Lower bounds for non-convex stochastic optimization

We lower bound the complexity of finding ϵ -stationary points (with gradient norm at most ϵ ) using stochastic first-order methods. In a well-studied model where algorithms access smooth, potentially non-convex functions through queries to an unbiased stochastic gradient oracle with bounded variance...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 199; no. 1-2; pp. 165 - 214
Main Authors Arjevani, Yossi, Carmon, Yair, Duchi, John C., Foster, Dylan J., Srebro, Nathan, Woodworth, Blake
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2023
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We lower bound the complexity of finding ϵ -stationary points (with gradient norm at most ϵ ) using stochastic first-order methods. In a well-studied model where algorithms access smooth, potentially non-convex functions through queries to an unbiased stochastic gradient oracle with bounded variance, we prove that (in the worst case) any algorithm requires at least ϵ - 4 queries to find an ϵ -stationary point. The lower bound is tight, and establishes that stochastic gradient descent is minimax optimal in this model. In a more restrictive model where the noisy gradient estimates satisfy a mean-squared smoothness property, we prove a lower bound of ϵ - 3 queries, establishing the optimality of recently proposed variance reduction techniques.
AbstractList We lower bound the complexity of finding ϵ-stationary points (with gradient norm at most ϵ) using stochastic first-order methods. In a well-studied model where algorithms access smooth, potentially non-convex functions through queries to an unbiased stochastic gradient oracle with bounded variance, we prove that (in the worst case) any algorithm requires at least ϵ-4 queries to find an ϵ-stationary point. The lower bound is tight, and establishes that stochastic gradient descent is minimax optimal in this model. In a more restrictive model where the noisy gradient estimates satisfy a mean-squared smoothness property, we prove a lower bound of ϵ-3 queries, establishing the optimality of recently proposed variance reduction techniques.
We lower bound the complexity of finding ϵ -stationary points (with gradient norm at most ϵ ) using stochastic first-order methods. In a well-studied model where algorithms access smooth, potentially non-convex functions through queries to an unbiased stochastic gradient oracle with bounded variance, we prove that (in the worst case) any algorithm requires at least ϵ - 4 queries to find an ϵ -stationary point. The lower bound is tight, and establishes that stochastic gradient descent is minimax optimal in this model. In a more restrictive model where the noisy gradient estimates satisfy a mean-squared smoothness property, we prove a lower bound of ϵ - 3 queries, establishing the optimality of recently proposed variance reduction techniques.
We lower bound the complexity of finding [Formula omitted]-stationary points (with gradient norm at most [Formula omitted]) using stochastic first-order methods. In a well-studied model where algorithms access smooth, potentially non-convex functions through queries to an unbiased stochastic gradient oracle with bounded variance, we prove that (in the worst case) any algorithm requires at least [Formula omitted] queries to find an [Formula omitted]-stationary point. The lower bound is tight, and establishes that stochastic gradient descent is minimax optimal in this model. In a more restrictive model where the noisy gradient estimates satisfy a mean-squared smoothness property, we prove a lower bound of [Formula omitted] queries, establishing the optimality of recently proposed variance reduction techniques.
Audience Academic
Author Carmon, Yair
Woodworth, Blake
Foster, Dylan J.
Duchi, John C.
Arjevani, Yossi
Srebro, Nathan
Author_xml – sequence: 1
  givenname: Yossi
  surname: Arjevani
  fullname: Arjevani, Yossi
  organization: The Hebrew University
– sequence: 2
  givenname: Yair
  orcidid: 0000-0001-5731-8640
  surname: Carmon
  fullname: Carmon, Yair
  email: ycarmon@tauex.tau.ac.il
  organization: Tel Aviv University
– sequence: 3
  givenname: John C.
  surname: Duchi
  fullname: Duchi, John C.
  organization: Stanford University
– sequence: 4
  givenname: Dylan J.
  surname: Foster
  fullname: Foster, Dylan J.
  organization: Microsoft Research New England
– sequence: 5
  givenname: Nathan
  surname: Srebro
  fullname: Srebro, Nathan
  organization: TTIC
– sequence: 6
  givenname: Blake
  surname: Woodworth
  fullname: Woodworth, Blake
  organization: Inria
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnrfObJJN9liKX1DwoueQpklNaTc12fr1641dQfBQAhkY5pmXeUZk0IbWEnKJMEEAcZ0QEEQJVVUCyvyLEzJERuuS1awekCFAxUteI5yRUUprAEAq5ZDQeXi3sViEfbtMhQuxyJtLE9o3-1GkLpgXnTpvirDr_NZ_6c6H9pycOr1J9uK3jsnz7c3T7L6cP949zKbz0lAuu5ILI5xzNcemRgPcSpZL5QSyiqJGa3BpeCM1X7imrhxdMEcl4xoRJUdNx-Sq37uL4XVvU6fWYR_bHKkqCYxCIznLU5N-aqU3VvnWhS5qk9_Sbn0-xDqf-1PBas4QOM9A1QMmhpSidWoX_VbHT4Wgfmyq3qbKNtXBphIZkv8g47uDjZzmN8dR2qMp57QrG__OOEJ9A-SEiWI
CitedBy_id crossref_primary_10_1109_TIFS_2024_3516548
crossref_primary_10_1109_TSP_2024_3511452
crossref_primary_10_1186_s40537_023_00828_y
crossref_primary_10_1007_s10589_023_00521_z
crossref_primary_10_1016_j_jco_2024_101889
crossref_primary_10_3390_su16051947
crossref_primary_10_1109_TPAMI_2024_3423382
crossref_primary_10_1109_TSP_2024_3374106
crossref_primary_10_1287_moor_2022_0193
crossref_primary_10_1007_s10957_024_02547_7
crossref_primary_10_1080_02331934_2024_2367635
crossref_primary_10_1109_TPAMI_2024_3382294
crossref_primary_10_1109_TSP_2022_3143372
crossref_primary_10_1007_s10994_024_06573_4
crossref_primary_10_2478_ijanmc_2024_0040
crossref_primary_10_1109_TWC_2024_3497998
crossref_primary_10_3390_math12111664
crossref_primary_10_1007_s10957_023_02193_5
crossref_primary_10_1109_TPAMI_2021_3112139
Cites_doi 10.1109/TIT.2011.2182178
10.1109/TIT.2017.2701343
10.1109/TIT.2011.2154375
10.1007/s10208-017-9365-9
10.1016/j.jco.2011.06.001
10.1137/16M1080173
10.1007/BF02592948
10.1137/0803004
10.1007/s10208-019-09429-9
10.1006/jcom.1994.1025
10.1137/120880811
10.1007/s10107-019-01431-x
10.1137/090774100
10.1007/s10107-006-0706-8
10.1214/aos/1193342380
10.1007/978-1-4419-8853-9
10.1007/978-1-4612-1880-7_29
10.1109/ALLERTON.2016.7852377
10.1109/SFCS.1977.24
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2022
COPYRIGHT 2023 Springer
Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2022.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2022
– notice: COPYRIGHT 2023 Springer
– notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2022.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10107-022-01822-7
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 214
ExternalDocumentID A746541055
10_1007_s10107_022_01822_7
GrantInformation_xml – fundername: Office of Naval Research Global
  grantid: ONR-YIP N00014-19-1-2288
  funderid: http://dx.doi.org/10.13039/100007297
– fundername: Alfred P. Sloan Foundation
  funderid: http://dx.doi.org/10.13039/100000879
– fundername: Google
  funderid: http://dx.doi.org/10.13039/100006785
– fundername: Division of Computing and Communication Foundations
  grantid: 1553086
  funderid: http://dx.doi.org/10.13039/100000143
– fundername: Division of Computing and Communication Foundations
  grantid: 1740751
  funderid: http://dx.doi.org/10.13039/100000143
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
7SC
8FD
ABRTQ
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c358t-57c7fff651961c05e841c02f714231a1ec1dc598a5bf962f3b4f3845a111851a3
IEDL.DBID U2A
ISSN 0025-5610
IngestDate Fri Jul 25 19:49:27 EDT 2025
Tue Jun 10 21:06:55 EDT 2025
Thu Apr 24 23:05:51 EDT 2025
Tue Jul 01 02:15:14 EDT 2025
Fri Feb 21 02:43:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords 90C06
68Q25
90C15
90C26
90C30
90C60
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-57c7fff651961c05e841c02f714231a1ec1dc598a5bf962f3b4f3845a111851a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5731-8640
PQID 2804309854
PQPubID 25307
PageCount 50
ParticipantIDs proquest_journals_2804309854
gale_infotracacademiconefile_A746541055
crossref_primary_10_1007_s10107_022_01822_7
crossref_citationtrail_10_1007_s10107_022_01822_7
springer_journals_10_1007_s10107_022_01822_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References Agarwal, Bartlett, Ravikumar, Wainwright (CR1) 2012; 5
CR37
CR36
CR32
Cartis, Gould, Toint (CR18) 2012; 28
Ma, Wang, Chi, Chen (CR33) 2019
Nesterov (CR39) 1983; 27
CR2
Cartis, Gould, Toint (CR19) 2012; 88
Murty, Kabadi (CR34) 1987; 39
CR4
CR3
CR6
CR5
CR8
CR7
CR9
CR49
CR47
CR46
CR43
CR42
CR40
Carmon, Duchi, Hinder, Sidford (CR15) 2019; 184
LeCam (CR31) 1973; 1
Cartis, Gould, Toint (CR17) 2010; 20
CR14
CR13
CR57
Vavasis (CR48) 1993; 3
CR56
CR55
CR10
CR54
CR53
CR52
CR51
CR50
Sun, Qu, Wright (CR45) 2018; 18
Braun, Guzmán, Pokutta (CR12) 2017; 63
Carmon, Duchi, Hinder, Sidford (CR16) 2021; 185
Nesterov, Polyak (CR38) 2006; 108
CR29
CR28
CR27
CR26
CR25
Bottou, Curtis, Nocedal (CR11) 2018; 60
CR24
CR23
CR22
CR21
CR20
Raginsky, Rakhlin (CR41) 2011; 57
Ghadimi, Lan (CR30) 2013; 23
Shalev-Shwartz, Zhang (CR44) 2013; 14
Nemirovski (CR35) 1994; 10
1822_CR14
1822_CR13
1822_CR57
1822_CR56
1822_CR55
1822_CR10
1822_CR54
1822_CR53
A Agarwal (1822_CR1) 2012; 5
S Shalev-Shwartz (1822_CR44) 2013; 14
1822_CR52
C Cartis (1822_CR18) 2012; 28
1822_CR51
1822_CR50
1822_CR8
1822_CR7
1822_CR9
KG Murty (1822_CR34) 1987; 39
M Raginsky (1822_CR41) 2011; 57
1822_CR49
1822_CR47
1822_CR46
1822_CR4
1822_CR3
1822_CR43
1822_CR6
C Cartis (1822_CR19) 2012; 88
S Ghadimi (1822_CR30) 2013; 23
YE Nesterov (1822_CR39) 1983; 27
1822_CR42
1822_CR5
1822_CR40
1822_CR2
G Braun (1822_CR12) 2017; 63
1822_CR37
L Bottou (1822_CR11) 2018; 60
1822_CR36
1822_CR32
L LeCam (1822_CR31) 1973; 1
Y Nesterov (1822_CR38) 2006; 108
C Ma (1822_CR33) 2019
SA Vavasis (1822_CR48) 1993; 3
J Sun (1822_CR45) 2018; 18
Y Carmon (1822_CR15) 2019; 184
Y Carmon (1822_CR16) 2021; 185
C Cartis (1822_CR17) 2010; 20
1822_CR29
1822_CR28
1822_CR27
1822_CR26
1822_CR25
1822_CR24
1822_CR23
1822_CR22
1822_CR21
1822_CR20
A Nemirovski (1822_CR35) 1994; 10
References_xml – ident: CR22
– volume: 5
  start-page: 3235
  issue: 58
  year: 2012
  end-page: 3249
  ident: CR1
  article-title: Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2011.2182178
– ident: CR49
– ident: CR4
– ident: CR51
– volume: 14
  start-page: 567
  year: 2013
  end-page: 599
  ident: CR44
  article-title: Stochastic dual coordinate ascent methods for regularized loss minimization
  publication-title: J. Mach. Learn. Res.
– ident: CR29
– ident: CR54
– ident: CR8
– ident: CR25
– ident: CR42
– ident: CR21
– ident: CR46
– volume: 63
  start-page: 4709
  issue: 7
  year: 2017
  end-page: 4724
  ident: CR12
  article-title: Lower bounds on the oracle complexity of nonsmooth convex optimization via information theory
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2017.2701343
– ident: CR50
– volume: 57
  start-page: 7036
  issue: 10
  year: 2011
  end-page: 7056
  ident: CR41
  article-title: Information-based complexity, feedback and dynamics in convex programming
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2011.2154375
– ident: CR9
– ident: CR57
– volume: 18
  start-page: 1131
  issue: 5
  year: 2018
  end-page: 1198
  ident: CR45
  article-title: A geometric analysis of phase retrieval
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-017-9365-9
– ident: CR32
– ident: CR36
– ident: CR5
– volume: 28
  start-page: 93
  issue: 1
  year: 2012
  end-page: 108
  ident: CR18
  article-title: Complexity bounds for second-order optimality in unconstrained optimization
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2011.06.001
– volume: 60
  start-page: 223
  issue: 2
  year: 2018
  end-page: 311
  ident: CR11
  article-title: Optimization methods for large-scale learning
  publication-title: SIAM Rev.
  doi: 10.1137/16M1080173
– ident: CR26
– volume: 39
  start-page: 117
  issue: 2
  year: 1987
  end-page: 129
  ident: CR34
  article-title: Some np-complete problems in quadratic and nonlinear programming
  publication-title: Math. progr.
  doi: 10.1007/BF02592948
– volume: 3
  start-page: 60
  issue: 1
  year: 1993
  end-page: 80
  ident: CR48
  article-title: Black-box complexity of local minimization
  publication-title: SIAM J. Opt.
  doi: 10.1137/0803004
– ident: CR43
– year: 2019
  ident: CR33
  article-title: Implicit regularization in nonconvex statistical estimation: gradient descent converges linearly for phase retrieval, matrix completion and blind deconvolution
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-019-09429-9
– ident: CR47
– ident: CR14
– ident: CR2
– volume: 10
  start-page: 451
  issue: 4
  year: 1994
  end-page: 463
  ident: CR35
  article-title: On parallel complexity of nonsmooth convex optimization
  publication-title: J. Complex.
  doi: 10.1006/jcom.1994.1025
– ident: CR37
– ident: CR53
– volume: 88
  start-page: 1
  year: 2012
  end-page: 10
  ident: CR19
  article-title: How much patience to you have?: a worst-case perspective on smooth noncovex optimization
  publication-title: Optima
– ident: CR10
– volume: 23
  start-page: 2341
  issue: 4
  year: 2013
  end-page: 2368
  ident: CR30
  article-title: Stochastic first-and zeroth-order methods for nonconvex stochastic programming
  publication-title: SIAM J. Opt.
  doi: 10.1137/120880811
– volume: 185
  start-page: 315
  issue: 1
  year: 2021
  end-page: 355
  ident: CR16
  article-title: Lower bounds for finding stationary points II: First-order methods
  publication-title: Math. Progr.
  doi: 10.1007/s10107-019-01431-x
– ident: CR6
– ident: CR56
– ident: CR40
– ident: CR27
– ident: CR23
– volume: 27
  start-page: 372
  issue: 2
  year: 1983
  end-page: 376
  ident: CR39
  article-title: A method for solving the convex programming problem with convergence rate
  publication-title: Sov. Math. Dokl.
– volume: 20
  start-page: 2833
  issue: 6
  year: 2010
  end-page: 2852
  ident: CR17
  article-title: On the complexity of steepest descent, newton’s and regularized newton’s methods for nonconvex unconstrained optimization problems
  publication-title: Siam J. Opt.
  doi: 10.1137/090774100
– ident: CR3
– volume: 108
  start-page: 177
  issue: 1
  year: 2006
  end-page: 205
  ident: CR38
  article-title: Cubic regularization of newton method and its global performance
  publication-title: Math. Progr.
  doi: 10.1007/s10107-006-0706-8
– ident: CR52
– ident: CR13
– ident: CR55
– ident: CR7
– ident: CR28
– ident: CR24
– volume: 1
  start-page: 38
  issue: 1
  year: 1973
  end-page: 53
  ident: CR31
  article-title: Convergence of estimates under dimensionality restrictions
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1193342380
– ident: CR20
– volume: 184
  start-page: 71
  issue: 1
  year: 2019
  end-page: 120
  ident: CR15
  article-title: Lower bounds for finding stationary points I
  publication-title: Math. Progr.
– ident: 1822_CR14
– ident: 1822_CR5
– ident: 1822_CR10
– ident: 1822_CR9
– ident: 1822_CR20
– ident: 1822_CR56
– volume: 5
  start-page: 3235
  issue: 58
  year: 2012
  ident: 1822_CR1
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2011.2182178
– ident: 1822_CR52
– ident: 1822_CR28
– ident: 1822_CR24
– ident: 1822_CR43
– ident: 1822_CR2
– ident: 1822_CR47
– ident: 1822_CR8
– volume: 39
  start-page: 117
  issue: 2
  year: 1987
  ident: 1822_CR34
  publication-title: Math. progr.
  doi: 10.1007/BF02592948
– volume: 27
  start-page: 372
  issue: 2
  year: 1983
  ident: 1822_CR39
  publication-title: Sov. Math. Dokl.
– ident: 1822_CR40
– ident: 1822_CR13
– volume: 28
  start-page: 93
  issue: 1
  year: 2012
  ident: 1822_CR18
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2011.06.001
– ident: 1822_CR55
– ident: 1822_CR37
  doi: 10.1007/978-1-4419-8853-9
– volume: 57
  start-page: 7036
  issue: 10
  year: 2011
  ident: 1822_CR41
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2011.2154375
– volume: 18
  start-page: 1131
  issue: 5
  year: 2018
  ident: 1822_CR45
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-017-9365-9
– ident: 1822_CR51
– volume: 108
  start-page: 177
  issue: 1
  year: 2006
  ident: 1822_CR38
  publication-title: Math. Progr.
  doi: 10.1007/s10107-006-0706-8
– ident: 1822_CR27
– volume: 63
  start-page: 4709
  issue: 7
  year: 2017
  ident: 1822_CR12
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2017.2701343
– ident: 1822_CR23
– volume: 23
  start-page: 2341
  issue: 4
  year: 2013
  ident: 1822_CR30
  publication-title: SIAM J. Opt.
  doi: 10.1137/120880811
– volume: 60
  start-page: 223
  issue: 2
  year: 2018
  ident: 1822_CR11
  publication-title: SIAM Rev.
  doi: 10.1137/16M1080173
– ident: 1822_CR54
  doi: 10.1007/978-1-4612-1880-7_29
– ident: 1822_CR7
– volume: 185
  start-page: 315
  issue: 1
  year: 2021
  ident: 1822_CR16
  publication-title: Math. Progr.
  doi: 10.1007/s10107-019-01431-x
– volume: 3
  start-page: 60
  issue: 1
  year: 1993
  ident: 1822_CR48
  publication-title: SIAM J. Opt.
  doi: 10.1137/0803004
– volume: 184
  start-page: 71
  issue: 1
  year: 2019
  ident: 1822_CR15
  publication-title: Math. Progr.
– ident: 1822_CR26
– ident: 1822_CR49
– ident: 1822_CR50
– volume: 88
  start-page: 1
  year: 2012
  ident: 1822_CR19
  publication-title: Optima
– ident: 1822_CR22
– volume: 14
  start-page: 567
  year: 2013
  ident: 1822_CR44
  publication-title: J. Mach. Learn. Res.
– ident: 1822_CR4
– year: 2019
  ident: 1822_CR33
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-019-09429-9
– ident: 1822_CR42
  doi: 10.1109/ALLERTON.2016.7852377
– ident: 1822_CR36
– ident: 1822_CR6
– ident: 1822_CR32
– ident: 1822_CR57
– ident: 1822_CR25
– volume: 1
  start-page: 38
  issue: 1
  year: 1973
  ident: 1822_CR31
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1193342380
– ident: 1822_CR53
  doi: 10.1109/SFCS.1977.24
– ident: 1822_CR21
– volume: 10
  start-page: 451
  issue: 4
  year: 1994
  ident: 1822_CR35
  publication-title: J. Complex.
  doi: 10.1006/jcom.1994.1025
– ident: 1822_CR3
– volume: 20
  start-page: 2833
  issue: 6
  year: 2010
  ident: 1822_CR17
  publication-title: Siam J. Opt.
  doi: 10.1137/090774100
– ident: 1822_CR29
– ident: 1822_CR46
SSID ssj0001388
Score 2.6840336
Snippet We lower bound the complexity of finding ϵ -stationary points (with gradient norm at most ϵ ) using stochastic first-order methods. In a well-studied model...
We lower bound the complexity of finding [Formula omitted]-stationary points (with gradient norm at most [Formula omitted]) using stochastic first-order...
We lower bound the complexity of finding ϵ-stationary points (with gradient norm at most ϵ) using stochastic first-order methods. In a well-studied model where...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 165
SubjectTerms Algorithms
Analysis
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Full Length Paper
Lower bounds
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Minimax technique
Numerical Analysis
Optimization
Queries
Smoothness
Theoretical
Title Lower bounds for non-convex stochastic optimization
URI https://link.springer.com/article/10.1007/s10107-022-01822-7
https://www.proquest.com/docview/2804309854
Volume 199
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu8AB8RSFMfWAxAEqkTZp0mMHGxMwTkwapyjNGnHgJTokfj52127jKXGqqqZJ5TT258T-DHCYOdRxuUsCZmLauslsoBKKBOCMo3sgcu5oH3JwE_eH_HIkRlVSWFFHu9dHkqWmXkh2Y7StFlIoAZq1QC5DU6DvToFcwzCd6V8WKVUXaiV0UKXK_NzHJ3P0VSl_Ox0tjU5vHdYqtOin0-ndgKX8aRNWFzgE8W4wI14ttiC6pqpnfkbFkgofAamP7n1Qhpa_-4jz7L0hYmb_GTXFY5WCuQ3DXvf2rB9UdRECGwk1CYS00jkXI_iKmT0VueJ4CZ1kiI2YYbllYysSZUTmkjh0UcZdpLgwqNcQYJloBxo4eL4L_jgPuUOIlZ1awxMpEiPR_xnLLIqMRePlAavFo21FGk61Kx70nO6YRKpRpLoUqZYeHM_eeZlSZvzZ-oikrmk9Yc_WVGkB-H3ETKVTSYxvVMbTg1Y9MbpaaIUOFZGWJUpwD07qyZo__n3cvf8134cVKjQ_DXVsQWPy-pYfIByZZG1opp3zTo-uF3dX3Xb5N34AT9jUqA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGIAB8RTlmQHEAJFwYsfOwFDxUAstE5XYjOPaYoAW0SLg__BDuUuTlrfEwBRFcWzrbN99tu--A9jOPOo459OQmYSObjIbqpQ8ATjjuD0Qjns6h2xeJLUWP7sSV2PwWsbC5N7u5ZVkrqnfBbsxOlaLyJUAzVooC1fKc_fyhBu13mH9GEd1J4pOTy6PamGRSyC0sVD9UEgrvfcJApaE2QPhFMdH5CVDPMEMc5a1rUiVEZlPk8jHGfex4sKgLkBQYmKsdxwmsbCitdOKqkN9z2KlysSwhEaK0Jzv-_zB_H02Al9uY3MjdzoHswU6DaqD6TQPY66zADPvOAvxrTkkeu0tQtygLGtBRsmZegEC4KDT7YS5K_tzgLjS3hgigg66qJnuipDPJWj9i-yWYQIbdysQtF3EPUK67MAankqRGon7rbbM4thYNJYVYKV4tC1IyilXxq0e0SuTSDWKVOci1bICe8N_7gcUHb-W3iWpa1q_WLM1RRgC9o-YsHRVEsMcpQ2twHo5MLpY2D0dKSJJS5XgFdgvB2v0-ed2V_9WfAumapfNhm7UL87XYJqS3A_cLNdhov_w6DYQCvWzzXwmBnD931P_DX9qDVY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BkRAMiKcoFMgAYoCIOrFjZ2CogIq3GKjEZhzXFgMURIuAf8VP5C5NyhuJgSmK4tjW2b77bN99B7CaedRxzqchMwkd3WQ2VCl5AnDGcXsgHPd0Dnlymuy3-OGFuBiClzIWJvd2L68k-zENxNLU6W3dtf3Wu8A3RkdsEbkVoIkLZeFWeeSeH3HT1t0-2MURXoui5t75zn5Y5BUIbSxULxTSSu99guAlYbYunOL4iLxkiC2YYc6ythWpMiLzaRL5OOM-VlwY1AsIUEyM9Q7DCKfoY1xBragx0P0sVqpMEkvIpAjT-b7PH0zhZ4Pw5WY2N3jNSZgokGrQ6E-tKRhynWkYf8dfiG8nA9LX7gzEx5RxLcgoUVM3QDAcdG47Ye7W_hQgxrRXhkihg1vUUjdF-OcstP5FdnNQwcbdPARtF3GP8C6rW8NTKVIjce_VllkcG4uGswqsFI-2BWE55c241m9UyyRSjSLVuUi1rMLG4J-7Pl3Hr6XXSeqa1jLWbE0RkoD9I1Ys3ZDENkcpRKtQKwdGF4u8qyNFhGmpErwKm-VgvX3-ud2FvxVfgdGz3aY-Pjg9WoQxynff97isQaV3_-CWEBX1suV8IgZw-d8z_xWgCRGJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lower+bounds+for+non-convex+stochastic+optimization&rft.jtitle=Mathematical+programming&rft.au=Arjevani+Yossi&rft.au=Carmon+Yair&rft.au=Duchi%2C+John+C&rft.au=Foster%2C+Dylan+J&rft.date=2023-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=199&rft.issue=1-2&rft.spage=165&rft.epage=214&rft_id=info:doi/10.1007%2Fs10107-022-01822-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon