANGtw7cltwgwU3iA3UwA0EbiAYQx3cgOCGOrihAjcUC7DgBgNu2IIbLLhfs9vL4Whw5Zg2I07Kg37hBGnCfTkJA5FFWegnYdeXOCuJJIvQHZapJ7Oe5Fz0MzfD-IQSmam9VzYRPJ2gw87fsIN8kcu3DAJXukRw6AtP4mQY9f2MCx5ySbSQbpK02RerqDg1HPzUCuZHrHNBeIwKjo2C2-y0El5q6pn9Yp-sxmNUEe33JblclOu4S0xYGDBFUZuFDShUzyNy-eaVfDZVJPMGou8efed7drh9nT-wg2JVyo_owBfiRMH9RC1__QGYIgQc
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+transcriptional+coactivator+Eya1+exerts+transcriptional+repressive+activity+by+interacting+with+REST+corepressors+and+REST-binding+sequences+to+maintain+nephron+progenitor+identity&rft.jtitle=Nucleic+acids+research&rft.au=Li%2C+Jun&rft.au=Cheng%2C+Chunming&rft.au=Xu%2C+Jinshu&rft.au=Zhang%2C+Ting&rft.date=2022-10-14&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=50&rft.issue=18&rft.spage=10343&rft.epage=10359&rft_id=info:doi/10.1093%2Fnar%2Fgkac760&rft_id=info%3Apmid%2F36130284&rft.externalDocID=PMC9561260
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon