A Lagrange–Newton algorithm for sparse nonlinear programming

The sparse nonlinear programming (SNP) problem has wide applications in signal and image processing, machine learning and finance, etc. However, the computational challenge posed by SNP has not yet been well resolved due to the nonconvex and discontinuous ℓ 0 -norm involved. In this paper, we resolv...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 195; no. 1-2; pp. 903 - 928
Main Authors Zhao, Chen, Xiu, Naihua, Qi, Houduo, Luo, Ziyan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0025-5610
1436-4646
DOI10.1007/s10107-021-01719-x

Cover

Abstract The sparse nonlinear programming (SNP) problem has wide applications in signal and image processing, machine learning and finance, etc. However, the computational challenge posed by SNP has not yet been well resolved due to the nonconvex and discontinuous ℓ 0 -norm involved. In this paper, we resolve this numerical challenge by developing a fast Newton-type algorithm. As a theoretical cornerstone, we establish a first-order optimality condition for SNP based on the concept of strong β -Lagrangian stationarity via the Lagrangian function, and reformulate it as a system of nonlinear equations called the Lagrangian equations. The nonsingularity of the corresponding Jacobian is discussed, based on which the Lagrange–Newton algorithm (LNA) is then proposed. Under mild conditions, we establish the locally quadratic convergence and its iterative complexity estimation. To further demonstrate the efficiency and superiority of our proposed algorithm, we apply LNA to two specific problems arising from compressed sensing and sparse high-order portfolio selection, in which significant benefits accrue from the restricted Newton step.
AbstractList The sparse nonlinear programming (SNP) problem has wide applications in signal and image processing, machine learning and finance, etc. However, the computational challenge posed by SNP has not yet been well resolved due to the nonconvex and discontinuous ℓ0-norm involved. In this paper, we resolve this numerical challenge by developing a fast Newton-type algorithm. As a theoretical cornerstone, we establish a first-order optimality condition for SNP based on the concept of strong β-Lagrangian stationarity via the Lagrangian function, and reformulate it as a system of nonlinear equations called the Lagrangian equations. The nonsingularity of the corresponding Jacobian is discussed, based on which the Lagrange–Newton algorithm (LNA) is then proposed. Under mild conditions, we establish the locally quadratic convergence and its iterative complexity estimation. To further demonstrate the efficiency and superiority of our proposed algorithm, we apply LNA to two specific problems arising from compressed sensing and sparse high-order portfolio selection, in which significant benefits accrue from the restricted Newton step.
The sparse nonlinear programming (SNP) problem has wide applications in signal and image processing, machine learning and finance, etc. However, the computational challenge posed by SNP has not yet been well resolved due to the nonconvex and discontinuous ℓ 0 -norm involved. In this paper, we resolve this numerical challenge by developing a fast Newton-type algorithm. As a theoretical cornerstone, we establish a first-order optimality condition for SNP based on the concept of strong β -Lagrangian stationarity via the Lagrangian function, and reformulate it as a system of nonlinear equations called the Lagrangian equations. The nonsingularity of the corresponding Jacobian is discussed, based on which the Lagrange–Newton algorithm (LNA) is then proposed. Under mild conditions, we establish the locally quadratic convergence and its iterative complexity estimation. To further demonstrate the efficiency and superiority of our proposed algorithm, we apply LNA to two specific problems arising from compressed sensing and sparse high-order portfolio selection, in which significant benefits accrue from the restricted Newton step.
The sparse nonlinear programming (SNP) problem has wide applications in signal and image processing, machine learning and finance, etc. However, the computational challenge posed by SNP has not yet been well resolved due to the nonconvex and discontinuous [Formula omitted]-norm involved. In this paper, we resolve this numerical challenge by developing a fast Newton-type algorithm. As a theoretical cornerstone, we establish a first-order optimality condition for SNP based on the concept of strong [Formula omitted]-Lagrangian stationarity via the Lagrangian function, and reformulate it as a system of nonlinear equations called the Lagrangian equations. The nonsingularity of the corresponding Jacobian is discussed, based on which the Lagrange-Newton algorithm (LNA) is then proposed. Under mild conditions, we establish the locally quadratic convergence and its iterative complexity estimation. To further demonstrate the efficiency and superiority of our proposed algorithm, we apply LNA to two specific problems arising from compressed sensing and sparse high-order portfolio selection, in which significant benefits accrue from the restricted Newton step.
