Generalized doubly stochastic matrices and linear preservers
A real or complex n×n matrix is generalized doubly stochastic if all of its row sums and column sums equal one. Denote by the linear space spanned by such matrices. We study the reducibility of under the group Γ of linear operators of the form A↦PAQ, where P and Q are n×n permutation matrices. Using...
Saved in:
Published in | Linear & multilinear algebra Vol. 53; no. 1; pp. 1 - 11 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis Group
01.01.2005
|
Subjects | |
Online Access | Get full text |
ISSN | 0308-1087 1563-5139 |
DOI | 10.1080/03081080410001681599 |
Cover
Abstract | A real or complex n×n matrix is generalized doubly stochastic if all of its row sums and column sums equal one. Denote by
the linear space spanned by such matrices. We study the reducibility of
under the group Γ of linear operators of the form A↦PAQ, where P and Q are n×n permutation matrices. Using this result, we show that every linear operator
mapping the set of generalized doubly stochastic matrices into itself is a linear combination of the operators in Γ followed by a translation of a fixed matrix in
. We compare our results with those from related studies by Sinkhorn and Benson. We also consider similar problems for the generalized symmetric doubly stochastic matrices. |
---|---|
AbstractList | A real or complex n×n matrix is generalized doubly stochastic if all of its row sums and column sums equal one. Denote by
the linear space spanned by such matrices. We study the reducibility of
under the group Γ of linear operators of the form A↦PAQ, where P and Q are n×n permutation matrices. Using this result, we show that every linear operator
mapping the set of generalized doubly stochastic matrices into itself is a linear combination of the operators in Γ followed by a translation of a fixed matrix in
. We compare our results with those from related studies by Sinkhorn and Benson. We also consider similar problems for the generalized symmetric doubly stochastic matrices. |
Author | Chiang †, Hanley Li, Chi-Kwong |
Author_xml | – sequence: 1 givenname: Hanley surname: Chiang † fullname: Chiang †, Hanley – sequence: 2 givenname: Chi-Kwong surname: Li fullname: Li, Chi-Kwong email: ckli@math.wm.edu |
BookMark | eNqFkNtKAzEQhoNUsK2-gRf7AqtJc2hWBJHiCQre9H6Zzc5iZJuUSTzUp3eLvRKxF8PMD_83PzMTNgoxIGPngl8Ibvkll9zuBiU458JYoavqiI2FNrLUQlYjNt5ZysEzP2GTlF4HnxJSj9n1AwYk6P0XtkUb35p-W6Qc3Quk7F2xhkzeYSogtEXvAwIVG8KE9I6UTtlxB33Cs32fstX93WrxWC6fH54Wt8vSSW1zqRps9KxTqHhXQaUQ59YZJ62zQjjdDoKbWdMaq2VTKSsNCCOHalEDN3LKrn7WOoopEXa18xmyjyET-L4WvN5dX__1hgFWv-AN-TXQ9hC2z_Shi7SGj0h9W2fY9pE6guB8-hOs82ce4JuDsPw3_htyhogB |
CitedBy_id | crossref_primary_10_1080_1726037X_2007_10698535 crossref_primary_10_1142_S1793557124501134 crossref_primary_10_1109_TAC_2023_3251902 crossref_primary_10_1080_03081087_2018_1461187 crossref_primary_10_2478_cm_2021_0027 |
Cites_doi | 10.1016/S0024-3795(00)00242-1 10.1016/S0024-3795(01)00414-1 10.1090/S0002-9939-1971-0269678-1 10.1017/S0004972700037618 10.1080/03081087808817224 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2005 |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2005 |
DBID | AAYXX CITATION |
DOI | 10.1080/03081080410001681599 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1563-5139 |
EndPage | 11 |
ExternalDocumentID | 10_1080_03081080410001681599 10052201 |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACAGQ ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADIYS ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AGROQ AHDZW AHMOU AIJEM AJWEG AKBVH AKOOK ALCKM ALMA_UNASSIGNED_HOLDINGS ALQZU AMEWO AQRUH AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CRFIH CS3 DGEBU DKSSO DMQIW DU5 EBS EJD E~A E~B GTTXZ H13 HZ~ H~P IPNFZ J.P KYCEM M4Z NA5 NY~ O9- P2P PQQKQ QCRFL RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ TWF UPT UT5 UU3 YQT ZGOLN ~S~ 07G 1TA AAGDL AAHIA AAIKQ AAKBW AAYXX ABEFU ACGEE ADYSH AEUMN AFFNX AFRVT AGCQS AGLEN AIYEW AMPGV AMVHM AMXXU BCCOT BPLKW C06 CITATION DWIFK HF~ IVXBP LJTGL NUSFT TAQ TFMCV UB9 UU8 V3K V4Q |
ID | FETCH-LOGICAL-c358t-4beb52f4e40f9a94ee78c6c38c811c5d8c6062bd6853b94836a163a16de5a063 |
ISSN | 0308-1087 |
IngestDate | Tue Jul 01 01:40:17 EDT 2025 Thu Apr 24 22:57:28 EDT 2025 Mon May 13 12:09:03 EDT 2019 Wed Dec 25 09:05:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c358t-4beb52f4e40f9a94ee78c6c38c811c5d8c6062bd6853b94836a163a16de5a063 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1080_03081080410001681599 informaworld_taylorfrancis_310_1080_03081080410001681599 crossref_primary_10_1080_03081080410001681599 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1/1/2005 2005-01-00 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – month: 01 year: 2005 text: 1/1/2005 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Linear & multilinear algebra |
PublicationYear | 2005 |
Publisher | Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis Group |
References | bib5 bib6 Chiang H (bib3) 2003; 68 bib4 bib1 bib2 van der Waerden BL (bib7) 1991 |
References_xml | – ident: bib4 doi: 10.1016/S0024-3795(00)00242-1 – ident: bib5 – ident: bib2 doi: 10.1016/S0024-3795(01)00414-1 – ident: bib6 doi: 10.1090/S0002-9939-1971-0269678-1 – volume: 68 start-page: 221 year: 2003 ident: bib3 publication-title: Bulletin of the Australian Mathematical Society doi: 10.1017/S0004972700037618 – volume-title: Springer-Verlag year: 1991 ident: bib7 – ident: bib1 doi: 10.1080/03081087808817224 |
SSID | ssj0004135 |
Score | 1.7327588 |
Snippet | A real or complex n×n matrix is generalized doubly stochastic if all of its row sums and column sums equal one. Denote by
the linear space spanned by such... |
SourceID | crossref informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | AMS Subject Classifications: 15A04 Linear maps Permutation matrices Symmetric doubly stochastic matrices |
Title | Generalized doubly stochastic matrices and linear preservers |
URI | https://www.tandfonline.com/doi/abs/10.1080/03081080410001681599 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLZYuWwHtAHTuo0pB26VURP_iCPtUm1M1SY4FYG4VLbjjEqsnboUWP_6Pcd2kkJVBodGaRo7bd5Xvy_2e99D6JAURkhwuzghXGGqVY4lEzFWSV5Y_XbNqqJ9J6d8eEa_X7CLRlChyi4p1ZFers0reY5V4RjY1WbJPsGydadwAPbBvrAFC8P2v2zsNaMnS2CN-Wyhrv_2gMvpK2nFl3u_KvV940SYLZu0qtY222h-48Pe60Ro96FFQRVg6E-2JUDUvAnluQIo_ez58IhBv_JachpWhm1Uz8St4E_wj9uZd4lhRoG1ZhR8JlUl-eodofEDIyeYxU54KIycTuZ3BSFuGIxb_tSNpQ9Gah_aCJeyuzSuyKcAcpU1nimsxt9zWHUYYRz0Tdf08gJtJ2lqV-63B8Ovl-dNsqyvuhp-ZMintILra_pZ4SsrarYtHjJ6jXb8A0Q0cGh4g7bMdBe9OqnVd__soc8tXEQOF1GDiyjgIgJcRM7UUYOLfTT6djz6MsS-SgbWhIkSU2UUSwpqaL_IZEaNSYXmmggt4lizHN70eaJyDsRMZVQQLoGDwys3TAJBfYs609nUvENRJox9HE1MSnIqgTvqVBkpNeeJNFzRLiLhVoy1V5C3hUyux5sM0UW4bvXbKag8cj5p3-VxWc1cFa7MzNoW4_Ku7CKxoRXZdMH3T_yCH9DL5l_zEXXK-cIcADMt1SePtX9vvIA9 |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT4MwFMdfdB7Ug7-N8ycHr8xBf1ASL8a4TN12mok30pYSjXMzgyW6v962wNzMnIkeSCDhwaMU3rfN6-cBnKNEMa7DrusjKlwsRexywjxX-HFi-O2S2KJ97Q5tPuC7R1JmE6ZFWqUZQyc5KML-q83HbSajy5S4C8NYMTvYs5KF6ZAcLsMK0dLddHJU73wtjSxqbCJLMWVBuXruh6vMRKcZdulU1Glsgij9zZNNXmqjTNTk-BvK8V8PtAUbhSZ1rvJOtA1Lqr8D6-0J0DXdhcsCT_08VrETD0ai9-Fo2SifuOE8O68W9K9SR7vgGAf40DEZtiadcpjuQbdx071uukXhBVciwjIXCyWIn2CF60nIQ6xUwCSViEnmeZLE-qBOfRFTHetFiBmiXMs6vcWKcK159qHSH_TVATghU2aE46sAxZhrOSIDoTiXlPpcUYGrgMr2jmQBJTe1MXqRV7JL5zRNFdyJ1VsO5fjlfDT9KqPMToYkeeWSuRZR9p5VgS2wQotuePh30zNYbXbbrah127k_gjVLirUzPsdQyYYjdaI1UCZObS__BF0S9cU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPOkH0wbs4r33wtbo2aZqCL6KOednwYcLeSm5FcW5j60D36U3Sdm4yJ-hDoYWe5tK0559w8jsApyhRlGm36_qIcBcLLl0WUM_lvkwMv10ENmlfvUFqT_iuFbQmdvGbsEozh04yUIT9V5uPuyeTIiLu3CBWzAn2rGKh2iNHi7BEtDoxQX2o0vjaGZmn2EQWYkrDYvPcD0-Zck5T6NIJp1NdB1ZUN4s1eT0bpvxMjL6RHP_Tng1YyxWpc5kNoU1YUJ0tWK2Pca6DbbjI4dQvIyUd2R3y9oejRaN4Zoby7LxZzL8aOLoGjimf9R0TX2uCKfuDHWhWb5pXNTdPu-AKFNDUxVzxwE-wwpUkYhFWKqSCCEQF9TwRSH1RIT6XRHt6HmGKCNOiTh9SBUwrnl0odbodtQdORJWZ3_gqRBIzLUZEyBVjghCfKcJxGVDR3bHIkeQmM0Y79gpy6YyuKYM7tuplSI5f7keTbzJO7VJIkuUtmWkRp-9pGegcKzSvwP2_m57A8uN1NX64bdwfwIrFxNrlnkMopf2hOtICKOXHdox_AkxG9Gk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+doubly+stochastic+matrices+and+linear+preservers&rft.jtitle=Linear+%26+multilinear+algebra&rft.au=Chiang+%E2%80%A0%2C+Hanley&rft.au=Li%2C+Chi-Kwong&rft.date=2005-01-01&rft.issn=0308-1087&rft.eissn=1563-5139&rft.volume=53&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1080%2F03081080410001681599&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03081080410001681599 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-1087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-1087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-1087&client=summon |