Contemporary perspectives on the ecological impacts of invasive freshwater fishes

Introductions of non‐native freshwater fish continue to increase globally, although only a small proportion of these introductions will result in an invasion. These invasive populations can cause ecological impacts in the receiving ecosystem through processes including increased competition and pred...

Full description

Saved in:
Bibliographic Details
Published inJournal of fish biology Vol. 103; no. 4; pp. 752 - 764
Main Author Britton, John Robert
Format Journal Article
LanguageEnglish
Published Oxford Wiley Subscription Services, Inc 01.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Introductions of non‐native freshwater fish continue to increase globally, although only a small proportion of these introductions will result in an invasion. These invasive populations can cause ecological impacts in the receiving ecosystem through processes including increased competition and predation pressure, genetic introgression and the transmission of non‐native pathogens. Definitions of ecological impact emphasize that shifts in the strength of these processes are insufficient for characterizing impact alone and, instead, must be associated with a quantifiable decline of biological and/or genetic diversity and lead to a measurable loss of diversity or change in ecosystem functioning. Assessments of ecological impact should thus consider the multiple processes and effects that potentially occur from invasive fish populations where, for example, impacts of invasive common carp Cyprinus carpio populations are through a combination of bottom‐up and top‐down processes that, in entirety, cause shifts in lake stable states and decreased species richness and/or abundances in the biotic communities. Such far‐reaching ecological impacts also align to contemporary definitions of ecosystem collapse, given they involve substantial and persistent declines in biodiversity and ecosystem functions that cannot be recovered unaided. Thus, while not all introduced freshwater fishes will become invasive, those species that do develop invasive populations can cause substantial ecological impacts, where some of the impacts on biodiversity and ecosystem functioning might be sufficiently harmful to be considered as contributing to ecosystem collapse.
AbstractList Introductions of non‐native freshwater fish continue to increase globally, although only a small proportion of these introductions will result in an invasion. These invasive populations can cause ecological impacts in the receiving ecosystem through processes including increased competition and predation pressure, genetic introgression and the transmission of non‐native pathogens. Definitions of ecological impact emphasize that shifts in the strength of these processes are insufficient for characterizing impact alone and, instead, must be associated with a quantifiable decline of biological and/or genetic diversity and lead to a measurable loss of diversity or change in ecosystem functioning. Assessments of ecological impact should thus consider the multiple processes and effects that potentially occur from invasive fish populations where, for example, impacts of invasive common carp Cyprinus carpio populations are through a combination of bottom‐up and top‐down processes that, in entirety, cause shifts in lake stable states and decreased species richness and/or abundances in the biotic communities. Such far‐reaching ecological impacts also align to contemporary definitions of ecosystem collapse, given they involve substantial and persistent declines in biodiversity and ecosystem functions that cannot be recovered unaided. Thus, while not all introduced freshwater fishes will become invasive, those species that do develop invasive populations can cause substantial ecological impacts, where some of the impacts on biodiversity and ecosystem functioning might be sufficiently harmful to be considered as contributing to ecosystem collapse.
Introductions of non‐native freshwater fish continue to increase globally, although only a small proportion of these introductions will result in an invasion. These invasive populations can cause ecological impacts in the receiving ecosystem through processes including increased competition and predation pressure, genetic introgression and the transmission of non‐native pathogens. Definitions of ecological impact emphasize that shifts in the strength of these processes are insufficient for characterizing impact alone and, instead, must be associated with a quantifiable decline of biological and/or genetic diversity and lead to a measurable loss of diversity or change in ecosystem functioning. Assessments of ecological impact should thus consider the multiple processes and effects that potentially occur from invasive fish populations where, for example, impacts of invasive common carp Cyprinus carpio populations are through a combination of bottom‐up and top‐down processes that, in entirety, cause shifts in lake stable states and decreased species richness and/or abundances in the biotic communities. Such far‐reaching ecological impacts also align to contemporary definitions of ecosystem collapse, given they involve substantial and persistent declines in biodiversity and ecosystem functions that cannot be recovered unaided. Thus, while not all introduced freshwater fishes will become invasive, those species that do develop invasive populations can cause substantial ecological impacts, where some of the impacts on biodiversity and ecosystem functioning might be sufficiently harmful to be considered as contributing to ecosystem collapse.
Introductions of non-native freshwater fish continue to increase globally, although only a small proportion of these introductions will result in an invasion. These invasive populations can cause ecological impacts in the receiving ecosystem through processes including increased competition and predation pressure, genetic introgression and the transmission of non-native pathogens. Definitions of ecological impact emphasize that shifts in the strength of these processes are insufficient for characterizing impact alone and, instead, must be associated with a quantifiable decline of biological and/or genetic diversity and lead to a measurable loss of diversity or change in ecosystem functioning. Assessments of ecological impact should thus consider the multiple processes and effects that potentially occur from invasive fish populations where, for example, impacts of invasive common carp Cyprinus carpio populations are through a combination of bottom-up and top-down processes that, in entirety, cause shifts in lake stable states and decreased species richness and/or abundances in the biotic communities. Such far-reaching ecological impacts also align to contemporary definitions of ecosystem collapse, given they involve substantial and persistent declines in biodiversity and ecosystem functions that cannot be recovered unaided. Thus, while not all introduced freshwater fishes will become invasive, those species that do develop invasive populations can cause substantial ecological impacts, where some of the impacts on biodiversity and ecosystem functioning might be sufficiently harmful to be considered as contributing to ecosystem collapse.Introductions of non-native freshwater fish continue to increase globally, although only a small proportion of these introductions will result in an invasion. These invasive populations can cause ecological impacts in the receiving ecosystem through processes including increased competition and predation pressure, genetic introgression and the transmission of non-native pathogens. Definitions of ecological impact emphasize that shifts in the strength of these processes are insufficient for characterizing impact alone and, instead, must be associated with a quantifiable decline of biological and/or genetic diversity and lead to a measurable loss of diversity or change in ecosystem functioning. Assessments of ecological impact should thus consider the multiple processes and effects that potentially occur from invasive fish populations where, for example, impacts of invasive common carp Cyprinus carpio populations are through a combination of bottom-up and top-down processes that, in entirety, cause shifts in lake stable states and decreased species richness and/or abundances in the biotic communities. Such far-reaching ecological impacts also align to contemporary definitions of ecosystem collapse, given they involve substantial and persistent declines in biodiversity and ecosystem functions that cannot be recovered unaided. Thus, while not all introduced freshwater fishes will become invasive, those species that do develop invasive populations can cause substantial ecological impacts, where some of the impacts on biodiversity and ecosystem functioning might be sufficiently harmful to be considered as contributing to ecosystem collapse.
Author Britton, John Robert
Author_xml – sequence: 1
  givenname: John Robert
  orcidid: 0000-0003-1853-3086
  surname: Britton
  fullname: Britton, John Robert
  organization: Department of Life and Environmental Sciences, Faculty of Science and Technology Bournemouth University Poole UK
BookMark eNqF0UtLxDAQB_AgCq6Pg9-g4EUP1cmrSY-y-AJBBD2XNDtxs3SbmmQVv73xcRLBXOaQ3wzM_PfI9hhGJOSIwhkt73zl-jMqmYAtMqPQylo3ot0mMwDG6gLYLtlLaQUALW_5jDzMw5hxPYVo4ns1YUwT2uxfMVVhrPISK7RhCM_emqHy68nYXH5c5cdXkwqrXMS0fDMZY-V8WmI6IDvODAkPf-o-ebq6fJzf1Hf317fzi7vacqlzLVuhGuibhjdGW1QSG5TMsBa0FszohllNkfXAhUKnwcHCUrWQvestiMWC75OT77lTDC8bTLlb-2RxGMyIYZM61gpGQXAl_6eKcSol47rQ4190FTZxLIt0TCtBqQJFizr_VjaGlCK6zvpssi-3jMYPHYXuM42upNF9pVE6Tn91TNGvy83_sB9LZowb
CitedBy_id crossref_primary_10_1093_biosci_biae138
crossref_primary_10_1007_s00027_025_01171_5
crossref_primary_10_1016_j_jenvman_2024_123874
crossref_primary_10_1002_aqc_4173
crossref_primary_10_1007_s00027_023_00974_8
crossref_primary_10_3897_neobiota_97_126607
crossref_primary_10_1089_zeb_2023_0108
crossref_primary_10_1111_fwb_14262
crossref_primary_10_1007_s10530_023_03016_4
crossref_primary_10_1016_j_aquaculture_2023_740535
crossref_primary_10_1016_j_jenvman_2025_125004
crossref_primary_10_1007_s10530_024_03266_w
crossref_primary_10_1111_jfb_15545
crossref_primary_10_1111_jfb_15842
crossref_primary_10_31398_tpjf_31_1_2023_0011
crossref_primary_10_3390_fishes9060221
crossref_primary_10_1007_s10530_023_03243_9
crossref_primary_10_1080_23308249_2024_2337434
crossref_primary_10_1016_j_fishres_2024_107224
crossref_primary_10_1016_j_scitotenv_2024_171718
crossref_primary_10_1111_fwb_14342
crossref_primary_10_1134_S199508292304003X
crossref_primary_10_1051_kmae_2024009
crossref_primary_10_1007_s11273_024_10022_3
crossref_primary_10_1007_s10750_024_05651_x
crossref_primary_10_1016_j_aaf_2023_08_003
crossref_primary_10_1007_s00506_025_01128_w
crossref_primary_10_1051_kmae_2023010
crossref_primary_10_3897_neobiota_94_125227
crossref_primary_10_1007_s00027_024_01128_0
crossref_primary_10_1007_s10750_024_05578_3
crossref_primary_10_3897_neobiota_97_136780
crossref_primary_10_1007_s10530_025_03560_1
crossref_primary_10_31857_S0320965223040046
crossref_primary_10_3897_neobiota_95_126656
crossref_primary_10_1007_s10452_022_10000_y
crossref_primary_10_1007_s10750_023_05389_y
crossref_primary_10_3897_neobiota_94_117313
crossref_primary_10_1007_s00027_023_00989_1
crossref_primary_10_3897_neobiota_94_122939
crossref_primary_10_1111_eff_12785
crossref_primary_10_1007_s10750_024_05766_1
crossref_primary_10_1007_s10530_024_03464_6
crossref_primary_10_1007_s12686_025_01379_5
crossref_primary_10_1038_s41598_024_79957_0
crossref_primary_10_1071_MF22228
crossref_primary_10_3897_neobiota_95_116327
Cites_doi 10.1007/s10530-006-0005-6
10.1080/23308249.2020.1822280
10.1111/j.1095-8649.2007.01685.x
10.1016/j.fishres.2011.03.017
10.1111/j.1095-8649.2002.tb02464.x
10.1111/1365-2664.12488
10.1007/s11160-012-9254-x
10.1007/s11160-019-09562-2
10.1111/j.1467-2979.2010.00390.x
10.1046/j.1365-2427.2002.00963.x
10.1371/journal.pone.0026365
10.1016/j.tree.2012.08.020
10.1007/s10750-009-9844-3
10.1111/j.1467-2979.2008.00321.x
10.1111/j.1461-0248.2004.00616.x
10.1007/s10530-015-0857-8
10.1007/s10530-009-9566-5
10.1111/eff.12408
10.1016/j.tree.2021.09.007
10.1093/biosci/biaa002
10.1023/A:1017085129620
10.1111/j.1365-2400.2007.00575.x
10.1111/1365-2656.13571
10.1002/ece3.1893
10.1111/fme.12130
10.1002/ecy.1648
10.1111/ele.12673
10.1080/23308249.2015.1051214
10.1139/f03-011
10.1080/23308249.2016.1233166
10.1017/S1464793105006950
10.1111/1365-2656.12360
10.1163/1568539X-00002998
10.1038/emi.2016.46
10.1007/s10530-019-02114-6
10.1111/j.1095-8649.1990.tb05870.x
10.1126/science.1075753
10.1007/s10530-021-02577-6
10.1002/ece3.1906
10.1007/s10530-008-9358-3
10.1007/s10530-013-0550-8
10.1007/s10530-015-0938-8
10.1007/978-94-017-2986-4_12
10.1017/S0022149X17000438
10.1007/s10530-013-0563-3
10.1242/jeb.219808
10.1111/1365-2664.12849
10.1111/j.1523-1739.2005.00267.x-i1
10.1111/j.1095-8649.2001.tb00499.x
10.1007/s10530-007-9135-8
10.1111/j.1365-2400.2003.00355.x
10.1007/s10530-004-8122-6
10.1139/er-2018-0049
10.1371/journal.pone.0031757
10.1098/rsbl.2013.0946
10.1111/gcb.16207
10.1051/kmae/2015009
10.1080/02755947.2011.574923
10.1002/aqc.3463
10.1111/j.1095-8649.2010.02566.x
10.1111/j.1365-2427.2004.01330.x
10.1007/s11160-017-9507-9
10.1007/s10530-017-1378-4
10.1641/0006-3568(2006)056[0237:AEEIS]2.0.CO;2
10.1890/09-1974.1
10.1093/jhered/esu033
10.1641/0006-3568(2001)051[0780:BITDSC]2.0.CO;2
10.1111/j.1467-2979.2010.00361.x
10.1146/annurev.ecolsys.110308.120304
10.1111/2041-210X.12817
10.1111/j.1365-294X.2006.03012.x
10.1016/j.tree.2006.06.016
10.1007/s10530-009-9665-3
10.1002/wat2.1059
10.1111/j.1095-8649.2007.01668.x
10.1007/s004420050048
10.1007/s10530-010-9866-9
10.1007/s00442-008-1180-1
10.2307/2265769
10.1079/9781845938062.0282
10.1038/4351046a
10.1890/070156
10.1007/s10530-010-9742-7
10.1016/j.biocon.2021.109366
10.1890/08-0442.1
10.3897/neobiota.55.49547
10.1007/s10530-020-02379-2
10.1080/03632415.2011.574578
10.1007/s10530-018-1693-4
10.1007/s10530-011-9967-0
10.1007/s10530-021-02574-9
10.1007/s00442-014-2899-5
10.1371/journal.pone.0031707
10.1007/s10530-009-9598-x
10.1111/1365-2656.12996
10.1111/j.1600-0706.2013.01263.x
10.17216/LimnoFish-5000130907
10.1093/biosci/biaa168
10.1080/10641260903189243
10.1890/13-0527.1
10.1111/fwb.12910
10.1016/j.scitotenv.2021.147868
10.1111/j.1095-8649.2007.01669.x
10.1023/A:1010086329619
10.1111/gcb.13004
10.1007/s10530-021-02490-y
10.1007/BF00026826
10.1007/s00027-022-00862-7
10.1111/gcb.14323
10.1111/j.1365-2400.2006.00510.x
10.1080/24750263.2017.1341959
10.3354/dao02356
10.1007/s10530-016-1355-3
10.1111/ddi.12391
10.1046/j.1365-2400.2003.00379.x
10.1111/j.1095-8649.2007.01783.x
10.1111/j.1472-4642.2008.00521.x
10.1890/14-0060.1
10.1017/S0031182015001237
10.1111/eff.12128
10.1111/fwb.13326
10.1111/1365-2664.13993
10.1111/j.1365-2427.2004.01232.x
10.1111/j.1365-2400.2011.00841.x
10.3750/AIP2010.40.1.02
10.1007/978-94-017-2031-1_13
10.1111/oik.01661
10.1111/mec.15638
ContentType Journal Article
Copyright 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 The Author. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of Fisheries Society of the British Isles.
Copyright_xml – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 The Author. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of Fisheries Society of the British Isles.
DBID AAYXX
CITATION
7QG
7SN
7TN
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
7X8
7S9
L.6
DOI 10.1111/jfb.15240
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Oceanic Abstracts
Technology Research Database
Animal Behavior Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1095-8649
EndPage 764
ExternalDocumentID 10_1111_jfb_15240
GroupedDBID ---
--K
-~X
.3N
.GA
.Y3
05W
0R~
10A
1B1
1OB
1OC
29K
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAJYS
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BGJEQ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CITATION
COF
CS3
D-E
D-F
D-I
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LG5
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NQ-
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RPZ
RX1
SAMSI
SUPJJ
TN5
TWZ
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WUPDE
WXSBR
WYISQ
XG1
XOL
XPP
YK3
YQT
ZCG
ZMT
ZY4
ZZTAW
~02
~IA
~WT
7QG
7SN
7TN
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H95
L.G
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c358t-594760b6636a8ce75e6e52a2908842a862c81e2b0347ef80f0dc17d5bfbc04dd3
ISSN 0022-1112
1095-8649
IngestDate Fri Jul 11 18:36:05 EDT 2025
Fri Jul 11 02:27:43 EDT 2025
Sat Jul 19 05:41:04 EDT 2025
Tue Jul 01 01:50:56 EDT 2025
Thu Apr 24 22:51:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c358t-594760b6636a8ce75e6e52a2908842a862c81e2b0347ef80f0dc17d5bfbc04dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1853-3086
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdf/10.1111/jfb.15240
PQID 2874117071
PQPubID 1086393
PageCount 13
ParticipantIDs proquest_miscellaneous_2942104375
proquest_miscellaneous_2723155238
proquest_journals_2874117071
crossref_citationtrail_10_1111_jfb_15240
crossref_primary_10_1111_jfb_15240
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-00
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of fish biology
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Hickley P. (e_1_2_8_71_1) 2004; 4
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_62_1
e_1_2_8_115_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_8_1
Lowe S. (e_1_2_8_85_1) 2000
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – ident: e_1_2_8_101_1
  doi: 10.1007/s10530-006-0005-6
– ident: e_1_2_8_102_1
  doi: 10.1080/23308249.2020.1822280
– ident: e_1_2_8_63_1
  doi: 10.1111/j.1095-8649.2007.01685.x
– ident: e_1_2_8_94_1
  doi: 10.1016/j.fishres.2011.03.017
– ident: e_1_2_8_40_1
  doi: 10.1111/j.1095-8649.2002.tb02464.x
– ident: e_1_2_8_36_1
  doi: 10.1111/1365-2664.12488
– ident: e_1_2_8_21_1
  doi: 10.1007/s11160-012-9254-x
– ident: e_1_2_8_118_1
  doi: 10.1007/s11160-019-09562-2
– ident: e_1_2_8_18_1
  doi: 10.1111/j.1467-2979.2010.00390.x
– ident: e_1_2_8_125_1
  doi: 10.1046/j.1365-2427.2002.00963.x
– ident: e_1_2_8_22_1
  doi: 10.1371/journal.pone.0026365
– ident: e_1_2_8_12_1
  doi: 10.1016/j.tree.2012.08.020
– ident: e_1_2_8_7_1
  doi: 10.1007/s10750-009-9844-3
– ident: e_1_2_8_31_1
  doi: 10.1111/j.1467-2979.2008.00321.x
– ident: e_1_2_8_30_1
  doi: 10.1111/j.1461-0248.2004.00616.x
– ident: e_1_2_8_107_1
  doi: 10.1007/s10530-015-0857-8
– ident: e_1_2_8_16_1
  doi: 10.1007/s10530-009-9566-5
– ident: e_1_2_8_62_1
  doi: 10.1111/eff.12408
– ident: e_1_2_8_29_1
  doi: 10.1016/j.tree.2021.09.007
– ident: e_1_2_8_116_1
  doi: 10.1093/biosci/biaa002
– ident: e_1_2_8_130_1
  doi: 10.1023/A:1017085129620
– ident: e_1_2_8_91_1
  doi: 10.1111/j.1365-2400.2007.00575.x
– ident: e_1_2_8_46_1
  doi: 10.1111/1365-2656.13571
– ident: e_1_2_8_76_1
  doi: 10.1002/ece3.1893
– ident: e_1_2_8_70_1
  doi: 10.1111/fme.12130
– ident: e_1_2_8_106_1
  doi: 10.1002/ecy.1648
– ident: e_1_2_8_25_1
  doi: 10.1111/ele.12673
– ident: e_1_2_8_121_1
  doi: 10.1080/23308249.2015.1051214
– ident: e_1_2_8_96_1
  doi: 10.1139/f03-011
– ident: e_1_2_8_60_1
  doi: 10.1080/23308249.2016.1233166
– ident: e_1_2_8_48_1
  doi: 10.1017/S1464793105006950
– ident: e_1_2_8_117_1
  doi: 10.1111/1365-2656.12360
– ident: e_1_2_8_24_1
  doi: 10.1163/1568539X-00002998
– ident: e_1_2_8_4_1
  doi: 10.1038/emi.2016.46
– ident: e_1_2_8_113_1
  doi: 10.1007/s10530-019-02114-6
– ident: e_1_2_8_124_1
  doi: 10.1111/j.1095-8649.1990.tb05870.x
– ident: e_1_2_8_80_1
  doi: 10.1126/science.1075753
– ident: e_1_2_8_39_1
  doi: 10.1007/s10530-021-02577-6
– ident: e_1_2_8_6_1
  doi: 10.1002/ece3.1906
– ident: e_1_2_8_98_1
  doi: 10.1007/s10530-008-9358-3
– ident: e_1_2_8_41_1
  doi: 10.1007/s10530-013-0550-8
– ident: e_1_2_8_23_1
  doi: 10.1007/s10530-015-0938-8
– ident: e_1_2_8_127_1
  doi: 10.1007/978-94-017-2986-4_12
– ident: e_1_2_8_38_1
  doi: 10.1017/S0022149X17000438
– ident: e_1_2_8_73_1
  doi: 10.1007/s10530-013-0563-3
– ident: e_1_2_8_34_1
  doi: 10.1242/jeb.219808
– ident: e_1_2_8_43_1
  doi: 10.1111/1365-2664.12849
– ident: e_1_2_8_103_1
  doi: 10.1111/j.1523-1739.2005.00267.x-i1
– ident: e_1_2_8_59_1
  doi: 10.1111/j.1095-8649.2001.tb00499.x
– ident: e_1_2_8_9_1
  doi: 10.1007/s10530-007-9135-8
– ident: e_1_2_8_78_1
  doi: 10.1111/j.1365-2400.2003.00355.x
– ident: e_1_2_8_47_1
  doi: 10.1007/s10530-004-8122-6
– ident: e_1_2_8_104_1
  doi: 10.1139/er-2018-0049
– ident: e_1_2_8_74_1
  doi: 10.1371/journal.pone.0031757
– ident: e_1_2_8_2_1
  doi: 10.1098/rsbl.2013.0946
– ident: e_1_2_8_67_1
  doi: 10.1111/gcb.16207
– ident: e_1_2_8_45_1
  doi: 10.1051/kmae/2015009
– ident: e_1_2_8_123_1
  doi: 10.1080/02755947.2011.574923
– ident: e_1_2_8_35_1
  doi: 10.1002/aqc.3463
– ident: e_1_2_8_57_1
  doi: 10.1111/j.1095-8649.2010.02566.x
– ident: e_1_2_8_64_1
  doi: 10.1111/j.1365-2427.2004.01330.x
– ident: e_1_2_8_32_1
  doi: 10.1007/s11160-017-9507-9
– ident: e_1_2_8_83_1
  doi: 10.1007/s10530-017-1378-4
– ident: e_1_2_8_88_1
  doi: 10.1641/0006-3568(2006)056[0237:AEEIS]2.0.CO;2
– ident: e_1_2_8_51_1
  doi: 10.1890/09-1974.1
– ident: e_1_2_8_66_1
  doi: 10.1093/jhered/esu033
– ident: e_1_2_8_86_1
  doi: 10.1641/0006-3568(2001)051[0780:BITDSC]2.0.CO;2
– ident: e_1_2_8_56_1
  doi: 10.1111/j.1467-2979.2010.00361.x
– ident: e_1_2_8_108_1
  doi: 10.1146/annurev.ecolsys.110308.120304
– ident: e_1_2_8_99_1
  doi: 10.1111/2041-210X.12817
– ident: e_1_2_8_84_1
  doi: 10.1111/j.1365-294X.2006.03012.x
– ident: e_1_2_8_49_1
  doi: 10.1016/j.tree.2006.06.016
– ident: e_1_2_8_10_1
  doi: 10.1007/s10530-009-9665-3
– ident: e_1_2_8_89_1
  doi: 10.1002/wat2.1059
– ident: e_1_2_8_55_1
  doi: 10.1111/j.1095-8649.2007.01668.x
– ident: e_1_2_8_93_1
  doi: 10.1007/s004420050048
– ident: e_1_2_8_50_1
  doi: 10.1007/s10530-010-9866-9
– ident: e_1_2_8_87_1
  doi: 10.1007/s00442-008-1180-1
– ident: e_1_2_8_126_1
  doi: 10.2307/2265769
– ident: e_1_2_8_105_1
  doi: 10.1079/9781845938062.0282
– ident: e_1_2_8_58_1
  doi: 10.1038/4351046a
– ident: e_1_2_8_77_1
  doi: 10.1890/070156
– ident: e_1_2_8_20_1
  doi: 10.1007/s10530-010-9742-7
– ident: e_1_2_8_90_1
  doi: 10.1016/j.biocon.2021.109366
– ident: e_1_2_8_128_1
  doi: 10.1890/08-0442.1
– ident: e_1_2_8_44_1
  doi: 10.3897/neobiota.55.49547
– volume: 4
  start-page: 503
  year: 2004
  ident: e_1_2_8_71_1
  article-title: Habitat degradation and subsequent fishery collapse in Lakes Naivasha and Baringo, Kenya
  publication-title: Ecohydrology & Hydrobiology
– ident: e_1_2_8_129_1
  doi: 10.1007/s10530-020-02379-2
– ident: e_1_2_8_33_1
  doi: 10.1080/03632415.2011.574578
– ident: e_1_2_8_65_1
  doi: 10.1007/s10530-018-1693-4
– volume-title: 100 of the world's worst invasive alien species: A selection from the global invasive species database
  year: 2000
  ident: e_1_2_8_85_1
– ident: e_1_2_8_15_1
  doi: 10.1007/s10530-011-9967-0
– ident: e_1_2_8_115_1
  doi: 10.1007/s10530-021-02574-9
– ident: e_1_2_8_81_1
  doi: 10.1007/s00442-014-2899-5
– ident: e_1_2_8_11_1
  doi: 10.1371/journal.pone.0031707
– ident: e_1_2_8_52_1
  doi: 10.1007/s10530-009-9598-x
– ident: e_1_2_8_19_1
  doi: 10.1111/1365-2656.12996
– ident: e_1_2_8_68_1
  doi: 10.1111/j.1600-0706.2013.01263.x
– ident: e_1_2_8_120_1
  doi: 10.17216/LimnoFish-5000130907
– ident: e_1_2_8_112_1
  doi: 10.1093/biosci/biaa168
– ident: e_1_2_8_122_1
  doi: 10.1080/10641260903189243
– ident: e_1_2_8_17_1
  doi: 10.1890/13-0527.1
– ident: e_1_2_8_61_1
  doi: 10.1111/fwb.12910
– ident: e_1_2_8_119_1
  doi: 10.1016/j.scitotenv.2021.147868
– ident: e_1_2_8_13_1
  doi: 10.1111/j.1095-8649.2007.01669.x
– ident: e_1_2_8_109_1
  doi: 10.1023/A:1010086329619
– ident: e_1_2_8_54_1
  doi: 10.1111/gcb.13004
– ident: e_1_2_8_26_1
  doi: 10.1007/s10530-021-02490-y
– ident: e_1_2_8_53_1
  doi: 10.1007/BF00026826
– ident: e_1_2_8_82_1
  doi: 10.1007/s00027-022-00862-7
– ident: e_1_2_8_131_1
  doi: 10.1111/gcb.14323
– ident: e_1_2_8_14_1
  doi: 10.1111/j.1365-2400.2006.00510.x
– ident: e_1_2_8_27_1
  doi: 10.1080/24750263.2017.1341959
– ident: e_1_2_8_5_1
  doi: 10.3354/dao02356
– ident: e_1_2_8_42_1
  doi: 10.1007/s10530-016-1355-3
– ident: e_1_2_8_72_1
  doi: 10.1111/ddi.12391
– ident: e_1_2_8_69_1
  doi: 10.1046/j.1365-2400.2003.00379.x
– ident: e_1_2_8_95_1
  doi: 10.1111/j.1095-8649.2007.01783.x
– ident: e_1_2_8_28_1
  doi: 10.1111/j.1472-4642.2008.00521.x
– ident: e_1_2_8_3_1
  doi: 10.1890/14-0060.1
– ident: e_1_2_8_97_1
  doi: 10.1017/S0031182015001237
– ident: e_1_2_8_37_1
  doi: 10.1111/eff.12128
– ident: e_1_2_8_92_1
  doi: 10.1111/fwb.13326
– ident: e_1_2_8_100_1
  doi: 10.1111/1365-2664.13993
– ident: e_1_2_8_79_1
  doi: 10.1111/j.1365-2427.2004.01232.x
– ident: e_1_2_8_114_1
  doi: 10.1111/j.1365-2400.2011.00841.x
– ident: e_1_2_8_110_1
  doi: 10.3750/AIP2010.40.1.02
– ident: e_1_2_8_111_1
  doi: 10.1007/978-94-017-2031-1_13
– ident: e_1_2_8_75_1
  doi: 10.1111/oik.01661
– ident: e_1_2_8_8_1
  doi: 10.1111/mec.15638
SSID ssj0009393
Score 2.5896783
SecondaryResourceType review_article
Snippet Introductions of non‐native freshwater fish continue to increase globally, although only a small proportion of these introductions will result in an invasion....
Introductions of non-native freshwater fish continue to increase globally, although only a small proportion of these introductions will result in an invasion....
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 752
SubjectTerms Animal population
Biodiversity
Biological Sciences
Cyprinus carpio
Ecological effects
Ecological function
Ecosystems
Environmental changes
environmental impact
Fish
Fish populations
Freshwater
Freshwater fish
Freshwater fishes
Genetic diversity
Genetic variation
Inland water environment
Interspecific relationships
Introgression
Invasive fish
Invasive species
Lakes
Pathogens
Populations
Predation
Species richness
Title Contemporary perspectives on the ecological impacts of invasive freshwater fishes
URI https://www.proquest.com/docview/2874117071
https://www.proquest.com/docview/2723155238
https://www.proquest.com/docview/2942104375
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEF5qRfClqFU8vcgqPhQOKUl2N5s8SmkpUluUc-DgS9grCpIc2rSCv76zm80N2tL6EkJ2soT5NpOZ7Mw3CH2WrCBxLMD6ZYWOKFEskoQnkVGcaQMeSqJdgfO38-x0Sb-u2GpoeemrSxp5qP7dWVfyP6jCNcDVVck-Adl-UrgA54AvHAFhOD4K4wm11Hoom-y2AOZG9batLYdsGWarG-Gz1i3E2r_-CseTaF1u_NU9rqobnAe6piF-_92E1HuffdOmaI9_IqRDOto4qR_M3tQwxmS0Auh8fcgZuOMZHRk83vLPhm9nGLvPLFvp2i219ExT6uvzi_JkeXZWLo5Xi2foeQo-v4-PfwxcYAUJDMrhSQNNlE_L6iaeOhfTb6t3GBav0FZQH_7SwvYabZjqDXrxs_Za3Ebfx-DhMXi4rjCAhwfwcAAP1xZ34OEBPNyC9xYtT44XR6dR6G8RKcLyJmIF5VkswefLRK4MZyYzLBWpSz2jqYBYU-WJSWVMKDc2j22sVcI1k1aqmGpN3qHNqq7Me4R1buHmwhJaCCqZlSTRIsvcBr2EydQMHXSKKVUgf3c9SP6UfRBoZel1OEOfetF1y3hyl9Bep90yvBBXpWud4BoZ8WSGPvbDYK7cHpSoTH0NMgCsY_0j-QMyBU0Tx7nFdh4hs4teDit6D202l9dmHxzFRn7wC-gWGZtsjg
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contemporary+perspectives+on+the+ecological+impacts+of+invasive+freshwater+fishes&rft.jtitle=Journal+of+fish+biology&rft.au=Britton%2C+John+Robert&rft.date=2023-10-01&rft.issn=0022-1112&rft.volume=103&rft.issue=4+p.752-764&rft.spage=752&rft.epage=764&rft_id=info:doi/10.1111%2Fjfb.15240&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1112&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1112&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1112&client=summon