Audience Academic
Author Zhao, Chen
Luo, Ziyan
Qi, Houduo
Xiu, Naihua
Author_xml – sequence: 1
  givenname: Chen
  surname: Zhao
  fullname: Zhao, Chen
  organization: Department of Mathematics, Beijing Jiaotong University
– sequence: 2
  givenname: Naihua
  surname: Xiu
  fullname: Xiu, Naihua
  organization: Department of Mathematics, Beijing Jiaotong University
– sequence: 3
  givenname: Houduo
  surname: Qi
  fullname: Qi, Houduo
  organization: School of Mathematics, University of Southampton
– sequence: 4
  givenname: Ziyan
  orcidid: 0000-0002-4926-5929
  surname: Luo
  fullname: Luo, Ziyan
  email: zyluo@bjtu.edu.cn
  organization: Department of Mathematics, Beijing Jiaotong University
BookMark eNp9kM9KHTEUh0Ox0Kv1BVwNuB49J39nNoWLtFq42I2uQ25uMo3MJNdkpHbXd-gb-iSmjiB0IWcROPy-8yPfITmIKTpCThDOEECdFwQE1QLFFlBh3z5-ICvkTLZccnlAVgBUtEIifCKHpdwBALKuW5Ev62Zjhmzi4J7-_L12v-YUGzMOKYf559T4lJuyN7m4pjaOITqTm31OlZimEIfP5KM3Y3HHr-8Ruf329ebiqt38uPx-sd60lolubjnv-Y57w93OedopIS0I5h2TFHtjveqF80puEaXnKCz4rcdObKWjO8u4ZUfkdLlbu-8fXJn1XXrIsVZqquqg6hnU1NmSGszodIg-zdnYOjs3BVuN-VD3a0WZAtYLWoFuAWxOpWTntQ2zmUOKFQyjRtD_9OpFr6569Yte_VhR-h-6z2Ey-ff7EFugUsNVeX77xjvUMxKpkDk
CitedBy_id crossref_primary_10_1137_22M147863X
crossref_primary_10_1109_TWC_2024_3481050
crossref_primary_10_1007_s10915_025_02797_1
crossref_primary_10_1016_j_cam_2024_116453
crossref_primary_10_1007_s10107_024_02161_5
crossref_primary_10_1080_02331934_2023_2231482
crossref_primary_10_1016_j_measurement_2023_113509
crossref_primary_10_1080_03081087_2023_2176418
Cites_doi 10.1007/s40305-015-0101-3
10.1007/s10107-016-0986-6
10.1109/TIT.2009.2016006
10.1137/100806278
10.1214/12-STS400
10.1007/BF01593790
10.1109/TPAMI.2017.2651813
10.1109/JPROC.2009.2037655
10.1198/016214501753382273
10.1101/gr.225302
10.1109/JSTSP.2010.2042411
10.1287/opre.2013.1170
10.1007/s10957-017-1166-4
10.1109/ICASSP39728.2021.9414048
10.1137/140952363
10.1109/CVPR.2014.525
10.1016/j.acha.2008.07.002
10.1007/978-1-4419-7011-4
10.1007/s10957-016-0934-x
10.1007/s10618-010-0182-x
10.1007/s10107-017-1181-0
10.1007/s11425-016-9010-x
10.1007/BF01580395
10.1198/106186006X113430
10.1016/j.acha.2009.04.002
10.1080/10556788.2015.1062891
10.1287/moor.2015.0722
10.1109/TSP.2007.916124
10.1109/TIT.2006.871582
10.1137/100808071
10.1137/S0097539792240406
10.1145/3097983.3098165
10.1137/120869778
10.1007/978-1-4613-0307-7_9
10.1007/s10107-012-0613-0
10.1016/j.frl.2014.12.008
10.1109/TIT.2007.909108
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021
COPYRIGHT 2022 Springer
Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021
– notice: COPYRIGHT 2022 Springer
– notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10107-021-01719-x
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 928
ExternalDocumentID A723703952
10_1007_s10107_021_01719_x
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11771038; 11971052
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 12011530155
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Beijing Municipality
  grantid: Z190002
  funderid: http://dx.doi.org/10.13039/501100004826
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
7SC
8FD
ABRTQ
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c358t-4494d4fa4edef28756c053fe36219acf795ef76b116f415c0fbf185b6e2dc34c3
IEDL.DBID AGYKE
ISSN 0025-5610
IngestDate Fri Jul 25 19:45:02 EDT 2025
Tue Jun 10 21:19:37 EDT 2025
Tue Jul 01 02:15:13 EDT 2025
Thu Apr 24 23:02:43 EDT 2025
Fri Feb 21 02:47:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords The Newton method
90C30
90C46
Locally quadratic convergence
Sparse nonlinear programming
49M15
Lagrangian equation
Application
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-4494d4fa4edef28756c053fe36219acf795ef76b116f415c0fbf185b6e2dc34c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4926-5929
PQID 2727217930
PQPubID 25307
PageCount 26
ParticipantIDs proquest_journals_2727217930
gale_infotracacademiconefile_A723703952
crossref_citationtrail_10_1007_s10107_021_01719_x
crossref_primary_10_1007_s10107_021_01719_x
springer_journals_10_1007_s10107_021_01719_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References Zou, Hastie, Tibshirani (CR47) 2006; 15
Elad (CR13) 2010
Pan, Luo, Xiu (CR30) 2017; 175
Xu, Lu, Xu (CR39) 2016; 31
Boudt, Lu, Peeters (CR7) 2015; 13
Blumensath, Davies (CR4) 2008; 56
Červinka, Kanzow, Schwartz (CR8) 2016; 160
Fan, Li (CR15) 2001; 96
CR38
CR37
Beck, Hallak (CR2) 2015; 41
CR34
Gotoh, Takeda, Tono (CR18) 2018; 169
Foucart (CR16) 2011; 49
Han (CR19) 1976; 11
Pan, Xiu, Fan (CR31) 2017; 60
Yin, Lou, He, Xin (CR40) 2015; 37
Luo, Sun, Toh, Xiu (CR24) 2019; 20
Chen, Ge, Wang, Ye (CR10) 2014; 143
Gao, Li (CR17) 2013; 61
Pan, Zhou, Xiu, Qi (CR33) 2017; 13
Needell, Tropp (CR28) 2009; 26
Donoho (CR12) 2006; 52
Blumensath, Davies (CR5) 2009; 27
Dai, Milenkovic (CR11) 2009; 55
Beck, Vaisbourd (CR3) 2016; 170
Misra (CR26) 2002; 12
CR9
Lu, Zhang (CR23) 2013; 23
CR25
Natarajan (CR27) 1995; 24
Yuan, Liu (CR43) 2017; 39
Blumensath, Davies (CR6) 2010; 4
CR22
Tropp, Gilbert (CR36) 2007; 53
Zhou, Tao, Wu (CR46) 2011; 22
CR21
CR42
Zhou, Xiu, Wang, Kong, Qi (CR45) 2016; 5
Beck, Eldar (CR1) 2013; 23
Elad, Figueiredo, Ma (CR14) 2010; 98
Zhou, Xiu, Qi (CR44) 2021; 22
Koh, Kim, Boyd (CR20) 2007; 8
Negahban, Ravikumar, Wainwright, Yu (CR29) 2012; 27
Pan, Xiu, Zhou (CR32) 2015; 3
Yuan, Li, Zhang (CR41) 2018; 18
Powell (CR35) 1977; 12
T Blumensath (1719_CR6) 2010; 4
L Pan (1719_CR32) 2015; 3
P Yin (1719_CR40) 2015; 37
T Blumensath (1719_CR4) 2008; 56
1719_CR9
JY Gotoh (1719_CR18) 2018; 169
S Foucart (1719_CR16) 2011; 49
Z Luo (1719_CR24) 2019; 20
1719_CR34
X Chen (1719_CR10) 2014; 143
D Needell (1719_CR28) 2009; 26
K Boudt (1719_CR7) 2015; 13
MJD Powell (1719_CR35) 1977; 12
S Zhou (1719_CR44) 2021; 22
M Červinka (1719_CR8) 2016; 160
J Fan (1719_CR15) 2001; 96
1719_CR38
1719_CR37
L Pan (1719_CR30) 2017; 175
J Misra (1719_CR26) 2002; 12
S Zhou (1719_CR45) 2016; 5
M Elad (1719_CR13) 2010
1719_CR21
1719_CR42
A Beck (1719_CR2) 2015; 41
JA Tropp (1719_CR36) 2007; 53
H Zou (1719_CR47) 2006; 15
SN Negahban (1719_CR29) 2012; 27
DL Donoho (1719_CR12) 2006; 52
M Elad (1719_CR14) 2010; 98
K Koh (1719_CR20) 2007; 8
A Beck (1719_CR1) 2013; 23
Z Lu (1719_CR23) 2013; 23
1719_CR22
1719_CR25
J Gao (1719_CR17) 2013; 61
T Blumensath (1719_CR5) 2009; 27
SP Han (1719_CR19) 1976; 11
L Pan (1719_CR31) 2017; 60
L Pan (1719_CR33) 2017; 13
F Xu (1719_CR39) 2016; 31
BK Natarajan (1719_CR27) 1995; 24
T Zhou (1719_CR46) 2011; 22
X Yuan (1719_CR41) 2018; 18
W Dai (1719_CR11) 2009; 55
A Beck (1719_CR3) 2016; 170
X Yuan (1719_CR43) 2017; 39
References_xml – volume: 12
  start-page: 1112
  issue: 7
  year: 2002
  end-page: 1120
  ident: CR26
  article-title: Interactive exploration of microarray gene expression patterns in a reduced dimensional space
  publication-title: Genome Res.
– volume: 41
  start-page: 196
  issue: 1
  year: 2015
  end-page: 223
  ident: CR2
  article-title: On the minimization over sparse symmetric sets: projections, optimality conditions, and algorithms
  publication-title: Math. Oper. Res.
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  end-page: 1306
  ident: CR12
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
– ident: CR22
– volume: 56
  start-page: 2370
  issue: 6
  year: 2008
  end-page: 2382
  ident: CR4
  article-title: Gradient pursuits
  publication-title: IEEE Trans. Signal Process.
– volume: 53
  start-page: 4655
  issue: 12
  year: 2007
  end-page: 4666
  ident: CR36
  article-title: Signal recovery from random measurements via orthogonal matching pursuit
  publication-title: IEEE Trans. Inf. Theory
– volume: 27
  start-page: 538
  issue: 4
  year: 2012
  end-page: 557
  ident: CR29
  article-title: A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers
  publication-title: Stat. Sci.
– volume: 175
  start-page: 104
  issue: 1
  year: 2017
  end-page: 118
  ident: CR30
  article-title: Restricted Robinson constraint qualification and optimality for cardinality-constrained cone programming
  publication-title: J. Optim. Theory Appl.
– volume: 23
  start-page: 1480
  issue: 3
  year: 2013
  end-page: 1509
  ident: CR1
  article-title: Sparsity constrained nonlinear optimization: optimality conditions and algorithms
  publication-title: SIAM J. Optim.
– volume: 49
  start-page: 2543
  issue: 6
  year: 2011
  end-page: 2563
  ident: CR16
  article-title: Hard thresholding pursuit: an algorithm for compressive sensing
  publication-title: SIAM J. Numer. Anal.
– volume: 5
  start-page: 76
  issue: 1
  year: 2016
  end-page: 102
  ident: CR45
  article-title: A null-space-based weighted minimization approach to compressed sensing
  publication-title: Inf. Inference J. IMA
– ident: CR37
– volume: 15
  start-page: 265
  issue: 2
  year: 2006
  end-page: 286
  ident: CR47
  article-title: Sparse principal component analysis
  publication-title: J. Comput. Graph. Stat.
– volume: 8
  start-page: 1519
  year: 2007
  end-page: 1555
  ident: CR20
  article-title: An interior-point method for large-scale -regularized logistic regression
  publication-title: J. Mach. Learn. Res.
– year: 2010
  ident: CR13
  publication-title: Sparse and Redundant Representations
– volume: 60
  start-page: 759
  issue: 5
  year: 2017
  end-page: 776
  ident: CR31
  article-title: Optimality conditions for sparse nonlinear programming
  publication-title: Sci. China Math.
– volume: 22
  start-page: 1
  year: 2021
  end-page: 45
  ident: CR44
  article-title: Global and quadratic convergence of Newton hard-thresholding pursuit
  publication-title: J. Mach. Learn. Res.
– ident: CR25
– volume: 170
  start-page: 119
  issue: 1
  year: 2016
  end-page: 143
  ident: CR3
  article-title: The sparse principal component analysis problem: Optimality conditions and algorithms
  publication-title: J. Optim. Theory Appl.
– ident: CR42
– volume: 61
  start-page: 745
  issue: 3
  year: 2013
  end-page: 761
  ident: CR17
  article-title: Optimal cardinality constrained portfolio selection
  publication-title: Oper. Res.
– ident: CR21
– volume: 13
  start-page: 325
  issue: 2
  year: 2017
  end-page: 353
  ident: CR33
  article-title: Convergent iterative hard thresholding for sparsity and nonnegativity constrained optimization
  publication-title: Pacif. J. Optim.
– volume: 96
  start-page: 1348
  issue: 456
  year: 2001
  end-page: 1360
  ident: CR15
  article-title: Variable selection via nonconcave penalized likelihood and its Oracle properties
  publication-title: J. Am. Stat. Assoc.
– volume: 12
  start-page: 241
  year: 1977
  end-page: 254
  ident: CR35
  article-title: Restart procedures for the conjugate gradient method
  publication-title: Math. Program.
– volume: 143
  start-page: 371
  issue: 1–2
  year: 2014
  end-page: 383
  ident: CR10
  article-title: Complexity of unconstrained minimization
  publication-title: Math. Program.
– volume: 23
  start-page: 2448
  issue: 4
  year: 2013
  end-page: 2478
  ident: CR23
  article-title: Sparse approximation via penalty decomposition methods
  publication-title: SIAM J. Optim.
– volume: 39
  start-page: 2437
  issue: 12
  year: 2017
  end-page: 2450
  ident: CR43
  article-title: Newton-type greedy selection methods for -constrained minimization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 20
  start-page: 1
  issue: 106
  year: 2019
  end-page: 25
  ident: CR24
  article-title: Solving the OSCAR and SLOPE models using a semismooth Newton-based augmented Lagrangian method
  publication-title: J. Mach. Learn. Res.
– ident: CR38
– volume: 55
  start-page: 2230
  issue: 5
  year: 2009
  end-page: 2249
  ident: CR11
  article-title: Subspace pursuit for compressive sensing signal reconstruction
  publication-title: IEEE Trans. Inf. Theory
– volume: 37
  start-page: 536
  issue: 1
  year: 2015
  end-page: 563
  ident: CR40
  article-title: Minimization of for compressed sensing
  publication-title: SIAM J. Sci. Comput.
– volume: 24
  start-page: 227
  issue: 2
  year: 1995
  end-page: 234
  ident: CR27
  article-title: Sparse approximate solutions to linear systems
  publication-title: SIAM J. Comput.
– volume: 98
  start-page: 972
  issue: 6
  year: 2010
  end-page: 982
  ident: CR14
  article-title: On the role of sparse and redundant representations in image processing
  publication-title: Proc. IEEE
– volume: 26
  start-page: 301
  issue: 3
  year: 2009
  end-page: 321
  ident: CR28
  article-title: CoSaMP: iterative signal recovery from incomplete and inaccurate samples
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 3
  start-page: 421
  issue: 4
  year: 2015
  end-page: 439
  ident: CR32
  article-title: On solutions of sparsity constrained optimization
  publication-title: J. Oper. Res. Soc. China
– ident: CR9
– volume: 11
  start-page: 263
  year: 1976
  end-page: 282
  ident: CR19
  article-title: Superlinearly convergent variable metric algorithms for general nonlinear programming problems
  publication-title: Math. Program.
– volume: 18
  start-page: 1
  issue: 166
  year: 2018
  end-page: 43
  ident: CR41
  article-title: Gradient hard thresholding pursuit
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 340
  issue: 3
  year: 2011
  end-page: 371
  ident: CR46
  article-title: Manifold elastic net: a unified framework for sparse dimension reduction
  publication-title: Data Min. Knowl. Disc.
– ident: CR34
– volume: 27
  start-page: 265
  issue: 3
  year: 2009
  end-page: 274
  ident: CR5
  article-title: Iterative hard thresholding for compressed sensing
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 31
  start-page: 258
  year: 2016
  end-page: 271
  ident: CR39
  article-title: An efficient optimization approach for a cardinality-constrained index tracking problem
  publication-title: Optim. Methods Softw.
– volume: 4
  start-page: 298
  issue: 2
  year: 2010
  end-page: 309
  ident: CR6
  article-title: Normalized iterative hard thresholding: guaranteed stability and performance
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 169
  start-page: 141
  issue: 1
  year: 2018
  end-page: 176
  ident: CR18
  article-title: DC formulations and algorithms for sparse optimization problems
  publication-title: Math. Program
– volume: 160
  start-page: 353
  issue: 1
  year: 2016
  end-page: 377
  ident: CR8
  article-title: Constraint qualifications and optimality conditions for optimization problems with cardinality constraints
  publication-title: Math. Program.
– volume: 13
  start-page: 225
  year: 2015
  end-page: 233
  ident: CR7
  article-title: Higher order comoments of multifactor models and asset allocation
  publication-title: Financ. Res. Lett.
– volume: 3
  start-page: 421
  issue: 4
  year: 2015
  ident: 1719_CR32
  publication-title: J. Oper. Res. Soc. China
  doi: 10.1007/s40305-015-0101-3
– volume: 160
  start-page: 353
  issue: 1
  year: 2016
  ident: 1719_CR8
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-0986-6
– volume: 55
  start-page: 2230
  issue: 5
  year: 2009
  ident: 1719_CR11
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2009.2016006
– volume: 49
  start-page: 2543
  issue: 6
  year: 2011
  ident: 1719_CR16
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/100806278
– volume: 27
  start-page: 538
  issue: 4
  year: 2012
  ident: 1719_CR29
  publication-title: Stat. Sci.
  doi: 10.1214/12-STS400
– volume: 12
  start-page: 241
  year: 1977
  ident: 1719_CR35
  publication-title: Math. Program.
  doi: 10.1007/BF01593790
– volume: 39
  start-page: 2437
  issue: 12
  year: 2017
  ident: 1719_CR43
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2651813
– volume: 98
  start-page: 972
  issue: 6
  year: 2010
  ident: 1719_CR14
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2009.2037655
– volume: 96
  start-page: 1348
  issue: 456
  year: 2001
  ident: 1719_CR15
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501753382273
– volume: 12
  start-page: 1112
  issue: 7
  year: 2002
  ident: 1719_CR26
  publication-title: Genome Res.
  doi: 10.1101/gr.225302
– volume: 4
  start-page: 298
  issue: 2
  year: 2010
  ident: 1719_CR6
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2010.2042411
– volume: 20
  start-page: 1
  issue: 106
  year: 2019
  ident: 1719_CR24
  publication-title: J. Mach. Learn. Res.
– volume: 61
  start-page: 745
  issue: 3
  year: 2013
  ident: 1719_CR17
  publication-title: Oper. Res.
  doi: 10.1287/opre.2013.1170
– volume: 18
  start-page: 1
  issue: 166
  year: 2018
  ident: 1719_CR41
  publication-title: J. Mach. Learn. Res.
– volume: 175
  start-page: 104
  issue: 1
  year: 2017
  ident: 1719_CR30
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-017-1166-4
– ident: 1719_CR37
  doi: 10.1109/ICASSP39728.2021.9414048
– volume: 37
  start-page: 536
  issue: 1
  year: 2015
  ident: 1719_CR40
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/140952363
– volume: 8
  start-page: 1519
  year: 2007
  ident: 1719_CR20
  publication-title: J. Mach. Learn. Res.
– ident: 1719_CR42
  doi: 10.1109/CVPR.2014.525
– volume: 26
  start-page: 301
  issue: 3
  year: 2009
  ident: 1719_CR28
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2008.07.002
– volume: 22
  start-page: 1
  year: 2021
  ident: 1719_CR44
  publication-title: J. Mach. Learn. Res.
– volume-title: Sparse and Redundant Representations
  year: 2010
  ident: 1719_CR13
  doi: 10.1007/978-1-4419-7011-4
– volume: 170
  start-page: 119
  issue: 1
  year: 2016
  ident: 1719_CR3
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-016-0934-x
– volume: 22
  start-page: 340
  issue: 3
  year: 2011
  ident: 1719_CR46
  publication-title: Data Min. Knowl. Disc.
  doi: 10.1007/s10618-010-0182-x
– volume: 169
  start-page: 141
  issue: 1
  year: 2018
  ident: 1719_CR18
  publication-title: Math. Program
  doi: 10.1007/s10107-017-1181-0
– ident: 1719_CR21
– volume: 60
  start-page: 759
  issue: 5
  year: 2017
  ident: 1719_CR31
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-016-9010-x
– volume: 11
  start-page: 263
  year: 1976
  ident: 1719_CR19
  publication-title: Math. Program.
  doi: 10.1007/BF01580395
– volume: 15
  start-page: 265
  issue: 2
  year: 2006
  ident: 1719_CR47
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/106186006X113430
– volume: 27
  start-page: 265
  issue: 3
  year: 2009
  ident: 1719_CR5
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2009.04.002
– volume: 13
  start-page: 325
  issue: 2
  year: 2017
  ident: 1719_CR33
  publication-title: Pacif. J. Optim.
– volume: 5
  start-page: 76
  issue: 1
  year: 2016
  ident: 1719_CR45
  publication-title: Inf. Inference J. IMA
– ident: 1719_CR38
– volume: 31
  start-page: 258
  year: 2016
  ident: 1719_CR39
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2015.1062891
– volume: 41
  start-page: 196
  issue: 1
  year: 2015
  ident: 1719_CR2
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2015.0722
– ident: 1719_CR34
– volume: 56
  start-page: 2370
  issue: 6
  year: 2008
  ident: 1719_CR4
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.916124
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  ident: 1719_CR12
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.871582
– volume: 23
  start-page: 2448
  issue: 4
  year: 2013
  ident: 1719_CR23
  publication-title: SIAM J. Optim.
  doi: 10.1137/100808071
– volume: 24
  start-page: 227
  issue: 2
  year: 1995
  ident: 1719_CR27
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539792240406
– ident: 1719_CR9
  doi: 10.1145/3097983.3098165
– volume: 23
  start-page: 1480
  issue: 3
  year: 2013
  ident: 1719_CR1
  publication-title: SIAM J. Optim.
  doi: 10.1137/120869778
– ident: 1719_CR25
  doi: 10.1007/978-1-4613-0307-7_9
– volume: 143
  start-page: 371
  issue: 1–2
  year: 2014
  ident: 1719_CR10
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0613-0
– ident: 1719_CR22
– volume: 13
  start-page: 225
  year: 2015
  ident: 1719_CR7
  publication-title: Financ. Res. Lett.
  doi: 10.1016/j.frl.2014.12.008
– volume: 53
  start-page: 4655
  issue: 12
  year: 2007
  ident: 1719_CR36
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2007.909108
SSID ssj0001388
Score 2.4497285
Snippet The sparse nonlinear programming (SNP) problem has wide applications in signal and image processing, machine learning and finance, etc. However, the...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 903
SubjectTerms Algorithms
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Euler-Lagrange equation
Full Length Paper
Image processing
Iterative methods
Lagrangian function
Machine learning
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Nonlinear equations
Nonlinear programming
Numerical Analysis
Signal processing
Theoretical
Title A Lagrange–Newton algorithm for sparse nonlinear programming
URI https://link.springer.com/article/10.1007/s10107-021-01719-x
https://www.proquest.com/docview/2727217930
Volume 195
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7R5UIPpRSqbqGrHJA4lKD4mfiCFB4L4tFTV4KTlTg2rQq0ygap6qn_of-QX8I46yzvShwjJ-PH2OPP8cw3AKsUCxBlq7hixMScMxOXiTSxo44JTqssaVMnHH-R-yN-cCJOQlDYuPN2764kW0t9J9iN-N9q1B9_U6JiRI6zgmQq68Fsvnd6uDu1wIRlWZeq1eODECzztJR7G9JDs_zofrTddobzMOoaPPE2-bFx1ZQb5s8DLseX9ugtvAk4NMonE2cBZuzlO3h9h50Qn46nlK7jRdjMo6PirPaxCNd__6FtRNAYFednP-vvzbeLCLFvhMapHtvocsK-UdRRcP66QHFLMBruft3ej0PyhdgwkTWoNsUr7gpuK-vwWCWkwfXqLG54RBXGpUpYl8qSEOkQBJjElQ73_lJaWhnGDXsPPazPfoBItf20SlVKcJZmyiZClJVMK1JkTso-kE4D2gRmcp8g41zfcip7CRpHSrcjpX_34fP0m18TXo7_vr3mFav9okXJpgixB9g-T3-l85QyNH1K0D6sdLrXYTWPNfW31d6SJX1Y71R5W_x8vR9f9voyzFEfXdG6sK1Ar6mv7CfEPE05wCm-tbM1HISpPoBXI5rfAKnV-Gc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5ED-pBfGK1ag6CBw1kn8lehCKWqm1PLfS2JJvdKrRV0goe_Q_-Q3-Js2nS1id4DLuZDTPZmW8f8w1CpwQaAGVLP6VY-4xR7SeB0L4llnJG0ijISye02qLRZbc93iuSwsblbffySDL31AvJbthtqxG3_A2x9AE5rgAYiFzdgi6pzfwvplFUFmp16KBIlflZxqdw9NUpfzsdzYNOfRNtFGjRq03Nu4WWzGgbrS9wCMJTa0a8Ot5BlzWvGfczlzHw_voGHgygnRcP-o_Zw-R-6AFC9cCFZGPjjaYcGXHmFVe0hiBuF3Xr152rhl-USPA15dEElCtZymzMTGosLH640DCrrIGwhGWsbSi5saFIMBYWQrUObGIhQifCkFRTpukeWobxzD7yZK4bI2UqOaNhJE3AeZKKMMVxZIWoIFxqSumCP9yVsRioOfOxk6BAuyrXrnqpoPPZO09T9ow_e585Ayg3tUCyjosMAfg-R1KlaiGh4KAkJxVULW2kijk3VsSdKTt_E1TQRWm3efPv4x78r_sJWm10Wk3VvGnfHaI14vIh8ktnVbQ8yZ7NEaCUSXKc_5QfyeHbuw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iIHoQn7g-exA8aLF5trkIi7r4xoML3kKbhwruunQrePQ_-A_9JU667bo-wWNJOikzycykyfcNQlsEGiDLlqGhWIeMUR1mkdChI45yRkwSlaUTLi7FcZud3vCbERR_edu9PpIcYBo8S1O32OsZtzcCfMP-FxvxW-EYyxCyyAlwx9jP9DZpDn0xpklSF231mUIFm_lZxqfQ9NVBfzspLQNQaxbNVJlj0ByYeg6N2e48mh7hE4SniyEJa38B7TeD8_Q29-iBt5dX8GaQ5gXpw-1jfl_cdQLIVgNwJ3nfBt0BX0aaB9V1rQ6IW0Tt1tH1wXFYlUsINeVJAYqWzDCXMmusg40QFxpWmLMQorBMtYslty4WGcbCQdjWkcscROtMWGI0ZZouoXEYzy6jQJa6sVIayRmNE2kjzjMjYoPTxAnRQLjWlNIVl7gvafGgPliQvQQF2lWldtVzA-0M3-kNmDT-7L3tDaD8MgPJOq3QAvB9nrBKNWNCwVlJThporbaRqtZfXxF_vux9T9RAu7XdPpp_H3flf9030eTVYUudn1yeraIp4qER5f2zNTRe5E92HRKWItso5-Q7pJDf9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Lagrange-Newton+algorithm+for+sparse+nonlinear+programming&rft.jtitle=Mathematical+programming&rft.au=Zhao%2C+Chen&rft.au=Xiu%2C+Naihua&rft.au=Qi%2C+Houduo&rft.au=Luo%2C+Ziyan&rft.date=2022-09-01&rft.pub=Springer&rft.issn=0025-5610&rft.volume=195&rft.issue=1-2&rft.spage=903&rft_id=info:doi/10.1007%2Fs10107-021-01719-x&rft.externalDocID=A723703952
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon