The transcriptional coactivator Eya1 exerts transcriptional repressive activity by interacting with REST corepressors and REST-binding sequences to maintain nephron progenitor identity
Eya1 is critical for establishing and maintaining nephron progenitor cells (NPCs). It belongs to a family of proteins called phosphatase-transcriptional activators but without intrinsic DNA-binding activity. However, the spectrum of the Eya1-centered networks is underexplored. Here, we combined tran...
Saved in:
Published in | Nucleic acids research Vol. 50; no. 18; pp. 10343 - 10359 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
14.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Eya1 is critical for establishing and maintaining nephron progenitor cells (NPCs). It belongs to a family of proteins called phosphatase-transcriptional activators but without intrinsic DNA-binding activity. However, the spectrum of the Eya1-centered networks is underexplored. Here, we combined transcriptomic, genomic and proteomic approaches to characterize gene regulation by Eya1 in the NPCs. We identified Eya1 target genes, associated cis-regulatory elements and partner proteins. Eya1 preferentially occupies promoter sequences and interacts with general transcription factors (TFs), RNA polymerases, different types of TFs, chromatin-remodeling factors with ATPase or helicase activity, and DNA replication/repair proteins. Intriguingly, we identified REST-binding motifs in 76% of Eya1-occupied sites without H3K27ac-deposition, which were present in many Eya1 target genes upregulated in Eya1-deficient NPCs. Eya1 copurified REST-interacting chromatin-remodeling factors, histone deacetylase/lysine demethylase, and corepressors. Coimmunoprecipitation validated physical interaction between Eya1 and Rest/Hdac1/Cdyl/Hltf in the kidneys. Collectively, our results suggest that through interactions with chromatin-remodeling factors and specialized DNA-binding proteins, Eya1 may modify chromatin structure to facilitate the assembly of regulatory complexes that regulate transcription positively or negatively. These findings provide a mechanistic basis for how Eya1 exerts its activity by forming unique multiprotein complexes in various biological processes to maintain the cellular state of NPCs. |
---|---|
AbstractList | Eya1 is critical for establishing and maintaining nephron progenitor cells (NPCs). It belongs to a family of proteins called phosphatase-transcriptional activators but without intrinsic DNA-binding activity. However, the spectrum of the Eya1-centered networks is underexplored. Here, we combined transcriptomic, genomic and proteomic approaches to characterize gene regulation by Eya1 in the NPCs. We identified Eya1 target genes, associated
cis
-regulatory elements and partner proteins. Eya1 preferentially occupies promoter sequences and interacts with general transcription factors (TFs), RNA polymerases, different types of TFs, chromatin-remodeling factors with ATPase or helicase activity, and DNA replication/repair proteins. Intriguingly, we identified REST-binding motifs in 76% of Eya1-occupied sites without H3K27ac-deposition, which were present in many Eya1 target genes upregulated in
Eya1
-deficient NPCs. Eya1 copurified REST-interacting chromatin-remodeling factors, histone deacetylase/lysine demethylase, and corepressors. Coimmunoprecipitation validated physical interaction between Eya1 and Rest/Hdac1/Cdyl/Hltf in the kidneys. Collectively, our results suggest that through interactions with chromatin-remodeling factors and specialized DNA-binding proteins, Eya1 may modify chromatin structure to facilitate the assembly of regulatory complexes that regulate transcription positively or negatively. These findings provide a mechanistic basis for how Eya1 exerts its activity by forming unique multiprotein complexes in various biological processes to maintain the cellular state of NPCs. Eya1 is critical for establishing and maintaining nephron progenitor cells (NPCs). It belongs to a family of proteins called phosphatase-transcriptional activators but without intrinsic DNA-binding activity. However, the spectrum of the Eya1-centered networks is underexplored. Here, we combined transcriptomic, genomic and proteomic approaches to characterize gene regulation by Eya1 in the NPCs. We identified Eya1 target genes, associated cis-regulatory elements and partner proteins. Eya1 preferentially occupies promoter sequences and interacts with general transcription factors (TFs), RNA polymerases, different types of TFs, chromatin-remodeling factors with ATPase or helicase activity, and DNA replication/repair proteins. Intriguingly, we identified REST-binding motifs in 76% of Eya1-occupied sites without H3K27ac-deposition, which were present in many Eya1 target genes upregulated in Eya1-deficient NPCs. Eya1 copurified REST-interacting chromatin-remodeling factors, histone deacetylase/lysine demethylase, and corepressors. Coimmunoprecipitation validated physical interaction between Eya1 and Rest/Hdac1/Cdyl/Hltf in the kidneys. Collectively, our results suggest that through interactions with chromatin-remodeling factors and specialized DNA-binding proteins, Eya1 may modify chromatin structure to facilitate the assembly of regulatory complexes that regulate transcription positively or negatively. These findings provide a mechanistic basis for how Eya1 exerts its activity by forming unique multiprotein complexes in various biological processes to maintain the cellular state of NPCs. Eya1 is critical for establishing and maintaining nephron progenitor cells (NPCs). It belongs to a family of proteins called phosphatase-transcriptional activators but without intrinsic DNA-binding activity. However, the spectrum of the Eya1-centered networks is underexplored. Here, we combined transcriptomic, genomic and proteomic approaches to characterize gene regulation by Eya1 in the NPCs. We identified Eya1 target genes, associated cis-regulatory elements and partner proteins. Eya1 preferentially occupies promoter sequences and interacts with general transcription factors (TFs), RNA polymerases, different types of TFs, chromatin-remodeling factors with ATPase or helicase activity, and DNA replication/repair proteins. Intriguingly, we identified REST-binding motifs in 76% of Eya1-occupied sites without H3K27ac-deposition, which were present in many Eya1 target genes upregulated in Eya1-deficient NPCs. Eya1 copurified REST-interacting chromatin-remodeling factors, histone deacetylase/lysine demethylase, and corepressors. Coimmunoprecipitation validated physical interaction between Eya1 and Rest/Hdac1/Cdyl/Hltf in the kidneys. Collectively, our results suggest that through interactions with chromatin-remodeling factors and specialized DNA-binding proteins, Eya1 may modify chromatin structure to facilitate the assembly of regulatory complexes that regulate transcription positively or negatively. These findings provide a mechanistic basis for how Eya1 exerts its activity by forming unique multiprotein complexes in various biological processes to maintain the cellular state of NPCs.Eya1 is critical for establishing and maintaining nephron progenitor cells (NPCs). It belongs to a family of proteins called phosphatase-transcriptional activators but without intrinsic DNA-binding activity. However, the spectrum of the Eya1-centered networks is underexplored. Here, we combined transcriptomic, genomic and proteomic approaches to characterize gene regulation by Eya1 in the NPCs. We identified Eya1 target genes, associated cis-regulatory elements and partner proteins. Eya1 preferentially occupies promoter sequences and interacts with general transcription factors (TFs), RNA polymerases, different types of TFs, chromatin-remodeling factors with ATPase or helicase activity, and DNA replication/repair proteins. Intriguingly, we identified REST-binding motifs in 76% of Eya1-occupied sites without H3K27ac-deposition, which were present in many Eya1 target genes upregulated in Eya1-deficient NPCs. Eya1 copurified REST-interacting chromatin-remodeling factors, histone deacetylase/lysine demethylase, and corepressors. Coimmunoprecipitation validated physical interaction between Eya1 and Rest/Hdac1/Cdyl/Hltf in the kidneys. Collectively, our results suggest that through interactions with chromatin-remodeling factors and specialized DNA-binding proteins, Eya1 may modify chromatin structure to facilitate the assembly of regulatory complexes that regulate transcription positively or negatively. These findings provide a mechanistic basis for how Eya1 exerts its activity by forming unique multiprotein complexes in various biological processes to maintain the cellular state of NPCs. |
Author | Li, Jun Xu, Jinshu Ramakrishnan, Aarthi Zhang, Ting Dolios, Georgia Wang, Rong Tokat, Bengu Shen, Li Cheng, Chunming Xu, Pin-Xian |
Author_xml | – sequence: 1 givenname: Jun surname: Li fullname: Li, Jun – sequence: 2 givenname: Chunming orcidid: 0000-0001-9036-1683 surname: Cheng fullname: Cheng, Chunming – sequence: 3 givenname: Jinshu surname: Xu fullname: Xu, Jinshu – sequence: 4 givenname: Ting orcidid: 0000-0001-9231-1604 surname: Zhang fullname: Zhang, Ting – sequence: 5 givenname: Bengu surname: Tokat fullname: Tokat, Bengu – sequence: 6 givenname: Georgia surname: Dolios fullname: Dolios, Georgia – sequence: 7 givenname: Aarthi surname: Ramakrishnan fullname: Ramakrishnan, Aarthi – sequence: 8 givenname: Li surname: Shen fullname: Shen, Li – sequence: 9 givenname: Rong surname: Wang fullname: Wang, Rong – sequence: 10 givenname: Pin-Xian orcidid: 0000-0002-8957-6780 surname: Xu fullname: Xu, Pin-Xian |
BookMark | eNptkcFu1DAQhi1URLeFEy_gIxIKtWPHSS5IqFpapEpIZTlbE2eya8jawfZu2Tfr49VpV0hQDpal8Tf_P57_jJw475CQt5x94KwVFw7CxfonmFqxF2TBhSoL2aryhCyYYFXBmWxOyVmMPxjjklfyFTkVigtWNnJB7lcbpCmAiybYKVnvYKTGg0l2D8kHujwAp_gbQ4rPuIBTwBjtHuljg00H2h2odQnDXHBremfTht4uv62y6BH3IVJw_WO16KzrZy7irx06g9nE0y1kiXyow2kTvKNT8Gt0dp7H9uhSNnpNXg4wRnxzvM_J98_L1eV1cfP16svlp5vCiKpJRWVASOzrqhvaoZZQlxKVaDoYWl5xNBwHhUJ0zcCGpsr7zGsRJR_6TpheKSHOyccn3WnXbbE32T3AqKdgtxAO2oPVf784u9Frv9dtpXipWBZ4dxQIPv8xJr210eA4gkO_i7qsuWpFKds2o--fUBN8jAGHPzac6TlrnbPWx6wzzf-hjU0wR5PnsON_ex4AWhq3cg |
CitedBy_id | crossref_primary_10_1186_s12920_024_01858_y crossref_primary_10_3389_fcell_2023_1126968 crossref_primary_10_1016_j_dnarep_2024_103729 crossref_primary_10_1200_PO_24_00188 crossref_primary_10_3390_cells12091314 crossref_primary_10_1016_j_omtn_2024_102199 |
Cites_doi | 10.1242/dev.124.1.219 10.1016/S0092-8674(00)80480-8 10.1186/s13059-014-0550-8 10.7554/eLife.30126 10.1242/dev.00536 10.1073/pnas.0308475101 10.1242/dev.153619 10.1128/MCB.21.14.4460-4469.2001 10.1146/annurev-genet-112618-043633 10.1038/nature05284 10.1016/j.ydbio.2006.06.049 10.1016/j.conb.2005.08.015 10.1038/sj.onc.1206678 10.1016/j.devcel.2014.10.015 10.1016/j.stem.2008.05.020 10.1016/j.molcel.2008.10.025 10.1126/science.1139621 10.1242/dev.071670 10.1038/nmeth.3317 10.1038/nbt.1630 10.1101/gad.305482.117 10.1038/ng0297-157 10.1093/nar/gkw1258 10.1093/nar/gkaa012 10.1016/j.ydbio.2005.05.029 10.1158/0008-5472.CAN-12-4078 10.1681/ASN.2021040525 10.1158/1541-7786.MCR-18-0262 10.1186/s12859-018-2486-6 10.1093/hmg/10.24.2775 10.1038/12722 10.1016/j.heares.2012.09.009 10.1038/nature02083 10.1038/s41388-019-1028-7 10.1016/S0092-8674(00)80481-X 10.1080/10409238.2020.1796922 10.1007/s00018-012-1144-9 10.1093/bioinformatics/btu638 10.1038/nature08138 10.1038/ng.3440 10.1038/s41467-017-02210-y 10.1016/S0896-6273(01)00371-3 10.1681/ASN.2006111282 10.1172/JCI74085 10.1371/journal.pbio.0060271 10.1186/gb-2008-9-9-r137 10.1128/MCB.23.24.9104-9116.2003 10.1038/nature02097 10.1038/nature07849 10.1128/MCB.00499-16 10.1681/ASN.2021020231 10.1242/dev.01437 10.1038/s41588-020-00729-3 10.1038/nature07668 10.1016/j.devcel.2015.01.033 10.1007/s00467-012-2246-1 10.1038/sj.emboj.7601381 10.1128/MCB.01516-12 10.1016/j.molcel.2010.05.004 10.1073/pnas.94.22.11974 10.1074/jbc.C900032200 10.1074/jbc.M111.303719 10.1038/s41467-018-08127-4 10.1016/j.stem.2016.05.025 10.1093/nar/gkaa625 10.1242/dev.127175 10.1002/dvdy.24282 10.3389/fcell.2022.815249 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022 |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022 |
DBID | AAYXX CITATION 7X8 5PM |
DOI | 10.1093/nar/gkac760 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 10359 |
ExternalDocumentID | PMC9561260 10_1093_nar_gkac760 |
GrantInformation_xml | – fundername: ; grantid: RO1 DK064640 |
GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAVAP AAYXX ABEJV ABGNP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ACUTJ ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFPKN AFRAH AFYAG AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS BAWUL BAYMD BCNDV CAG CIDKT CITATION CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EMOBN F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI OAWHX OBC OBS OEB OES OJQWA OVT P2P PEELM PQQKQ R44 RD5 RNS ROL ROZ RPM RXO SV3 TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM 7X8 5PM |
ID | FETCH-LOGICAL-c358t-5ca34ed75bf9f74a724e638baf9151ec1ef6e33b8f0f85109028321fdb3cd6633 |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 18:39:57 EDT 2025 Thu Jul 10 18:09:21 EDT 2025 Tue Jul 01 02:59:18 EDT 2025 Thu Apr 24 22:50:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c358t-5ca34ed75bf9f74a724e638baf9151ec1ef6e33b8f0f85109028321fdb3cd6633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors. |
ORCID | 0000-0001-9036-1683 0000-0002-8957-6780 0000-0001-9231-1604 |
OpenAccessLink | http://dx.doi.org/10.1093/nar/gkac760 |
PMID | 36130284 |
PQID | 2716932499 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9561260 proquest_miscellaneous_2716932499 crossref_primary_10_1093_nar_gkac760 crossref_citationtrail_10_1093_nar_gkac760 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-14 |
PublicationDateYYYYMMDD | 2022-10-14 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-14 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | Nucleic acids research |
PublicationYear | 2022 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Lemeille (2022101405180737100_B66) 2020; 48 Pignoni (2022101405180737100_B10) 1997; 91 Zhang (2022101405180737100_B33) 2008; 9 Krishnan (2022101405180737100_B48) 2009; 284 Wu (2022101405180737100_B24) 2013; 73 Ballas (2022101405180737100_B42) 2005; 15 Nicolai (2022101405180737100_B58) 2020; 39 Tessari (2022101405180737100_B39) 2003; 23 Muhammad (2022101405180737100_B61) 2018; 16 Zhang (2022101405180737100_B47) 2017; 45 Zhang (2022101405180737100_B46) 2017; 8 Aratani (2022101405180737100_B38) 2001; 21 Wang (2022101405180737100_B57) 2006; 444 Xu (2022101405180737100_B7) 1997; 94 Tootle (2022101405180737100_B64) 2003; 426 Mulligan (2022101405180737100_B55) 2008; 32 Weber (2022101405180737100_B17) 2008; 19 Xu (2022101405180737100_B14) 2022; 10 Fidalgo (2022101405180737100_B60) 2016; 19 Sun (2022101405180737100_B41) 2013; 33 Xu (2022101405180737100_B12) 2003; 130 O’Brien (2022101405180737100_B68) 2016; 143 Yermalovich (2022101405180737100_B37) 2019; 10 Li (2022101405180737100_B18) 2021; 32 Tadjuidje (2022101405180737100_B6) 2013; 70 Yatskevich (2022101405180737100_B50) 2019; 53 Xu (2022101405180737100_B4) 2014; 31 Kobayashi (2022101405180737100_B20) 2008; 3 Xu (2022101405180737100_B5) 2013; 28 Xu (2022101405180737100_B8) 1997; 124 Zou (2022101405180737100_B22) 2006; 298 Ahmed (2022101405180737100_B36) 2012; 139 Li (2022101405180737100_B65) 2003; 426 Ballas (2022101405180737100_B62) 2001; 31 Love (2022101405180737100_B31) 2014; 15 Chen (2022101405180737100_B9) 1997; 91 Li (2022101405180737100_B26) 2017; 37 Fan (2022101405180737100_B40) 2020; 52 Sajithlal (2022101405180737100_B1) 2005; 284 Xu (2022101405180737100_B3) 1999; 23 Magassa (2022101405180737100_B45) 2021; 32 Xiao (2022101405180737100_B49) 2009; 457 Eisner (2022101405180737100_B28) 2015; 33 Hegde (2022101405180737100_B54) 2020; 55 Cook (2022101405180737100_B23) 2009; 458 Hochstatter (2022101405180737100_B56) 2012; 287 Yuan (2022101405180737100_B25) 2014; 124 Self (2022101405180737100_B19) 2006; 25 Ruf (2022101405180737100_B15) 2004; 101 McLean (2022101405180737100_B35) 2010; 28 Heinz (2022101405180737100_B34) 2010; 38 Liu (2022101405180737100_B63) 2018; 145 Hermanson (2022101405180737100_B43) 2008; 6 Okabe (2022101405180737100_B53) 2009; 460 Kim (2022101405180737100_B51) 2007; 316 Wong (2022101405180737100_B11) 2013; 297 Abdelhak (2022101405180737100_B16) 1997; 15 Ge (2022101405180737100_B32) 2018; 19 Buller (2022101405180737100_B13) 2001; 10 Powell (2022101405180737100_B52) 2003; 22 Zhang (2022101405180737100_B27) 2017; 6 Mahamdallie (2022101405180737100_B44) 2015; 47 Zou (2022101405180737100_B21) 2004; 131 Anders (2022101405180737100_B30) 2015; 31 Xu (2022101405180737100_B2) 2015; 244 Zhou (2022101405180737100_B59) 2017; 31 Li (2022101405180737100_B67) 2020; 48 Kim (2022101405180737100_B29) 2015; 12 |
References_xml | – volume: 124 start-page: 219 year: 1997 ident: 2022101405180737100_B8 article-title: Mouse eya homologues of the drosophila eyes absent gene require pax6 for expression in lens and nasal placode publication-title: Development doi: 10.1242/dev.124.1.219 – volume: 91 start-page: 881 year: 1997 ident: 2022101405180737100_B10 article-title: The eye-specification proteins so and eya form a complex and regulate multiple steps in drosophila eye development publication-title: Cell doi: 10.1016/S0092-8674(00)80480-8 – volume: 15 start-page: 550 year: 2014 ident: 2022101405180737100_B31 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 6 start-page: e30126 year: 2017 ident: 2022101405180737100_B27 article-title: An eya1-notch axis specifies bipotential epibranchial differentiation in mammalian craniofacial morphogenesis publication-title: Elife doi: 10.7554/eLife.30126 – volume: 130 start-page: 3085 year: 2003 ident: 2022101405180737100_B12 article-title: Six1 is required for the early organogenesis of mammalian kidney publication-title: Development doi: 10.1242/dev.00536 – volume: 101 start-page: 8090 year: 2004 ident: 2022101405180737100_B15 article-title: SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0308475101 – volume: 145 start-page: dev153619 year: 2018 ident: 2022101405180737100_B63 article-title: Histone deacetylases 1 and 2 regulate the transcriptional programs of nephron progenitors and renal vesicles publication-title: Development doi: 10.1242/dev.153619 – volume: 21 start-page: 4460 year: 2001 ident: 2022101405180737100_B38 article-title: Dual roles of RNA helicase a in CREB-dependent transcription publication-title: Mol. Cell Biol. doi: 10.1128/MCB.21.14.4460-4469.2001 – volume: 53 start-page: 445 year: 2019 ident: 2022101405180737100_B50 article-title: Organization of chromosomal DNA by SMC complexes publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-112618-043633 – volume: 444 start-page: 364 year: 2006 ident: 2022101405180737100_B57 article-title: A protein interaction network for pluripotency of embryonic stem cells publication-title: Nature doi: 10.1038/nature05284 – volume: 298 start-page: 430 year: 2006 ident: 2022101405180737100_B22 article-title: Eya1 regulates the growth of otic epithelium and interacts with pax2 during the development of all sensory areas in the inner ear publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2006.06.049 – volume: 15 start-page: 500 year: 2005 ident: 2022101405180737100_B42 article-title: The many faces of REST oversee epigenetic programming of neuronal genes publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2005.08.015 – volume: 22 start-page: 5784 year: 2003 ident: 2022101405180737100_B52 article-title: Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation publication-title: Oncogene doi: 10.1038/sj.onc.1206678 – volume: 31 start-page: 434 year: 2014 ident: 2022101405180737100_B4 article-title: Eya1 interacts with six2 and myc to regulate expansion of the nephron progenitor pool during nephrogenesis publication-title: Dev. Cell doi: 10.1016/j.devcel.2014.10.015 – volume: 3 start-page: 169 year: 2008 ident: 2022101405180737100_B20 article-title: Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development publication-title: Cell Stem. Cell doi: 10.1016/j.stem.2008.05.020 – volume: 32 start-page: 718 year: 2008 ident: 2022101405180737100_B55 article-title: CDYL bridges REST and histone methyltransferases for gene repression and suppression of cellular transformation publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.10.025 – volume: 316 start-page: 1202 year: 2007 ident: 2022101405180737100_B51 article-title: Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response publication-title: Science doi: 10.1126/science.1139621 – volume: 139 start-page: 1965 year: 2012 ident: 2022101405180737100_B36 article-title: EYA1 and SIX1 drive the neuronal developmental program in cooperation with the SWI/SNF chromatin-remodeling complex and SOX2 in the mammalian inner ear publication-title: Development doi: 10.1242/dev.071670 – volume: 12 start-page: 357 year: 2015 ident: 2022101405180737100_B29 article-title: HISAT: a fast spliced aligner with low memory requirements publication-title: Nat. Methods doi: 10.1038/nmeth.3317 – volume: 28 start-page: 495 year: 2010 ident: 2022101405180737100_B35 article-title: GREAT improves functional interpretation of cis-regulatory regions publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1630 – volume: 31 start-page: 1770 year: 2017 ident: 2022101405180737100_B59 article-title: ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression publication-title: Genes Dev. doi: 10.1101/gad.305482.117 – volume: 15 start-page: 157 year: 1997 ident: 2022101405180737100_B16 article-title: A human homologue of the drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family publication-title: Nat. Genet. doi: 10.1038/ng0297-157 – volume: 45 start-page: 3102 year: 2017 ident: 2022101405180737100_B47 article-title: Non-CpG methylation by DNMT3B facilitates REST binding and gene silencing in developing mouse hearts publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1258 – volume: 48 start-page: 2880 year: 2020 ident: 2022101405180737100_B67 article-title: Dynamic changes in cis-regulatory occupancy by six1 and its cooperative interactions with distinct cofactors drive lineage-specific gene expression programs during progressive differentiation of the auditory sensory epithelium publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa012 – volume: 284 start-page: 323 year: 2005 ident: 2022101405180737100_B1 article-title: Eya 1 acts as a critical regulator for specifying the metanephric mesenchyme publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2005.05.029 – volume: 73 start-page: 4488 year: 2013 ident: 2022101405180737100_B24 article-title: EYA1 phosphatase function is essential to drive breast cancer cell proliferation through cyclin d1 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-4078 – volume: 32 start-page: 2815 year: 2021 ident: 2022101405180737100_B18 article-title: Chromatin remodelers interact with eya1 and six2 to target enhancers to control nephron progenitor cell maintenance publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2021040525 – volume: 16 start-page: 1977 year: 2018 ident: 2022101405180737100_B61 article-title: FLYWCH1, a novel suppressor of nuclear beta-Catenin, regulates migration and morphology in colorectal cancer publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-18-0262 – volume: 19 start-page: 534 year: 2018 ident: 2022101405180737100_B32 article-title: iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data publication-title: BMC Bioinformatics doi: 10.1186/s12859-018-2486-6 – volume: 10 start-page: 2775 year: 2001 ident: 2022101405180737100_B13 article-title: Molecular effects of eya1 domain mutations causing organ defects in BOR syndrome publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/10.24.2775 – volume: 23 start-page: 113 year: 1999 ident: 2022101405180737100_B3 article-title: Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia publication-title: Nat. Genet. doi: 10.1038/12722 – volume: 297 start-page: 13 year: 2013 ident: 2022101405180737100_B11 article-title: EYA1-SIX1 complex in neurosensory cell fate induction in the mammalian inner ear publication-title: Hear Res. doi: 10.1016/j.heares.2012.09.009 – volume: 426 start-page: 247 year: 2003 ident: 2022101405180737100_B65 article-title: Eya protein phosphatase activity regulates six1-dach-eya transcriptional effects in mammalian organogenesis publication-title: Nature doi: 10.1038/nature02083 – volume: 39 start-page: 754 year: 2020 ident: 2022101405180737100_B58 article-title: ZNF281 is recruited on DNA breaks to facilitate DNA repair by non-homologous end joining publication-title: Oncogene doi: 10.1038/s41388-019-1028-7 – volume: 91 start-page: 893 year: 1997 ident: 2022101405180737100_B9 article-title: Dachshund and eyes absent proteins form a complex and function synergistically to induce ectopic eye development in drosophila publication-title: Cell doi: 10.1016/S0092-8674(00)80481-X – volume: 55 start-page: 372 year: 2020 ident: 2022101405180737100_B54 article-title: The multi-functional eyes absent proteins publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.1080/10409238.2020.1796922 – volume: 70 start-page: 1897 year: 2013 ident: 2022101405180737100_B6 article-title: The eyes absent proteins in development and disease publication-title: Cell Mol. Life Sci. doi: 10.1007/s00018-012-1144-9 – volume: 31 start-page: 166 year: 2015 ident: 2022101405180737100_B30 article-title: HTSeq–a python framework to work with high-throughput sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 460 start-page: 520 year: 2009 ident: 2022101405180737100_B53 article-title: Regulation of the innate immune response by threonine-phosphatase of eyes absent publication-title: Nature doi: 10.1038/nature08138 – volume: 47 start-page: 1471 year: 2015 ident: 2022101405180737100_B44 article-title: Mutations in the transcriptional repressor REST predispose to wilms tumor publication-title: Nat. Genet. doi: 10.1038/ng.3440 – volume: 8 start-page: 1979 year: 2017 ident: 2022101405180737100_B46 article-title: REST regulates the cell cycle for cardiac development and regeneration publication-title: Nat. Commun. doi: 10.1038/s41467-017-02210-y – volume: 31 start-page: 353 year: 2001 ident: 2022101405180737100_B62 article-title: Regulation of neuronal traits by a novel transcriptional complex publication-title: Neuron doi: 10.1016/S0896-6273(01)00371-3 – volume: 19 start-page: 891 year: 2008 ident: 2022101405180737100_B17 article-title: SIX2 and BMP4 mutations associate with anomalous kidney development publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2006111282 – volume: 124 start-page: 3378 year: 2014 ident: 2022101405180737100_B25 article-title: A phosphotyrosine switch determines the antitumor activity of ERbeta publication-title: J. Clin. Invest. doi: 10.1172/JCI74085 – volume: 6 start-page: e271 year: 2008 ident: 2022101405180737100_B43 article-title: Stem cells have different needs for REST publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060271 – volume: 9 start-page: R137 year: 2008 ident: 2022101405180737100_B33 article-title: Model-based analysis of chip-Seq (MACS) publication-title: Genome Biol. doi: 10.1186/gb-2008-9-9-r137 – volume: 23 start-page: 9104 year: 2003 ident: 2022101405180737100_B39 article-title: Transcriptional activation of the cyclin a gene by the architectural transcription factor HMGA2 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.23.24.9104-9116.2003 – volume: 426 start-page: 299 year: 2003 ident: 2022101405180737100_B64 article-title: The transcription factor eyes absent is a protein tyrosine phosphatase publication-title: Nature doi: 10.1038/nature02097 – volume: 458 start-page: 591 year: 2009 ident: 2022101405180737100_B23 article-title: Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions publication-title: Nature doi: 10.1038/nature07849 – volume: 37 start-page: e00499-16 year: 2017 ident: 2022101405180737100_B26 article-title: EYA1’s conformation specificity in dephosphorylating phosphothreonine in myc and its activity on myc stabilization in breast cancer publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00499-16 – volume: 32 start-page: 1974 year: 2021 ident: 2022101405180737100_B45 article-title: REST and stress resistance in the aging kidney publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2021020231 – volume: 131 start-page: 5561 year: 2004 ident: 2022101405180737100_B21 article-title: Eya1 and six1 are essential for early steps of sensory neurogenesis in mammalian cranial placodes publication-title: Development doi: 10.1242/dev.01437 – volume: 52 start-page: 1384 year: 2020 ident: 2022101405180737100_B40 article-title: BAHCC1 binds H3K27me3 via a conserved BAH module to mediate gene silencing and oncogenesis publication-title: Nat. Genet. doi: 10.1038/s41588-020-00729-3 – volume: 457 start-page: 57 year: 2009 ident: 2022101405180737100_B49 article-title: WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity publication-title: Nature doi: 10.1038/nature07668 – volume: 33 start-page: 22 year: 2015 ident: 2022101405180737100_B28 article-title: The eya1 phosphatase promotes shh signaling during hindbrain development and oncogenesis publication-title: Dev. Cell doi: 10.1016/j.devcel.2015.01.033 – volume: 28 start-page: 843 year: 2013 ident: 2022101405180737100_B5 article-title: The EYA-SO/SIX complex in development and disease publication-title: Pediatr Nephrol. doi: 10.1007/s00467-012-2246-1 – volume: 25 start-page: 5214 year: 2006 ident: 2022101405180737100_B19 article-title: Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney publication-title: EMBO J. doi: 10.1038/sj.emboj.7601381 – volume: 33 start-page: 927 year: 2013 ident: 2022101405180737100_B41 article-title: The phosphatase-transcription activator EYA1 is targeted by anaphase-promoting complex/Cdh1 for degradation at M-to-G1 transition publication-title: Mol. Cell Biol. doi: 10.1128/MCB.01516-12 – volume: 38 start-page: 576 year: 2010 ident: 2022101405180737100_B34 article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and b cell identities publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.05.004 – volume: 94 start-page: 11974 year: 1997 ident: 2022101405180737100_B7 article-title: Mouse eya genes are expressed during limb tendon development and encode a transcriptional activation function publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.94.22.11974 – volume: 284 start-page: 16066 year: 2009 ident: 2022101405180737100_B48 article-title: Dephosphorylation of the C-terminal tyrosyl residue of the DNA Damage-related histone H2A.X is mediated by the protein phosphatase eyes absent publication-title: J. Biol. Chem. doi: 10.1074/jbc.C900032200 – volume: 287 start-page: 24365 year: 2012 ident: 2022101405180737100_B56 article-title: Myb-binding protein 1a (Mybbp1a) regulates levels and processing of pre-ribosomal RNA publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.303719 – volume: 10 start-page: 168 year: 2019 ident: 2022101405180737100_B37 article-title: Lin28 and let-7 regulate the timing of cessation of murine nephrogenesis publication-title: Nat. Commun. doi: 10.1038/s41467-018-08127-4 – volume: 19 start-page: 355 year: 2016 ident: 2022101405180737100_B60 article-title: Zfp281 coordinates opposing functions of tet1 and tet2 in pluripotent states publication-title: Cell Stem. Cell doi: 10.1016/j.stem.2016.05.025 – volume: 48 start-page: 9019 year: 2020 ident: 2022101405180737100_B66 article-title: Interplay of RFX transcription factors 1, 2 and 3 in motile ciliogenesis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa625 – volume: 143 start-page: 595 year: 2016 ident: 2022101405180737100_B68 article-title: Differential regulation of mouse and human nephron progenitors by the six family of transcriptional regulators publication-title: Development doi: 10.1242/dev.127175 – volume: 244 start-page: 866 year: 2015 ident: 2022101405180737100_B2 article-title: Eya-six are necessary for survival of nephrogenic cord progenitors and inducing nephric duct development before ureteric bud formation publication-title: Dev. Dyn. doi: 10.1002/dvdy.24282 – volume: 10 start-page: 815249 year: 2022 ident: 2022101405180737100_B14 article-title: Six1 and six2 of the sine oculis homeobox subfamily are not functionally interchangeable in mouse nephron formation publication-title: Front Cell Dev. Biol. doi: 10.3389/fcell.2022.815249 |
SSID | ssj0014154 |
Score | 2.447637 |
Snippet | Eya1 is critical for establishing and maintaining nephron progenitor cells (NPCs). It belongs to a family of proteins called phosphatase-transcriptional... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 10343 |
SubjectTerms | Gene regulation, Chromatin and Epigenetics |
Title | The transcriptional coactivator Eya1 exerts transcriptional repressive activity by interacting with REST corepressors and REST-binding sequences to maintain nephron progenitor identity |
URI | https://www.proquest.com/docview/2716932499 https://pubmed.ncbi.nlm.nih.gov/PMC9561260 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7cFNpcSpu01H2EKYQeapRIXsmyjsE4hEJCDw74JrTyqjapZWNLAfeX9Y_13pl9yFLsQhuDhZFGWsx8mp3ZnfmGsVOJny61SU1Cz3f8NPCdaBJwp0ezV68fCKHq1q5vele3_tdxMG61fteylspCnKU_99aVPEareA71SlWy_6HZ6qF4An-jfvGIGsbjP-u4oMnGvvqK7INKFe4plu4MN4mnmioV6x25lUmBvdd8GqqFhNgo-ghVOGXXaFFDow5xXSpxas2jShrxLAXVqiSmSscmR3ae4CPw28nlkoh3VQaYJMOx6sx0VXBjJ_mGCJWJNDadTWgLo7a6RnlCM106UkF4MJXaOg2mZT638y5eGJdKcpavp-XOavjICpr1DQyNKV1ku775l7rJmpnkiktV83WeSW3GVS1Y1LTzmuDW4rlfs9qeyzVXlHEBPOI13Du_aO6tnHLfL7_fJWmomyHUsLacK7Bxisu6uvvdA0Lvb9cDqibGQPIJe9rF6IbMc-gOq80vfEs065n5Y6asFMc-x5HPzbiH7JkdpOlTbQOlZppvzW8avWQvTMADFxq9r1hL5kfs-CJHgM438BlUCrLa2zlizwe2_eAx-4XghgeghRq4gcANGtw7cltwgwU3iA3UwA0EbiAYQx3cgOCGOrihAjcUC7DgBgNu2IIbLLhfs9vL4Whw5Zg2I07Kg37hBGnCfTkJA5FFWegnYdeXOCuJJIvQHZapJ7Oe5Fz0MzfD-IQSmam9VzYRPJ2gw87fsIN8kcu3DAJXukRw6AtP4mQY9f2MCx5ySbSQbpK02RerqDg1HPzUCuZHrHNBeIwKjo2C2-y0El5q6pn9Yp-sxmNUEe33JblclOu4S0xYGDBFUZuFDShUzyNy-eaVfDZVJPMGou8efed7drh9nT-wg2JVyo_owBfiRMH9RC1__QGYIgQc |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+transcriptional+coactivator+Eya1+exerts+transcriptional+repressive+activity+by+interacting+with+REST+corepressors+and+REST-binding+sequences+to+maintain+nephron+progenitor+identity&rft.jtitle=Nucleic+acids+research&rft.au=Li%2C+Jun&rft.au=Cheng%2C+Chunming&rft.au=Xu%2C+Jinshu&rft.au=Zhang%2C+Ting&rft.date=2022-10-14&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=50&rft.issue=18&rft.spage=10343&rft.epage=10359&rft_id=info:doi/10.1093%2Fnar%2Fgkac760&rft_id=info%3Apmid%2F36130284&rft.externalDocID=PMC9561260 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |