Contemporary perspectives on the ecological impacts of invasive freshwater fishes
Introductions of non‐native freshwater fish continue to increase globally, although only a small proportion of these introductions will result in an invasion. These invasive populations can cause ecological impacts in the receiving ecosystem through processes including increased competition and pred...
Saved in:
Published in | Journal of fish biology Vol. 103; no. 4; pp. 752 - 764 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford
Wiley Subscription Services, Inc
01.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Introductions of non‐native freshwater fish continue to increase globally, although only a small proportion of these introductions will result in an invasion. These invasive populations can cause ecological impacts in the receiving ecosystem through processes including increased competition and predation pressure, genetic introgression and the transmission of non‐native pathogens. Definitions of ecological impact emphasize that shifts in the strength of these processes are insufficient for characterizing impact alone and, instead, must be associated with a quantifiable decline of biological and/or genetic diversity and lead to a measurable loss of diversity or change in ecosystem functioning. Assessments of ecological impact should thus consider the multiple processes and effects that potentially occur from invasive fish populations where, for example, impacts of invasive common carp
Cyprinus carpio
populations are through a combination of bottom‐up and top‐down processes that, in entirety, cause shifts in lake stable states and decreased species richness and/or abundances in the biotic communities. Such far‐reaching ecological impacts also align to contemporary definitions of ecosystem collapse, given they involve substantial and persistent declines in biodiversity and ecosystem functions that cannot be recovered unaided. Thus, while not all introduced freshwater fishes will become invasive, those species that do develop invasive populations can cause substantial ecological impacts, where some of the impacts on biodiversity and ecosystem functioning might be sufficiently harmful to be considered as contributing to ecosystem collapse. |
---|---|
AbstractList | Introductions of non‐native freshwater fish continue to increase globally, although only a small proportion of these introductions will result in an invasion. These invasive populations can cause ecological impacts in the receiving ecosystem through processes including increased competition and predation pressure, genetic introgression and the transmission of non‐native pathogens. Definitions of ecological impact emphasize that shifts in the strength of these processes are insufficient for characterizing impact alone and, instead, must be associated with a quantifiable decline of biological and/or genetic diversity and lead to a measurable loss of diversity or change in ecosystem functioning. Assessments of ecological impact should thus consider the multiple processes and effects that potentially occur from invasive fish populations where, for example, impacts of invasive common carp Cyprinus carpio populations are through a combination of bottom‐up and top‐down processes that, in entirety, cause shifts in lake stable states and decreased species richness and/or abundances in the biotic communities. Such far‐reaching ecological impacts also align to contemporary definitions of ecosystem collapse, given they involve substantial and persistent declines in biodiversity and ecosystem functions that cannot be recovered unaided. Thus, while not all introduced freshwater fishes will become invasive, those species that do develop invasive populations can cause substantial ecological impacts, where some of the impacts on biodiversity and ecosystem functioning might be sufficiently harmful to be considered as contributing to ecosystem collapse. Introductions of non‐native freshwater fish continue to increase globally, although only a small proportion of these introductions will result in an invasion. These invasive populations can cause ecological impacts in the receiving ecosystem through processes including increased competition and predation pressure, genetic introgression and the transmission of non‐native pathogens. Definitions of ecological impact emphasize that shifts in the strength of these processes are insufficient for characterizing impact alone and, instead, must be associated with a quantifiable decline of biological and/or genetic diversity and lead to a measurable loss of diversity or change in ecosystem functioning. Assessments of ecological impact should thus consider the multiple processes and effects that potentially occur from invasive fish populations where, for example, impacts of invasive common carp Cyprinus carpio populations are through a combination of bottom‐up and top‐down processes that, in entirety, cause shifts in lake stable states and decreased species richness and/or abundances in the biotic communities. Such far‐reaching ecological impacts also align to contemporary definitions of ecosystem collapse, given they involve substantial and persistent declines in biodiversity and ecosystem functions that cannot be recovered unaided. Thus, while not all introduced freshwater fishes will become invasive, those species that do develop invasive populations can cause substantial ecological impacts, where some of the impacts on biodiversity and ecosystem functioning might be sufficiently harmful to be considered as contributing to ecosystem collapse. Introductions of non-native freshwater fish continue to increase globally, although only a small proportion of these introductions will result in an invasion. These invasive populations can cause ecological impacts in the receiving ecosystem through processes including increased competition and predation pressure, genetic introgression and the transmission of non-native pathogens. Definitions of ecological impact emphasize that shifts in the strength of these processes are insufficient for characterizing impact alone and, instead, must be associated with a quantifiable decline of biological and/or genetic diversity and lead to a measurable loss of diversity or change in ecosystem functioning. Assessments of ecological impact should thus consider the multiple processes and effects that potentially occur from invasive fish populations where, for example, impacts of invasive common carp Cyprinus carpio populations are through a combination of bottom-up and top-down processes that, in entirety, cause shifts in lake stable states and decreased species richness and/or abundances in the biotic communities. Such far-reaching ecological impacts also align to contemporary definitions of ecosystem collapse, given they involve substantial and persistent declines in biodiversity and ecosystem functions that cannot be recovered unaided. Thus, while not all introduced freshwater fishes will become invasive, those species that do develop invasive populations can cause substantial ecological impacts, where some of the impacts on biodiversity and ecosystem functioning might be sufficiently harmful to be considered as contributing to ecosystem collapse.Introductions of non-native freshwater fish continue to increase globally, although only a small proportion of these introductions will result in an invasion. These invasive populations can cause ecological impacts in the receiving ecosystem through processes including increased competition and predation pressure, genetic introgression and the transmission of non-native pathogens. Definitions of ecological impact emphasize that shifts in the strength of these processes are insufficient for characterizing impact alone and, instead, must be associated with a quantifiable decline of biological and/or genetic diversity and lead to a measurable loss of diversity or change in ecosystem functioning. Assessments of ecological impact should thus consider the multiple processes and effects that potentially occur from invasive fish populations where, for example, impacts of invasive common carp Cyprinus carpio populations are through a combination of bottom-up and top-down processes that, in entirety, cause shifts in lake stable states and decreased species richness and/or abundances in the biotic communities. Such far-reaching ecological impacts also align to contemporary definitions of ecosystem collapse, given they involve substantial and persistent declines in biodiversity and ecosystem functions that cannot be recovered unaided. Thus, while not all introduced freshwater fishes will become invasive, those species that do develop invasive populations can cause substantial ecological impacts, where some of the impacts on biodiversity and ecosystem functioning might be sufficiently harmful to be considered as contributing to ecosystem collapse. |
Author | Britton, John Robert |
Author_xml | – sequence: 1 givenname: John Robert orcidid: 0000-0003-1853-3086 surname: Britton fullname: Britton, John Robert organization: Department of Life and Environmental Sciences, Faculty of Science and Technology Bournemouth University Poole UK |
BookMark | eNqF0UtLxDAQB_AgCq6Pg9-g4EUP1cmrSY-y-AJBBD2XNDtxs3SbmmQVv73xcRLBXOaQ3wzM_PfI9hhGJOSIwhkt73zl-jMqmYAtMqPQylo3ot0mMwDG6gLYLtlLaQUALW_5jDzMw5hxPYVo4ns1YUwT2uxfMVVhrPISK7RhCM_emqHy68nYXH5c5cdXkwqrXMS0fDMZY-V8WmI6IDvODAkPf-o-ebq6fJzf1Hf317fzi7vacqlzLVuhGuibhjdGW1QSG5TMsBa0FszohllNkfXAhUKnwcHCUrWQvestiMWC75OT77lTDC8bTLlb-2RxGMyIYZM61gpGQXAl_6eKcSol47rQ4190FTZxLIt0TCtBqQJFizr_VjaGlCK6zvpssi-3jMYPHYXuM42upNF9pVE6Tn91TNGvy83_sB9LZowb |
CitedBy_id | crossref_primary_10_1093_biosci_biae138 crossref_primary_10_1007_s00027_025_01171_5 crossref_primary_10_1016_j_jenvman_2024_123874 crossref_primary_10_1002_aqc_4173 crossref_primary_10_1007_s00027_023_00974_8 crossref_primary_10_3897_neobiota_97_126607 crossref_primary_10_1089_zeb_2023_0108 crossref_primary_10_1111_fwb_14262 crossref_primary_10_1007_s10530_023_03016_4 crossref_primary_10_1016_j_aquaculture_2023_740535 crossref_primary_10_1016_j_jenvman_2025_125004 crossref_primary_10_1007_s10530_024_03266_w crossref_primary_10_1111_jfb_15545 crossref_primary_10_1111_jfb_15842 crossref_primary_10_31398_tpjf_31_1_2023_0011 crossref_primary_10_3390_fishes9060221 crossref_primary_10_1007_s10530_023_03243_9 crossref_primary_10_1080_23308249_2024_2337434 crossref_primary_10_1016_j_fishres_2024_107224 crossref_primary_10_1016_j_scitotenv_2024_171718 crossref_primary_10_1111_fwb_14342 crossref_primary_10_1134_S199508292304003X crossref_primary_10_1051_kmae_2024009 crossref_primary_10_1007_s11273_024_10022_3 crossref_primary_10_1007_s10750_024_05651_x crossref_primary_10_1016_j_aaf_2023_08_003 crossref_primary_10_1007_s00506_025_01128_w crossref_primary_10_1051_kmae_2023010 crossref_primary_10_3897_neobiota_94_125227 crossref_primary_10_1007_s00027_024_01128_0 crossref_primary_10_1007_s10750_024_05578_3 crossref_primary_10_3897_neobiota_97_136780 crossref_primary_10_1007_s10530_025_03560_1 crossref_primary_10_31857_S0320965223040046 crossref_primary_10_3897_neobiota_95_126656 crossref_primary_10_1007_s10452_022_10000_y crossref_primary_10_1007_s10750_023_05389_y crossref_primary_10_3897_neobiota_94_117313 crossref_primary_10_1007_s00027_023_00989_1 crossref_primary_10_3897_neobiota_94_122939 crossref_primary_10_1111_eff_12785 crossref_primary_10_1007_s10750_024_05766_1 crossref_primary_10_1007_s10530_024_03464_6 crossref_primary_10_1007_s12686_025_01379_5 crossref_primary_10_1038_s41598_024_79957_0 crossref_primary_10_1071_MF22228 crossref_primary_10_3897_neobiota_95_116327 |
Cites_doi | 10.1007/s10530-006-0005-6 10.1080/23308249.2020.1822280 10.1111/j.1095-8649.2007.01685.x 10.1016/j.fishres.2011.03.017 10.1111/j.1095-8649.2002.tb02464.x 10.1111/1365-2664.12488 10.1007/s11160-012-9254-x 10.1007/s11160-019-09562-2 10.1111/j.1467-2979.2010.00390.x 10.1046/j.1365-2427.2002.00963.x 10.1371/journal.pone.0026365 10.1016/j.tree.2012.08.020 10.1007/s10750-009-9844-3 10.1111/j.1467-2979.2008.00321.x 10.1111/j.1461-0248.2004.00616.x 10.1007/s10530-015-0857-8 10.1007/s10530-009-9566-5 10.1111/eff.12408 10.1016/j.tree.2021.09.007 10.1093/biosci/biaa002 10.1023/A:1017085129620 10.1111/j.1365-2400.2007.00575.x 10.1111/1365-2656.13571 10.1002/ece3.1893 10.1111/fme.12130 10.1002/ecy.1648 10.1111/ele.12673 10.1080/23308249.2015.1051214 10.1139/f03-011 10.1080/23308249.2016.1233166 10.1017/S1464793105006950 10.1111/1365-2656.12360 10.1163/1568539X-00002998 10.1038/emi.2016.46 10.1007/s10530-019-02114-6 10.1111/j.1095-8649.1990.tb05870.x 10.1126/science.1075753 10.1007/s10530-021-02577-6 10.1002/ece3.1906 10.1007/s10530-008-9358-3 10.1007/s10530-013-0550-8 10.1007/s10530-015-0938-8 10.1007/978-94-017-2986-4_12 10.1017/S0022149X17000438 10.1007/s10530-013-0563-3 10.1242/jeb.219808 10.1111/1365-2664.12849 10.1111/j.1523-1739.2005.00267.x-i1 10.1111/j.1095-8649.2001.tb00499.x 10.1007/s10530-007-9135-8 10.1111/j.1365-2400.2003.00355.x 10.1007/s10530-004-8122-6 10.1139/er-2018-0049 10.1371/journal.pone.0031757 10.1098/rsbl.2013.0946 10.1111/gcb.16207 10.1051/kmae/2015009 10.1080/02755947.2011.574923 10.1002/aqc.3463 10.1111/j.1095-8649.2010.02566.x 10.1111/j.1365-2427.2004.01330.x 10.1007/s11160-017-9507-9 10.1007/s10530-017-1378-4 10.1641/0006-3568(2006)056[0237:AEEIS]2.0.CO;2 10.1890/09-1974.1 10.1093/jhered/esu033 10.1641/0006-3568(2001)051[0780:BITDSC]2.0.CO;2 10.1111/j.1467-2979.2010.00361.x 10.1146/annurev.ecolsys.110308.120304 10.1111/2041-210X.12817 10.1111/j.1365-294X.2006.03012.x 10.1016/j.tree.2006.06.016 10.1007/s10530-009-9665-3 10.1002/wat2.1059 10.1111/j.1095-8649.2007.01668.x 