Generalized doubly stochastic matrices and linear preservers

A real or complex n×n matrix is generalized doubly stochastic if all of its row sums and column sums equal one. Denote by the linear space spanned by such matrices. We study the reducibility of under the group Γ of linear operators of the form A↦PAQ, where P and Q are n×n permutation matrices. Using...

Full description

Saved in:
Bibliographic Details
Published inLinear & multilinear algebra Vol. 53; no. 1; pp. 1 - 11
Main Authors Chiang †, Hanley, Li, Chi-Kwong
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 01.01.2005
Subjects
Online AccessGet full text
ISSN0308-1087
1563-5139
DOI10.1080/03081080410001681599

Cover

Abstract A real or complex n×n matrix is generalized doubly stochastic if all of its row sums and column sums equal one. Denote by the linear space spanned by such matrices. We study the reducibility of under the group Γ of linear operators of the form A↦PAQ, where P and Q are n×n permutation matrices. Using this result, we show that every linear operator mapping the set of generalized doubly stochastic matrices into itself is a linear combination of the operators in Γ followed by a translation of a fixed matrix in . We compare our results with those from related studies by Sinkhorn and Benson. We also consider similar problems for the generalized symmetric doubly stochastic matrices.
AbstractList A real or complex n×n matrix is generalized doubly stochastic if all of its row sums and column sums equal one. Denote by the linear space spanned by such matrices. We study the reducibility of under the group Γ of linear operators of the form A↦PAQ, where P and Q are n×n permutation matrices. Using this result, we show that every linear operator mapping the set of generalized doubly stochastic matrices into itself is a linear combination of the operators in Γ followed by a translation of a fixed matrix in . We compare our results with those from related studies by Sinkhorn and Benson. We also consider similar problems for the generalized symmetric doubly stochastic matrices.
Author Chiang †, Hanley
Li, Chi-Kwong
Author_xml – sequence: 1
  givenname: Hanley
  surname: Chiang †
  fullname: Chiang †, Hanley
– sequence: 2
  givenname: Chi-Kwong
  surname: Li
  fullname: Li, Chi-Kwong
  email: ckli@math.wm.edu
BookMark eNqFkNtKAzEQhoNUsK2-gRf7AqtJc2hWBJHiCQre9H6Zzc5iZJuUSTzUp3eLvRKxF8PMD_83PzMTNgoxIGPngl8Ibvkll9zuBiU458JYoavqiI2FNrLUQlYjNt5ZysEzP2GTlF4HnxJSj9n1AwYk6P0XtkUb35p-W6Qc3Quk7F2xhkzeYSogtEXvAwIVG8KE9I6UTtlxB33Cs32fstX93WrxWC6fH54Wt8vSSW1zqRps9KxTqHhXQaUQ59YZJ62zQjjdDoKbWdMaq2VTKSsNCCOHalEDN3LKrn7WOoopEXa18xmyjyET-L4WvN5dX__1hgFWv-AN-TXQ9hC2z_Shi7SGj0h9W2fY9pE6guB8-hOs82ce4JuDsPw3_htyhogB
CitedBy_id crossref_primary_10_1080_1726037X_2007_10698535
crossref_primary_10_1142_S1793557124501134
crossref_primary_10_1109_TAC_2023_3251902
crossref_primary_10_1080_03081087_2018_1461187
crossref_primary_10_2478_cm_2021_0027
Cites_doi 10.1016/S0024-3795(00)00242-1
10.1016/S0024-3795(01)00414-1
10.1090/S0002-9939-1971-0269678-1
10.1017/S0004972700037618
10.1080/03081087808817224
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2005
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2005
DBID AAYXX
CITATION
DOI 10.1080/03081080410001681599
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1563-5139
EndPage 11
ExternalDocumentID 10_1080_03081080410001681599
10052201
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACAGQ
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADIYS
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AIJEM
AJWEG
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMEWO
AQRUH
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CRFIH
CS3
DGEBU
DKSSO
DMQIW
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
QCRFL
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UPT
UT5
UU3
YQT
ZGOLN
~S~
07G
1TA
AAGDL
AAHIA
AAIKQ
AAKBW
AAYXX
ABEFU
ACGEE
ADYSH
AEUMN
AFFNX
AFRVT
AGCQS
AGLEN
AIYEW
AMPGV
AMVHM
AMXXU
BCCOT
BPLKW
C06
CITATION
DWIFK
HF~
IVXBP
LJTGL
NUSFT
TAQ
TFMCV
UB9
UU8
V3K
V4Q
ID FETCH-LOGICAL-c358t-4beb52f4e40f9a94ee78c6c38c811c5d8c6062bd6853b94836a163a16de5a063
ISSN 0308-1087
IngestDate Tue Jul 01 01:40:17 EDT 2025
Thu Apr 24 22:57:28 EDT 2025
Mon May 13 12:09:03 EDT 2019
Wed Dec 25 09:05:54 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c358t-4beb52f4e40f9a94ee78c6c38c811c5d8c6062bd6853b94836a163a16de5a063
PageCount 11
ParticipantIDs crossref_citationtrail_10_1080_03081080410001681599
informaworld_taylorfrancis_310_1080_03081080410001681599
crossref_primary_10_1080_03081080410001681599
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1/1/2005
2005-01-00
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – month: 01
  year: 2005
  text: 1/1/2005
  day: 01
PublicationDecade 2000
PublicationTitle Linear & multilinear algebra
PublicationYear 2005
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References bib5
bib6
Chiang H (bib3) 2003; 68
bib4
bib1
bib2
van der Waerden BL (bib7) 1991
References_xml – ident: bib4
  doi: 10.1016/S0024-3795(00)00242-1
– ident: bib5
– ident: bib2
  doi: 10.1016/S0024-3795(01)00414-1
– ident: bib6
  doi: 10.1090/S0002-9939-1971-0269678-1
– volume: 68
  start-page: 221
  year: 2003
  ident: bib3
  publication-title: Bulletin of the Australian Mathematical Society
  doi: 10.1017/S0004972700037618
– volume-title: Springer-Verlag
  year: 1991
  ident: bib7
– ident: bib1
  doi: 10.1080/03081087808817224
SSID ssj0004135
Score 1.7327588
Snippet A real or complex n×n matrix is generalized doubly stochastic if all of its row sums and column sums equal one. Denote by the linear space spanned by such...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms AMS Subject Classifications: 15A04
Linear maps
Permutation matrices
Symmetric doubly stochastic matrices
Title Generalized doubly stochastic matrices and linear preservers
URI https://www.tandfonline.com/doi/abs/10.1080/03081080410001681599
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLZYuWwHtAHTuo0pB26VURP_iCPtUm1M1SY4FYG4VLbjjEqsnboUWP_6Pcd2kkJVBodGaRo7bd5Xvy_2e99D6JAURkhwuzghXGGqVY4lEzFWSV5Y_XbNqqJ9J6d8eEa_X7CLRlChyi4p1ZFers0reY5V4RjY1WbJPsGydadwAPbBvrAFC8P2v2zsNaMnS2CN-Wyhrv_2gMvpK2nFl3u_KvV940SYLZu0qtY222h-48Pe60Ro96FFQRVg6E-2JUDUvAnluQIo_ez58IhBv_JachpWhm1Uz8St4E_wj9uZd4lhRoG1ZhR8JlUl-eodofEDIyeYxU54KIycTuZ3BSFuGIxb_tSNpQ9Gah_aCJeyuzSuyKcAcpU1nimsxt9zWHUYYRz0Tdf08gJtJ2lqV-63B8Ovl-dNsqyvuhp-ZMintILra_pZ4SsrarYtHjJ6jXb8A0Q0cGh4g7bMdBe9OqnVd__soc8tXEQOF1GDiyjgIgJcRM7UUYOLfTT6djz6MsS-SgbWhIkSU2UUSwpqaL_IZEaNSYXmmggt4lizHN70eaJyDsRMZVQQLoGDwys3TAJBfYs609nUvENRJox9HE1MSnIqgTvqVBkpNeeJNFzRLiLhVoy1V5C3hUyux5sM0UW4bvXbKag8cj5p3-VxWc1cFa7MzNoW4_Ku7CKxoRXZdMH3T_yCH9DL5l_zEXXK-cIcADMt1SePtX9vvIA9
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT4MwFMdfdB7Ug7-N8ycHr8xBf1ASL8a4TN12mok30pYSjXMzgyW6v962wNzMnIkeSCDhwaMU3rfN6-cBnKNEMa7DrusjKlwsRexywjxX-HFi-O2S2KJ97Q5tPuC7R1JmE6ZFWqUZQyc5KML-q83HbSajy5S4C8NYMTvYs5KF6ZAcLsMK0dLddHJU73wtjSxqbCJLMWVBuXruh6vMRKcZdulU1Glsgij9zZNNXmqjTNTk-BvK8V8PtAUbhSZ1rvJOtA1Lqr8D6-0J0DXdhcsCT_08VrETD0ai9-Fo2SifuOE8O68W9K9SR7vgGAf40DEZtiadcpjuQbdx071uukXhBVciwjIXCyWIn2CF60nIQ6xUwCSViEnmeZLE-qBOfRFTHetFiBmiXMs6vcWKcK159qHSH_TVATghU2aE46sAxZhrOSIDoTiXlPpcUYGrgMr2jmQBJTe1MXqRV7JL5zRNFdyJ1VsO5fjlfDT9KqPMToYkeeWSuRZR9p5VgS2wQotuePh30zNYbXbbrah127k_gjVLirUzPsdQyYYjdaI1UCZObS__BF0S9cU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPOkH0wbs4r33wtbo2aZqCL6KOednwYcLeSm5FcW5j60D36U3Sdm4yJ-hDoYWe5tK0559w8jsApyhRlGm36_qIcBcLLl0WUM_lvkwMv10ENmlfvUFqT_iuFbQmdvGbsEozh04yUIT9V5uPuyeTIiLu3CBWzAn2rGKh2iNHi7BEtDoxQX2o0vjaGZmn2EQWYkrDYvPcD0-Zck5T6NIJp1NdB1ZUN4s1eT0bpvxMjL6RHP_Tng1YyxWpc5kNoU1YUJ0tWK2Pca6DbbjI4dQvIyUd2R3y9oejRaN4Zoby7LxZzL8aOLoGjimf9R0TX2uCKfuDHWhWb5pXNTdPu-AKFNDUxVzxwE-wwpUkYhFWKqSCCEQF9TwRSH1RIT6XRHt6HmGKCNOiTh9SBUwrnl0odbodtQdORJWZ3_gqRBIzLUZEyBVjghCfKcJxGVDR3bHIkeQmM0Y79gpy6YyuKYM7tuplSI5f7keTbzJO7VJIkuUtmWkRp-9pGegcKzSvwP2_m57A8uN1NX64bdwfwIrFxNrlnkMopf2hOtICKOXHdox_AkxG9Gk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+doubly+stochastic+matrices+and+linear+preservers&rft.jtitle=Linear+%26+multilinear+algebra&rft.au=Chiang+%E2%80%A0%2C+Hanley&rft.au=Li%2C+Chi-Kwong&rft.date=2005-01-01&rft.issn=0308-1087&rft.eissn=1563-5139&rft.volume=53&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1080%2F03081080410001681599&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03081080410001681599
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-1087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-1087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-1087&client=summon