Requirements for Metal and Alloy Powders for 3D Printing (Review)
There are five 3D printing methods that use metal or alloy powders. The most promising methods are powder bed fusion, directed energy deposition, and binder jetting. General requirements for the powders and their most important characteristics (particle size and shape, powder flowability), as well a...
Saved in:
Published in | Powder metallurgy and metal ceramics Vol. 61; no. 3-4; pp. 135 - 154 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2022
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There are five 3D printing methods that use metal or alloy powders. The most promising methods are powder bed fusion, directed energy deposition, and binder jetting. General requirements for the powders and their most important characteristics (particle size and shape, powder flowability), as well as the chemical composition of nickel alloy powders from two manufacturers, are addressed. Features peculiar to the behavior of powders in use of two types of recoater (as a blade or a roller) are analyzed. It is shown that the d
90
size does not meet the actual requirements and d
max
needs to be taken into account instead. Powders with nonspherical particles (mixtures of spherical and nonspherical particles) are known to be reused, but there are still no clear recommendations for their use. Inadequate attention is paid to the shape of powder particles. In additive manufacturing processes, powders with nonspherical particles (produced by grinding and other methods) have been already used but, in most cases, the shape indicators or their dispersion are not determined. Basic criteria for the particle shape that correlate with the powder flowability should be identified. The standard flowability value (determined by flow test) does not adequately characterize the dynamic behavior of powders, nor does it allow the powders with significantly different bulk densities and particle material to be compared, and thus requires adjustment. The most important characteristic for the processes considered is the ability of powders to form a thin flat layer in certain conditions. A new characteristic of the powder dynamic behavior has been proposed: spreadability. It includes two criteria: build plate coverage ratio and powder dynamic flow angle, each having its drawbacks. To date, there is no accepted technique for testing spreadability, nor is there an agreed indicator that would characterize it. There is only an understanding that a research method should best reproduce the powder behavior in a 3D printer in operation. Methods such as powder drum rotation (GranuDrum instrument) or long-established classification of pharmaceuticals by flowability, which was tried to be applied to metal powders, are involved. According to the classification, excellent flowability is inherent in powders having an angle of repose varying from 25 to 30 deg, Hausner ratio lower than 1.11, and Carr index lower than 5–15. The validity of this application requires thorough verification. The advantages and disadvantages of the following basic methods for producing powders of various metals and alloys used in 3D printers are addressed: gas atomization of melts in crucibles without vacuum and with vacuum melting or induction melting, plasma atomization using feedstock rods, rotation electrode gas or plasma atomization, etc. Gas atomization as a commercial method remains the most popular. Powders of greater quality made from reactive elements allow the production of new high-quality parts but also involve additional costs. |
---|---|
AbstractList | There are five 3D printing methods that use metal or alloy powders. The most promising methods are powder bed fusion, directed energy deposition, and binder jetting. General requirements for the powders and their most important characteristics (particle size and shape, powder flowability), as well as the chemical composition of nickel alloy powders from two manufacturers, are addressed. Features peculiar to the behavior of powders in use of two types of recoater (as a blade or a roller) are analyzed. It is shown that the d.sub.90 size does not meet the actual requirements and d.sub.max needs to be taken into account instead. Powders with nonspherical particles (mixtures of spherical and nonspherical particles) are known to be reused, but there are still no clear recommendations for their use. Inadequate attention is paid to the shape of powder particles. In additive manufacturing processes, powders with nonspherical particles (produced by grinding and other methods) have been already used but, in most cases, the shape indicators or their dispersion are not determined. Basic criteria for the particle shape that correlate with the powder flowability should be identified. The standard flowability value (determined by flow test) does not adequately characterize the dynamic behavior of powders, nor does it allow the powders with significantly different bulk densities and particle material to be compared, and thus requires adjustment. The most important characteristic for the processes considered is the ability of powders to form a thin flat layer in certain conditions. A new characteristic of the powder dynamic behavior has been proposed: spreadability. It includes two criteria: build plate coverage ratio and powder dynamic flow angle, each having its drawbacks. To date, there is no accepted technique for testing spreadability, nor is there an agreed indicator that would characterize it. There is only an understanding that a research method should best reproduce the powder behavior in a 3D printer in operation. Methods such as powder drum rotation (GranuDrum instrument) or long-established classification of pharmaceuticals by flowability, which was tried to be applied to metal powders, are involved. According to the classification, excellent flowability is inherent in powders having an angle of repose varying from 25 to 30 deg, Hausner ratio lower than 1.11, and Carr index lower than 5-15. The validity of this application requires thorough verification. The advantages and disadvantages of the following basic methods for producing powders of various metals and alloys used in 3D printers are addressed: gas atomization of melts in crucibles without vacuum and with vacuum melting or induction melting, plasma atomization using feedstock rods, rotation electrode gas or plasma atomization, etc. Gas atomization as a commercial method remains the most popular. Powders of greater quality made from reactive elements allow the production of new high-quality parts but also involve additional costs. There are five 3D printing methods that use metal or alloy powders. The most promising methods are powder bed fusion, directed energy deposition, and binder jetting. General requirements for the powders and their most important characteristics (particle size and shape, powder flowability), as well as the chemical composition of nickel alloy powders from two manufacturers, are addressed. Features peculiar to the behavior of powders in use of two types of recoater (as a blade or a roller) are analyzed. It is shown that the d90 size does not meet the actual requirements and dmax needs to be taken into account instead. Powders with nonspherical particles (mixtures of spherical and nonspherical particles) are known to be reused, but there are still no clear recommendations for their use. Inadequate attention is paid to the shape of powder particles. In additive manufacturing processes, powders with nonspherical particles (produced by grinding and other methods) have been already used but, in most cases, the shape indicators or their dispersion are not determined. Basic criteria for the particle shape that correlate with the powder flowability should be identified. The standard flowability value (determined by flow test) does not adequately characterize the dynamic behavior of powders, nor does it allow the powders with significantly different bulk densities and particle material to be compared, and thus requires adjustment. The most important characteristic for the processes considered is the ability of powders to form a thin flat layer in certain conditions. A new characteristic of the powder dynamic behavior has been proposed: spreadability. It includes two criteria: build plate coverage ratio and powder dynamic flow angle, each having its drawbacks. To date, there is no accepted technique for testing spreadability, nor is there an agreed indicator that would characterize it. There is only an understanding that a research method should best reproduce the powder behavior in a 3D printer in operation. Methods such as powder drum rotation (GranuDrum instrument) or long-established classification of pharmaceuticals by flowability, which was tried to be applied to metal powders, are involved. According to the classification, excellent flowability is inherent in powders having an angle of repose varying from 25 to 30 deg, Hausner ratio lower than 1.11, and Carr index lower than 5–15. The validity of this application requires thorough verification. The advantages and disadvantages of the following basic methods for producing powders of various metals and alloys used in 3D printers are addressed: gas atomization of melts in crucibles without vacuum and with vacuum melting or induction melting, plasma atomization using feedstock rods, rotation electrode gas or plasma atomization, etc. Gas atomization as a commercial method remains the most popular. Powders of greater quality made from reactive elements allow the production of new high-quality parts but also involve additional costs. There are five 3D printing methods that use metal or alloy powders. The most promising methods are powder bed fusion, directed energy deposition, and binder jetting. General requirements for the powders and their most important characteristics (particle size and shape, powder flowability), as well as the chemical composition of nickel alloy powders from two manufacturers, are addressed. Features peculiar to the behavior of powders in use of two types of recoater (as a blade or a roller) are analyzed. It is shown that the d 90 size does not meet the actual requirements and d max needs to be taken into account instead. Powders with nonspherical particles (mixtures of spherical and nonspherical particles) are known to be reused, but there are still no clear recommendations for their use. Inadequate attention is paid to the shape of powder particles. In additive manufacturing processes, powders with nonspherical particles (produced by grinding and other methods) have been already used but, in most cases, the shape indicators or their dispersion are not determined. Basic criteria for the particle shape that correlate with the powder flowability should be identified. The standard flowability value (determined by flow test) does not adequately characterize the dynamic behavior of powders, nor does it allow the powders with significantly different bulk densities and particle material to be compared, and thus requires adjustment. The most important characteristic for the processes considered is the ability of powders to form a thin flat layer in certain conditions. A new characteristic of the powder dynamic behavior has been proposed: spreadability. It includes two criteria: build plate coverage ratio and powder dynamic flow angle, each having its drawbacks. To date, there is no accepted technique for testing spreadability, nor is there an agreed indicator that would characterize it. There is only an understanding that a research method should best reproduce the powder behavior in a 3D printer in operation. Methods such as powder drum rotation (GranuDrum instrument) or long-established classification of pharmaceuticals by flowability, which was tried to be applied to metal powders, are involved. According to the classification, excellent flowability is inherent in powders having an angle of repose varying from 25 to 30 deg, Hausner ratio lower than 1.11, and Carr index lower than 5–15. The validity of this application requires thorough verification. The advantages and disadvantages of the following basic methods for producing powders of various metals and alloys used in 3D printers are addressed: gas atomization of melts in crucibles without vacuum and with vacuum melting or induction melting, plasma atomization using feedstock rods, rotation electrode gas or plasma atomization, etc. Gas atomization as a commercial method remains the most popular. Powders of greater quality made from reactive elements allow the production of new high-quality parts but also involve additional costs. |
Audience | Academic |
Author | Gogaev, K. O. Radchenko, O. K. |
Author_xml | – sequence: 1 givenname: O. K. surname: Radchenko fullname: Radchenko, O. K. email: arradch@gmail.com organization: Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine – sequence: 2 givenname: K. O. surname: Gogaev fullname: Gogaev, K. O. organization: Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine |
BookMark | eNp9kF1LwzAUhoNMcJv-Aa8K3uhF58lnu8sxP0FxDL0OaXsyOrp0SzrH_r3RCt55dcLJ--QNz4gMXOuQkEsKEwqQ3QZKKagUGEsBONAUTsiQyoynU1BqEM-g8pRyYGdkFMIaIGKCDslsibt97XGDrguJbX3yip1pEuOqZNY07TFZtIcKfX_H75KFr11Xu1VyvcTPGg835-TUmibgxe8ck4-H-_f5U_ry9vg8n72kJZd5l0qD0ppMYcWZLW1lJaVKMFSsNKUtpiCqTCiBBRYmVzmrKFNFjlmGQnFjDR-Tq_7drW93ewydXrd772KlZplgigsJMqYmfWplGtS1s23nTWwwFW7qMkqzddzPMpZzAVOZR4D1QOnbEDxavfX1xvijpqC_3ererY5u9Y9bDRHiPRRi2K3Q__3lH-oLRoB8dw |
CitedBy_id | crossref_primary_10_1007_s11106_023_00364_7 crossref_primary_10_1016_j_jmrt_2023_08_173 crossref_primary_10_1007_s11106_023_00326_z crossref_primary_10_1007_s11106_023_00338_9 crossref_primary_10_1016_j_susmat_2023_e00746 |
Cites_doi | 10.1016/j.actbio.2009.01.011 10.1016/j.powtec.2019.12.023 10.3221/IGF-ESIS.53.21 10.1016/j.jmst.2015.08.007 10.1007/s11661-016-3470-2 10.1016/j.powtec.2021.02.070 10.1016/j.msea.2011.06.074 10.1016/j.powtec.2018.07.030 10.1016/j.apt.2020.03.006 10.1016/j.jmrt.2021.04.091 10.3390/ma14133548 10.1115/1.4002023 10.1016/j.acme.2018.01.015 10.3390/ma11050843 10.1016/j.powtec.2015.05.015 10.1016/j.powtec.2015.10.035 10.1016/j.jmrt.2021.03.043 10.1016/j.powtec.2019.12.048 10.1007/s00170-018-1601-1) 10.1016/j.prostr.2016.02.039 10.1007/s10035-006-0029-8 10.1007/s11837-015-1300-4 10.1007/s40964-015-0001-4 10.1007/s11837-015-1301-3 10.1007/s11837-017-2513-5 10.3390/ma14061538 10.1016/j.powtec.2017.08.011 10.1016/j.powtec.2020.04.033 10.4172/2168-9806.1000e131 10.1016/j.matdes.2020.109382 10.1007/s00501-020-01067-x 10.1007/s11106-012-9391-8 10.2320/matertrans.M2013329 10.1016/j.jmatprotec.2015.01.016 10.1016/S0026-0657(04)00153-5 10.1016/j.apt.2017.06.025 10.1007/s40964-019-00078-6 10.1016/j.powtec.2016.11.002 10.1016/j.mprp.2020.06.061 10.1016/j.powtec.2021.06.046 10.1017/jfm.2012.423 10.1080/17452759.2016.1250605 10.1016/B978-0-08-100433-3.00002-6 10.1007/s00501-020-01069-9 10.1016/j.jmatprotec.2018.10.037 10.1016/j.procir.2017.12.204 10.1016/C2017-0-04707-9 10.1016/j.ijmachtools.2020.103553 10.1007/978-3-030-05861-6_33 10.1016/j.matdes.2019.108385 10.1016/B978-0-12-812155-9.00002-5 10.1016/S1359-6462(99)00089-5 10.1016/j.powtec.2021.01.058 10.1016/B978-0-08-100543-9.00013-0 10.1016/B978-0-12-813489-4.00008-8 10.1016/j.addma.2020.101082 10.1007/978-3-319-89480-5_39 10.1016/j.apsusc.2021.149645 10.1533/9780857098900 10.1016/j.powtec.2020.05.119 10.3390/ma14040909 10.1595/205651315X688686 10.1007/978-3-319-52689-8 10.1016/C2014-0-03891-9 10.1016/B978-0-08-096532-1.01013-X 10.1016/S0026-0657 10.1533/9780857098900.1.3 10.1038/s41598-021-93422-2 10.1016/j.mtcomm.2020.100964 10.1016/B978-0-08-100433-3.00001-4 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2022 Springer |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2022 Springer |
DBID | AAYXX CITATION |
DOI | 10.1007/s11106-022-00301-0 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts Engineering |
EISSN | 1573-9066 |
EndPage | 154 |
ExternalDocumentID | A728340958 10_1007_s11106_022_00301_0 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 2.D 28- 29O 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAGCJ AAHNG AAIAL AAIKT AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUCO AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJGSW AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9N PF0 PT4 PT5 Q2X QOK QOR QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 XU3 YLTOR Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8T Z8W Z8Z Z92 ZMTXR ~EX AACDK AAEOY AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGJZZ AGQEE AGRTI AIGIU CITATION |
ID | FETCH-LOGICAL-c358t-5ae5fa76ed32fcfdf511642e62cacfb904d7464ebeba8682d126b8e77e463afa3 |
IEDL.DBID | AGYKE |
ISSN | 1068-1302 |
IngestDate | Thu Nov 07 05:28:21 EST 2024 Tue Nov 12 22:49:46 EST 2024 Wed Oct 16 15:29:24 EDT 2024 Sat Dec 16 12:05:44 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3-4 |
Keywords | particle size metal and alloy powders particle shape directed energy deposition flowability powder bed fusion recoater spreadability 3D printing binder jetting |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-5ae5fa76ed32fcfdf511642e62cacfb904d7464ebeba8682d126b8e77e463afa3 |
PQID | 2742634505 |
PQPubID | 326338 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2742634505 gale_infotracacademiconefile_A728340958 crossref_primary_10_1007_s11106_022_00301_0 springer_journals_10_1007_s11106_022_00301_0 |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Powder metallurgy and metal ceramics |
PublicationTitleAbbrev | Powder Metall Met Ceram |
PublicationYear | 2022 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Seabra, Azevedo, Araújo, Reis, Pinto, Alves, Sandos, Mortagua (CR23) 2016; 1 CR36 CR35 CR33 CR32 CR31 CR30 Mindt, Megahed, Lavery, Holmes, Brown (CR123) 2016; 47 Whittaker (CR47) 2017; 3 Boulos (CR37) 2004; 59 Sinclair, Edinger, Sparling, Molavi-Kakhki, Labrecque (CR134) 2021; 14 Haeri, Wang, Ghita, Sun (CR71) 2017; 306 Kaleem, Alam, Khan, Jaffery, Rashid (CR110) 2021; 76 CR43 Sutton, Kriewall, Leu, Newkirk (CR16) 2017; 12 Radchenko (CR78) 2012; 51 CR40 Huck-Jones, Langley (CR137) 2015; 1 Levina, Chernyshov (CR1) 2016; 11–12 Nan, Pasha, Ghadiri (CR68) 2020; 364 Ahsan, Pinkerton, Moat, Shackleton (CR39) 2011; 528 Ferro, Berto, Romanin (CR127) 2020; 53 Williams (CR55) 2018; 4 CR58 CR57 Ahmed, Pasha, Nan, Ghadiri (CR117) 2020; 367 Hohmann, Pleier (CR34) 2005; 18 Walton, Moor, Gill (CR99) 2007; 9 CR54 CR53 Dzhugan, Olshanetskii (CR92) 2016; No. 2 CR135 Nguyen, Luu, Nai, Zhu, Chen, Wei (CR12) 2018; 18 Durejko, Aniszewska, Zietala, Antolak-Dudka, Czujko, Varin, Paserin (CR28) 2018; 11 CR52 CR136 CR51 CR133 CR50 CR131 Cao, Qiu, Wei, Zhang (CR72) 2015; 220 Nziu, Masu, Mendonidis, Alungogo (CR109) 2014; 11 He, Hassanpour, Bayly (CR114) 2021; 392 Taylor (CR56) 2015; 1 CR67 CR66 CR65 CR64 Tang, Qian, Liu, Zhang, Yang, Wang (CR84) 2015; 67 CR62 CR61 CR60 Tkachenko, Duriagina, Lemishka, Izonin, Trostianchyn (CR63) 2018; No. 3(12) Haeri (CR125) 2017; 321 Petrik, Ovchinnikov, Seliverstov (CR90) 2015; 8 Dattani, Bose (CR20) 2020; 6 Snow, Martukanitz, Joshi (CR118) 2019; 28 Panova, Ternovyi (CR48) 2020; 1 Nie, Tang, Yang, Lei, Shu, Li (CR38) 2020; 31 CR79 Ferro, Romanin, Berto (CR11) 2020; 53 CR77 CR115 CR116 Wei (CR44) 2017; 28 CR75 CR113 CR74 CR73 CR111 CR112 Nan, Pasha, Bonakdar, Lopez, Zafar, Nadimi, Ghadiri (CR69) 2018; 338 Huck-Jones, Langley (CR100) 2017; 3 Zeinali, Khajepour (CR107) 2010; 132 CR119 CR2 CR3 CR6 CR5 Spierings, Voegtlin, Bauer, Wedener (CR108) 2016; 1 CR8 CR7 CR130 CR9 CR89 CR88 CR87 CR86 CR124 CR85 Ovchinnikov, Olshanetskii, Dzhugan (CR91) 2016; 3 Ternovyi, Panova (CR49) 2019; 42 CR122 Simons (CR4) 2018; 96 Vock, Klöden, Kirchner, Weißgärber, Kieback (CR15) 2019; 4 CR121 Wang, Li, Shen, Zou, Yu, Zhou (CR70) 2020; 363 CR80 Parteli, Pöschel (CR76) 2016; 288 Mitterlehner, Danninger, Gierl-Mayer, Gschiel (CR132) 2021; 166 CR128 CR129 Attar, Prashanth, Zhang, Calin, Okulov, Scudino, Yang, Eckert (CR97) 2015; 31 Ketterhagen, Hancock, James, Curtis (CR126) 2012; 713 Balla, Devasconcellos, Xue, Bose, Bandyopadhyay (CR27) 2009; 5 CR18 CR17 Yang, Gwak, Lim, Kim, Yun (CR45) 2013; 54 CR14 CR13 CR98 CR96 Yablokova, Speirs, Van Humbeeck, Kruth, Schrooten, Cloots, Boschini, Lumay, Luyten (CR120) 2015; 283 CR95 CR94 Eason (CR10) 2014; No. 3 CR93 Hakeem (CR83) 2021; 12 Yi, Zhou, Wang, Yan, Liu (CR81) 2021; 13 Gruber, Smolina, Kasprowicz, Kurzynowski (CR82) 2021; 14 CR29 CR26 CR25 CR24 Klein, Clayton (CR19) 2019; 5 CR22 CR104 CR21 CR105 CR102 CR101 Bao, Yang, Wen, Guo, Guo (CR46) 2021; 199 Duryagina, Trostianchin, Lemishka, Skrebtsov, Ovchinnikov (CR41) 2017; 1 Sun, Fang, Zhang, Xia (CR42) 2017; 69 Sun, Gulizia, Oh, Doblin, Yang, Qian (CR103) 2015; 67 Maximenko, Olumor, Maidaniuk, Olevsky (CR59) 2021; 385 CR106 M Simons (301_CR4) 2018; 96 301_CR129 301_CR35 301_CR128 301_CR33 301_CR31 301_CR32 301_CR124 P Taylor (301_CR56) 2015; 1 301_CR121 301_CR30 301_CR122 M Mitterlehner (301_CR132) 2021; 166 cr-split#-301_CR40.2 CW Sinclair (301_CR134) 2021; 14 AL Maximenko (301_CR59) 2021; 385 ZA Duryagina (301_CR41) 2017; 1 W-H Wei (301_CR44) 2017; 28 D Huck-Jones (301_CR100) 2017; 3 301_CR29 301_CR26 R Tkachenko (301_CR63) 2018; No. 3(12) 301_CR24 301_CR25 301_CR22 301_CR136 301_CR21 301_CR135 cr-split#-301_CR36.1 AV Ovchinnikov (301_CR91) 2016; 3 cr-split#-301_CR36.2 301_CR133 301_CR130 301_CR131 M Boulos (301_CR37) 2004; 59 M Hohmann (301_CR34) 2005; 18 301_CR17 DA Levina (301_CR1) 2016; 11–12 301_CR18 W Nan (301_CR68) 2020; 364 G Yablokova (301_CR120) 2015; 283 301_CR13 301_CR105 301_CR14 301_CR104 301_CR101 301_CR98 301_CR102 301_CR95 D Whittaker (301_CR47) 2017; 3 301_CR96 301_CR93 301_CR94 M Ahmed (301_CR117) 2020; 367 VK Balla (301_CR27) 2009; 5 M Zeinali (301_CR107) 2010; 132 S Haeri (301_CR125) 2017; 321 OA Dzhugan (301_CR92) 2016; No. 2 301_CR119 HP Tang (301_CR84) 2015; 67 301_CR116 M Seabra (301_CR23) 2016; 1 YY Sun (301_CR103) 2015; 67 301_CR88 B Williams (301_CR55) 2018; 4 301_CR89 301_CR115 301_CR86 301_CR112 301_CR87 301_CR113 301_CR85 301_CR111 301_CR80 PK Nziu (301_CR109) 2014; 11 MA Kaleem (301_CR110) 2021; 76 Y Ketterhagen (301_CR126) 2012; 713 P Sun (301_CR42) 2017; 69 W Nan (301_CR69) 2018; 338 VO Panova (301_CR48) 2020; 1 301_CR79 301_CR77 301_CR75 301_CR73 301_CR74 R Dattani (301_CR20) 2020; 6 EJR Parteli (301_CR76) 2016; 288 L Wang (301_CR70) 2020; 363 AT Sutton (301_CR16) 2017; 12 cr-split#-301_CR106.1 cr-split#-301_CR106.2 Z Snow (301_CR118) 2019; 28 Y Ternovyi (301_CR49) 2019; 42 P Ferro (301_CR127) 2020; 53 301_CR66 H Mindt (301_CR123) 2016; 47 301_CR67 301_CR64 301_CR65 S Vock (301_CR15) 2019; 4 301_CR62 301_CR60 K Gruber (301_CR82) 2021; 14 H Attar (301_CR97) 2015; 31 301_CR61 P Ferro (301_CR11) 2020; 53 IA Petrik (301_CR90) 2015; 8 AS Hakeem (301_CR83) 2021; 12 S Cao (301_CR72) 2015; 220 Y Nie (301_CR38) 2020; 31 301_CR57 301_CR58 301_CR53 301_CR54 301_CR51 D Huck-Jones (301_CR137) 2015; 1 MN Ahsan (301_CR39) 2011; 528 301_CR52 301_CR50 A Klein (301_CR19) 2019; 5 OK Radchenko (301_CR78) 2012; 51 S Haeri (301_CR71) 2017; 306 Y He (301_CR114) 2021; 392 F Yi (301_CR81) 2021; 13 T Durejko (301_CR28) 2018; 11 Q Bao (301_CR46) 2021; 199 AB Spierings (301_CR108) 2016; 1 301_CR43 PD Eason (301_CR10) 2014; No. 3 O Walton (301_CR99) 2007; 9 S Yang (301_CR45) 2013; 54 cr-split#-301_CR40.1 301_CR7 301_CR6 301_CR9 BQ Nguyen (301_CR12) 2018; 18 301_CR8 301_CR3 301_CR2 301_CR5 |
References_xml | – ident: CR22 – volume: 5 start-page: 1831 issue: 5 year: 2009 end-page: 1837 ident: CR27 article-title: Fabrication of compositionally and structurally graded Ti–TiO structures using laser engineered net shaping (LENS) publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.01.011 contributor: fullname: Bandyopadhyay – volume: 364 start-page: 811 year: 2020 end-page: 821 ident: CR68 article-title: Numerical simulation of particle flow and segregation during roller spreading process in additive manufacturing publication-title: Powder Technol. doi: 10.1016/j.powtec.2019.12.023 contributor: fullname: Ghadiri – ident: CR74 – volume: 53 start-page: 252 year: 2020 end-page: 284 ident: CR127 article-title: Understanding powder bed fusion additive manufacturing phenomena via numerical simulation publication-title: Fract. Struct. Integrity doi: 10.3221/IGF-ESIS.53.21 contributor: fullname: Romanin – volume: 42 start-page: 37 issue: 2 year: 2019 end-page: 42 ident: CR49 article-title: Forced heat exchange and cooling rate at water atomization of melts publication-title: Sci. J. Metall. contributor: fullname: Panova – ident: CR51 – volume: 31 start-page: 1001 issue: 10 year: 2015 end-page: 1005 ident: CR97 article-title: Effect of powder particle shape on the properties of in situ Ti–TiB composite materials produced by selective laser melting publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2015.08.007 contributor: fullname: Eckert – volume: 47 start-page: 3811 year: 2016 end-page: 3822 ident: CR123 article-title: Powder bed layer characteristics: The overseen first-order process input, metallurgical and materials transactions A publication-title: Phys. Metall. Mater. Sci. doi: 10.1007/s11661-016-3470-2 contributor: fullname: Brown – ident: CR115 – volume: 11 start-page: 239 issue: 7 year: 2014 end-page: 255 ident: CR109 article-title: Characterization of titanium powder flow: A review on current status on flowability publication-title: MSAIJ contributor: fullname: Alungogo – volume: 385 start-page: 60 year: 2021 end-page: 68 ident: CR59 article-title: Modeling of effect of powder spreading on green body dimensional accuracy in additive manufacturing by binder jetting publication-title: Powder Technol. doi: 10.1016/j.powtec.2021.02.070 contributor: fullname: Olevsky – ident: CR135 – ident: CR54 – ident: CR80 – ident: CR77 – ident: CR8 – volume: 528 start-page: 7648 year: 2011 end-page: 7657 ident: CR39 article-title: A comparative study of laser direct metal deposition characteristics using gas and plasma-atomized Ti–6Al–4V powders publication-title: Mater. Sci. Eng. doi: 10.1016/j.msea.2011.06.074 contributor: fullname: Shackleton – volume: 1 start-page: 41 issue: 4 year: 2015 end-page: 44 ident: CR137 article-title: Beyond particle size: Exploring the influence of particle shape on metal powder performance publication-title: MAM contributor: fullname: Langley – ident: CR106 – ident: CR25 – volume: 1 start-page: 71 issue: 3 year: 2015 end-page: 74 ident: CR56 article-title: Hoeganaes Corporation: A global leader in metal powder production targets additive manufacturing publication-title: Metal Addit. Manuf. contributor: fullname: Taylor – ident: CR121 – ident: CR129 – ident: CR101 – volume: 338 start-page: 253 year: 2018 end-page: 262 ident: CR69 article-title: Jamming during particle spreading in additive manufacturing publication-title: Powder Technol. doi: 10.1016/j.powtec.2018.07.030 contributor: fullname: Ghadiri – volume: 4 start-page: 101 issue: 2 year: 2018 end-page: 108 ident: CR55 article-title: LPW Technology: AM materials specialist expands into metal powder production publication-title: Metal Addit. Manuf. contributor: fullname: Williams – ident: CR88 – volume: No. 2 start-page: 77 year: 2016 end-page: 81 ident: CR92 article-title: Use of titanium powders in 3D printing methods publication-title: Novi Mater. Tekhnol. Metall. Mashinovstr. contributor: fullname: Olshanetskii – volume: 31 start-page: 2152 issue: 5 year: 2020 end-page: 2160 ident: CR38 article-title: Comparison in characteristic and atomization behavior of metallic powders produced by plasma rotating electrode process publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2020.03.006 contributor: fullname: Li – volume: 1 start-page: 45 year: 2017 end-page: 51 ident: CR41 article-title: Grain-size characteristics of the VT20 alloy powder produced by centrifugal electrode plasma spraying publication-title: Metaloznav. Obrob. Met. contributor: fullname: Ovchinnikov – ident: CR57 – volume: 13 start-page: 524 year: 2021 end-page: 533 ident: CR81 article-title: Effect of powder reuse on powder characteristics and properties of Inconel 718 parts produced by selective laser melting publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2021.04.091 contributor: fullname: Liu – ident: CR60 – ident: CR112 – volume: 14 start-page: 1 year: 2021 end-page: 19 ident: CR134 article-title: Vibratory powder feeding for powder bed additive manufacturing using water and gas atomized metal powders publication-title: Materials doi: 10.3390/ma14133548 contributor: fullname: Labrecque – ident: CR36 – ident: CR85 – ident: CR5 – ident: CR18 – volume: 132 start-page: 1 issue: 4 year: 2010 end-page: 10 ident: CR107 article-title: Height control in laser cladding using adaptive sliding mode technique: Theory and experiment publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4002023 contributor: fullname: Khajepour – volume: 11–12 start-page: 145 year: 2016 end-page: 150 ident: CR1 article-title: Additive manufacturing—technology of the future publication-title: Porosk. Metall. contributor: fullname: Chernyshov – ident: CR66 – volume: 18 start-page: 948 issue: 3 year: 2018 end-page: 955 ident: CR12 article-title: The role of powder layer thickness on the quality of SLM printed parts publication-title: Arch. Civil Mechan. Eng. doi: 10.1016/j.acme.2018.01.015 contributor: fullname: Wei – ident: CR89 – ident: CR30 – volume: 11 start-page: 1 issue: 5 year: 2018 end-page: 12 ident: CR28 article-title: The application of globular water-atomized iron powders for additive manufacturing by a LENS technique publication-title: Materials doi: 10.3390/ma11050843 contributor: fullname: Paserin – volume: 283 start-page: 199 year: 2015 end-page: 209 ident: CR120 article-title: Rheological behavior of β-Ti and NiTi powders produced by atomization for SLM production of open porous orthopedic implants publication-title: Powder Technol. doi: 10.1016/j.powtec.2015.05.015 contributor: fullname: Luyten – volume: 288 start-page: 96 year: 2016 end-page: 102 ident: CR76 article-title: Particle-based simulation of powder application in additive manufacturing publication-title: Powder Technol. doi: 10.1016/j.powtec.2015.10.035 contributor: fullname: Pöschel – volume: 12 start-page: 870 year: 2021 end-page: 881 ident: CR83 article-title: Comparative evaluation of thermal and mechanical properties publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2021.03.043 contributor: fullname: Hakeem – ident: CR33 – volume: 5 start-page: 151 issue: 2 year: 2019 end-page: 157 ident: CR19 article-title: Developing an effective metal powder specification for binder jet additive manufacturing publication-title: Metal AM contributor: fullname: Clayton – volume: 18 start-page: 15 issue: 1 year: 2005 end-page: 23 ident: CR34 article-title: Production methods and applications for high-quality metal powders and sprayformed products publication-title: Acta Metall. Sinica contributor: fullname: Pleier – ident: CR6 – ident: CR86 – volume: 363 start-page: 602 year: 2020 end-page: 610 ident: CR70 article-title: Adhesion effects on spreading of metal powders in selective laser melting publication-title: Powder Technol. doi: 10.1016/j.powtec.2019.12.048 contributor: fullname: Zhou – volume: 3 start-page: 82 year: 2016 end-page: 86 ident: CR91 article-title: Potential use of nonspherical titanium powders for additive manufacturing publication-title: Aktual. Probl. Mashinostr. contributor: fullname: Dzhugan – volume: 96 start-page: 735 year: 2018 end-page: 749 ident: CR4 article-title: Additive manufacturing—a revolution in progress? Insights from a multiple case study publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-018-1601-1) contributor: fullname: Simons – volume: 1 start-page: 289 year: 2016 end-page: 296 ident: CR23 article-title: Selective laser melting (SLM) and topology optimization for lighter aerospace components publication-title: Proc. Struct. Integrity doi: 10.1016/j.prostr.2016.02.039 contributor: fullname: Mortagua – ident: CR94 – ident: CR3 – ident: CR52 – ident: CR13 – volume: 8 start-page: 11 year: 2015 end-page: 16 ident: CR90 article-title: Development of titanium alloys for additive manufacturing applied to gas turbine engine parts publication-title: Aviat. Kosm. Tekh. Tekhnol. contributor: fullname: Seliverstov – volume: 9 start-page: 353 issue: 5 year: 2007 end-page: 363 ident: CR99 article-title: Effects of gravity on cohesive behavior of fine powders: Implications for processing Lunar regolith publication-title: Granular Matter doi: 10.1007/s10035-006-0029-8 contributor: fullname: Gill – ident: CR24 – ident: CR128 – volume: 6 start-page: 143 issue: 1 year: 2020 end-page: 152 ident: CR20 article-title: Binder jetting and beyond: optimizing the use of metal powders for additive manufacturing publication-title: Metal AM contributor: fullname: Bose – ident: CR102 – volume: 1 start-page: 80 issue: 88 year: 2020 end-page: 85 ident: CR48 article-title: Production of powders with near-spherical particles and water atomization of melts publication-title: Visn. Khark. Nats. Avtom. Dorozh. Univ. contributor: fullname: Ternovyi – ident: CR93 – volume: 67 start-page: 555 issue: 3 year: 2015 end-page: 563 ident: CR84 article-title: Effect of powder reuse times on additive manufacturing of Ti–6Al–4V by selective electron beam melting publication-title: JOM doi: 10.1007/s11837-015-1300-4 contributor: fullname: Wang – ident: CR87 – ident: CR131 – volume: No. 3(12) start-page: 23 year: 2018 end-page: 31 ident: CR63 article-title: Development of machine learning method of titanium alloy properties identification in additive technologies publication-title: Vost. Eur. Zh. Pered. Tekhnol. contributor: fullname: Trostianchyn – volume: 1 start-page: 9 issue: 1–2 year: 2016 end-page: 20 ident: CR108 article-title: Powder flowability characterization methodology for powder-bed-based metal additive manufacturing publication-title: Prog. Addit. Manuf. doi: 10.1007/s40964-015-0001-4 contributor: fullname: Wedener – ident: CR119 – volume: 67 start-page: 564 issue: 3 year: 2015 end-page: 567 ident: CR103 article-title: Manipulation and characterization of a novel titanium powder precursor for additive manufacturing applications publication-title: JOM doi: 10.1007/s11837-015-1301-3 contributor: fullname: Qian – ident: CR35 – ident: CR111 – ident: CR29 – ident: CR61 – ident: CR58 – volume: 69 start-page: 1853 issue: 10 year: 2017 end-page: 1860 ident: CR42 article-title: Review of the methods for production of spherical Ti and Ti alloy powder publication-title: J. Miner. Met. Mater. Soc. doi: 10.1007/s11837-017-2513-5 contributor: fullname: Xia – volume: 14 start-page: 1 issue: 6 year: 2021 end-page: 27 ident: CR82 article-title: Evaluation of Inconel 718 metallic powder to optimize the reuse of powder and to improve the performance and sustainability of the Laser Powder Bed Fusion (LPBF) process publication-title: Materials doi: 10.3390/ma14061538 contributor: fullname: Kurzynowski – ident: CR21 – ident: CR96 – volume: 321 start-page: 94 year: 2017 end-page: 104 ident: CR125 article-title: Optimisation of blade type spreaders for powder bed preparation in additive manufacturing using DEM simulations publication-title: Powder Technol. doi: 10.1016/j.powtec.2017.08.011 contributor: fullname: Haeri – ident: CR67 – ident: CR75 – volume: 367 start-page: 671 year: 2020 end-page: 679 ident: CR117 article-title: A simple method for assessing powder spreadability for additive manufacturing publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.04.033 contributor: fullname: Ghadiri – ident: CR50 – volume: 53 start-page: 252 year: 2020 end-page: 284 ident: CR11 article-title: Understanding powder bed fusion additive manufacturing phenomena via numerical simulation publication-title: Fract. Struct. Integrity doi: 10.3221/IGF-ESIS.53.21 contributor: fullname: Berto – ident: CR116 – volume: No. 3 start-page: 131 year: 2014 ident: CR10 article-title: Additive manufacturing: A renaissance for powder metallurgy research publication-title: J. Powder Metall. Min. doi: 10.4172/2168-9806.1000e131 contributor: fullname: Eason – ident: CR136 – ident: CR9 – ident: CR32 – volume: 199 start-page: 1 year: 2021 end-page: 10 ident: CR46 article-title: The preparation of spherical metal powders using the high-temperature remelting spheroidization technology publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.109382 contributor: fullname: Guo – volume: 166 start-page: 14 year: 2021 end-page: 22 ident: CR132 article-title: Investigation of the effect of powdered moisture on the boiling point using a boiling tester publication-title: Berg- Hüttenmänn. Monatsh. doi: 10.1007/s00501-020-01067-x contributor: fullname: Gschiel – ident: CR64 – ident: CR105 – ident: CR26 – ident: CR122 – volume: 51 start-page: 17 issue: 1–2 year: 2012 end-page: 25 ident: CR78 article-title: Effect of molecular interaction on the strength of green compacts publication-title: Powder Metall. Met. Ceram. doi: 10.1007/s11106-012-9391-8 contributor: fullname: Radchenko – ident: CR95 – ident: CR43 – ident: CR14 – ident: CR2 – ident: CR53 – volume: 54 start-page: 2112 issue: 12 year: 2013 end-page: 2316 ident: CR45 article-title: Preparation of spherical titanium powders from polygonal titanium hydride powders by radio frequency plasma treatment publication-title: Mater. Trans. doi: 10.2320/matertrans.M2013329 contributor: fullname: Yun – volume: 220 start-page: 231 year: 2015 end-page: 242 ident: CR72 article-title: Experimental and theoretical investigation on ultra-thin powder layering in three dimensional printing (3DP) by a novel double-smoothing mechanism publication-title: J. Mater. Proc. Technol. doi: 10.1016/j.jmatprotec.2015.01.016 contributor: fullname: Zhang – ident: CR133 – volume: 59 start-page: 16 issue: 5 year: 2004 end-page: 21 ident: CR37 article-title: Plasma power can make better powders publication-title: Metal Powder Rep. doi: 10.1016/S0026-0657(04)00153-5 contributor: fullname: Boulos – ident: CR113 – volume: 28 start-page: 2431 issue: 9 year: 2017 end-page: 2437 ident: CR44 article-title: Study on the flow properties of Ti–6Al–4V powders prepared by radio-frequency plasma spheroidization publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2017.06.025 contributor: fullname: Wei – ident: CR79 – ident: CR40 – ident: CR98 – ident: CR104 – volume: 4 start-page: 383 year: 2019 end-page: 397 ident: CR15 article-title: Powders for powder bed fusion: a review publication-title: Prog. Addit. Manuf. doi: 10.1007/s40964-019-00078-6 contributor: fullname: Kieback – ident: CR124 – volume: 306 start-page: 45 year: 2017 end-page: 54 ident: CR71 article-title: Discrete element simulation and experimental study of powder spreading process in additive manufacturing publication-title: Powder Technol. doi: 10.1016/j.powtec.2016.11.002 contributor: fullname: Sun – ident: CR73 – volume: 76 start-page: S50 year: 2021 end-page: S54 ident: CR110 article-title: An experimental investigation on accuracy of Hausner Ratio and Carr Index of powders in additive manufacturing processes publication-title: Metal Powder Rep. doi: 10.1016/j.mprp.2020.06.061 contributor: fullname: Rashid – ident: CR65 – volume: 392 start-page: 191 year: 2021 end-page: 203 ident: CR114 article-title: Combined effect of particle size and surface cohesiveness on powder spreadability for additive manufacturing publication-title: Powder Technol. doi: 10.1016/j.powtec.2021.06.046 contributor: fullname: Bayly – volume: 3 start-page: 99 issue: 4 year: 2017 end-page: 103 ident: CR100 article-title: Beyond particle size: Exploring the influence of particle shape on metal powder performance publication-title: МАМ contributor: fullname: Langley – ident: CR130 – ident: CR17 – ident: CR31 – volume: 713 start-page: 1 year: 2012 end-page: 26 ident: CR126 article-title: A numerical study of granular shear flows of rodlike particles using the discrete element method publication-title: J. Fluid Mech. doi: 10.1017/jfm.2012.423 contributor: fullname: Curtis – volume: 12 start-page: 3 issue: 1 year: 2017 end-page: 29 ident: CR16 article-title: Powder characterization techniques and effects of powder characteristics on part properties in powder-bed fusion processes publication-title: Virtual Phys. Prototyping doi: 10.1080/17452759.2016.1250605 contributor: fullname: Newkirk – volume: 28 start-page: 78 year: 2019 end-page: 86 ident: CR118 article-title: On the development of powder spreadability metrics and feedstock requirements for powder bed fusion additive manufacturing publication-title: Addit. Manuf. contributor: fullname: Joshi – ident: CR7 – volume: 3 start-page: 103 issue: 1 year: 2017 end-page: 108 ident: CR47 article-title: Additive manufacturing at World PM2016: Opportunities for the use of water atomized metal powders publication-title: Metal Addit. Manuf. contributor: fullname: Whittaker – ident: CR62 – volume: 53 start-page: 252 year: 2020 ident: 301_CR11 publication-title: Fract. Struct. Integrity doi: 10.3221/IGF-ESIS.53.21 contributor: fullname: P Ferro – volume: 1 start-page: 289 year: 2016 ident: 301_CR23 publication-title: Proc. Struct. Integrity doi: 10.1016/j.prostr.2016.02.039 contributor: fullname: M Seabra – ident: 301_CR119 – ident: 301_CR21 doi: 10.1016/B978-0-08-100433-3.00002-6 – ident: 301_CR113 doi: 10.1007/s00501-020-01069-9 – volume: 283 start-page: 199 year: 2015 ident: 301_CR120 publication-title: Powder Technol. doi: 10.1016/j.powtec.2015.05.015 contributor: fullname: G Yablokova – ident: 301_CR77 doi: 10.1016/j.jmatprotec.2018.10.037 – ident: 301_CR65 doi: 10.1016/j.procir.2017.12.204 – volume: 54 start-page: 2112 issue: 12 year: 2013 ident: 301_CR45 publication-title: Mater. Trans. doi: 10.2320/matertrans.M2013329 contributor: fullname: S Yang – ident: 301_CR53 – ident: 301_CR111 – ident: 301_CR131 – volume: 1 start-page: 41 issue: 4 year: 2015 ident: 301_CR137 publication-title: MAM contributor: fullname: D Huck-Jones – ident: 301_CR85 – volume: 14 start-page: 1 year: 2021 ident: 301_CR134 publication-title: Materials doi: 10.3390/ma14133548 contributor: fullname: CW Sinclair – ident: 301_CR30 doi: 10.1016/C2017-0-04707-9 – ident: 301_CR128 doi: 10.1016/j.ijmachtools.2020.103553 – ident: #cr-split#-301_CR40.2 – ident: 301_CR74 doi: 10.1007/978-3-030-05861-6_33 – volume: No. 3 start-page: 131 year: 2014 ident: 301_CR10 publication-title: J. Powder Metall. Min. doi: 10.4172/2168-9806.1000e131 contributor: fullname: PD Eason – volume: 8 start-page: 11 year: 2015 ident: 301_CR90 publication-title: Aviat. Kosm. Tekh. Tekhnol. contributor: fullname: IA Petrik – volume: 385 start-page: 60 year: 2021 ident: 301_CR59 publication-title: Powder Technol. doi: 10.1016/j.powtec.2021.02.070 contributor: fullname: AL Maximenko – ident: 301_CR24 – ident: 301_CR105 – ident: 301_CR50 – ident: 301_CR136 doi: 10.1016/j.matdes.2019.108385 – ident: 301_CR96 – volume: 392 start-page: 191 year: 2021 ident: 301_CR114 publication-title: Powder Technol. doi: 10.1016/j.powtec.2021.06.046 contributor: fullname: Y He – ident: 301_CR79 – ident: 301_CR3 doi: 10.1016/B978-0-12-812155-9.00002-5 – ident: #cr-split#-301_CR36.2 – ident: 301_CR58 – ident: 301_CR98 doi: 10.1016/S1359-6462(99)00089-5 – ident: 301_CR33 – ident: 301_CR7 – volume: 306 start-page: 45 year: 2017 ident: 301_CR71 publication-title: Powder Technol. doi: 10.1016/j.powtec.2016.11.002 contributor: fullname: S Haeri – volume: 1 start-page: 71 issue: 3 year: 2015 ident: 301_CR56 publication-title: Metal Addit. Manuf. contributor: fullname: P Taylor – volume: 363 start-page: 602 year: 2020 ident: 301_CR70 publication-title: Powder Technol. doi: 10.1016/j.powtec.2019.12.048 contributor: fullname: L Wang – volume: 12 start-page: 870 year: 2021 ident: 301_CR83 publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2021.03.043 contributor: fullname: AS Hakeem – volume: 31 start-page: 1001 issue: 10 year: 2015 ident: 301_CR97 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2015.08.007 contributor: fullname: H Attar – volume: 18 start-page: 948 issue: 3 year: 2018 ident: 301_CR12 publication-title: Arch. Civil Mechan. Eng. doi: 10.1016/j.acme.2018.01.015 contributor: fullname: BQ Nguyen – volume: 288 start-page: 96 year: 2016 ident: 301_CR76 publication-title: Powder Technol. doi: 10.1016/j.powtec.2015.10.035 contributor: fullname: EJR Parteli – volume: 9 start-page: 353 issue: 5 year: 2007 ident: 301_CR99 publication-title: Granular Matter doi: 10.1007/s10035-006-0029-8 contributor: fullname: O Walton – ident: 301_CR122 doi: 10.1016/j.powtec.2021.01.058 – volume: 51 start-page: 17 issue: 1–2 year: 2012 ident: 301_CR78 publication-title: Powder Metall. Met. Ceram. doi: 10.1007/s11106-012-9391-8 contributor: fullname: OK Radchenko – volume: 14 start-page: 1 issue: 6 year: 2021 ident: 301_CR82 publication-title: Materials doi: 10.3390/ma14061538 contributor: fullname: K Gruber – volume: 11–12 start-page: 145 year: 2016 ident: 301_CR1 publication-title: Porosk. Metall. contributor: fullname: DA Levina – ident: 301_CR8 doi: 10.1016/B978-0-08-100543-9.00013-0 – volume: 338 start-page: 253 year: 2018 ident: 301_CR69 publication-title: Powder Technol. doi: 10.1016/j.powtec.2018.07.030 contributor: fullname: W Nan – ident: 301_CR14 doi: 10.1016/B978-0-12-813489-4.00008-8 – volume: 1 start-page: 45 year: 2017 ident: 301_CR41 publication-title: Metaloznav. Obrob. Met. contributor: fullname: ZA Duryagina – ident: #cr-split#-301_CR36.1 – ident: 301_CR6 – volume: 132 start-page: 1 issue: 4 year: 2010 ident: 301_CR107 publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4002023 contributor: fullname: M Zeinali – volume: 28 start-page: 78 year: 2019 ident: 301_CR118 publication-title: Addit. Manuf. contributor: fullname: Z Snow – ident: 301_CR133 doi: 10.1016/j.addma.2020.101082 – ident: 301_CR64 doi: 10.1007/978-3-319-89480-5_39 – volume: 367 start-page: 671 year: 2020 ident: 301_CR117 publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.04.033 contributor: fullname: M Ahmed – volume: No. 2 start-page: 77 year: 2016 ident: 301_CR92 publication-title: Novi Mater. Tekhnol. Metall. Mashinovstr. contributor: fullname: OA Dzhugan – ident: 301_CR26 – ident: 301_CR60 – volume: 13 start-page: 524 year: 2021 ident: 301_CR81 publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2021.04.091 contributor: fullname: F Yi – ident: 301_CR116 doi: 10.1016/j.apsusc.2021.149645 – volume: 96 start-page: 735 year: 2018 ident: 301_CR4 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-018-1601-1) contributor: fullname: M Simons – ident: 301_CR13 doi: 10.1533/9780857098900 – volume: 11 start-page: 1 issue: 5 year: 2018 ident: 301_CR28 publication-title: Materials doi: 10.3390/ma11050843 contributor: fullname: T Durejko – volume: 5 start-page: 1831 issue: 5 year: 2009 ident: 301_CR27 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.01.011 contributor: fullname: VK Balla – ident: 301_CR94 – ident: 301_CR124 doi: 10.1016/j.powtec.2020.05.119 – ident: 301_CR9 – ident: 301_CR35 – ident: 301_CR52 – ident: 301_CR130 – ident: #cr-split#-301_CR106.2 – volume: 3 start-page: 99 issue: 4 year: 2017 ident: 301_CR100 publication-title: МАМ contributor: fullname: D Huck-Jones – ident: 301_CR88 – ident: #cr-split#-301_CR40.1 – ident: 301_CR80 – ident: 301_CR102 – volume: 59 start-page: 16 issue: 5 year: 2004 ident: 301_CR37 publication-title: Metal Powder Rep. doi: 10.1016/S0026-0657(04)00153-5 contributor: fullname: M Boulos – ident: 301_CR29 – volume: 4 start-page: 101 issue: 2 year: 2018 ident: 301_CR55 publication-title: Metal Addit. Manuf. contributor: fullname: B Williams – ident: 301_CR95 – ident: 301_CR57 – volume: 12 start-page: 3 issue: 1 year: 2017 ident: 301_CR16 publication-title: Virtual Phys. Prototyping doi: 10.1080/17452759.2016.1250605 contributor: fullname: AT Sutton – volume: 1 start-page: 9 issue: 1–2 year: 2016 ident: 301_CR108 publication-title: Prog. Addit. Manuf. doi: 10.1007/s40964-015-0001-4 contributor: fullname: AB Spierings – ident: 301_CR115 – volume: 199 start-page: 1 year: 2021 ident: 301_CR46 publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.109382 contributor: fullname: Q Bao – ident: #cr-split#-301_CR106.1 – ident: 301_CR31 doi: 10.3390/ma14040909 – ident: 301_CR54 doi: 10.1595/205651315X688686 – ident: 301_CR89 – ident: 301_CR18 doi: 10.1007/978-3-319-52689-8 – ident: 301_CR101 – ident: 301_CR66 – volume: 31 start-page: 2152 issue: 5 year: 2020 ident: 301_CR38 publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2020.03.006 contributor: fullname: Y Nie – volume: 28 start-page: 2431 issue: 9 year: 2017 ident: 301_CR44 publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2017.06.025 contributor: fullname: W-H Wei – ident: 301_CR43 – ident: 301_CR2 doi: 10.1016/C2014-0-03891-9 – volume: 42 start-page: 37 issue: 2 year: 2019 ident: 301_CR49 publication-title: Sci. J. Metall. contributor: fullname: Y Ternovyi – volume: 67 start-page: 564 issue: 3 year: 2015 ident: 301_CR103 publication-title: JOM doi: 10.1007/s11837-015-1301-3 contributor: fullname: YY Sun – ident: 301_CR17 – volume: 528 start-page: 7648 year: 2011 ident: 301_CR39 publication-title: Mater. Sci. Eng. doi: 10.1016/j.msea.2011.06.074 contributor: fullname: MN Ahsan – ident: 301_CR86 – volume: 6 start-page: 143 issue: 1 year: 2020 ident: 301_CR20 publication-title: Metal AM contributor: fullname: R Dattani – volume: 364 start-page: 811 year: 2020 ident: 301_CR68 publication-title: Powder Technol. doi: 10.1016/j.powtec.2019.12.023 contributor: fullname: W Nan – ident: 301_CR129 – ident: 301_CR22 doi: 10.1016/B978-0-08-096532-1.01013-X – ident: 301_CR104 – ident: 301_CR61 – ident: 301_CR121 – volume: No. 3(12) start-page: 23 year: 2018 ident: 301_CR63 publication-title: Vost. Eur. Zh. Pered. Tekhnol. contributor: fullname: R Tkachenko – ident: 301_CR93 – volume: 11 start-page: 239 issue: 7 year: 2014 ident: 301_CR109 publication-title: MSAIJ contributor: fullname: PK Nziu – volume: 220 start-page: 231 year: 2015 ident: 301_CR72 publication-title: J. Mater. Proc. Technol. doi: 10.1016/j.jmatprotec.2015.01.016 contributor: fullname: S Cao – volume: 166 start-page: 14 year: 2021 ident: 301_CR132 publication-title: Berg- Hüttenmänn. Monatsh. doi: 10.1007/s00501-020-01067-x contributor: fullname: M Mitterlehner – ident: 301_CR51 – ident: 301_CR62 doi: 10.1016/S0026-0657 – ident: 301_CR87 – volume: 18 start-page: 15 issue: 1 year: 2005 ident: 301_CR34 publication-title: Acta Metall. Sinica contributor: fullname: M Hohmann – volume: 321 start-page: 94 year: 2017 ident: 301_CR125 publication-title: Powder Technol. doi: 10.1016/j.powtec.2017.08.011 contributor: fullname: S Haeri – volume: 67 start-page: 555 issue: 3 year: 2015 ident: 301_CR84 publication-title: JOM doi: 10.1007/s11837-015-1300-4 contributor: fullname: HP Tang – volume: 1 start-page: 80 issue: 88 year: 2020 ident: 301_CR48 publication-title: Visn. Khark. Nats. Avtom. Dorozh. Univ. contributor: fullname: VO Panova – ident: 301_CR32 doi: 10.1533/9780857098900.1.3 – ident: 301_CR73 – volume: 47 start-page: 3811 year: 2016 ident: 301_CR123 publication-title: Phys. Metall. Mater. Sci. doi: 10.1007/s11661-016-3470-2 contributor: fullname: H Mindt – ident: 301_CR135 doi: 10.1038/s41598-021-93422-2 – volume: 3 start-page: 82 year: 2016 ident: 301_CR91 publication-title: Aktual. Probl. Mashinostr. contributor: fullname: AV Ovchinnikov – ident: 301_CR75 doi: 10.1016/j.mtcomm.2020.100964 – volume: 3 start-page: 103 issue: 1 year: 2017 ident: 301_CR47 publication-title: Metal Addit. Manuf. contributor: fullname: D Whittaker – volume: 76 start-page: S50 year: 2021 ident: 301_CR110 publication-title: Metal Powder Rep. doi: 10.1016/j.mprp.2020.06.061 contributor: fullname: MA Kaleem – ident: 301_CR5 – volume: 4 start-page: 383 year: 2019 ident: 301_CR15 publication-title: Prog. Addit. Manuf. doi: 10.1007/s40964-019-00078-6 contributor: fullname: S Vock – ident: 301_CR112 – volume: 5 start-page: 151 issue: 2 year: 2019 ident: 301_CR19 publication-title: Metal AM contributor: fullname: A Klein – volume: 69 start-page: 1853 issue: 10 year: 2017 ident: 301_CR42 publication-title: J. Miner. Met. Mater. Soc. doi: 10.1007/s11837-017-2513-5 contributor: fullname: P Sun – ident: 301_CR25 doi: 10.1016/B978-0-08-100433-3.00001-4 – volume: 713 start-page: 1 year: 2012 ident: 301_CR126 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2012.423 contributor: fullname: Y Ketterhagen – ident: 301_CR67 – volume: 53 start-page: 252 year: 2020 ident: 301_CR127 publication-title: Fract. Struct. Integrity doi: 10.3221/IGF-ESIS.53.21 contributor: fullname: P Ferro |
SSID | ssj0010041 |
Score | 2.3242059 |
SecondaryResourceType | review_article |
Snippet | There are five 3D printing methods that use metal or alloy powders. The most promising methods are powder bed fusion, directed energy deposition, and binder... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 135 |
SubjectTerms | 3-D printers 3D printing Alloy powders Alloys Angle of repose Atomizing Bulk density Ceramics Characterization and Evaluation of Materials Chemical composition Chemistry and Materials Science Classification Commercial printing industry Composites Criteria Crucibles Gas atomization Glass Induction melting Materials Science Metal powders Metal products Metallic Materials Natural Materials Nickel alloys Particle shape Plasma atomization Powder beds Powders Printing industry Production methods Production Technology Properties of Powders and Fibers Rotating plasmas Rotation Specialty metals industry Theory Three dimensional printing Vacuum melting |
Title | Requirements for Metal and Alloy Powders for 3D Printing (Review) |
URI | https://link.springer.com/article/10.1007/s11106-022-00301-0 https://www.proquest.com/docview/2742634505 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7ofNEH7-LmhTwIKlrZ0iaNj0WdoigiTvQpNGkC4thk6xD99Z6krfOCD3ssCUmbk8t3er7zBWBHcafzFltcaU0VROo4CoTRJlBUM-H0Rqi_veH6hl90ostH9jjO4_Zk9yoi6Tfqca4bHlSOL0sDD-MD9NNnysTTmeT86ersK3jgNKR8kJOjgxQ6Ak_j_1Z-nEe_d-U_4VF_6rQX4L7K3SnIJi9Ho1wd6Y-_Uo6TfNAizJcolCTFtFmCKdNbhrlv2oT49PA8HBV1hiuQ3BlHGfb_EocEgS65NgjbSdrLSNLt9t_Jbf_NcaJ9WXhKbrEVx6gme0X0YX8VOu2z-5OLoLx9IdAhE3nAUsNsGnOThdRqm1mEZuisGE51qq06bkZZHPEIJ4FKBRc0a1GuhIljE_EwtWm4BrVev2fWgSAExaJYMCdG07Ja6CbThhkRKuev2DocVDaQr4XIhhzLKbthkjhM0g-TbNZh15lJuhWYD1J8myKRAPtyWlYyiREyodvKRB02K0vKcmkOpYtN8zBC5FeHw8oy4-L_-21MVn0DZqk3rqP2bkItH4zMFgKYXG2XE3Ybpjs0-QRJyeKS |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yH9QH8YrVqXkQVLSwpU2aPRZ1zMtExMneQpMmIEgndiL-e89JV-eFPfhYEpJwTi7f6fnyhZADLVDnLXGw0lo6jHUnDqU1NtTMcIl6I8y_3tC_Fb1BfDXkw8mlsLJmu9cpSb9TTy-7wUmFhFkWehwfQqA-j_rqqJg_YOlX7gAlpHyOU0B8FCF_Z3t2Gz-Oo9-b8p_sqD90uitkeYIWaVq5d5XM2WKNLH3TEISvx6fyrapTrpP03iK11__zKykAUtq3AK9pVuQ0fX4efdC70Ttyl31ZdE7voBVkPtOjKktwvEEG3YuHs144eSUhNBGX45BnlrssETaPmDMudwChIKiwgpnMON1pxXkSixicpTMpJMvbTGhpk8TGIspcFm2SRjEq7BahABWhKJEcRWPazkjT4sZyKyONcYULyEltLPVSiWGoqewxmlaBaZU3rWoF5BDtqXCljF8zGE1F-Ie-UHNKpQlAGwgvuQxIsza5miyhUmEOWUQxILSAnNZumBbP7nf7f9X3yULvoX-jbi5vr3fIIvOTA-m4TdIYv77ZXQAdY73n59gnI_fIpA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fSxwxEB7KCUUfamsVz9o2D4IVXT13k2x8XKpXW39wiIo-hSSbQKnsibeHtH99Z7K3PWvxQfq4JCTZTLL5ZuebLwBrVpLOWx5wp_Vswu0eT5R3PrGpE4r0RtJ4e8PJqTy84N-uxNWDLP7Idm9Dkk1OA6k0VfXObRl2polveGoReTZNIqZP0Gmf4aSM1IGZ4sv10cGfSAIJSsWIp0RvKSM2z8rTrfx1OD3-RP8TK41HUH8eTDv4hnnyY3tc223365Gu4_-83Wt4NcGnrGgW1Bt44asFmHugWohPl99H46bO6C0UZ57IxPEv44ghBGYnHgE9M1XJipub4U82GN4TWzqWZftsgK0Q15p9auISG4tw0T84_3yYTO5lSFwmVJ0I40UwufRllgYXyoCgDd0YL1NnXLB7PV7mXHJcHtYoqdJyN5VW-Tz3XGYmmGwJOtWw8svAEJxiUa4EydTsBqdcTzgvvMoseTKhC5utQfRtI7-hp0LLNE0ap0nHadK9LqyTzTTtzfrO4GiaFAPsi1SudJEjmEKHVqgurLZm1ZNNO9IUtZYZR0zYha3WStPip_tdeV71j_BysN_Xx19Pj97BbBrtTPzfVejUd2P_HlFObT9MFvJvhCzuYQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Requirements+for+Metal+and+Alloy+Powders+for+3D+Printing+%28Review%29&rft.jtitle=Powder+metallurgy+and+metal+ceramics&rft.au=Radchenko%2C+O+K&rft.au=Gogaev%2C+K+O&rft.date=2022-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1068-1302&rft.eissn=1573-9066&rft.volume=61&rft.issue=3-4&rft.spage=135&rft.epage=154&rft_id=info:doi/10.1007%2Fs11106-022-00301-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1068-1302&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1068-1302&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1068-1302&client=summon |