10.1007/s004420050048 10.1007/s10530-010-9866-9 10.1007/s00442-008-1180-1 10.2307/2265769 10.1079/9781845938062.0282 10.1038/4351046a 10.1890/070156 10.1007/s10530-010-9742-7 10.1016/j.biocon.2021.109366 10.1890/08-0442.1 10.3897/neobiota.55.49547 10.1007/s10530-020-02379-2 10.1080/03632415.2011.574578 10.1007/s10530-018-1693-4 10.1007/s10530-011-9967-0 10.1007/s10530-021-02574-9 10.1007/s00442-014-2899-5 10.1371/journal.pone.0031707 10.1007/s10530-009-9598-x 10.1111/1365-2656.12996 10.1111/j.1600-0706.2013.01263.x 10.17216/LimnoFish-5000130907 10.1093/biosci/biaa168 10.1080/10641260903189243 10.1890/13-0527.1 10.1111/fwb.12910 10.1016/j.scitotenv.2021.147868 10.1111/j.1095-8649.2007.01669.x 10.1023/A:1010086329619 10.1111/gcb.13004 10.1007/s10530-021-02490-y 10.1007/BF00026826 10.1007/s00027-022-00862-7 10.1111/gcb.14323 10.1111/j.1365-2400.2006.00510.x 10.1080/24750263.2017.1341959 10.3354/dao02356 10.1007/s10530-016-1355-3 10.1111/ddi.12391 10.1046/j.1365-2400.2003.00379.x 10.1111/j.1095-8649.2007.01783.x 10.1111/j.1472-4642.2008.00521.x 10.1890/14-0060.1 10.1017/S0031182015001237 10.1111/eff.12128 10.1111/fwb.13326 10.1111/1365-2664.13993 10.1111/j.1365-2427.2004.01232.x 10.1111/j.1365-2400.2011.00841.x 10.3750/AIP2010.40.1.02 10.1007/978-94-017-2031-1_13 10.1111/oik.01661 10.1111/mec.15638 |
ContentType | Journal Article |
Copyright | 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 The Author. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of Fisheries Society of the British Isles. |
Copyright_xml | – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 The Author. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of Fisheries Society of the British Isles. |
DBID | AAYXX CITATION 7QG 7SN 7TN 8FD C1K F1W FR3 H95 L.G P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/jfb.15240 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Oceanic Abstracts Technology Research Database Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1095-8649 |
EndPage | 764 |
ExternalDocumentID | 10_1111_jfb_15240 |
GroupedDBID | --- --K -~X .3N .GA .Y3 05W 0R~ 10A 1B1 1OB 1OC 29K 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAJYS AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABJNI ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AHEFC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BGJEQ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CITATION COF CS3 D-E D-F D-I DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LG5 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NQ- O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RPZ RX1 SAMSI SUPJJ TN5 TWZ UB1 UPT V8K VH1 W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WUPDE WXSBR WYISQ XG1 XOL XPP YK3 YQT ZCG ZMT ZY4 ZZTAW ~02 ~IA ~WT 7QG 7SN 7TN 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H95 L.G P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c358t-594760b6636a8ce75e6e52a2908842a862c81e2b0347ef80f0dc17d5bfbc04dd3 |
ISSN | 0022-1112 1095-8649 |
IngestDate | Fri Jul 11 18:36:05 EDT 2025 Fri Jul 11 02:27:43 EDT 2025 Sat Jul 19 05:41:04 EDT 2025 Tue Jul 01 01:50:56 EDT 2025 Thu Apr 24 22:51:36 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c358t-594760b6636a8ce75e6e52a2908842a862c81e2b0347ef80f0dc17d5bfbc04dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1853-3086 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdf/10.1111/jfb.15240 |
PQID | 2874117071 |
PQPubID | 1086393 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2942104375 proquest_miscellaneous_2723155238 proquest_journals_2874117071 crossref_citationtrail_10_1111_jfb_15240 crossref_primary_10_1111_jfb_15240 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-00 20231001 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-00 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Journal of fish biology |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Hickley P. (e_1_2_8_71_1) 2004; 4 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_62_1 e_1_2_8_115_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_8_1 Lowe S. (e_1_2_8_85_1) 2000 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – ident: e_1_2_8_101_1 doi: 10.1007/s10530-006-0005-6 – ident: e_1_2_8_102_1 doi: 10.1080/23308249.2020.1822280 – ident: e_1_2_8_63_1 doi: 10.1111/j.1095-8649.2007.01685.x – ident: e_1_2_8_94_1 doi: 10.1016/j.fishres.2011.03.017 – ident: e_1_2_8_40_1 doi: 10.1111/j.1095-8649.2002.tb02464.x – ident: e_1_2_8_36_1 doi: 10.1111/1365-2664.12488 – ident: e_1_2_8_21_1 doi: 10.1007/s11160-012-9254-x – ident: e_1_2_8_118_1 doi: 10.1007/s11160-019-09562-2 – ident: e_1_2_8_18_1 doi: 10.1111/j.1467-2979.2010.00390.x – ident: e_1_2_8_125_1 doi: 10.1046/j.1365-2427.2002.00963.x – ident: e_1_2_8_22_1 doi: 10.1371/journal.pone.0026365 – ident: e_1_2_8_12_1 doi: 10.1016/j.tree.2012.08.020 – ident: e_1_2_8_7_1 doi: 10.1007/s10750-009-9844-3 – ident: e_1_2_8_31_1 doi: 10.1111/j.1467-2979.2008.00321.x – ident: e_1_2_8_30_1 doi: 10.1111/j.1461-0248.2004.00616.x – ident: e_1_2_8_107_1 doi: 10.1007/s10530-015-0857-8 – ident: e_1_2_8_16_1 doi: 10.1007/s10530-009-9566-5 – ident: e_1_2_8_62_1 doi: 10.1111/eff.12408 – ident: e_1_2_8_29_1 doi: 10.1016/j.tree.2021.09.007 – ident: e_1_2_8_116_1 doi: 10.1093/biosci/biaa002 – ident: e_1_2_8_130_1 doi: 10.1023/A:1017085129620 – ident: e_1_2_8_91_1 doi: 10.1111/j.1365-2400.2007.00575.x – ident: e_1_2_8_46_1 doi: 10.1111/1365-2656.13571 – ident: e_1_2_8_76_1 doi: 10.1002/ece3.1893 – ident: e_1_2_8_70_1 doi: 10.1111/fme.12130 – ident: e_1_2_8_106_1 doi: 10.1002/ecy.1648 – ident: e_1_2_8_25_1 doi: 10.1111/ele.12673 – ident: e_1_2_8_121_1 doi: 10.1080/23308249.2015.1051214 – ident: e_1_2_8_96_1 doi: 10.1139/f03-011 – ident: e_1_2_8_60_1 doi: 10.1080/23308249.2016.1233166 – ident: e_1_2_8_48_1 doi: 10.1017/S1464793105006950 – ident: e_1_2_8_117_1 doi: 10.1111/1365-2656.12360 – ident: e_1_2_8_24_1 doi: 10.1163/1568539X-00002998 – ident: e_1_2_8_4_1 doi: 10.1038/emi.2016.46 – ident: e_1_2_8_113_1 doi: 10.1007/s10530-019-02114-6 – ident: e_1_2_8_124_1 doi: 10.1111/j.1095-8649.1990.tb05870.x – ident: e_1_2_8_80_1 doi: 10.1126/science.1075753 – ident: e_1_2_8_39_1 doi: 10.1007/s10530-021-02577-6 – ident: e_1_2_8_6_1 doi: 10.1002/ece3.1906 – ident: e_1_2_8_98_1 doi: 10.1007/s10530-008-9358-3 – ident: e_1_2_8_41_1 doi: 10.1007/s10530-013-0550-8 – ident: e_1_2_8_23_1 doi: 10.1007/s10530-015-0938-8 – ident: e_1_2_8_127_1 doi: 10.1007/978-94-017-2986-4_12 – ident: e_1_2_8_38_1 doi: 10.1017/S0022149X17000438 – ident: e_1_2_8_73_1 doi: 10.1007/s10530-013-0563-3 – ident: e_1_2_8_34_1 doi: 10.1242/jeb.219808 – ident: e_1_2_8_43_1 doi: 10.1111/1365-2664.12849 – ident: e_1_2_8_103_1 doi: 10.1111/j.1523-1739.2005.00267.x-i1 – ident: e_1_2_8_59_1 doi: 10.1111/j.1095-8649.2001.tb00499.x – ident: e_1_2_8_9_1 doi: 10.1007/s10530-007-9135-8 – ident: e_1_2_8_78_1 doi: 10.1111/j.1365-2400.2003.00355.x – ident: e_1_2_8_47_1 doi: 10.1007/s10530-004-8122-6 – ident: e_1_2_8_104_1 doi: 10.1139/er-2018-0049 – ident: e_1_2_8_74_1 doi: 10.1371/journal.pone.0031757 – ident: e_1_2_8_2_1 doi: 10.1098/rsbl.2013.0946 – ident: e_1_2_8_67_1 doi: 10.1111/gcb.16207 – ident: e_1_2_8_45_1 doi: 10.1051/kmae/2015009 – ident: e_1_2_8_123_1 doi: 10.1080/02755947.2011.574923 – ident: e_1_2_8_35_1 doi: 10.1002/aqc.3463 – ident: e_1_2_8_57_1 doi: 10.1111/j.1095-8649.2010.02566.x – ident: e_1_2_8_64_1 doi: 10.1111/j.1365-2427.2004.01330.x – ident: e_1_2_8_32_1 doi: 10.1007/s11160-017-9507-9 – ident: e_1_2_8_83_1 doi: 10.1007/s10530-017-1378-4 – ident: e_1_2_8_88_1 doi: 10.1641/0006-3568(2006)056[0237:AEEIS]2.0.CO;2 – ident: e_1_2_8_51_1 doi: 10.1890/09-1974.1 – ident: e_1_2_8_66_1 doi: 10.1093/jhered/esu033 – ident: e_1_2_8_86_1 doi: 10.1641/0006-3568(2001)051[0780:BITDSC]2.0.CO;2 – ident: e_1_2_8_56_1 doi: 10.1111/j.1467-2979.2010.00361.x – ident: e_1_2_8_108_1 doi: 10.1146/annurev.ecolsys.110308.120304 – ident: e_1_2_8_99_1 doi: 10.1111/2041-210X.12817 – ident: e_1_2_8_84_1 doi: 10.1111/j.1365-294X.2006.03012.x – ident: e_1_2_8_49_1 doi: 10.1016/j.tree.2006.06.016 – ident: e_1_2_8_10_1 doi: 10.1007/s10530-009-9665-3 – ident: e_1_2_8_89_1 doi: 10.1002/wat2.1059 – ident: e_1_2_8_55_1 doi: 10.1111/j.1095-8649.2007.01668.x – ident: e_1_2_8_93_1 doi: 10.1007/s004420050048 – ident: e_1_2_8_50_1 doi: 10.1007/s10530-010-9866-9 – ident: e_1_2_8_87_1 doi: 10.1007/s00442-008-1180-1 – ident: e_1_2_8_126_1 doi: 10.2307/2265769 – ident: e_1_2_8_105_1 doi: 10.1079/9781845938062.0282 – ident: e_1_2_8_58_1 doi: 10.1038/4351046a – ident: e_1_2_8_77_1 doi: 10.1890/070156 – ident: e_1_2_8_20_1 doi: 10.1007/s10530-010-9742-7 – ident: e_1_2_8_90_1 doi: 10.1016/j.biocon.2021.109366 – ident: e_1_2_8_128_1 doi: 10.1890/08-0442.1 – ident: e_1_2_8_44_1 doi: 10.3897/neobiota.55.49547 – volume: 4 start-page: 503 year: 2004 ident: e_1_2_8_71_1 article-title: Habitat degradation and subsequent fishery collapse in Lakes Naivasha and Baringo, Kenya publication-title: Ecohydrology & Hydrobiology – ident: e_1_2_8_129_1 doi: 10.1007/s10530-020-02379-2 – ident: e_1_2_8_33_1 doi: 10.1080/03632415.2011.574578 – ident: e_1_2_8_65_1 doi: 10.1007/s10530-018-1693-4 – volume-title: 100 of the world's worst invasive alien species: A selection from the global invasive species database year: 2000 ident: e_1_2_8_85_1 – ident: e_1_2_8_15_1 doi: 10.1007/s10530-011-9967-0 – ident: e_1_2_8_115_1 doi: 10.1007/s10530-021-02574-9 – ident: e_1_2_8_81_1 doi: 10.1007/s00442-014-2899-5 – ident: e_1_2_8_11_1 doi: 10.1371/journal.pone.0031707 – ident: e_1_2_8_52_1 doi: 10.1007/s10530-009-9598-x – ident: e_1_2_8_19_1 doi: 10.1111/1365-2656.12996 – ident: e_1_2_8_68_1 doi: 10.1111/j.1600-0706.2013.01263.x – ident: e_1_2_8_120_1 doi: 10.17216/LimnoFish-5000130907 – ident: e_1_2_8_112_1 doi: 10.1093/biosci/biaa168 – ident: e_1_2_8_122_1 doi: 10.1080/10641260903189243 – ident: e_1_2_8_17_1 doi: 10.1890/13-0527.1 – ident: e_1_2_8_61_1 doi: 10.1111/fwb.12910 – ident: e_1_2_8_119_1 doi: 10.1016/j.scitotenv.2021.147868 – ident: e_1_2_8_13_1 doi: 10.1111/j.1095-8649.2007.01669.x – ident: e_1_2_8_109_1 doi: 10.1023/A:1010086329619 – ident: e_1_2_8_54_1 doi: 10.1111/gcb.13004 – ident: e_1_2_8_26_1 doi: 10.1007/s10530-021-02490-y – ident: e_1_2_8_53_1 doi: 10.1007/BF00026826 – ident: e_1_2_8_82_1 doi: 10.1007/s00027-022-00862-7 – ident: e_1_2_8_131_1 doi: 10.1111/gcb.14323 – ident: e_1_2_8_14_1 doi: 10.1111/j.1365-2400.2006.00510.x – ident: e_1_2_8_27_1 doi: 10.1080/24750263.2017.1341959 – ident: e_1_2_8_5_1 doi: 10.3354/dao02356 – ident: e_1_2_8_42_1 doi: 10.1007/s10530-016-1355-3 – ident: e_1_2_8_72_1 doi: 10.1111/ddi.12391 – ident: e_1_2_8_69_1 doi: 10.1046/j.1365-2400.2003.00379.x – ident: e_1_2_8_95_1 doi: 10.1111/j.1095-8649.2007.01783.x – ident: e_1_2_8_28_1 doi: 10.1111/j.1472-4642.2008.00521.x – ident: e_1_2_8_3_1 doi: 10.1890/14-0060.1 – ident: e_1_2_8_97_1 doi: 10.1017/S0031182015001237 – ident: e_1_2_8_37_1 doi: 10.1111/eff.12128 – ident: e_1_2_8_92_1 doi: 10.1111/fwb.13326 – ident: e_1_2_8_100_1 doi: 10.1111/1365-2664.13993 – ident: e_1_2_8_79_1 doi: 10.1111/j.1365-2427.2004.01232.x – ident: e_1_2_8_114_1 doi: 10.1111/j.1365-2400.2011.00841.x – ident: e_1_2_8_110_1 doi: 10.3750/AIP2010.40.1.02 – ident: e_1_2_8_111_1 doi: 10.1007/978-94-017-2031-1_13 – ident: e_1_2_8_75_1 doi: 10.1111/oik.01661 – ident: e_1_2_8_8_1 doi: 10.1111/mec.15638 |
SSID | ssj0009393 |
Score | 2.5896783 |
SecondaryResourceType | review_article |
Snippet | Introductions of non‐native freshwater fish continue to increase globally, although only a small proportion of these introductions will result in an invasion.... Introductions of non-native freshwater fish continue to increase globally, although only a small proportion of these introductions will result in an invasion.... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 752 |
SubjectTerms | Animal population Biodiversity Biological Sciences Cyprinus carpio Ecological effects Ecological function Ecosystems Environmental changes environmental impact Fish Fish populations Freshwater Freshwater fish Freshwater fishes Genetic diversity Genetic variation Inland water environment Interspecific relationships Introgression Invasive fish Invasive species Lakes Pathogens Populations Predation Species richness |
Title | Contemporary perspectives on the ecological impacts of invasive freshwater fishes |
URI | https://www.proquest.com/docview/2874117071 https://www.proquest.com/docview/2723155238 https://www.proquest.com/docview/2942104375 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEF5qRfClqFU8vcgqPhQOKUl2N5s8SmkpUluUc-DgS9grCpIc2rSCv76zm80N2tL6EkJ2soT5NpOZ7Mw3CH2WrCBxLMD6ZYWOKFEskoQnkVGcaQMeSqJdgfO38-x0Sb-u2GpoeemrSxp5qP7dWVfyP6jCNcDVVck-Adl-UrgA54AvHAFhOD4K4wm11Hoom-y2AOZG9batLYdsGWarG-Gz1i3E2r_-CseTaF1u_NU9rqobnAe6piF-_92E1HuffdOmaI9_IqRDOto4qR_M3tQwxmS0Auh8fcgZuOMZHRk83vLPhm9nGLvPLFvp2i219ExT6uvzi_JkeXZWLo5Xi2foeQo-v4-PfwxcYAUJDMrhSQNNlE_L6iaeOhfTb6t3GBav0FZQH_7SwvYabZjqDXrxs_Za3Ebfx-DhMXi4rjCAhwfwcAAP1xZ34OEBPNyC9xYtT44XR6dR6G8RKcLyJmIF5VkswefLRK4MZyYzLBWpSz2jqYBYU-WJSWVMKDc2j22sVcI1k1aqmGpN3qHNqq7Me4R1buHmwhJaCCqZlSTRIsvcBr2EydQMHXSKKVUgf3c9SP6UfRBoZel1OEOfetF1y3hyl9Bep90yvBBXpWud4BoZ8WSGPvbDYK7cHpSoTH0NMgCsY_0j-QMyBU0Tx7nFdh4hs4teDit6D202l9dmHxzFRn7wC-gWGZtsjg |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contemporary+perspectives+on+the+ecological+impacts+of+invasive+freshwater+fishes&rft.jtitle=Journal+of+fish+biology&rft.au=Britton%2C+John+Robert&rft.date=2023-10-01&rft.issn=0022-1112&rft.volume=103&rft.issue=4+p.752-764&rft.spage=752&rft.epage=764&rft_id=info:doi/10.1111%2Fjfb.15240&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1112&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1112&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1112&client=summon |