Requirements for Metal and Alloy Powders for 3D Printing (Review)

There are five 3D printing methods that use metal or alloy powders. The most promising methods are powder bed fusion, directed energy deposition, and binder jetting. General requirements for the powders and their most important characteristics (particle size and shape, powder flowability), as well a...

Full description

Saved in:
Bibliographic Details
Published inPowder metallurgy and metal ceramics Vol. 61; no. 3-4; pp. 135 - 154
Main Authors Radchenko, O. K., Gogaev, K. O.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There are five 3D printing methods that use metal or alloy powders. The most promising methods are powder bed fusion, directed energy deposition, and binder jetting. General requirements for the powders and their most important characteristics (particle size and shape, powder flowability), as well as the chemical composition of nickel alloy powders from two manufacturers, are addressed. Features peculiar to the behavior of powders in use of two types of recoater (as a blade or a roller) are analyzed. It is shown that the d 90 size does not meet the actual requirements and d max needs to be taken into account instead. Powders with nonspherical particles (mixtures of spherical and nonspherical particles) are known to be reused, but there are still no clear recommendations for their use. Inadequate attention is paid to the shape of powder particles. In additive manufacturing processes, powders with nonspherical particles (produced by grinding and other methods) have been already used but, in most cases, the shape indicators or their dispersion are not determined. Basic criteria for the particle shape that correlate with the powder flowability should be identified. The standard flowability value (determined by flow test) does not adequately characterize the dynamic behavior of powders, nor does it allow the powders with significantly different bulk densities and particle material to be compared, and thus requires adjustment. The most important characteristic for the processes considered is the ability of powders to form a thin flat layer in certain conditions. A new characteristic of the powder dynamic behavior has been proposed: spreadability. It includes two criteria: build plate coverage ratio and powder dynamic flow angle, each having its drawbacks. To date, there is no accepted technique for testing spreadability, nor is there an agreed indicator that would characterize it. There is only an understanding that a research method should best reproduce the powder behavior in a 3D printer in operation. Methods such as powder drum rotation (GranuDrum instrument) or long-established classification of pharmaceuticals by flowability, which was tried to be applied to metal powders, are involved. According to the classification, excellent flowability is inherent in powders having an angle of repose varying from 25 to 30 deg, Hausner ratio lower than 1.11, and Carr index lower than 5–15. The validity of this application requires thorough verification. The advantages and disadvantages of the following basic methods for producing powders of various metals and alloys used in 3D printers are addressed: gas atomization of melts in crucibles without vacuum and with vacuum melting or induction melting, plasma atomization using feedstock rods, rotation electrode gas or plasma atomization, etc. Gas atomization as a commercial method remains the most popular. Powders of greater quality made from reactive elements allow the production of new high-quality parts but also involve additional costs.
AbstractList There are five 3D printing methods that use metal or alloy powders. The most promising methods are powder bed fusion, directed energy deposition, and binder jetting. General requirements for the powders and their most important characteristics (particle size and shape, powder flowability), as well as the chemical composition of nickel alloy powders from two manufacturers, are addressed. Features peculiar to the behavior of powders in use of two types of recoater (as a blade or a roller) are analyzed. It is shown that the d.sub.90 size does not meet the actual requirements and d.sub.max needs to be taken into account instead. Powders with nonspherical particles (mixtures of spherical and nonspherical particles) are known to be reused, but there are still no clear recommendations for their use. Inadequate attention is paid to the shape of powder particles. In additive manufacturing processes, powders with nonspherical particles (produced by grinding and other methods) have been already used but, in most cases, the shape indicators or their dispersion are not determined. Basic criteria for the particle shape that correlate with the powder flowability should be identified. The standard flowability value (determined by flow test) does not adequately characterize the dynamic behavior of powders, nor does it allow the powders with significantly different bulk densities and particle material to be compared, and thus requires adjustment. The most important characteristic for the processes considered is the ability of powders to form a thin flat layer in certain conditions. A new characteristic of the powder dynamic behavior has been proposed: spreadability. It includes two criteria: build plate coverage ratio and powder dynamic flow angle, each having its drawbacks. To date, there is no accepted technique for testing spreadability, nor is there an agreed indicator that would characterize it. There is only an understanding that a research method should best reproduce the powder behavior in a 3D printer in operation. Methods such as powder drum rotation (GranuDrum instrument) or long-established classification of pharmaceuticals by flowability, which was tried to be applied to metal powders, are involved. According to the classification, excellent flowability is inherent in powders having an angle of repose varying from 25 to 30 deg, Hausner ratio lower than 1.11, and Carr index lower than 5-15. The validity of this application requires thorough verification. The advantages and disadvantages of the following basic methods for producing powders of various metals and alloys used in 3D printers are addressed: gas atomization of melts in crucibles without vacuum and with vacuum melting or induction melting, plasma atomization using feedstock rods, rotation electrode gas or plasma atomization, etc. Gas atomization as a commercial method remains the most popular. Powders of greater quality made from reactive elements allow the production of new high-quality parts but also involve additional costs.
There are five 3D printing methods that use metal or alloy powders. The most promising methods are powder bed fusion, directed energy deposition, and binder jetting. General requirements for the powders and their most important characteristics (particle size and shape, powder flowability), as well as the chemical composition of nickel alloy powders from two manufacturers, are addressed. Features peculiar to the behavior of powders in use of two types of recoater (as a blade or a roller) are analyzed. It is shown that the d90 size does not meet the actual requirements and dmax needs to be taken into account instead. Powders with nonspherical particles (mixtures of spherical and nonspherical particles) are known to be reused, but there are still no clear recommendations for their use. Inadequate attention is paid to the shape of powder particles. In additive manufacturing processes, powders with nonspherical particles (produced by grinding and other methods) have been already used but, in most cases, the shape indicators or their dispersion are not determined. Basic criteria for the particle shape that correlate with the powder flowability should be identified. The standard flowability value (determined by flow test) does not adequately characterize the dynamic behavior of powders, nor does it allow the powders with significantly different bulk densities and particle material to be compared, and thus requires adjustment. The most important characteristic for the processes considered is the ability of powders to form a thin flat layer in certain conditions. A new characteristic of the powder dynamic behavior has been proposed: spreadability. It includes two criteria: build plate coverage ratio and powder dynamic flow angle, each having its drawbacks. To date, there is no accepted technique for testing spreadability, nor is there an agreed indicator that would characterize it. There is only an understanding that a research method should best reproduce the powder behavior in a 3D printer in operation. Methods such as powder drum rotation (GranuDrum instrument) or long-established classification of pharmaceuticals by flowability, which was tried to be applied to metal powders, are involved. According to the classification, excellent flowability is inherent in powders having an angle of repose varying from 25 to 30 deg, Hausner ratio lower than 1.11, and Carr index lower than 5–15. The validity of this application requires thorough verification. The advantages and disadvantages of the following basic methods for producing powders of various metals and alloys used in 3D printers are addressed: gas atomization of melts in crucibles without vacuum and with vacuum melting or induction melting, plasma atomization using feedstock rods, rotation electrode gas or plasma atomization, etc. Gas atomization as a commercial method remains the most popular. Powders of greater quality made from reactive elements allow the production of new high-quality parts but also involve additional costs.
There are five 3D printing methods that use metal or alloy powders. The most promising methods are powder bed fusion, directed energy deposition, and binder jetting. General requirements for the powders and their most important characteristics (particle size and shape, powder flowability), as well as the chemical composition of nickel alloy powders from two manufacturers, are addressed. Features peculiar to the behavior of powders in use of two types of recoater (as a blade or a roller) are analyzed. It is shown that the d 90 size does not meet the actual requirements and d max needs to be taken into account instead. Powders with nonspherical particles (mixtures of spherical and nonspherical particles) are known to be reused, but there are still no clear recommendations for their use. Inadequate attention is paid to the shape of powder particles. In additive manufacturing processes, powders with nonspherical particles (produced by grinding and other methods) have been already used but, in most cases, the shape indicators or their dispersion are not determined. Basic criteria for the particle shape that correlate with the powder flowability should be identified. The standard flowability value (determined by flow test) does not adequately characterize the dynamic behavior of powders, nor does it allow the powders with significantly different bulk densities and particle material to be compared, and thus requires adjustment. The most important characteristic for the processes considered is the ability of powders to form a thin flat layer in certain conditions. A new characteristic of the powder dynamic behavior has been proposed: spreadability. It includes two criteria: build plate coverage ratio and powder dynamic flow angle, each having its drawbacks. To date, there is no accepted technique for testing spreadability, nor is there an agreed indicator that would characterize it. There is only an understanding that a research method should best reproduce the powder behavior in a 3D printer in operation. Methods such as powder drum rotation (GranuDrum instrument) or long-established classification of pharmaceuticals by flowability, which was tried to be applied to metal powders, are involved. According to the classification, excellent flowability is inherent in powders having an angle of repose varying from 25 to 30 deg, Hausner ratio lower than 1.11, and Carr index lower than 5–15. The validity of this application requires thorough verification. The advantages and disadvantages of the following basic methods for producing powders of various metals and alloys used in 3D printers are addressed: gas atomization of melts in crucibles without vacuum and with vacuum melting or induction melting, plasma atomization using feedstock rods, rotation electrode gas or plasma atomization, etc. Gas atomization as a commercial method remains the most popular. Powders of greater quality made from reactive elements allow the production of new high-quality parts but also involve additional costs.
Audience Academic
Author Gogaev, K. O.
Radchenko, O. K.
Author_xml – sequence: 1
  givenname: O. K.
  surname: Radchenko
  fullname: Radchenko, O. K.
  email: arradch@gmail.com
  organization: Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine
– sequence: 2
  givenname: K. O.
  surname: Gogaev
  fullname: Gogaev, K. O.
  organization: Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine
BookMark eNp9kF1LwzAUhoNMcJv-Aa8K3uhF58lnu8sxP0FxDL0OaXsyOrp0SzrH_r3RCt55dcLJ--QNz4gMXOuQkEsKEwqQ3QZKKagUGEsBONAUTsiQyoynU1BqEM-g8pRyYGdkFMIaIGKCDslsibt97XGDrguJbX3yip1pEuOqZNY07TFZtIcKfX_H75KFr11Xu1VyvcTPGg835-TUmibgxe8ck4-H-_f5U_ry9vg8n72kJZd5l0qD0ppMYcWZLW1lJaVKMFSsNKUtpiCqTCiBBRYmVzmrKFNFjlmGQnFjDR-Tq_7drW93ewydXrd772KlZplgigsJMqYmfWplGtS1s23nTWwwFW7qMkqzddzPMpZzAVOZR4D1QOnbEDxavfX1xvijpqC_3ererY5u9Y9bDRHiPRRi2K3Q__3lH-oLRoB8dw
CitedBy_id crossref_primary_10_1007_s11106_023_00364_7
crossref_primary_10_1016_j_jmrt_2023_08_173
crossref_primary_10_1007_s11106_023_00326_z
crossref_primary_10_1007_s11106_023_00338_9
crossref_primary_10_1016_j_susmat_2023_e00746
Cites_doi 10.1016/j.actbio.2009.01.011
10.1016/j.powtec.2019.12.023
10.3221/IGF-ESIS.53.21
10.1016/j.jmst.2015.08.007
10.1007/s11661-016-3470-2
10.1016/j.powtec.2021.02.070
10.1016/j.msea.2011.06.074
10.1016/j.powtec.2018.07.030
10.1016/j.apt.2020.03.006
10.1016/j.jmrt.2021.04.091
10.3390/ma14133548
10.1115/1.4002023
10.1016/j.acme.2018.01.015
10.3390/ma11050843
10.1016/j.powtec.2015.05.015
10.1016/j.powtec.2015.10.035
10.1016/j.jmrt.2021.03.043
10.1016/j.powtec.2019.12.048
10.1007/s00170-018-1601-1)
10.1016/j.prostr.2016.02.039
10.1007/s10035-006-0029-8
10.1007/s11837-015-1300-4
10.1007/s40964-015-0001-4
10.1007/s11837-015-1301-3
10.1007/s11837-017-2513-5
10.3390/ma14061538
10.1016/j.powtec.2017.08.011
10.1016/j.powtec.2020.04.033
10.4172/2168-9806.1000e131
10.1016/j.matdes.2020.109382
10.1007/s00501-020-01067-x
10.1007/s11106-012-9391-8
10.2320/matertrans.M2013329
10.1016/j.jmatprotec.2015.01.016
10.1016/S0026-0657(04)00153-5
10.1016/j.apt.2017.06.025
10.1007/s40964-019-00078-6
10.1016/j.powtec.2016.11.002
10.1016/j.mprp.2020.06.061
10.1016/j.powtec.2021.06.046
10.1017/jfm.2012.423
10.1080/17452759.2016.1250605
10.1016/B978-0-08-100433-3.00002-6
10.1007/s00501-020-01069-9
10.1016/j.jmatprotec.2018.10.037
10.1016/j.procir.2017.12.204
10.1016/C2017-0-04707-9
10.1016/j.ijmachtools.2020.103553
10.1007/978-3-030-05861-6_33
10.1016/j.matdes.2019.108385
10.1016/B978-0-12-812155-9.00002-5
10.1016/S1359-6462(99)00089-5
10.1016/j.powtec.2021.01.058
10.1016/B978-0-08-100543-9.00013-0
10.1016/B978-0-12-813489-4.00008-8
10.1016/j.addma.2020.101082
10.1007/978-3-319-89480-5_39
10.1016/j.apsusc.2021.149645
10.1533/9780857098900
10.1016/j.powtec.2020.05.119
10.3390/ma14040909
10.1595/205651315X688686
10.1007/978-3-319-52689-8
10.1016/C2014-0-03891-9
10.1016/B978-0-08-096532-1.01013-X
10.1016/S0026-0657
10.1533/9780857098900.1.3
10.1038/s41598-021-93422-2
10.1016/j.mtcomm.2020.100964
10.1016/B978-0-08-100433-3.00001-4
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2022 Springer
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2022 Springer
DBID AAYXX
CITATION
DOI 10.1007/s11106-022-00301-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
EISSN 1573-9066
EndPage 154
ExternalDocumentID A728340958
10_1007_s11106_022_00301_0
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
2.D
28-
29O
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAGCJ
AAHNG
AAIAL
AAIKT
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUCO
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJGSW
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9N
PF0
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
XU3
YLTOR
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8T
Z8W
Z8Z
Z92
ZMTXR
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGJZZ
AGQEE
AGRTI
AIGIU
CITATION
ID FETCH-LOGICAL-c358t-5ae5fa76ed32fcfdf511642e62cacfb904d7464ebeba8682d126b8e77e463afa3
IEDL.DBID AGYKE
ISSN 1068-1302
IngestDate Thu Nov 07 05:28:21 EST 2024
Tue Nov 12 22:49:46 EST 2024
Wed Oct 16 15:29:24 EDT 2024
Sat Dec 16 12:05:44 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords particle size
metal and alloy powders
particle shape
directed energy deposition
flowability
powder bed fusion
recoater
spreadability
3D printing
binder jetting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-5ae5fa76ed32fcfdf511642e62cacfb904d7464ebeba8682d126b8e77e463afa3
PQID 2742634505
PQPubID 326338
PageCount 20
ParticipantIDs proquest_journals_2742634505
gale_infotracacademiconefile_A728340958
crossref_primary_10_1007_s11106_022_00301_0
springer_journals_10_1007_s11106_022_00301_0
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Powder metallurgy and metal ceramics
PublicationTitleAbbrev Powder Metall Met Ceram
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Seabra, Azevedo, Araújo, Reis, Pinto, Alves, Sandos, Mortagua (CR23) 2016; 1
CR36
CR35
CR33
CR32
CR31
CR30
Mindt, Megahed, Lavery, Holmes, Brown (CR123) 2016; 47
Whittaker (CR47) 2017; 3
Boulos (CR37) 2004; 59
Sinclair, Edinger, Sparling, Molavi-Kakhki, Labrecque (CR134) 2021; 14
Haeri, Wang, Ghita, Sun (CR71) 2017; 306
Kaleem, Alam, Khan, Jaffery, Rashid (CR110) 2021; 76
CR43
Sutton, Kriewall, Leu, Newkirk (CR16) 2017; 12
Radchenko (CR78) 2012; 51
CR40
Huck-Jones, Langley (CR137) 2015; 1
Levina, Chernyshov (CR1) 2016; 11–12
Nan, Pasha, Ghadiri (CR68) 2020; 364
Ahsan, Pinkerton, Moat, Shackleton (CR39) 2011; 528
Ferro, Berto, Romanin (CR127) 2020; 53
Williams (CR55) 2018; 4
CR58
CR57
Ahmed, Pasha, Nan, Ghadiri (CR117) 2020; 367
Hohmann, Pleier (CR34) 2005; 18
Walton, Moor, Gill (CR99) 2007; 9
CR54
CR53
Dzhugan, Olshanetskii (CR92) 2016; No. 2
CR135
Nguyen, Luu, Nai, Zhu, Chen, Wei (CR12) 2018; 18
Durejko, Aniszewska, Zietala, Antolak-Dudka, Czujko, Varin, Paserin (CR28) 2018; 11
CR52
CR136
CR51
CR133
CR50
CR131
Cao, Qiu, Wei, Zhang (CR72) 2015; 220
Nziu, Masu, Mendonidis, Alungogo (CR109) 2014; 11
He, Hassanpour, Bayly (CR114) 2021; 392
Taylor (CR56) 2015; 1
CR67
CR66
CR65
CR64
Tang, Qian, Liu, Zhang, Yang, Wang (CR84) 2015; 67
CR62
CR61
CR60
Tkachenko, Duriagina, Lemishka, Izonin, Trostianchyn (CR63) 2018; No. 3(12)
Haeri (CR125) 2017; 321
Petrik, Ovchinnikov, Seliverstov (CR90) 2015; 8
Dattani, Bose (CR20) 2020; 6
Snow, Martukanitz, Joshi (CR118) 2019; 28
Panova, Ternovyi (CR48) 2020; 1
Nie, Tang, Yang, Lei, Shu, Li (CR38) 2020; 31
CR79
Ferro, Romanin, Berto (CR11) 2020; 53
CR77
CR115
CR116
Wei (CR44) 2017; 28
CR75
CR113
CR74
CR73
CR111
CR112
Nan, Pasha, Bonakdar, Lopez, Zafar, Nadimi, Ghadiri (CR69) 2018; 338
Huck-Jones, Langley (CR100) 2017; 3
Zeinali, Khajepour (CR107) 2010; 132
CR119
CR2
CR3
CR6
CR5
Spierings, Voegtlin, Bauer, Wedener (CR108) 2016; 1
CR8
CR7
CR130
CR9
CR89
CR88
CR87
CR86
CR124
CR85
Ovchinnikov, Olshanetskii, Dzhugan (CR91) 2016; 3
Ternovyi, Panova (CR49) 2019; 42
CR122
Simons (CR4) 2018; 96
Vock, Klöden, Kirchner, Weißgärber, Kieback (CR15) 2019; 4
CR121
Wang, Li, Shen, Zou, Yu, Zhou (CR70) 2020; 363
CR80
Parteli, Pöschel (CR76) 2016; 288
Mitterlehner, Danninger, Gierl-Mayer, Gschiel (CR132) 2021; 166
CR128
CR129
Attar, Prashanth, Zhang, Calin, Okulov, Scudino, Yang, Eckert (CR97) 2015; 31
Ketterhagen, Hancock, James, Curtis (CR126) 2012; 713
Balla, Devasconcellos, Xue, Bose, Bandyopadhyay (CR27) 2009; 5
CR18
CR17
Yang, Gwak, Lim, Kim, Yun (CR45) 2013; 54
CR14
CR13
CR98
CR96
Yablokova, Speirs, Van Humbeeck, Kruth, Schrooten, Cloots, Boschini, Lumay, Luyten (CR120) 2015; 283
CR95
CR94
Eason (CR10) 2014; No. 3
CR93
Hakeem (CR83) 2021; 12
Yi, Zhou, Wang, Yan, Liu (CR81) 2021; 13
Gruber, Smolina, Kasprowicz, Kurzynowski (CR82) 2021; 14
CR29
CR26
CR25
CR24
Klein, Clayton (CR19) 2019; 5
CR22
CR104
CR21
CR105
CR102
CR101
Bao, Yang, Wen, Guo, Guo (CR46) 2021; 199
Duryagina, Trostianchin, Lemishka, Skrebtsov, Ovchinnikov (CR41) 2017; 1
Sun, Fang, Zhang, Xia (CR42) 2017; 69
Sun, Gulizia, Oh, Doblin, Yang, Qian (CR103) 2015; 67
Maximenko, Olumor, Maidaniuk, Olevsky (CR59) 2021; 385
CR106
M Simons (301_CR4) 2018; 96
301_CR129
301_CR35
301_CR128
301_CR33
301_CR31
301_CR32
301_CR124
P Taylor (301_CR56) 2015; 1
301_CR121
301_CR30
301_CR122
M Mitterlehner (301_CR132) 2021; 166
cr-split#-301_CR40.2
CW Sinclair (301_CR134) 2021; 14
AL Maximenko (301_CR59) 2021; 385
ZA Duryagina (301_CR41) 2017; 1
W-H Wei (301_CR44) 2017; 28
D Huck-Jones (301_CR100) 2017; 3
301_CR29
301_CR26
R Tkachenko (301_CR63) 2018; No. 3(12)
301_CR24
301_CR25
301_CR22
301_CR136
301_CR21
301_CR135
cr-split#-301_CR36.1
AV Ovchinnikov (301_CR91) 2016; 3
cr-split#-301_CR36.2
301_CR133
301_CR130
301_CR131
M Boulos (301_CR37) 2004; 59
M Hohmann (301_CR34) 2005; 18
301_CR17
DA Levina (301_CR1) 2016; 11–12
301_CR18
W Nan (301_CR68) 2020; 364
G Yablokova (301_CR120) 2015; 283
301_CR13
301_CR105
301_CR14
301_CR104
301_CR101
301_CR98
301_CR102
301_CR95
D Whittaker (301_CR47) 2017; 3
301_CR96
301_CR93
301_CR94
M Ahmed (301_CR117) 2020; 367
VK Balla (301_CR27) 2009; 5
M Zeinali (301_CR107) 2010; 132
S Haeri (301_CR125) 2017; 321
OA Dzhugan (301_CR92) 2016; No. 2
301_CR119
HP Tang (301_CR84) 2015; 67
301_CR116
M Seabra (301_CR23) 2016; 1
YY Sun (301_CR103) 2015; 67
301_CR88
B Williams (301_CR55) 2018; 4
301_CR89
301_CR115
301_CR86
301_CR112
301_CR87
301_CR113
301_CR85
301_CR111
301_CR80
PK Nziu (301_CR109) 2014; 11
MA Kaleem (301_CR110) 2021; 76
Y Ketterhagen (301_CR126) 2012; 713
P Sun (301_CR42) 2017; 69
W Nan (301_CR69) 2018; 338
VO Panova (301_CR48) 2020; 1
301_CR79
301_CR77
301_CR75
301_CR73
301_CR74
R Dattani (301_CR20) 2020; 6
EJR Parteli (301_CR76) 2016; 288
L Wang (301_CR70) 2020; 363
AT Sutton (301_CR16) 2017; 12
cr-split#-301_CR106.1
cr-split#-301_CR106.2
Z Snow (301_CR118) 2019; 28
Y Ternovyi (301_CR49) 2019; 42
P Ferro (301_CR127) 2020; 53
301_CR66
H Mindt (301_CR123) 2016; 47
301_CR67
301_CR64
301_CR65
S Vock (301_CR15) 2019; 4
301_CR62
301_CR60
K Gruber (301_CR82) 2021; 14
H Attar (301_CR97) 2015; 31
301_CR61
P Ferro (301_CR11) 2020; 53
IA Petrik (301_CR90) 2015; 8
AS Hakeem (301_CR83) 2021; 12
S Cao (301_CR72) 2015; 220
Y Nie (301_CR38) 2020; 31
301_CR57
301_CR58
301_CR53
301_CR54
301_CR51
D Huck-Jones (301_CR137) 2015; 1
MN Ahsan (301_CR39) 2011; 528
301_CR52
301_CR50
A Klein (301_CR19) 2019; 5
OK Radchenko (301_CR78) 2012; 51
S Haeri (301_CR71) 2017; 306
Y He (301_CR114) 2021; 392
F Yi (301_CR81) 2021; 13
T Durejko (301_CR28) 2018; 11
Q Bao (301_CR46) 2021; 199
AB Spierings (301_CR108) 2016; 1
301_CR43
PD Eason (301_CR10) 2014; No. 3
O Walton (301_CR99) 2007; 9
S Yang (301_CR45) 2013; 54
cr-split#-301_CR40.1
301_CR7
301_CR6
301_CR9
BQ Nguyen (301_CR12) 2018; 18
301_CR8
301_CR3
301_CR2
301_CR5
References_xml – ident: CR22
– volume: 5
  start-page: 1831
  issue: 5
  year: 2009
  end-page: 1837
  ident: CR27
  article-title: Fabrication of compositionally and structurally graded Ti–TiO structures using laser engineered net shaping (LENS)
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.01.011
  contributor:
    fullname: Bandyopadhyay
– volume: 364
  start-page: 811
  year: 2020
  end-page: 821
  ident: CR68
  article-title: Numerical simulation of particle flow and segregation during roller spreading process in additive manufacturing
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2019.12.023
  contributor:
    fullname: Ghadiri
– ident: CR74
– volume: 53
  start-page: 252
  year: 2020
  end-page: 284
  ident: CR127
  article-title: Understanding powder bed fusion additive manufacturing phenomena via numerical simulation
  publication-title: Fract. Struct. Integrity
  doi: 10.3221/IGF-ESIS.53.21
  contributor:
    fullname: Romanin
– volume: 42
  start-page: 37
  issue: 2
  year: 2019
  end-page: 42
  ident: CR49
  article-title: Forced heat exchange and cooling rate at water atomization of melts
  publication-title: Sci. J. Metall.
  contributor:
    fullname: Panova
– ident: CR51
– volume: 31
  start-page: 1001
  issue: 10
  year: 2015
  end-page: 1005
  ident: CR97
  article-title: Effect of powder particle shape on the properties of in situ Ti–TiB composite materials produced by selective laser melting
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2015.08.007
  contributor:
    fullname: Eckert
– volume: 47
  start-page: 3811
  year: 2016
  end-page: 3822
  ident: CR123
  article-title: Powder bed layer characteristics: The overseen first-order process input, metallurgical and materials transactions A
  publication-title: Phys. Metall. Mater. Sci.
  doi: 10.1007/s11661-016-3470-2
  contributor:
    fullname: Brown
– ident: CR115
– volume: 11
  start-page: 239
  issue: 7
  year: 2014
  end-page: 255
  ident: CR109
  article-title: Characterization of titanium powder flow: A review on current status on flowability
  publication-title: MSAIJ
  contributor:
    fullname: Alungogo
– volume: 385
  start-page: 60
  year: 2021
  end-page: 68
  ident: CR59
  article-title: Modeling of effect of powder spreading on green body dimensional accuracy in additive manufacturing by binder jetting
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2021.02.070
  contributor:
    fullname: Olevsky
– ident: CR135
– ident: CR54
– ident: CR80
– ident: CR77
– ident: CR8
– volume: 528
  start-page: 7648
  year: 2011
  end-page: 7657
  ident: CR39
  article-title: A comparative study of laser direct metal deposition characteristics using gas and plasma-atomized Ti–6Al–4V powders
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.msea.2011.06.074
  contributor:
    fullname: Shackleton
– volume: 1
  start-page: 41
  issue: 4
  year: 2015
  end-page: 44
  ident: CR137
  article-title: Beyond particle size: Exploring the influence of particle shape on metal powder performance
  publication-title: MAM
  contributor:
    fullname: Langley
– ident: CR106
– ident: CR25
– volume: 1
  start-page: 71
  issue: 3
  year: 2015
  end-page: 74
  ident: CR56
  article-title: Hoeganaes Corporation: A global leader in metal powder production targets additive manufacturing
  publication-title: Metal Addit. Manuf.
  contributor:
    fullname: Taylor
– ident: CR121
– ident: CR129
– ident: CR101
– volume: 338
  start-page: 253
  year: 2018
  end-page: 262
  ident: CR69
  article-title: Jamming during particle spreading in additive manufacturing
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2018.07.030
  contributor:
    fullname: Ghadiri
– volume: 4
  start-page: 101
  issue: 2
  year: 2018
  end-page: 108
  ident: CR55
  article-title: LPW Technology: AM materials specialist expands into metal powder production
  publication-title: Metal Addit. Manuf.
  contributor:
    fullname: Williams
– ident: CR88
– volume: No. 2
  start-page: 77
  year: 2016
  end-page: 81
  ident: CR92
  article-title: Use of titanium powders in 3D printing methods
  publication-title: Novi Mater. Tekhnol. Metall. Mashinovstr.
  contributor:
    fullname: Olshanetskii
– volume: 31
  start-page: 2152
  issue: 5
  year: 2020
  end-page: 2160
  ident: CR38
  article-title: Comparison in characteristic and atomization behavior of metallic powders produced by plasma rotating electrode process
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2020.03.006
  contributor:
    fullname: Li
– volume: 1
  start-page: 45
  year: 2017
  end-page: 51
  ident: CR41
  article-title: Grain-size characteristics of the VT20 alloy powder produced by centrifugal electrode plasma spraying
  publication-title: Metaloznav. Obrob. Met.
  contributor:
    fullname: Ovchinnikov
– ident: CR57
– volume: 13
  start-page: 524
  year: 2021
  end-page: 533
  ident: CR81
  article-title: Effect of powder reuse on powder characteristics and properties of Inconel 718 parts produced by selective laser melting
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2021.04.091
  contributor:
    fullname: Liu
– ident: CR60
– ident: CR112
– volume: 14
  start-page: 1
  year: 2021
  end-page: 19
  ident: CR134
  article-title: Vibratory powder feeding for powder bed additive manufacturing using water and gas atomized metal powders
  publication-title: Materials
  doi: 10.3390/ma14133548
  contributor:
    fullname: Labrecque
– ident: CR36
– ident: CR85
– ident: CR5
– ident: CR18
– volume: 132
  start-page: 1
  issue: 4
  year: 2010
  end-page: 10
  ident: CR107
  article-title: Height control in laser cladding using adaptive sliding mode technique: Theory and experiment
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4002023
  contributor:
    fullname: Khajepour
– volume: 11–12
  start-page: 145
  year: 2016
  end-page: 150
  ident: CR1
  article-title: Additive manufacturing—technology of the future
  publication-title: Porosk. Metall.
  contributor:
    fullname: Chernyshov
– ident: CR66
– volume: 18
  start-page: 948
  issue: 3
  year: 2018
  end-page: 955
  ident: CR12
  article-title: The role of powder layer thickness on the quality of SLM printed parts
  publication-title: Arch. Civil Mechan. Eng.
  doi: 10.1016/j.acme.2018.01.015
  contributor:
    fullname: Wei
– ident: CR89
– ident: CR30
– volume: 11
  start-page: 1
  issue: 5
  year: 2018
  end-page: 12
  ident: CR28
  article-title: The application of globular water-atomized iron powders for additive manufacturing by a LENS technique
  publication-title: Materials
  doi: 10.3390/ma11050843
  contributor:
    fullname: Paserin
– volume: 283
  start-page: 199
  year: 2015
  end-page: 209
  ident: CR120
  article-title: Rheological behavior of β-Ti and NiTi powders produced by atomization for SLM production of open porous orthopedic implants
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2015.05.015
  contributor:
    fullname: Luyten
– volume: 288
  start-page: 96
  year: 2016
  end-page: 102
  ident: CR76
  article-title: Particle-based simulation of powder application in additive manufacturing
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2015.10.035
  contributor:
    fullname: Pöschel
– volume: 12
  start-page: 870
  year: 2021
  end-page: 881
  ident: CR83
  article-title: Comparative evaluation of thermal and mechanical properties
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2021.03.043
  contributor:
    fullname: Hakeem
– ident: CR33
– volume: 5
  start-page: 151
  issue: 2
  year: 2019
  end-page: 157
  ident: CR19
  article-title: Developing an effective metal powder specification for binder jet additive manufacturing
  publication-title: Metal AM
  contributor:
    fullname: Clayton
– volume: 18
  start-page: 15
  issue: 1
  year: 2005
  end-page: 23
  ident: CR34
  article-title: Production methods and applications for high-quality metal powders and sprayformed products
  publication-title: Acta Metall. Sinica
  contributor:
    fullname: Pleier
– ident: CR6
– ident: CR86
– volume: 363
  start-page: 602
  year: 2020
  end-page: 610
  ident: CR70
  article-title: Adhesion effects on spreading of metal powders in selective laser melting
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2019.12.048
  contributor:
    fullname: Zhou
– volume: 3
  start-page: 82
  year: 2016
  end-page: 86
  ident: CR91
  article-title: Potential use of nonspherical titanium powders for additive manufacturing
  publication-title: Aktual. Probl. Mashinostr.
  contributor:
    fullname: Dzhugan
– volume: 96
  start-page: 735
  year: 2018
  end-page: 749
  ident: CR4
  article-title: Additive manufacturing—a revolution in progress? Insights from a multiple case study
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-018-1601-1)
  contributor:
    fullname: Simons
– volume: 1
  start-page: 289
  year: 2016
  end-page: 296
  ident: CR23
  article-title: Selective laser melting (SLM) and topology optimization for lighter aerospace components
  publication-title: Proc. Struct. Integrity
  doi: 10.1016/j.prostr.2016.02.039
  contributor:
    fullname: Mortagua
– ident: CR94
– ident: CR3
– ident: CR52
– ident: CR13
– volume: 8
  start-page: 11
  year: 2015
  end-page: 16
  ident: CR90
  article-title: Development of titanium alloys for additive manufacturing applied to gas turbine engine parts
  publication-title: Aviat. Kosm. Tekh. Tekhnol.
  contributor:
    fullname: Seliverstov
– volume: 9
  start-page: 353
  issue: 5
  year: 2007
  end-page: 363
  ident: CR99
  article-title: Effects of gravity on cohesive behavior of fine powders: Implications for processing Lunar regolith
  publication-title: Granular Matter
  doi: 10.1007/s10035-006-0029-8
  contributor:
    fullname: Gill
– ident: CR24
– ident: CR128
– volume: 6
  start-page: 143
  issue: 1
  year: 2020
  end-page: 152
  ident: CR20
  article-title: Binder jetting and beyond: optimizing the use of metal powders for additive manufacturing
  publication-title: Metal AM
  contributor:
    fullname: Bose
– ident: CR102
– volume: 1
  start-page: 80
  issue: 88
  year: 2020
  end-page: 85
  ident: CR48
  article-title: Production of powders with near-spherical particles and water atomization of melts
  publication-title: Visn. Khark. Nats. Avtom. Dorozh. Univ.
  contributor:
    fullname: Ternovyi
– ident: CR93
– volume: 67
  start-page: 555
  issue: 3
  year: 2015
  end-page: 563
  ident: CR84
  article-title: Effect of powder reuse times on additive manufacturing of Ti–6Al–4V by selective electron beam melting
  publication-title: JOM
  doi: 10.1007/s11837-015-1300-4
  contributor:
    fullname: Wang
– ident: CR87
– ident: CR131
– volume: No. 3(12)
  start-page: 23
  year: 2018
  end-page: 31
  ident: CR63
  article-title: Development of machine learning method of titanium alloy properties identification in additive technologies
  publication-title: Vost. Eur. Zh. Pered. Tekhnol.
  contributor:
    fullname: Trostianchyn
– volume: 1
  start-page: 9
  issue: 1–2
  year: 2016
  end-page: 20
  ident: CR108
  article-title: Powder flowability characterization methodology for powder-bed-based metal additive manufacturing
  publication-title: Prog. Addit. Manuf.
  doi: 10.1007/s40964-015-0001-4
  contributor:
    fullname: Wedener
– ident: CR119
– volume: 67
  start-page: 564
  issue: 3
  year: 2015
  end-page: 567
  ident: CR103
  article-title: Manipulation and characterization of a novel titanium powder precursor for additive manufacturing applications
  publication-title: JOM
  doi: 10.1007/s11837-015-1301-3
  contributor:
    fullname: Qian
– ident: CR35
– ident: CR111
– ident: CR29
– ident: CR61
– ident: CR58
– volume: 69
  start-page: 1853
  issue: 10
  year: 2017
  end-page: 1860
  ident: CR42
  article-title: Review of the methods for production of spherical Ti and Ti alloy powder
  publication-title: J. Miner. Met. Mater. Soc.
  doi: 10.1007/s11837-017-2513-5
  contributor:
    fullname: Xia
– volume: 14
  start-page: 1
  issue: 6
  year: 2021
  end-page: 27
  ident: CR82
  article-title: Evaluation of Inconel 718 metallic powder to optimize the reuse of powder and to improve the performance and sustainability of the Laser Powder Bed Fusion (LPBF) process
  publication-title: Materials
  doi: 10.3390/ma14061538
  contributor:
    fullname: Kurzynowski
– ident: CR21
– ident: CR96
– volume: 321
  start-page: 94
  year: 2017
  end-page: 104
  ident: CR125
  article-title: Optimisation of blade type spreaders for powder bed preparation in additive manufacturing using DEM simulations
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2017.08.011
  contributor:
    fullname: Haeri
– ident: CR67
– ident: CR75
– volume: 367
  start-page: 671
  year: 2020
  end-page: 679
  ident: CR117
  article-title: A simple method for assessing powder spreadability for additive manufacturing
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2020.04.033
  contributor:
    fullname: Ghadiri
– ident: CR50
– volume: 53
  start-page: 252
  year: 2020
  end-page: 284
  ident: CR11
  article-title: Understanding powder bed fusion additive manufacturing phenomena via numerical simulation
  publication-title: Fract. Struct. Integrity
  doi: 10.3221/IGF-ESIS.53.21
  contributor:
    fullname: Berto
– ident: CR116
– volume: No. 3
  start-page: 131
  year: 2014
  ident: CR10
  article-title: Additive manufacturing: A renaissance for powder metallurgy research
  publication-title: J. Powder Metall. Min.
  doi: 10.4172/2168-9806.1000e131
  contributor:
    fullname: Eason
– ident: CR136
– ident: CR9
– ident: CR32
– volume: 199
  start-page: 1
  year: 2021
  end-page: 10
  ident: CR46
  article-title: The preparation of spherical metal powders using the high-temperature remelting spheroidization technology
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.109382
  contributor:
    fullname: Guo
– volume: 166
  start-page: 14
  year: 2021
  end-page: 22
  ident: CR132
  article-title: Investigation of the effect of powdered moisture on the boiling point using a boiling tester
  publication-title: Berg- Hüttenmänn. Monatsh.
  doi: 10.1007/s00501-020-01067-x
  contributor:
    fullname: Gschiel
– ident: CR64
– ident: CR105
– ident: CR26
– ident: CR122
– volume: 51
  start-page: 17
  issue: 1–2
  year: 2012
  end-page: 25
  ident: CR78
  article-title: Effect of molecular interaction on the strength of green compacts
  publication-title: Powder Metall. Met. Ceram.
  doi: 10.1007/s11106-012-9391-8
  contributor:
    fullname: Radchenko
– ident: CR95
– ident: CR43
– ident: CR14
– ident: CR2
– ident: CR53
– volume: 54
  start-page: 2112
  issue: 12
  year: 2013
  end-page: 2316
  ident: CR45
  article-title: Preparation of spherical titanium powders from polygonal titanium hydride powders by radio frequency plasma treatment
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.M2013329
  contributor:
    fullname: Yun
– volume: 220
  start-page: 231
  year: 2015
  end-page: 242
  ident: CR72
  article-title: Experimental and theoretical investigation on ultra-thin powder layering in three dimensional printing (3DP) by a novel double-smoothing mechanism
  publication-title: J. Mater. Proc. Technol.
  doi: 10.1016/j.jmatprotec.2015.01.016
  contributor:
    fullname: Zhang
– ident: CR133
– volume: 59
  start-page: 16
  issue: 5
  year: 2004
  end-page: 21
  ident: CR37
  article-title: Plasma power can make better powders
  publication-title: Metal Powder Rep.
  doi: 10.1016/S0026-0657(04)00153-5
  contributor:
    fullname: Boulos
– ident: CR113
– volume: 28
  start-page: 2431
  issue: 9
  year: 2017
  end-page: 2437
  ident: CR44
  article-title: Study on the flow properties of Ti–6Al–4V powders prepared by radio-frequency plasma spheroidization
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2017.06.025
  contributor:
    fullname: Wei
– ident: CR79
– ident: CR40
– ident: CR98
– ident: CR104
– volume: 4
  start-page: 383
  year: 2019
  end-page: 397
  ident: CR15
  article-title: Powders for powder bed fusion: a review
  publication-title: Prog. Addit. Manuf.
  doi: 10.1007/s40964-019-00078-6
  contributor:
    fullname: Kieback
– ident: CR124
– volume: 306
  start-page: 45
  year: 2017
  end-page: 54
  ident: CR71
  article-title: Discrete element simulation and experimental study of powder spreading process in additive manufacturing
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2016.11.002
  contributor:
    fullname: Sun
– ident: CR73
– volume: 76
  start-page: S50
  year: 2021
  end-page: S54
  ident: CR110
  article-title: An experimental investigation on accuracy of Hausner Ratio and Carr Index of powders in additive manufacturing processes
  publication-title: Metal Powder Rep.
  doi: 10.1016/j.mprp.2020.06.061
  contributor:
    fullname: Rashid
– ident: CR65
– volume: 392
  start-page: 191
  year: 2021
  end-page: 203
  ident: CR114
  article-title: Combined effect of particle size and surface cohesiveness on powder spreadability for additive manufacturing
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2021.06.046
  contributor:
    fullname: Bayly
– volume: 3
  start-page: 99
  issue: 4
  year: 2017
  end-page: 103
  ident: CR100
  article-title: Beyond particle size: Exploring the influence of particle shape on metal powder performance
  publication-title: МАМ
  contributor:
    fullname: Langley
– ident: CR130
– ident: CR17
– ident: CR31
– volume: 713
  start-page: 1
  year: 2012
  end-page: 26
  ident: CR126
  article-title: A numerical study of granular shear flows of rodlike particles using the discrete element method
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.423
  contributor:
    fullname: Curtis
– volume: 12
  start-page: 3
  issue: 1
  year: 2017
  end-page: 29
  ident: CR16
  article-title: Powder characterization techniques and effects of powder characteristics on part properties in powder-bed fusion processes
  publication-title: Virtual Phys. Prototyping
  doi: 10.1080/17452759.2016.1250605
  contributor:
    fullname: Newkirk
– volume: 28
  start-page: 78
  year: 2019
  end-page: 86
  ident: CR118
  article-title: On the development of powder spreadability metrics and feedstock requirements for powder bed fusion additive manufacturing
  publication-title: Addit. Manuf.
  contributor:
    fullname: Joshi
– ident: CR7
– volume: 3
  start-page: 103
  issue: 1
  year: 2017
  end-page: 108
  ident: CR47
  article-title: Additive manufacturing at World PM2016: Opportunities for the use of water atomized metal powders
  publication-title: Metal Addit. Manuf.
  contributor:
    fullname: Whittaker
– ident: CR62
– volume: 53
  start-page: 252
  year: 2020
  ident: 301_CR11
  publication-title: Fract. Struct. Integrity
  doi: 10.3221/IGF-ESIS.53.21
  contributor:
    fullname: P Ferro
– volume: 1
  start-page: 289
  year: 2016
  ident: 301_CR23
  publication-title: Proc. Struct. Integrity
  doi: 10.1016/j.prostr.2016.02.039
  contributor:
    fullname: M Seabra
– ident: 301_CR119
– ident: 301_CR21
  doi: 10.1016/B978-0-08-100433-3.00002-6
– ident: 301_CR113
  doi: 10.1007/s00501-020-01069-9
– volume: 283
  start-page: 199
  year: 2015
  ident: 301_CR120
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2015.05.015
  contributor:
    fullname: G Yablokova
– ident: 301_CR77
  doi: 10.1016/j.jmatprotec.2018.10.037
– ident: 301_CR65
  doi: 10.1016/j.procir.2017.12.204
– volume: 54
  start-page: 2112
  issue: 12
  year: 2013
  ident: 301_CR45
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.M2013329
  contributor:
    fullname: S Yang
– ident: 301_CR53
– ident: 301_CR111
– ident: 301_CR131
– volume: 1
  start-page: 41
  issue: 4
  year: 2015
  ident: 301_CR137
  publication-title: MAM
  contributor:
    fullname: D Huck-Jones
– ident: 301_CR85
– volume: 14
  start-page: 1
  year: 2021
  ident: 301_CR134
  publication-title: Materials
  doi: 10.3390/ma14133548
  contributor:
    fullname: CW Sinclair
– ident: 301_CR30
  doi: 10.1016/C2017-0-04707-9
– ident: 301_CR128
  doi: 10.1016/j.ijmachtools.2020.103553
– ident: #cr-split#-301_CR40.2
– ident: 301_CR74
  doi: 10.1007/978-3-030-05861-6_33
– volume: No. 3
  start-page: 131
  year: 2014
  ident: 301_CR10
  publication-title: J. Powder Metall. Min.
  doi: 10.4172/2168-9806.1000e131
  contributor:
    fullname: PD Eason
– volume: 8
  start-page: 11
  year: 2015
  ident: 301_CR90
  publication-title: Aviat. Kosm. Tekh. Tekhnol.
  contributor:
    fullname: IA Petrik
– volume: 385
  start-page: 60
  year: 2021
  ident: 301_CR59
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2021.02.070
  contributor:
    fullname: AL Maximenko
– ident: 301_CR24
– ident: 301_CR105
– ident: 301_CR50
– ident: 301_CR136
  doi: 10.1016/j.matdes.2019.108385
– ident: 301_CR96
– volume: 392
  start-page: 191
  year: 2021
  ident: 301_CR114
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2021.06.046
  contributor:
    fullname: Y He
– ident: 301_CR79
– ident: 301_CR3
  doi: 10.1016/B978-0-12-812155-9.00002-5
– ident: #cr-split#-301_CR36.2
– ident: 301_CR58
– ident: 301_CR98
  doi: 10.1016/S1359-6462(99)00089-5
– ident: 301_CR33
– ident: 301_CR7
– volume: 306
  start-page: 45
  year: 2017
  ident: 301_CR71
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2016.11.002
  contributor:
    fullname: S Haeri
– volume: 1
  start-page: 71
  issue: 3
  year: 2015
  ident: 301_CR56
  publication-title: Metal Addit. Manuf.
  contributor:
    fullname: P Taylor
– volume: 363
  start-page: 602
  year: 2020
  ident: 301_CR70
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2019.12.048
  contributor:
    fullname: L Wang
– volume: 12
  start-page: 870
  year: 2021
  ident: 301_CR83
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2021.03.043
  contributor:
    fullname: AS Hakeem
– volume: 31
  start-page: 1001
  issue: 10
  year: 2015
  ident: 301_CR97
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2015.08.007
  contributor:
    fullname: H Attar
– volume: 18
  start-page: 948
  issue: 3
  year: 2018
  ident: 301_CR12
  publication-title: Arch. Civil Mechan. Eng.
  doi: 10.1016/j.acme.2018.01.015
  contributor:
    fullname: BQ Nguyen
– volume: 288
  start-page: 96
  year: 2016
  ident: 301_CR76
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2015.10.035
  contributor:
    fullname: EJR Parteli
– volume: 9
  start-page: 353
  issue: 5
  year: 2007
  ident: 301_CR99
  publication-title: Granular Matter
  doi: 10.1007/s10035-006-0029-8
  contributor:
    fullname: O Walton
– ident: 301_CR122
  doi: 10.1016/j.powtec.2021.01.058
– volume: 51
  start-page: 17
  issue: 1–2
  year: 2012
  ident: 301_CR78
  publication-title: Powder Metall. Met. Ceram.
  doi: 10.1007/s11106-012-9391-8
  contributor:
    fullname: OK Radchenko
– volume: 14
  start-page: 1
  issue: 6
  year: 2021
  ident: 301_CR82
  publication-title: Materials
  doi: 10.3390/ma14061538
  contributor:
    fullname: K Gruber
– volume: 11–12
  start-page: 145
  year: 2016
  ident: 301_CR1
  publication-title: Porosk. Metall.
  contributor:
    fullname: DA Levina
– ident: 301_CR8
  doi: 10.1016/B978-0-08-100543-9.00013-0
– volume: 338
  start-page: 253
  year: 2018
  ident: 301_CR69
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2018.07.030
  contributor:
    fullname: W Nan
– ident: 301_CR14
  doi: 10.1016/B978-0-12-813489-4.00008-8
– volume: 1
  start-page: 45
  year: 2017
  ident: 301_CR41
  publication-title: Metaloznav. Obrob. Met.
  contributor:
    fullname: ZA Duryagina
– ident: #cr-split#-301_CR36.1
– ident: 301_CR6
– volume: 132
  start-page: 1
  issue: 4
  year: 2010
  ident: 301_CR107
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4002023
  contributor:
    fullname: M Zeinali
– volume: 28
  start-page: 78
  year: 2019
  ident: 301_CR118
  publication-title: Addit. Manuf.
  contributor:
    fullname: Z Snow
– ident: 301_CR133
  doi: 10.1016/j.addma.2020.101082
– ident: 301_CR64
  doi: 10.1007/978-3-319-89480-5_39
– volume: 367
  start-page: 671
  year: 2020
  ident: 301_CR117
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2020.04.033
  contributor:
    fullname: M Ahmed
– volume: No. 2
  start-page: 77
  year: 2016
  ident: 301_CR92
  publication-title: Novi Mater. Tekhnol. Metall. Mashinovstr.
  contributor:
    fullname: OA Dzhugan
– ident: 301_CR26
– ident: 301_CR60
– volume: 13
  start-page: 524
  year: 2021
  ident: 301_CR81
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2021.04.091
  contributor:
    fullname: F Yi
– ident: 301_CR116
  doi: 10.1016/j.apsusc.2021.149645
– volume: 96
  start-page: 735
  year: 2018
  ident: 301_CR4
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-018-1601-1)
  contributor:
    fullname: M Simons
– ident: 301_CR13
  doi: 10.1533/9780857098900
– volume: 11
  start-page: 1
  issue: 5
  year: 2018
  ident: 301_CR28
  publication-title: Materials
  doi: 10.3390/ma11050843
  contributor:
    fullname: T Durejko
– volume: 5
  start-page: 1831
  issue: 5
  year: 2009
  ident: 301_CR27
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.01.011
  contributor:
    fullname: VK Balla
– ident: 301_CR94
– ident: 301_CR124
  doi: 10.1016/j.powtec.2020.05.119
– ident: 301_CR9
– ident: 301_CR35
– ident: 301_CR52
– ident: 301_CR130
– ident: #cr-split#-301_CR106.2
– volume: 3
  start-page: 99
  issue: 4
  year: 2017
  ident: 301_CR100
  publication-title: МАМ
  contributor:
    fullname: D Huck-Jones
– ident: 301_CR88
– ident: #cr-split#-301_CR40.1
– ident: 301_CR80
– ident: 301_CR102
– volume: 59
  start-page: 16
  issue: 5
  year: 2004
  ident: 301_CR37
  publication-title: Metal Powder Rep.
  doi: 10.1016/S0026-0657(04)00153-5
  contributor:
    fullname: M Boulos
– ident: 301_CR29
– volume: 4
  start-page: 101
  issue: 2
  year: 2018
  ident: 301_CR55
  publication-title: Metal Addit. Manuf.
  contributor:
    fullname: B Williams
– ident: 301_CR95
– ident: 301_CR57
– volume: 12
  start-page: 3
  issue: 1
  year: 2017
  ident: 301_CR16
  publication-title: Virtual Phys. Prototyping
  doi: 10.1080/17452759.2016.1250605
  contributor:
    fullname: AT Sutton
– volume: 1
  start-page: 9
  issue: 1–2
  year: 2016
  ident: 301_CR108
  publication-title: Prog. Addit. Manuf.
  doi: 10.1007/s40964-015-0001-4
  contributor:
    fullname: AB Spierings
– ident: 301_CR115
– volume: 199
  start-page: 1
  year: 2021
  ident: 301_CR46
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.109382
  contributor:
    fullname: Q Bao
– ident: #cr-split#-301_CR106.1
– ident: 301_CR31
  doi: 10.3390/ma14040909
– ident: 301_CR54
  doi: 10.1595/205651315X688686
– ident: 301_CR89
– ident: 301_CR18
  doi: 10.1007/978-3-319-52689-8
– ident: 301_CR101
– ident: 301_CR66
– volume: 31
  start-page: 2152
  issue: 5
  year: 2020
  ident: 301_CR38
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2020.03.006
  contributor:
    fullname: Y Nie
– volume: 28
  start-page: 2431
  issue: 9
  year: 2017
  ident: 301_CR44
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2017.06.025
  contributor:
    fullname: W-H Wei
– ident: 301_CR43
– ident: 301_CR2
  doi: 10.1016/C2014-0-03891-9
– volume: 42
  start-page: 37
  issue: 2
  year: 2019
  ident: 301_CR49
  publication-title: Sci. J. Metall.
  contributor:
    fullname: Y Ternovyi
– volume: 67
  start-page: 564
  issue: 3
  year: 2015
  ident: 301_CR103
  publication-title: JOM
  doi: 10.1007/s11837-015-1301-3
  contributor:
    fullname: YY Sun
– ident: 301_CR17
– volume: 528
  start-page: 7648
  year: 2011
  ident: 301_CR39
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.msea.2011.06.074
  contributor:
    fullname: MN Ahsan
– ident: 301_CR86
– volume: 6
  start-page: 143
  issue: 1
  year: 2020
  ident: 301_CR20
  publication-title: Metal AM
  contributor:
    fullname: R Dattani
– volume: 364
  start-page: 811
  year: 2020
  ident: 301_CR68
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2019.12.023
  contributor:
    fullname: W Nan
– ident: 301_CR129
– ident: 301_CR22
  doi: 10.1016/B978-0-08-096532-1.01013-X
– ident: 301_CR104
– ident: 301_CR61
– ident: 301_CR121
– volume: No. 3(12)
  start-page: 23
  year: 2018
  ident: 301_CR63
  publication-title: Vost. Eur. Zh. Pered. Tekhnol.
  contributor:
    fullname: R Tkachenko
– ident: 301_CR93
– volume: 11
  start-page: 239
  issue: 7
  year: 2014
  ident: 301_CR109
  publication-title: MSAIJ
  contributor:
    fullname: PK Nziu
– volume: 220
  start-page: 231
  year: 2015
  ident: 301_CR72
  publication-title: J. Mater. Proc. Technol.
  doi: 10.1016/j.jmatprotec.2015.01.016
  contributor:
    fullname: S Cao
– volume: 166
  start-page: 14
  year: 2021
  ident: 301_CR132
  publication-title: Berg- Hüttenmänn. Monatsh.
  doi: 10.1007/s00501-020-01067-x
  contributor:
    fullname: M Mitterlehner
– ident: 301_CR51
– ident: 301_CR62
  doi: 10.1016/S0026-0657
– ident: 301_CR87
– volume: 18
  start-page: 15
  issue: 1
  year: 2005
  ident: 301_CR34
  publication-title: Acta Metall. Sinica
  contributor:
    fullname: M Hohmann
– volume: 321
  start-page: 94
  year: 2017
  ident: 301_CR125
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2017.08.011
  contributor:
    fullname: S Haeri
– volume: 67
  start-page: 555
  issue: 3
  year: 2015
  ident: 301_CR84
  publication-title: JOM
  doi: 10.1007/s11837-015-1300-4
  contributor:
    fullname: HP Tang
– volume: 1
  start-page: 80
  issue: 88
  year: 2020
  ident: 301_CR48
  publication-title: Visn. Khark. Nats. Avtom. Dorozh. Univ.
  contributor:
    fullname: VO Panova
– ident: 301_CR32
  doi: 10.1533/9780857098900.1.3
– ident: 301_CR73
– volume: 47
  start-page: 3811
  year: 2016
  ident: 301_CR123
  publication-title: Phys. Metall. Mater. Sci.
  doi: 10.1007/s11661-016-3470-2
  contributor:
    fullname: H Mindt
– ident: 301_CR135
  doi: 10.1038/s41598-021-93422-2
– volume: 3
  start-page: 82
  year: 2016
  ident: 301_CR91
  publication-title: Aktual. Probl. Mashinostr.
  contributor:
    fullname: AV Ovchinnikov
– ident: 301_CR75
  doi: 10.1016/j.mtcomm.2020.100964
– volume: 3
  start-page: 103
  issue: 1
  year: 2017
  ident: 301_CR47
  publication-title: Metal Addit. Manuf.
  contributor:
    fullname: D Whittaker
– volume: 76
  start-page: S50
  year: 2021
  ident: 301_CR110
  publication-title: Metal Powder Rep.
  doi: 10.1016/j.mprp.2020.06.061
  contributor:
    fullname: MA Kaleem
– ident: 301_CR5
– volume: 4
  start-page: 383
  year: 2019
  ident: 301_CR15
  publication-title: Prog. Addit. Manuf.
  doi: 10.1007/s40964-019-00078-6
  contributor:
    fullname: S Vock
– ident: 301_CR112
– volume: 5
  start-page: 151
  issue: 2
  year: 2019
  ident: 301_CR19
  publication-title: Metal AM
  contributor:
    fullname: A Klein
– volume: 69
  start-page: 1853
  issue: 10
  year: 2017
  ident: 301_CR42
  publication-title: J. Miner. Met. Mater. Soc.
  doi: 10.1007/s11837-017-2513-5
  contributor:
    fullname: P Sun
– ident: 301_CR25
  doi: 10.1016/B978-0-08-100433-3.00001-4
– volume: 713
  start-page: 1
  year: 2012
  ident: 301_CR126
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.423
  contributor:
    fullname: Y Ketterhagen
– ident: 301_CR67
– volume: 53
  start-page: 252
  year: 2020
  ident: 301_CR127
  publication-title: Fract. Struct. Integrity
  doi: 10.3221/IGF-ESIS.53.21
  contributor:
    fullname: P Ferro
SSID ssj0010041
Score 2.3242059
SecondaryResourceType review_article
Snippet There are five 3D printing methods that use metal or alloy powders. The most promising methods are powder bed fusion, directed energy deposition, and binder...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 135
SubjectTerms 3-D printers
3D printing
Alloy powders
Alloys
Angle of repose
Atomizing
Bulk density
Ceramics
Characterization and Evaluation of Materials
Chemical composition
Chemistry and Materials Science
Classification
Commercial printing industry
Composites
Criteria
Crucibles
Gas atomization
Glass
Induction melting
Materials Science
Metal powders
Metal products
Metallic Materials
Natural Materials
Nickel alloys
Particle shape
Plasma atomization
Powder beds
Powders
Printing industry
Production methods
Production Technology
Properties of Powders and Fibers
Rotating plasmas
Rotation
Specialty metals industry
Theory
Three dimensional printing
Vacuum melting
Title Requirements for Metal and Alloy Powders for 3D Printing (Review)
URI https://link.springer.com/article/10.1007/s11106-022-00301-0
https://www.proquest.com/docview/2742634505
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7ofNEH7-LmhTwIKlrZ0iaNj0WdoigiTvQpNGkC4thk6xD99Z6krfOCD3ssCUmbk8t3er7zBWBHcafzFltcaU0VROo4CoTRJlBUM-H0Rqi_veH6hl90ostH9jjO4_Zk9yoi6Tfqca4bHlSOL0sDD-MD9NNnysTTmeT86ersK3jgNKR8kJOjgxQ6Ak_j_1Z-nEe_d-U_4VF_6rQX4L7K3SnIJi9Ho1wd6Y-_Uo6TfNAizJcolCTFtFmCKdNbhrlv2oT49PA8HBV1hiuQ3BlHGfb_EocEgS65NgjbSdrLSNLt9t_Jbf_NcaJ9WXhKbrEVx6gme0X0YX8VOu2z-5OLoLx9IdAhE3nAUsNsGnOThdRqm1mEZuisGE51qq06bkZZHPEIJ4FKBRc0a1GuhIljE_EwtWm4BrVev2fWgSAExaJYMCdG07Ja6CbThhkRKuev2DocVDaQr4XIhhzLKbthkjhM0g-TbNZh15lJuhWYD1J8myKRAPtyWlYyiREyodvKRB02K0vKcmkOpYtN8zBC5FeHw8oy4-L_-21MVn0DZqk3rqP2bkItH4zMFgKYXG2XE3Ybpjs0-QRJyeKS
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yH9QH8YrVqXkQVLSwpU2aPRZ1zMtExMneQpMmIEgndiL-e89JV-eFPfhYEpJwTi7f6fnyhZADLVDnLXGw0lo6jHUnDqU1NtTMcIl6I8y_3tC_Fb1BfDXkw8mlsLJmu9cpSb9TTy-7wUmFhFkWehwfQqA-j_rqqJg_YOlX7gAlpHyOU0B8FCF_Z3t2Gz-Oo9-b8p_sqD90uitkeYIWaVq5d5XM2WKNLH3TEISvx6fyrapTrpP03iK11__zKykAUtq3AK9pVuQ0fX4efdC70Ttyl31ZdE7voBVkPtOjKktwvEEG3YuHs144eSUhNBGX45BnlrssETaPmDMudwChIKiwgpnMON1pxXkSixicpTMpJMvbTGhpk8TGIspcFm2SRjEq7BahABWhKJEcRWPazkjT4sZyKyONcYULyEltLPVSiWGoqewxmlaBaZU3rWoF5BDtqXCljF8zGE1F-Ie-UHNKpQlAGwgvuQxIsza5miyhUmEOWUQxILSAnNZumBbP7nf7f9X3yULvoX-jbi5vr3fIIvOTA-m4TdIYv77ZXQAdY73n59gnI_fIpA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fSxwxEB7KCUUfamsVz9o2D4IVXT13k2x8XKpXW39wiIo-hSSbQKnsibeHtH99Z7K3PWvxQfq4JCTZTLL5ZuebLwBrVpLOWx5wp_Vswu0eT5R3PrGpE4r0RtJ4e8PJqTy84N-uxNWDLP7Idm9Dkk1OA6k0VfXObRl2polveGoReTZNIqZP0Gmf4aSM1IGZ4sv10cGfSAIJSsWIp0RvKSM2z8rTrfx1OD3-RP8TK41HUH8eTDv4hnnyY3tc223365Gu4_-83Wt4NcGnrGgW1Bt44asFmHugWohPl99H46bO6C0UZ57IxPEv44ghBGYnHgE9M1XJipub4U82GN4TWzqWZftsgK0Q15p9auISG4tw0T84_3yYTO5lSFwmVJ0I40UwufRllgYXyoCgDd0YL1NnXLB7PV7mXHJcHtYoqdJyN5VW-Tz3XGYmmGwJOtWw8svAEJxiUa4EydTsBqdcTzgvvMoseTKhC5utQfRtI7-hp0LLNE0ap0nHadK9LqyTzTTtzfrO4GiaFAPsi1SudJEjmEKHVqgurLZm1ZNNO9IUtZYZR0zYha3WStPip_tdeV71j_BysN_Xx19Pj97BbBrtTPzfVejUd2P_HlFObT9MFvJvhCzuYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Requirements+for+Metal+and+Alloy+Powders+for+3D+Printing+%28Review%29&rft.jtitle=Powder+metallurgy+and+metal+ceramics&rft.au=Radchenko%2C+O+K&rft.au=Gogaev%2C+K+O&rft.date=2022-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1068-1302&rft.eissn=1573-9066&rft.volume=61&rft.issue=3-4&rft.spage=135&rft.epage=154&rft_id=info:doi/10.1007%2Fs11106-022-00301-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1068-1302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1068-1302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1068-1302&client=summon