A Lagrange–Newton algorithm for sparse nonlinear programming
The sparse nonlinear programming (SNP) problem has wide applications in signal and image processing, machine learning and finance, etc. However, the computational challenge posed by SNP has not yet been well resolved due to the nonconvex and discontinuous ℓ 0 -norm involved. In this paper, we resolv...
Saved in:
Published in | Mathematical programming Vol. 195; no. 1-2; pp. 903 - 928 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2022
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0025-5610 1436-4646 |
DOI | 10.1007/s10107-021-01719-x |
Cover
Abstract | The sparse nonlinear programming (SNP) problem has wide applications in signal and image processing, machine learning and finance, etc. However, the computational challenge posed by SNP has not yet been well resolved due to the nonconvex and discontinuous
ℓ
0
-norm involved. In this paper, we resolve this numerical challenge by developing a fast Newton-type algorithm. As a theoretical cornerstone, we establish a first-order optimality condition for SNP based on the concept of strong
β
-Lagrangian stationarity via the Lagrangian function, and reformulate it as a system of nonlinear equations called the Lagrangian equations. The nonsingularity of the corresponding Jacobian is discussed, based on which the Lagrange–Newton algorithm (LNA) is then proposed. Under mild conditions, we establish the locally quadratic convergence and its iterative complexity estimation. To further demonstrate the efficiency and superiority of our proposed algorithm, we apply LNA to two specific problems arising from compressed sensing and sparse high-order portfolio selection, in which significant benefits accrue from the restricted Newton step. |
---|---|
AbstractList | The sparse nonlinear programming (SNP) problem has wide applications in signal and image processing, machine learning and finance, etc. However, the computational challenge posed by SNP has not yet been well resolved due to the nonconvex and discontinuous ℓ0-norm involved. In this paper, we resolve this numerical challenge by developing a fast Newton-type algorithm. As a theoretical cornerstone, we establish a first-order optimality condition for SNP based on the concept of strong β-Lagrangian stationarity via the Lagrangian function, and reformulate it as a system of nonlinear equations called the Lagrangian equations. The nonsingularity of the corresponding Jacobian is discussed, based on which the Lagrange–Newton algorithm (LNA) is then proposed. Under mild conditions, we establish the locally quadratic convergence and its iterative complexity estimation. To further demonstrate the efficiency and superiority of our proposed algorithm, we apply LNA to two specific problems arising from compressed sensing and sparse high-order portfolio selection, in which significant benefits accrue from the restricted Newton step. The sparse nonlinear programming (SNP) problem has wide applications in signal and image processing, machine learning and finance, etc. However, the computational challenge posed by SNP has not yet been well resolved due to the nonconvex and discontinuous ℓ 0 -norm involved. In this paper, we resolve this numerical challenge by developing a fast Newton-type algorithm. As a theoretical cornerstone, we establish a first-order optimality condition for SNP based on the concept of strong β -Lagrangian stationarity via the Lagrangian function, and reformulate it as a system of nonlinear equations called the Lagrangian equations. The nonsingularity of the corresponding Jacobian is discussed, based on which the Lagrange–Newton algorithm (LNA) is then proposed. Under mild conditions, we establish the locally quadratic convergence and its iterative complexity estimation. To further demonstrate the efficiency and superiority of our proposed algorithm, we apply LNA to two specific problems arising from compressed sensing and sparse high-order portfolio selection, in which significant benefits accrue from the restricted Newton step. The sparse nonlinear programming (SNP) problem has wide applications in signal and image processing, machine learning and finance, etc. However, the computational challenge posed by SNP has not yet been well resolved due to the nonconvex and discontinuous [Formula omitted]-norm involved. In this paper, we resolve this numerical challenge by developing a fast Newton-type algorithm. As a theoretical cornerstone, we establish a first-order optimality condition for SNP based on the concept of strong [Formula omitted]-Lagrangian stationarity via the Lagrangian function, and reformulate it as a system of nonlinear equations called the Lagrangian equations. The nonsingularity of the corresponding Jacobian is discussed, based on which the Lagrange-Newton algorithm (LNA) is then proposed. Under mild conditions, we establish the locally quadratic convergence and its iterative complexity estimation. To further demonstrate the efficiency and superiority of our proposed algorithm, we apply LNA to two specific problems arising from compressed sensing and sparse high-order portfolio selection, in which significant benefits accrue from the restricted Newton step. |
Audience | Academic |
Author | Zhao, Chen Luo, Ziyan Qi, Houduo Xiu, Naihua |
Author_xml | – sequence: 1 givenname: Chen surname: Zhao fullname: Zhao, Chen organization: Department of Mathematics, Beijing Jiaotong University – sequence: 2 givenname: Naihua surname: Xiu fullname: Xiu, Naihua organization: Department of Mathematics, Beijing Jiaotong University – sequence: 3 givenname: Houduo surname: Qi fullname: Qi, Houduo organization: School of Mathematics, University of Southampton – sequence: 4 givenname: Ziyan orcidid: 0000-0002-4926-5929 surname: Luo fullname: Luo, Ziyan email: zyluo@bjtu.edu.cn organization: Department of Mathematics, Beijing Jiaotong University |
BookMark | eNp9kM9KHTEUh0Ox0Kv1BVwNuB49J39nNoWLtFq42I2uQ25uMo3MJNdkpHbXd-gb-iSmjiB0IWcROPy-8yPfITmIKTpCThDOEECdFwQE1QLFFlBh3z5-ICvkTLZccnlAVgBUtEIifCKHpdwBALKuW5Ev62Zjhmzi4J7-_L12v-YUGzMOKYf559T4lJuyN7m4pjaOITqTm31OlZimEIfP5KM3Y3HHr-8Ruf329ebiqt38uPx-sd60lolubjnv-Y57w93OedopIS0I5h2TFHtjveqF80puEaXnKCz4rcdObKWjO8u4ZUfkdLlbu-8fXJn1XXrIsVZqquqg6hnU1NmSGszodIg-zdnYOjs3BVuN-VD3a0WZAtYLWoFuAWxOpWTntQ2zmUOKFQyjRtD_9OpFr6569Yte_VhR-h-6z2Ey-ff7EFugUsNVeX77xjvUMxKpkDk |
CitedBy_id | crossref_primary_10_1137_22M147863X crossref_primary_10_1109_TWC_2024_3481050 crossref_primary_10_1007_s10915_025_02797_1 crossref_primary_10_1016_j_cam_2024_116453 crossref_primary_10_1007_s10107_024_02161_5 crossref_primary_10_1080_02331934_2023_2231482 crossref_primary_10_1016_j_measurement_2023_113509 crossref_primary_10_1080_03081087_2023_2176418 |
Cites_doi | 10.1007/s40305-015-0101-3 10.1007/s10107-016-0986-6 10.1109/TIT.2009.2016006 10.1137/100806278 10.1214/12-STS400 10.1007/BF01593790 10.1109/TPAMI.2017.2651813 10.1109/JPROC.2009.2037655 10.1198/016214501753382273 10.1101/gr.225302 10.1109/JSTSP.2010.2042411 10.1287/opre.2013.1170 10.1007/s10957-017-1166-4 10.1109/ICASSP39728.2021.9414048 10.1137/140952363 10.1109/CVPR.2014.525 10.1016/j.acha.2008.07.002 10.1007/978-1-4419-7011-4 10.1007/s10957-016-0934-x 10.1007/s10618-010-0182-x 10.1007/s10107-017-1181-0 10.1007/s11425-016-9010-x 10.1007/BF01580395 10.1198/106186006X113430 10.1016/j.acha.2009.04.002 10.1080/10556788.2015.1062891 10.1287/moor.2015.0722 10.1109/TSP.2007.916124 10.1109/TIT.2006.871582 10.1137/100808071 10.1137/S0097539792240406 10.1145/3097983.3098165 10.1137/120869778 10.1007/978-1-4613-0307-7_9 10.1007/s10107-012-0613-0 10.1016/j.frl.2014.12.008 10.1109/TIT.2007.909108 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021 COPYRIGHT 2022 Springer Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021 – notice: COPYRIGHT 2022 Springer – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s10107-021-01719-x |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1436-4646 |
EndPage | 928 |
ExternalDocumentID | A723703952 10_1007_s10107_021_01719_x |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11771038; 11971052 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 12011530155 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Beijing Municipality grantid: Z190002 funderid: http://dx.doi.org/10.13039/501100004826 |
GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT AEIIB 7SC 8FD ABRTQ JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c358t-4494d4fa4edef28756c053fe36219acf795ef76b116f415c0fbf185b6e2dc34c3 |
IEDL.DBID | AGYKE |
ISSN | 0025-5610 |
IngestDate | Fri Jul 25 19:45:02 EDT 2025 Tue Jun 10 21:19:37 EDT 2025 Tue Jul 01 02:15:13 EDT 2025 Thu Apr 24 23:02:43 EDT 2025 Fri Feb 21 02:47:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | The Newton method 90C30 90C46 Locally quadratic convergence Sparse nonlinear programming 49M15 Lagrangian equation Application |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-4494d4fa4edef28756c053fe36219acf795ef76b116f415c0fbf185b6e2dc34c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4926-5929 |
PQID | 2727217930 |
PQPubID | 25307 |
PageCount | 26 |
ParticipantIDs | proquest_journals_2727217930 gale_infotracacademiconefile_A723703952 crossref_citationtrail_10_1007_s10107_021_01719_x crossref_primary_10_1007_s10107_021_01719_x springer_journals_10_1007_s10107_021_01719_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | A Publication of the Mathematical Optimization Society |
PublicationTitle | Mathematical programming |
PublicationTitleAbbrev | Math. Program |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
References | Zou, Hastie, Tibshirani (CR47) 2006; 15 Elad (CR13) 2010 Pan, Luo, Xiu (CR30) 2017; 175 Xu, Lu, Xu (CR39) 2016; 31 Boudt, Lu, Peeters (CR7) 2015; 13 Blumensath, Davies (CR4) 2008; 56 Červinka, Kanzow, Schwartz (CR8) 2016; 160 Fan, Li (CR15) 2001; 96 CR38 CR37 Beck, Hallak (CR2) 2015; 41 CR34 Gotoh, Takeda, Tono (CR18) 2018; 169 Foucart (CR16) 2011; 49 Han (CR19) 1976; 11 Pan, Xiu, Fan (CR31) 2017; 60 Yin, Lou, He, Xin (CR40) 2015; 37 Luo, Sun, Toh, Xiu (CR24) 2019; 20 Chen, Ge, Wang, Ye (CR10) 2014; 143 Gao, Li (CR17) 2013; 61 Pan, Zhou, Xiu, Qi (CR33) 2017; 13 Needell, Tropp (CR28) 2009; 26 Donoho (CR12) 2006; 52 Blumensath, Davies (CR5) 2009; 27 Dai, Milenkovic (CR11) 2009; 55 Beck, Vaisbourd (CR3) 2016; 170 Misra (CR26) 2002; 12 CR9 Lu, Zhang (CR23) 2013; 23 CR25 Natarajan (CR27) 1995; 24 Yuan, Liu (CR43) 2017; 39 Blumensath, Davies (CR6) 2010; 4 CR22 Tropp, Gilbert (CR36) 2007; 53 Zhou, Tao, Wu (CR46) 2011; 22 CR21 CR42 Zhou, Xiu, Wang, Kong, Qi (CR45) 2016; 5 Beck, Eldar (CR1) 2013; 23 Elad, Figueiredo, Ma (CR14) 2010; 98 Zhou, Xiu, Qi (CR44) 2021; 22 Koh, Kim, Boyd (CR20) 2007; 8 Negahban, Ravikumar, Wainwright, Yu (CR29) 2012; 27 Pan, Xiu, Zhou (CR32) 2015; 3 Yuan, Li, Zhang (CR41) 2018; 18 Powell (CR35) 1977; 12 T Blumensath (1719_CR6) 2010; 4 L Pan (1719_CR32) 2015; 3 P Yin (1719_CR40) 2015; 37 T Blumensath (1719_CR4) 2008; 56 1719_CR9 JY Gotoh (1719_CR18) 2018; 169 S Foucart (1719_CR16) 2011; 49 Z Luo (1719_CR24) 2019; 20 1719_CR34 X Chen (1719_CR10) 2014; 143 D Needell (1719_CR28) 2009; 26 K Boudt (1719_CR7) 2015; 13 MJD Powell (1719_CR35) 1977; 12 S Zhou (1719_CR44) 2021; 22 M Červinka (1719_CR8) 2016; 160 J Fan (1719_CR15) 2001; 96 1719_CR38 1719_CR37 L Pan (1719_CR30) 2017; 175 J Misra (1719_CR26) 2002; 12 S Zhou (1719_CR45) 2016; 5 M Elad (1719_CR13) 2010 1719_CR21 1719_CR42 A Beck (1719_CR2) 2015; 41 JA Tropp (1719_CR36) 2007; 53 H Zou (1719_CR47) 2006; 15 SN Negahban (1719_CR29) 2012; 27 DL Donoho (1719_CR12) 2006; 52 M Elad (1719_CR14) 2010; 98 K Koh (1719_CR20) 2007; 8 A Beck (1719_CR1) 2013; 23 Z Lu (1719_CR23) 2013; 23 1719_CR22 1719_CR25 J Gao (1719_CR17) 2013; 61 T Blumensath (1719_CR5) 2009; 27 SP Han (1719_CR19) 1976; 11 L Pan (1719_CR31) 2017; 60 L Pan (1719_CR33) 2017; 13 F Xu (1719_CR39) 2016; 31 BK Natarajan (1719_CR27) 1995; 24 T Zhou (1719_CR46) 2011; 22 X Yuan (1719_CR41) 2018; 18 W Dai (1719_CR11) 2009; 55 A Beck (1719_CR3) 2016; 170 X Yuan (1719_CR43) 2017; 39 |
References_xml | – volume: 12 start-page: 1112 issue: 7 year: 2002 end-page: 1120 ident: CR26 article-title: Interactive exploration of microarray gene expression patterns in a reduced dimensional space publication-title: Genome Res. – volume: 41 start-page: 196 issue: 1 year: 2015 end-page: 223 ident: CR2 article-title: On the minimization over sparse symmetric sets: projections, optimality conditions, and algorithms publication-title: Math. Oper. Res. – volume: 52 start-page: 1289 issue: 4 year: 2006 end-page: 1306 ident: CR12 article-title: Compressed sensing publication-title: IEEE Trans. Inf. Theory – ident: CR22 – volume: 56 start-page: 2370 issue: 6 year: 2008 end-page: 2382 ident: CR4 article-title: Gradient pursuits publication-title: IEEE Trans. Signal Process. – volume: 53 start-page: 4655 issue: 12 year: 2007 end-page: 4666 ident: CR36 article-title: Signal recovery from random measurements via orthogonal matching pursuit publication-title: IEEE Trans. Inf. Theory – volume: 27 start-page: 538 issue: 4 year: 2012 end-page: 557 ident: CR29 article-title: A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers publication-title: Stat. Sci. – volume: 175 start-page: 104 issue: 1 year: 2017 end-page: 118 ident: CR30 article-title: Restricted Robinson constraint qualification and optimality for cardinality-constrained cone programming publication-title: J. Optim. Theory Appl. – volume: 23 start-page: 1480 issue: 3 year: 2013 end-page: 1509 ident: CR1 article-title: Sparsity constrained nonlinear optimization: optimality conditions and algorithms publication-title: SIAM J. Optim. – volume: 49 start-page: 2543 issue: 6 year: 2011 end-page: 2563 ident: CR16 article-title: Hard thresholding pursuit: an algorithm for compressive sensing publication-title: SIAM J. Numer. Anal. – volume: 5 start-page: 76 issue: 1 year: 2016 end-page: 102 ident: CR45 article-title: A null-space-based weighted minimization approach to compressed sensing publication-title: Inf. Inference J. IMA – ident: CR37 – volume: 15 start-page: 265 issue: 2 year: 2006 end-page: 286 ident: CR47 article-title: Sparse principal component analysis publication-title: J. Comput. Graph. Stat. – volume: 8 start-page: 1519 year: 2007 end-page: 1555 ident: CR20 article-title: An interior-point method for large-scale -regularized logistic regression publication-title: J. Mach. Learn. Res. – year: 2010 ident: CR13 publication-title: Sparse and Redundant Representations – volume: 60 start-page: 759 issue: 5 year: 2017 end-page: 776 ident: CR31 article-title: Optimality conditions for sparse nonlinear programming publication-title: Sci. China Math. – volume: 22 start-page: 1 year: 2021 end-page: 45 ident: CR44 article-title: Global and quadratic convergence of Newton hard-thresholding pursuit publication-title: J. Mach. Learn. Res. – ident: CR25 – volume: 170 start-page: 119 issue: 1 year: 2016 end-page: 143 ident: CR3 article-title: The sparse principal component analysis problem: Optimality conditions and algorithms publication-title: J. Optim. Theory Appl. – ident: CR42 – volume: 61 start-page: 745 issue: 3 year: 2013 end-page: 761 ident: CR17 article-title: Optimal cardinality constrained portfolio selection publication-title: Oper. Res. – ident: CR21 – volume: 13 start-page: 325 issue: 2 year: 2017 end-page: 353 ident: CR33 article-title: Convergent iterative hard thresholding for sparsity and nonnegativity constrained optimization publication-title: Pacif. J. Optim. – volume: 96 start-page: 1348 issue: 456 year: 2001 end-page: 1360 ident: CR15 article-title: Variable selection via nonconcave penalized likelihood and its Oracle properties publication-title: J. Am. Stat. Assoc. – volume: 12 start-page: 241 year: 1977 end-page: 254 ident: CR35 article-title: Restart procedures for the conjugate gradient method publication-title: Math. Program. – volume: 143 start-page: 371 issue: 1–2 year: 2014 end-page: 383 ident: CR10 article-title: Complexity of unconstrained minimization publication-title: Math. Program. – volume: 23 start-page: 2448 issue: 4 year: 2013 end-page: 2478 ident: CR23 article-title: Sparse approximation via penalty decomposition methods publication-title: SIAM J. Optim. – volume: 39 start-page: 2437 issue: 12 year: 2017 end-page: 2450 ident: CR43 article-title: Newton-type greedy selection methods for -constrained minimization publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 20 start-page: 1 issue: 106 year: 2019 end-page: 25 ident: CR24 article-title: Solving the OSCAR and SLOPE models using a semismooth Newton-based augmented Lagrangian method publication-title: J. Mach. Learn. Res. – ident: CR38 – volume: 55 start-page: 2230 issue: 5 year: 2009 end-page: 2249 ident: CR11 article-title: Subspace pursuit for compressive sensing signal reconstruction publication-title: IEEE Trans. Inf. Theory – volume: 37 start-page: 536 issue: 1 year: 2015 end-page: 563 ident: CR40 article-title: Minimization of for compressed sensing publication-title: SIAM J. Sci. Comput. – volume: 24 start-page: 227 issue: 2 year: 1995 end-page: 234 ident: CR27 article-title: Sparse approximate solutions to linear systems publication-title: SIAM J. Comput. – volume: 98 start-page: 972 issue: 6 year: 2010 end-page: 982 ident: CR14 article-title: On the role of sparse and redundant representations in image processing publication-title: Proc. IEEE – volume: 26 start-page: 301 issue: 3 year: 2009 end-page: 321 ident: CR28 article-title: CoSaMP: iterative signal recovery from incomplete and inaccurate samples publication-title: Appl. Comput. Harmon. Anal. – volume: 3 start-page: 421 issue: 4 year: 2015 end-page: 439 ident: CR32 article-title: On solutions of sparsity constrained optimization publication-title: J. Oper. Res. Soc. China – ident: CR9 – volume: 11 start-page: 263 year: 1976 end-page: 282 ident: CR19 article-title: Superlinearly convergent variable metric algorithms for general nonlinear programming problems publication-title: Math. Program. – volume: 18 start-page: 1 issue: 166 year: 2018 end-page: 43 ident: CR41 article-title: Gradient hard thresholding pursuit publication-title: J. Mach. Learn. Res. – volume: 22 start-page: 340 issue: 3 year: 2011 end-page: 371 ident: CR46 article-title: Manifold elastic net: a unified framework for sparse dimension reduction publication-title: Data Min. Knowl. Disc. – ident: CR34 – volume: 27 start-page: 265 issue: 3 year: 2009 end-page: 274 ident: CR5 article-title: Iterative hard thresholding for compressed sensing publication-title: Appl. Comput. Harmon. Anal. – volume: 31 start-page: 258 year: 2016 end-page: 271 ident: CR39 article-title: An efficient optimization approach for a cardinality-constrained index tracking problem publication-title: Optim. Methods Softw. – volume: 4 start-page: 298 issue: 2 year: 2010 end-page: 309 ident: CR6 article-title: Normalized iterative hard thresholding: guaranteed stability and performance publication-title: IEEE J. Sel. Top. Signal Process. – volume: 169 start-page: 141 issue: 1 year: 2018 end-page: 176 ident: CR18 article-title: DC formulations and algorithms for sparse optimization problems publication-title: Math. Program – volume: 160 start-page: 353 issue: 1 year: 2016 end-page: 377 ident: CR8 article-title: Constraint qualifications and optimality conditions for optimization problems with cardinality constraints publication-title: Math. Program. – volume: 13 start-page: 225 year: 2015 end-page: 233 ident: CR7 article-title: Higher order comoments of multifactor models and asset allocation publication-title: Financ. Res. Lett. – volume: 3 start-page: 421 issue: 4 year: 2015 ident: 1719_CR32 publication-title: J. Oper. Res. Soc. China doi: 10.1007/s40305-015-0101-3 – volume: 160 start-page: 353 issue: 1 year: 2016 ident: 1719_CR8 publication-title: Math. Program. doi: 10.1007/s10107-016-0986-6 – volume: 55 start-page: 2230 issue: 5 year: 2009 ident: 1719_CR11 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2009.2016006 – volume: 49 start-page: 2543 issue: 6 year: 2011 ident: 1719_CR16 publication-title: SIAM J. Numer. Anal. doi: 10.1137/100806278 – volume: 27 start-page: 538 issue: 4 year: 2012 ident: 1719_CR29 publication-title: Stat. Sci. doi: 10.1214/12-STS400 – volume: 12 start-page: 241 year: 1977 ident: 1719_CR35 publication-title: Math. Program. doi: 10.1007/BF01593790 – volume: 39 start-page: 2437 issue: 12 year: 2017 ident: 1719_CR43 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2651813 – volume: 98 start-page: 972 issue: 6 year: 2010 ident: 1719_CR14 publication-title: Proc. IEEE doi: 10.1109/JPROC.2009.2037655 – volume: 96 start-page: 1348 issue: 456 year: 2001 ident: 1719_CR15 publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214501753382273 – volume: 12 start-page: 1112 issue: 7 year: 2002 ident: 1719_CR26 publication-title: Genome Res. doi: 10.1101/gr.225302 – volume: 4 start-page: 298 issue: 2 year: 2010 ident: 1719_CR6 publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2010.2042411 – volume: 20 start-page: 1 issue: 106 year: 2019 ident: 1719_CR24 publication-title: J. Mach. Learn. Res. – volume: 61 start-page: 745 issue: 3 year: 2013 ident: 1719_CR17 publication-title: Oper. Res. doi: 10.1287/opre.2013.1170 – volume: 18 start-page: 1 issue: 166 year: 2018 ident: 1719_CR41 publication-title: J. Mach. Learn. Res. – volume: 175 start-page: 104 issue: 1 year: 2017 ident: 1719_CR30 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-017-1166-4 – ident: 1719_CR37 doi: 10.1109/ICASSP39728.2021.9414048 – volume: 37 start-page: 536 issue: 1 year: 2015 ident: 1719_CR40 publication-title: SIAM J. Sci. Comput. doi: 10.1137/140952363 – volume: 8 start-page: 1519 year: 2007 ident: 1719_CR20 publication-title: J. Mach. Learn. Res. – ident: 1719_CR42 doi: 10.1109/CVPR.2014.525 – volume: 26 start-page: 301 issue: 3 year: 2009 ident: 1719_CR28 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2008.07.002 – volume: 22 start-page: 1 year: 2021 ident: 1719_CR44 publication-title: J. Mach. Learn. Res. – volume-title: Sparse and Redundant Representations year: 2010 ident: 1719_CR13 doi: 10.1007/978-1-4419-7011-4 – volume: 170 start-page: 119 issue: 1 year: 2016 ident: 1719_CR3 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-016-0934-x – volume: 22 start-page: 340 issue: 3 year: 2011 ident: 1719_CR46 publication-title: Data Min. Knowl. Disc. doi: 10.1007/s10618-010-0182-x – volume: 169 start-page: 141 issue: 1 year: 2018 ident: 1719_CR18 publication-title: Math. Program doi: 10.1007/s10107-017-1181-0 – ident: 1719_CR21 – volume: 60 start-page: 759 issue: 5 year: 2017 ident: 1719_CR31 publication-title: Sci. China Math. doi: 10.1007/s11425-016-9010-x – volume: 11 start-page: 263 year: 1976 ident: 1719_CR19 publication-title: Math. Program. doi: 10.1007/BF01580395 – volume: 15 start-page: 265 issue: 2 year: 2006 ident: 1719_CR47 publication-title: J. Comput. Graph. Stat. doi: 10.1198/106186006X113430 – volume: 27 start-page: 265 issue: 3 year: 2009 ident: 1719_CR5 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2009.04.002 – volume: 13 start-page: 325 issue: 2 year: 2017 ident: 1719_CR33 publication-title: Pacif. J. Optim. – volume: 5 start-page: 76 issue: 1 year: 2016 ident: 1719_CR45 publication-title: Inf. Inference J. IMA – ident: 1719_CR38 – volume: 31 start-page: 258 year: 2016 ident: 1719_CR39 publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2015.1062891 – volume: 41 start-page: 196 issue: 1 year: 2015 ident: 1719_CR2 publication-title: Math. Oper. Res. doi: 10.1287/moor.2015.0722 – ident: 1719_CR34 – volume: 56 start-page: 2370 issue: 6 year: 2008 ident: 1719_CR4 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.916124 – volume: 52 start-page: 1289 issue: 4 year: 2006 ident: 1719_CR12 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2006.871582 – volume: 23 start-page: 2448 issue: 4 year: 2013 ident: 1719_CR23 publication-title: SIAM J. Optim. doi: 10.1137/100808071 – volume: 24 start-page: 227 issue: 2 year: 1995 ident: 1719_CR27 publication-title: SIAM J. Comput. doi: 10.1137/S0097539792240406 – ident: 1719_CR9 doi: 10.1145/3097983.3098165 – volume: 23 start-page: 1480 issue: 3 year: 2013 ident: 1719_CR1 publication-title: SIAM J. Optim. doi: 10.1137/120869778 – ident: 1719_CR25 doi: 10.1007/978-1-4613-0307-7_9 – volume: 143 start-page: 371 issue: 1–2 year: 2014 ident: 1719_CR10 publication-title: Math. Program. doi: 10.1007/s10107-012-0613-0 – ident: 1719_CR22 – volume: 13 start-page: 225 year: 2015 ident: 1719_CR7 publication-title: Financ. Res. Lett. doi: 10.1016/j.frl.2014.12.008 – volume: 53 start-page: 4655 issue: 12 year: 2007 ident: 1719_CR36 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2007.909108 |
SSID | ssj0001388 |
Score | 2.4497285 |
Snippet | The sparse nonlinear programming (SNP) problem has wide applications in signal and image processing, machine learning and finance, etc. However, the... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 903 |
SubjectTerms | Algorithms Calculus of Variations and Optimal Control; Optimization Combinatorics Euler-Lagrange equation Full Length Paper Image processing Iterative methods Lagrangian function Machine learning Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Nonlinear equations Nonlinear programming Numerical Analysis Signal processing Theoretical |
Title | A Lagrange–Newton algorithm for sparse nonlinear programming |
URI | https://link.springer.com/article/10.1007/s10107-021-01719-x https://www.proquest.com/docview/2727217930 |
Volume | 195 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7R5UIPpRSqbqGrHJA4lKD4mfiCFB4L4tFTV4KTlTg2rQq0ygap6qn_of-QX8I46yzvShwjJ-PH2OPP8cw3AKsUCxBlq7hixMScMxOXiTSxo44JTqssaVMnHH-R-yN-cCJOQlDYuPN2764kW0t9J9iN-N9q1B9_U6JiRI6zgmQq68Fsvnd6uDu1wIRlWZeq1eODECzztJR7G9JDs_zofrTddobzMOoaPPE2-bFx1ZQb5s8DLseX9ugtvAk4NMonE2cBZuzlO3h9h50Qn46nlK7jRdjMo6PirPaxCNd__6FtRNAYFednP-vvzbeLCLFvhMapHtvocsK-UdRRcP66QHFLMBruft3ej0PyhdgwkTWoNsUr7gpuK-vwWCWkwfXqLG54RBXGpUpYl8qSEOkQBJjElQ73_lJaWhnGDXsPPazPfoBItf20SlVKcJZmyiZClJVMK1JkTso-kE4D2gRmcp8g41zfcip7CRpHSrcjpX_34fP0m18TXo7_vr3mFav9okXJpgixB9g-T3-l85QyNH1K0D6sdLrXYTWPNfW31d6SJX1Y71R5W_x8vR9f9voyzFEfXdG6sK1Ar6mv7CfEPE05wCm-tbM1HISpPoBXI5rfAKnV-Gc |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5ED-pBfGK1ag6CBw1kn8lehCKWqm1PLfS2JJvdKrRV0goe_Q_-Q3-Js2nS1id4DLuZDTPZmW8f8w1CpwQaAGVLP6VY-4xR7SeB0L4llnJG0ijISye02qLRZbc93iuSwsblbffySDL31AvJbthtqxG3_A2x9AE5rgAYiFzdgi6pzfwvplFUFmp16KBIlflZxqdw9NUpfzsdzYNOfRNtFGjRq03Nu4WWzGgbrS9wCMJTa0a8Ot5BlzWvGfczlzHw_voGHgygnRcP-o_Zw-R-6AFC9cCFZGPjjaYcGXHmFVe0hiBuF3Xr152rhl-USPA15dEElCtZymzMTGosLH640DCrrIGwhGWsbSi5saFIMBYWQrUObGIhQifCkFRTpukeWobxzD7yZK4bI2UqOaNhJE3AeZKKMMVxZIWoIFxqSumCP9yVsRioOfOxk6BAuyrXrnqpoPPZO09T9ow_e585Ayg3tUCyjosMAfg-R1KlaiGh4KAkJxVULW2kijk3VsSdKTt_E1TQRWm3efPv4x78r_sJWm10Wk3VvGnfHaI14vIh8ktnVbQ8yZ7NEaCUSXKc_5QfyeHbuw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iIHoQn7g-exA8aLF5trkIi7r4xoML3kKbhwruunQrePQ_-A_9JU667bo-wWNJOikzycykyfcNQlsEGiDLlqGhWIeMUR1mkdChI45yRkwSlaUTLi7FcZud3vCbERR_edu9PpIcYBo8S1O32OsZtzcCfMP-FxvxW-EYyxCyyAlwx9jP9DZpDn0xpklSF231mUIFm_lZxqfQ9NVBfzspLQNQaxbNVJlj0ByYeg6N2e48mh7hE4SniyEJa38B7TeD8_Q29-iBt5dX8GaQ5gXpw-1jfl_cdQLIVgNwJ3nfBt0BX0aaB9V1rQ6IW0Tt1tH1wXFYlUsINeVJAYqWzDCXMmusg40QFxpWmLMQorBMtYslty4WGcbCQdjWkcscROtMWGI0ZZouoXEYzy6jQJa6sVIayRmNE2kjzjMjYoPTxAnRQLjWlNIVl7gvafGgPliQvQQF2lWldtVzA-0M3-kNmDT-7L3tDaD8MgPJOq3QAvB9nrBKNWNCwVlJThporbaRqtZfXxF_vux9T9RAu7XdPpp_H3flf9030eTVYUudn1yeraIp4qER5f2zNTRe5E92HRKWItso5-Q7pJDf9w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Lagrange-Newton+algorithm+for+sparse+nonlinear+programming&rft.jtitle=Mathematical+programming&rft.au=Zhao%2C+Chen&rft.au=Xiu%2C+Naihua&rft.au=Qi%2C+Houduo&rft.au=Luo%2C+Ziyan&rft.date=2022-09-01&rft.pub=Springer&rft.issn=0025-5610&rft.volume=195&rft.issue=1-2&rft.spage=903&rft_id=info:doi/10.1007%2Fs10107-021-01719-x&rft.externalDocID=A723703952 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |