An adaptive and energy-maximizing control optimization of wave energy converters using an extremum-seeking approach
In this paper, we systematically investigate the feasibility of different extremum-seeking (ES) control and optimization schemes to improve the conversion efficiency of wave energy converters (WECs). Continuous-time and model-free ES schemes based on the sliding mode, relay, least-squares gradient,...
Saved in:
Published in | Physics of fluids (1994) Vol. 32; no. 11 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we systematically investigate the feasibility of different extremum-seeking (ES) control and optimization schemes to improve the conversion efficiency of wave energy converters (WECs). Continuous-time and model-free ES schemes based on the sliding mode, relay, least-squares gradient, self-driving, and perturbation-based methods are used to improve the mean extracted power of a heaving point absorber subject to regular and irregular waves. This objective is achieved by optimizing the resistive and reactive coefficients of the power take-off (PTO) mechanism using the ES approach. The optimization results are verified against analytical solutions and the extremum of reference-to-output maps. The numerical results demonstrate that except for the self-driving ES algorithm, the other four ES schemes reliably converge for the two-parameter optimization problem, whereas the former is more suitable for optimizing a single parameter. The results also show that for an irregular sea state, the sliding mode and perturbation-based ES schemes have better convergence to the optimum in comparison to other ES schemes considered here. The convergence of PTO coefficients toward the performance-optimal values is tested for widely different initial values in order to avoid bias toward the extremum. We also demonstrate the adaptive capability of ES control by considering a case in which the ES controller adapts to the new extremum automatically amid changes in the simulated wave conditions. Moreover, no explicit knowledge of (future) wave excitation forces is required in the algorithm, which implies that the model-free ES can be used as a causal controller for WECs. Our results demonstrate that the continuous-time and model-free ES method achieves the optimum within a single simulation, which is in contrast to evolution-based optimization strategies that typically require a large number of (possibly expensive) function evaluations. This makes ES control optimization schemes suitable for nonlinear computational fluid dynamics simulations, where typically evolutionary strategies are used for performing black-box optimization. |
---|---|
AbstractList | In this paper, we systematically investigate the feasibility of different extremum-seeking (ES) control and optimization schemes to improve the conversion efficiency of wave energy converters (WECs). Continuous-time and model-free ES schemes based on the sliding mode, relay, least-squares gradient, self-driving, and perturbation-based methods are used to improve the mean extracted power of a heaving point absorber subject to regular and irregular waves. This objective is achieved by optimizing the resistive and reactive coefficients of the power take-off (PTO) mechanism using the ES approach. The optimization results are verified against analytical solutions and the extremum of reference-to-output maps. The numerical results demonstrate that except for the self-driving ES algorithm, the other four ES schemes reliably converge for the two-parameter optimization problem, whereas the former is more suitable for optimizing a single parameter. The results also show that for an irregular sea state, the sliding mode and perturbation-based ES schemes have better convergence to the optimum in comparison to other ES schemes considered here. The convergence of PTO coefficients toward the performance-optimal values is tested for widely different initial values in order to avoid bias toward the extremum. We also demonstrate the adaptive capability of ES control by considering a case in which the ES controller adapts to the new extremum automatically amid changes in the simulated wave conditions. Moreover, no explicit knowledge of (future) wave excitation forces is required in the algorithm, which implies that the model-free ES can be used as a causal controller for WECs. Our results demonstrate that the continuous-time and model-free ES method achieves the optimum within a single simulation, which is in contrast to evolution-based optimization strategies that typically require a large number of (possibly expensive) function evaluations. This makes ES control optimization schemes suitable for nonlinear computational fluid dynamics simulations, where typically evolutionary strategies are used for performing black-box optimization. |
Author | Mattiazzo, Giuliana Bhalla, Amneet Pal Singh Pasta, Edoardo Bracco, Giovanni Parrinello, Luca Dafnakis, Panagiotis Naseradinmousavi, Peiman |
Author_xml | – sequence: 1 givenname: Luca surname: Parrinello fullname: Parrinello, Luca organization: Department of Mechanical and Aerospace Engineering, Politecnico di Torino – sequence: 2 givenname: Panagiotis surname: Dafnakis fullname: Dafnakis, Panagiotis organization: Department of Mechanical and Aerospace Engineering, Politecnico di Torino – sequence: 3 givenname: Edoardo surname: Pasta fullname: Pasta, Edoardo organization: Department of Mechanical and Aerospace Engineering, Politecnico di Torino – sequence: 4 givenname: Giovanni surname: Bracco fullname: Bracco, Giovanni organization: Department of Mechanical and Aerospace Engineering, Politecnico di Torino – sequence: 5 givenname: Peiman surname: Naseradinmousavi fullname: Naseradinmousavi, Peiman organization: Department of Mechanical Engineering, San Diego State University – sequence: 6 givenname: Giuliana surname: Mattiazzo fullname: Mattiazzo, Giuliana organization: Department of Mechanical and Aerospace Engineering, Politecnico di Torino – sequence: 7 givenname: Amneet Pal Singh surname: Bhalla fullname: Bhalla, Amneet Pal Singh organization: Department of Mechanical Engineering, San Diego State University |
BookMark | eNp9kF9LwzAUxYNMcJs--A0CPil0u2mbNH0cw38w8EWfS5bezs41mUk2Nz-97aYvIj7dy-F3zoEzID1jDRJyyWDEQCRjPgKIJQc4IX0GMo8yIUSv-zOIhEjYGRl4vwSAJI9Fn_iJoapU61BvkSpTUjToFvuoUbu6qT9rs6DamuDsitoWaiUVamuoreiHai1HvGO26AI6Tze-MylDcRccNpsm8ohvB229dlbp13NyWqmVx4vvOyQvd7fP04do9nT_OJ3MIp1wGaI0FSzPcqwYVJLzTEjAOQrNdZlqnqJImWR5KSTmmGRlqfKUpXOQoJVk8wqSIbk65ra17xv0oVjajTNtZRGnXMaQxdBR10dKO-u9w6pYu7pRbl8wKLpNC158b9qy41-srsNhkOBUvfrTcXN0-B_yn_gv0zqJIg |
CODEN | PHFLE6 |
CitedBy_id | crossref_primary_10_1016_j_arcontrol_2023_04_004 crossref_primary_10_1016_j_egyr_2022_10_403 crossref_primary_10_1016_j_ifacol_2023_10_531 crossref_primary_10_1049_rpg2_12302 crossref_primary_10_1016_j_oceaneng_2022_111191 crossref_primary_10_1016_j_rser_2023_113877 crossref_primary_10_1016_j_apor_2023_103749 crossref_primary_10_1063_5_0178754 crossref_primary_10_1063_5_0107914 crossref_primary_10_1016_j_conengprac_2024_105949 crossref_primary_10_1063_5_0118052 crossref_primary_10_1016_j_physd_2024_134259 crossref_primary_10_1063_5_0123247 crossref_primary_10_1063_5_0184849 crossref_primary_10_3390_jmse10101534 |
Cites_doi | 10.3390/en5082652 10.1109/tcst.2005.847334 10.2514/2.5024 10.1016/j.ifacsc.2017.07.001 10.1109/TSTE.2017.2696060 10.1115/1.4002735 10.3182/20140824-6-za-1003.00517 10.1002/rnc.3254 10.1109/mie.2012.2193290 10.1016/j.ijome.2017.08.001 10.1109/taes.2006.1603420 10.1080/00207179.2016.1219067 10.3182/20090921-3-tr-3005.00011 10.4173/mic.2008.1.1 10.1016/j.automatica.2007.03.009 10.3390/en12163115 10.1016/j.automatica.2013.02.061 10.1109/mcs.2014.2333253 10.1016/j.jcp.2019.07.004 10.1016/j.apenergy.2018.06.099 10.1016/j.renene.2012.01.101 10.1016/j.oceaneng.2021.108879 10.4173/mic.2008.3.2 10.13140/RG.2.2.30207.97440 10.1017/jfm.2019.62 10.1063/5.0022401 10.1063/1.5116415 10.1016/j.renene.2008.03.001 10.1016/s0005-1098(99)00183-1 10.1146/annurev-fluid-010719-060214 10.1109/TSTE.2016.2568754 10.1002/we.2336 10.1016/j.renene.2016.11.046 10.1115/1.4040752 10.1063/1.5127202 10.1080/0020717031000099100 10.1016/j.oceaneng.2017.08.017 10.1073/pnas.1800923115 10.1016/0141-1187(79)90003-8 10.1016/j.apenergy.2019.04.073 10.1016/j.automatica.2005.03.030 10.1016/j.oceaneng.2015.05.027 10.1115/1.4031175 10.1109/tie.2017.2745448 10.3390/bdcc2040036 |
ContentType | Journal Article |
Copyright | Author(s) 2020 Author(s). Published under license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2020 Author(s). Published under license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0028500 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1089-7666 |
ExternalDocumentID | 10_1063_5_0028500 |
GroupedDBID | -~X 1UP 2-P 29O 4.4 5VS AAAAW AABDS AAEUA AAPUP AAYIH ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN CS3 DU5 EBS ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NPSNA O-B P2P RIP RNS RQS SC5 TN5 UCJ WH7 ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c358t-4461979ef10f8557680ebe6c5cd4c54e641819d68e9e37dda9414b080ca81bf03 |
ISSN | 1070-6631 |
IngestDate | Sun Jun 29 15:51:14 EDT 2025 Thu Apr 24 22:54:58 EDT 2025 Tue Jul 01 02:44:16 EDT 2025 Fri Jun 21 00:14:02 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | 1070-6631/2020/32(11)/113307/22/$30.00 Published under license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c358t-4461979ef10f8557680ebe6c5cd4c54e641819d68e9e37dda9414b080ca81bf03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4793-202X 0000-0001-9525-6284 0000-0002-2092-8880 0000-0002-0173-9881 |
PQID | 2458207200 |
PQPubID | 2050667 |
PageCount | 22 |
ParticipantIDs | scitation_primary_10_1063_5_0028500 proquest_journals_2458207200 crossref_citationtrail_10_1063_5_0028500 crossref_primary_10_1063_5_0028500 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201101 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 20201101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Physics of fluids (1994) |
PublicationYear | 2020 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Verma, Novati, Koumoutsakos (c38) 2018; 115 Anderlini, Forehand, Stansell, Xiao, Abusara (c40) 2016; 7 Nangia, Patankar, Bhalla (c74) 2019; 398 Haring, Van De Wouw, Nešić (c48) 2013; 49 DeHaan, Guay (c54) 2005; 41 Brunton, Noack, Koumoutsakos (c44) 2020; 52 Maria-Arenas, Garrido, Rusu, Garrido (c8) 2019; 12 Bagheri, Krstić, Naseradinmousavi (c14) 2018; 140 Dafnakis, Bhalla, Sirigu, Bonfanti, Bracco, Mattiazzo (c72) 2020; 32 Rabault, Kuchta, Jensen, Réglade, Cerardi (c32) 2019; 865 Ciri, Leonardi, Rotea (c56) 2019; 22 Rabault, Kuhnle (c33) 2019; 31 Zhang, Siranosian, Krstić (c13) 2007; 43 Pan, Özgüner, Acarman (c26) 2003; 76 Anderlini, Forehand, Bannon, Xiao, Abusara (c39) 2017; 148 Ringwood, Bacelli, Fusco (c7) 2014; 47 Binetti, Ariyur, Krstic, Bernelli (c11) 2003; 26 Vissio, Valério, Bracco, Beirão, Pozzi, Mattiazzo (c30) 2017; 103 Kebir, Woodward, Akhrif (c21) 2017; 65 Li, Rotea, Chiu, Mongeau, Paek (c12) 2005; 13 Perez, Fossen (c68) 2008; 29 Leblanc (c24) 1922; 12 Anderlini, Forehand, Bannon, Abusara (c42) 2017; 19 Bubbar, Buckham (c62) 2018; 228 Brunton, Noack (c36) 2015; 67 Guay, Moshksar, Dochain (c55) 2015; 25 Chen, Wang, Ma, Zhao (c57) 2017; 90 Perez, Fossen (c67) 2008; 29 Raibaudo, Zhong, Noack, Martinuzzi (c37) 2020; 32 Munteanu, Bratcu, Ceangǎ (c16) 2009; 34 Hu, Xue, Qin, Shi, Qiao, Yang, Yang (c18) 2019; 248 Azar, Perrier, Srinivasan (c53) 2009; 42 Gunn, Stock-Williams (c3) 2012; 44 Faedo, Olaya, Ringwood (c31) 2017; 1 Ringwood, Bacelli, Fusco (c6) 2014; 34 Beatty, Hall, Buckham, Wild, Bocking (c71) 2015; 104 Czech, Bauer (c4) 2012; 6 Hals, Falnes, Moan (c23) 2011; 133 Krstić, Wang (c9) 2000; 36 Zazo, Del Castillo, Reynaud, Leyva (c20) 2012; 5 Tang, Rabault, Kuhnle, Wang, Wang (c34) 2020; 32 Evans, Jeffrey, Salter, Taylor (c1) 1979; 1 Anderlini, Forehand, Bannon, Abusara (c41) 2017; 8 Leyva, Alonso, Queinnec, Cid-Pastor, Lagrange, Martinez-Salamero (c58) 2006; 42 Thomas, Giassi, Eriksson, Göteman, Isberg, Ransley, Hann, Engström (c43) 2018; 2 (2023080621440340200_c8) 2019; 12 (2023080621440340200_c30) 2017; 103 (2023080621440340200_c51) 2001 (2023080621440340200_c22) 2012 (2023080621440340200_c15) 2009 2023080621440340200_c61 2023080621440340200_c60 (2023080621440340200_c72) 2020; 32 (2023080621440340200_c18) 2019; 248 (2023080621440340200_c4) 2012; 6 (2023080621440340200_c35) 2016 (2023080621440340200_c37) 2020; 32 (2023080621440340200_c41) 2017; 8 (2023080621440340200_c11) 2003; 26 (2023080621440340200_c3) 2012; 44 (2023080621440340200_c36) 2015; 67 (2023080621440340200_c38) 2018; 115 2023080621440340200_c29 (2023080621440340200_c42) 2017; 19 (2023080621440340200_c55) 2015; 25 2023080621440340200_c59 (2023080621440340200_c70) 2001 (2023080621440340200_c74) 2019; 398 (2023080621440340200_c50) 2000 (2023080621440340200_c1) 1979; 1 2023080621440340200_c52 (2023080621440340200_c24) 1922; 12 (2023080621440340200_c25) 1944 (2023080621440340200_c14) 2018; 140 (2023080621440340200_c19) 2009 (2023080621440340200_c65) 1995 (2023080621440340200_c20) 2012; 5 (2023080621440340200_c21) 2017; 65 (2023080621440340200_c16) 2009; 34 (2023080621440340200_c45) 2003 (2023080621440340200_c12) 2005; 13 (2023080621440340200_c31) 2017; 1 (2023080621440340200_c53) 2009; 42 (2023080621440340200_c64) 1962 (2023080621440340200_c39) 2017; 148 (2023080621440340200_c23) 2011; 133 (2023080621440340200_c34) 2020; 32 (2023080621440340200_c10) 2000 (2023080621440340200_c56) 2019; 22 (2023080621440340200_c68) 2008; 29 (2023080621440340200_c47) 2012 (2023080621440340200_c33) 2019; 31 (2023080621440340200_c58) 2006; 42 (2023080621440340200_c67) 2008; 29 (2023080621440340200_c62) 2018; 228 (2023080621440340200_c48) 2013; 49 (2023080621440340200_c71) 2015; 104 (2023080621440340200_c49) 2000 (2023080621440340200_c13) 2007; 43 (2023080621440340200_c6) 2014; 34 (2023080621440340200_c7) 2014; 47 (2023080621440340200_c40) 2016; 7 (2023080621440340200_c57) 2017; 90 (2023080621440340200_c27) 2007 (2023080621440340200_c28) 2014 (2023080621440340200_c54) 2005; 41 (2023080621440340200_c63) 2016 (2023080621440340200_c66) 2014 (2023080621440340200_c69) 2007 2023080621440340200_c73 (2023080621440340200_c5) 2017 (2023080621440340200_c44) 2020; 52 (2023080621440340200_c46) 2011 (2023080621440340200_c32) 2019; 865 (2023080621440340200_c43) 2018; 2 (2023080621440340200_c2) 2013 (2023080621440340200_c9) 2000; 36 (2023080621440340200_c26) 2003; 76 (2023080621440340200_c17) 2016 |
References_xml | – volume: 5 start-page: 2652 year: 2012 ident: c20 article-title: MPPT for photovoltaic modules via Newton-like extremum seeking control publication-title: Energies – volume: 103 start-page: 372 year: 2017 ident: c30 article-title: ISWEC linear quadratic regulator oscillating control publication-title: Renewable Energy – volume: 140 start-page: 111017 year: 2018 ident: c14 article-title: Multivariable extremum seeking for joint-space trajectory optimization of a high-degrees-of-freedom robot publication-title: J. Dyn. Syst., Meas., Control – volume: 1 start-page: 3 year: 1979 ident: c1 article-title: Submerged cylinder wave energy device: Theory and experiment publication-title: Appl. Ocean Res. – volume: 42 start-page: 249 year: 2006 ident: c58 article-title: MPPT of photovoltaic systems using extremum—Seeking control publication-title: IEEE Trans. Aerosp. Electron. Syst. – volume: 32 start-page: 015108 year: 2020 ident: c37 article-title: Machine learning strategies applied to the control of a fluidic pinball publication-title: Phys. Fluids – volume: 22 start-page: 992 year: 2019 ident: c56 article-title: Evaluation of log-of-power extremum seeking control for wind turbines using large eddy simulations publication-title: Wind Energy – volume: 67 start-page: 050801 year: 2015 ident: c36 article-title: Closed-loop turbulence control: Progress and challenges publication-title: Appl. Mech. Rev. – volume: 1 start-page: 37 year: 2017 ident: c31 article-title: Optimal control, MPC and MPC-like algorithms for wave energy systems: An overview publication-title: IFAC J. Syst. Control – volume: 26 start-page: 132 year: 2003 ident: c11 article-title: Formation flight optimization using extremum seeking feedback publication-title: J. Guid., Control, Dyn. – volume: 865 start-page: 281 year: 2019 ident: c32 article-title: Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control publication-title: J. Fluid Mech. – volume: 228 start-page: 324 year: 2018 ident: c62 article-title: On establishing an analytical power capture limit for self-reacting point absorber wave energy converters based on dynamic response publication-title: Appl. Energy – volume: 43 start-page: 1832 year: 2007 ident: c13 article-title: Extremum seeking for moderately unstable systems and for autonomous vehicle target tracking without position measurements publication-title: Automatica – volume: 32 start-page: 093307 year: 2020 ident: c72 article-title: Comparison of wave-structure interaction dynamics of a submerged cylindrical point absorber with three degrees of freedom using potential flow and computational fluid dynamics models publication-title: Phys. Fluids – volume: 42 start-page: 49 year: 2009 ident: c53 article-title: Real-time global optimization using multiple units publication-title: IFAC Proc. Vol. – volume: 31 start-page: 094105 year: 2019 ident: c33 article-title: Accelerating deep reinforcement learning strategies of flow control through a multi-environment approach publication-title: Phys. Fluids – volume: 148 start-page: 650 year: 2017 ident: c39 article-title: Reactive control of a two-body point absorber using reinforcement learning publication-title: Ocean Eng. – volume: 25 start-page: 3132 year: 2015 ident: c55 article-title: A constrained extremum-seeking control approach publication-title: Int. J. Robust Nonlinear Control – volume: 49 start-page: 1883 year: 2013 ident: c48 article-title: Extremum-seeking control for nonlinear systems with periodic steady-state outputs publication-title: Automatica – volume: 36 start-page: 595 year: 2000 ident: c9 article-title: Stability of extremum seeking feedback for general nonlinear dynamic systems publication-title: Automatica – volume: 34 start-page: 322 year: 2009 ident: c16 article-title: Wind turbulence used as searching signal for MPPT in variable-speed wind energy conversion systems publication-title: Renewable Energy – volume: 8 start-page: 1618 year: 2017 ident: c41 article-title: Control of a realistic wave energy converter model using least-squares policy iteration publication-title: IEEE Trans. Sustainable Energy – volume: 44 start-page: 296 year: 2012 ident: c3 article-title: Quantifying the global wave power resource publication-title: Renewable Energy – volume: 32 start-page: 053605 year: 2020 ident: c34 article-title: Robust active flow control over a range of Reynolds numbers using an artificial neural network trained through deep reinforcement learning publication-title: Phys. Fluids – volume: 2 start-page: 36 year: 2018 ident: c43 article-title: A model free control based on machine learning for energy converters in an array publication-title: Big Data Cognit. Comput. – volume: 41 start-page: 1567 year: 2005 ident: c54 article-title: Extremum-seeking control of state-constrained nonlinear systems publication-title: Automatica – volume: 76 start-page: 968 year: 2003 ident: c26 article-title: Stability and performance improvement of extremum seeking control with sliding mode publication-title: Int. J. Control – volume: 19 start-page: 207 year: 2017 ident: c42 article-title: Reactive control of a wave energy converter using artificial neural networks publication-title: Int. J. Mar. Energy – volume: 12 start-page: 275 year: 1922 ident: c24 article-title: Sur l’electrification des chemins de fer au moyen de courants alternatifs de frequence elevee publication-title: Rev. Gen. Electr. – volume: 13 start-page: 527 year: 2005 ident: c12 article-title: Extremum seeking control of a tunable thermoacoustic cooler publication-title: IEEE Trans. Control Syst. Technol. – volume: 115 start-page: 5849 year: 2018 ident: c38 article-title: Efficient collective swimming by harnessing vortices through deep reinforcement learning publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 29 start-page: 93 year: 2008 ident: c67 article-title: Joint identification of infinite-frequency added mass and fluid-memory models of marine structures publication-title: Model., Identif. Control – volume: 133 start-page: 031101 year: 2011 ident: c23 article-title: A comparison of selected strategies for adaptive control of wave energy converters publication-title: J. Offshore Mech. Arct. Eng. – volume: 34 start-page: 30 year: 2014 ident: c6 article-title: Energy-maximizing control of wave-energy converters: The development of control system technology to optimize their operation publication-title: IEEE Control Syst. Mag. – volume: 12 start-page: 3115 year: 2019 ident: c8 article-title: Control strategies applied to wave energy converters: State of the art publication-title: Energies – volume: 248 start-page: 567 year: 2019 ident: c18 article-title: Sliding mode extremum seeking control based on improved invasive weed optimization for MPPT in wind energy conversion system publication-title: Appl. Energy – volume: 6 start-page: 4 year: 2012 ident: c4 article-title: Wave energy converter concepts: Design challenges and classification publication-title: IEEE Ind. Electron. Mag. – volume: 104 start-page: 370 year: 2015 ident: c71 article-title: Experimental and numerical comparisons of self-reacting point absorber wave energy converters in regular waves publication-title: Ocean Eng. – volume: 65 start-page: 2507 year: 2017 ident: c21 article-title: Extremum-seeking control with adaptive excitation: Application to a photovoltaic system publication-title: IEEE Trans. Ind. Electron. – volume: 47 start-page: 7678 year: 2014 ident: c7 article-title: Control, forecasting and optimisation for wave energy conversion publication-title: IFAC Proc. Vol. – volume: 398 start-page: 108804 year: 2019 ident: c74 article-title: A DLM immersed boundary method based wave-structure interaction solver for high density ratio multiphase flows publication-title: J. Comput. Phys. – volume: 90 start-page: 1688 year: 2017 ident: c57 article-title: A switching-based extremum seeking control scheme publication-title: Int. J. Control – volume: 52 start-page: 477 year: 2020 ident: c44 article-title: Machine learning for fluid mechanics publication-title: Annu. Rev. Fluid Mech. – volume: 29 start-page: 1 year: 2008 ident: c68 article-title: Time- vs. frequency-domain identification of parametric radiation force models for marine structures at zero speed publication-title: Model., Identif. Control – volume: 7 start-page: 1681 year: 2016 ident: c40 article-title: Control of a point absorber using reinforcement learning publication-title: IEEE Trans. Sustainable Energy – start-page: 1530 year: 2009 ident: 2023080621440340200_c15 article-title: Mixing enhancement in 2D magnetohydrodynamic channel flow by extremum seeking boundary control – volume: 5 start-page: 2652 issue: 8 year: 2012 ident: 2023080621440340200_c20 article-title: MPPT for photovoltaic modules via Newton-like extremum seeking control publication-title: Energies doi: 10.3390/en5082652 – volume-title: Hydrodynamic Control of Wave Energy Devices year: 2016 ident: 2023080621440340200_c63 – volume: 13 start-page: 527 issue: 4 year: 2005 ident: 2023080621440340200_c12 article-title: Extremum seeking control of a tunable thermoacoustic cooler publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/tcst.2005.847334 – volume: 26 start-page: 132 issue: 1 year: 2003 ident: 2023080621440340200_c11 article-title: Formation flight optimization using extremum seeking feedback publication-title: J. Guid., Control, Dyn. doi: 10.2514/2.5024 – volume-title: Waves in Oceanic and Coastal Waters year: 2007 ident: 2023080621440340200_c69 – volume: 1 start-page: 37 year: 2017 ident: 2023080621440340200_c31 article-title: Optimal control, MPC and MPC-like algorithms for wave energy systems: An overview publication-title: IFAC J. Syst. Control doi: 10.1016/j.ifacsc.2017.07.001 – volume: 8 start-page: 1618 year: 2017 ident: 2023080621440340200_c41 article-title: Control of a realistic wave energy converter model using least-squares policy iteration publication-title: IEEE Trans. Sustainable Energy doi: 10.1109/TSTE.2017.2696060 – ident: 2023080621440340200_c52 article-title: Multivariable extremum seeking feedback: Analysis and design – volume: 133 start-page: 031101 issue: 3 year: 2011 ident: 2023080621440340200_c23 article-title: A comparison of selected strategies for adaptive control of wave energy converters publication-title: J. Offshore Mech. Arct. Eng. doi: 10.1115/1.4002735 – volume: 47 start-page: 7678 issue: 3 year: 2014 ident: 2023080621440340200_c7 article-title: Control, forecasting and optimisation for wave energy conversion publication-title: IFAC Proc. Vol. doi: 10.3182/20140824-6-za-1003.00517 – volume: 25 start-page: 3132 issue: 16 year: 2015 ident: 2023080621440340200_c55 article-title: A constrained extremum-seeking control approach publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.3254 – volume: 6 start-page: 4 issue: 2 year: 2012 ident: 2023080621440340200_c4 article-title: Wave energy converter concepts: Design challenges and classification publication-title: IEEE Ind. Electron. Mag. doi: 10.1109/mie.2012.2193290 – volume: 19 start-page: 207 year: 2017 ident: 2023080621440340200_c42 article-title: Reactive control of a wave energy converter using artificial neural networks publication-title: Int. J. Mar. Energy doi: 10.1016/j.ijome.2017.08.001 – volume: 42 start-page: 249 issue: 1 year: 2006 ident: 2023080621440340200_c58 article-title: MPPT of photovoltaic systems using extremum—Seeking control publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/taes.2006.1603420 – start-page: 1603 year: 2012 ident: 2023080621440340200_c47 article-title: Extremum-seeking control for periodic steady-state response optimization – volume: 90 start-page: 1688 issue: 8 year: 2017 ident: 2023080621440340200_c57 article-title: A switching-based extremum seeking control scheme publication-title: Int. J. Control doi: 10.1080/00207179.2016.1219067 – volume: 42 start-page: 49 issue: 19 year: 2009 ident: 2023080621440340200_c53 article-title: Real-time global optimization using multiple units publication-title: IFAC Proc. Vol. doi: 10.3182/20090921-3-tr-3005.00011 – volume: 29 start-page: 1 issue: 1 year: 2008 ident: 2023080621440340200_c68 article-title: Time- vs. frequency-domain identification of parametric radiation force models for marine structures at zero speed publication-title: Model., Identif. Control doi: 10.4173/mic.2008.1.1 – volume: 43 start-page: 1832 issue: 10 year: 2007 ident: 2023080621440340200_c13 article-title: Extremum seeking for moderately unstable systems and for autonomous vehicle target tracking without position measurements publication-title: Automatica doi: 10.1016/j.automatica.2007.03.009 – volume: 12 start-page: 3115 issue: 16 year: 2019 ident: 2023080621440340200_c8 article-title: Control strategies applied to wave energy converters: State of the art publication-title: Energies doi: 10.3390/en12163115 – volume: 49 start-page: 1883 issue: 6 year: 2013 ident: 2023080621440340200_c48 article-title: Extremum-seeking control for nonlinear systems with periodic steady-state outputs publication-title: Automatica doi: 10.1016/j.automatica.2013.02.061 – year: 1995 ident: 2023080621440340200_c65 – volume: 34 start-page: 30 issue: 5 year: 2014 ident: 2023080621440340200_c6 article-title: Energy-maximizing control of wave-energy converters: The development of control system technology to optimize their operation publication-title: IEEE Control Syst. Mag. doi: 10.1109/mcs.2014.2333253 – volume: 398 start-page: 108804 year: 2019 ident: 2023080621440340200_c74 article-title: A DLM immersed boundary method based wave-structure interaction solver for high density ratio multiphase flows publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.07.004 – start-page: 000013 year: 2009 ident: 2023080621440340200_c19 article-title: Maximum power point tracking for photovoltaic optimization using extremum seeking – volume: 228 start-page: 324 year: 2018 ident: 2023080621440340200_c62 article-title: On establishing an analytical power capture limit for self-reacting point absorber wave energy converters based on dynamic response publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.06.099 – volume: 44 start-page: 296 year: 2012 ident: 2023080621440340200_c3 article-title: Quantifying the global wave power resource publication-title: Renewable Energy doi: 10.1016/j.renene.2012.01.101 – volume-title: Offshore Hydromechanics year: 2001 ident: 2023080621440340200_c70 – volume-title: Machine Learning Control: Taming Nonlinear Dynamics and Turbulence year: 2016 ident: 2023080621440340200_c35 – volume-title: Extremum-Seeking Control and Applications: A Numerical Optimization-Based Approach year: 2011 ident: 2023080621440340200_c46 – ident: 2023080621440340200_c73 doi: 10.1016/j.oceaneng.2021.108879 – volume-title: Ocean Wave Energy Conversion: Resource, Technologies and Performance year: 2017 ident: 2023080621440340200_c5 – ident: 2023080621440340200_c60 – volume: 12 start-page: 275 issue: 8 year: 1922 ident: 2023080621440340200_c24 article-title: Sur l’electrification des chemins de fer au moyen de courants alternatifs de frequence elevee publication-title: Rev. Gen. Electr. – volume: 29 start-page: 93 issue: 3 year: 2008 ident: 2023080621440340200_c67 article-title: Joint identification of infinite-frequency added mass and fluid-memory models of marine structures publication-title: Model., Identif. Control doi: 10.4173/mic.2008.3.2 – volume: 32 start-page: 053605 year: 2020 ident: 2023080621440340200_c34 article-title: Robust active flow control over a range of Reynolds numbers using an artificial neural network trained through deep reinforcement learning publication-title: Phys. Fluids doi: 10.13140/RG.2.2.30207.97440 – volume: 865 start-page: 281 year: 2019 ident: 2023080621440340200_c32 article-title: Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.62 – volume: 32 start-page: 093307 year: 2020 ident: 2023080621440340200_c72 article-title: Comparison of wave-structure interaction dynamics of a submerged cylindrical point absorber with three degrees of freedom using potential flow and computational fluid dynamics models publication-title: Phys. Fluids doi: 10.1063/5.0022401 – start-page: 411 year: 2000 ident: 2023080621440340200_c50 article-title: On the application of multi-parameter extremum seeking control – volume: 31 start-page: 094105 year: 2019 ident: 2023080621440340200_c33 article-title: Accelerating deep reinforcement learning strategies of flow control through a multi-environment approach publication-title: Phys. Fluids doi: 10.1063/1.5116415 – volume: 34 start-page: 322 issue: 1 year: 2009 ident: 2023080621440340200_c16 article-title: Wind turbulence used as searching signal for MPPT in variable-speed wind energy conversion systems publication-title: Renewable Energy doi: 10.1016/j.renene.2008.03.001 – start-page: 72 year: 2007 ident: 2023080621440340200_c27 article-title: Analysis and comparison of extremum seeking control techniques – year: 2013 ident: 2023080621440340200_c2 – volume: 36 start-page: 595 issue: 4 year: 2000 ident: 2023080621440340200_c9 article-title: Stability of extremum seeking feedback for general nonlinear dynamic systems publication-title: Automatica doi: 10.1016/s0005-1098(99)00183-1 – volume: 52 start-page: 477 year: 2020 ident: 2023080621440340200_c44 article-title: Machine learning for fluid mechanics publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010719-060214 – start-page: 2679 year: 2014 ident: 2023080621440340200_c28 article-title: A dither-free extremum-seeking control approach using 1st-order least-squares fits for gradient estimation – volume-title: On Extremum Seeking year: 1944 ident: 2023080621440340200_c25 – volume-title: Real-Time Optimization by Extremum-Seeking Control year: 2003 ident: 2023080621440340200_c45 – start-page: 1011 year: 2012 ident: 2023080621440340200_c22 article-title: Optimization of the wave energy absorption in oscillating-body systems using extremum seeking approach – start-page: 433 year: 2000 ident: 2023080621440340200_c49 article-title: Analysis of multivariable extremum seeking algorithms – ident: 2023080621440340200_c29 – volume: 7 start-page: 1681 year: 2016 ident: 2023080621440340200_c40 article-title: Control of a point absorber using reinforcement learning publication-title: IEEE Trans. Sustainable Energy doi: 10.1109/TSTE.2016.2568754 – volume: 22 start-page: 992 issue: 7 year: 2019 ident: 2023080621440340200_c56 article-title: Evaluation of log-of-power extremum seeking control for wind turbines using large eddy simulations publication-title: Wind Energy doi: 10.1002/we.2336 – volume: 103 start-page: 372 year: 2017 ident: 2023080621440340200_c30 article-title: ISWEC linear quadratic regulator oscillating control publication-title: Renewable Energy doi: 10.1016/j.renene.2016.11.046 – volume: 140 start-page: 111017 issue: 11 year: 2018 ident: 2023080621440340200_c14 article-title: Multivariable extremum seeking for joint-space trajectory optimization of a high-degrees-of-freedom robot publication-title: J. Dyn. Syst., Meas., Control doi: 10.1115/1.4040752 – volume: 32 start-page: 015108 year: 2020 ident: 2023080621440340200_c37 article-title: Machine learning strategies applied to the control of a fluidic pinball publication-title: Phys. Fluids doi: 10.1063/1.5127202 – volume: 76 start-page: 968 issue: 9-10 year: 2003 ident: 2023080621440340200_c26 article-title: Stability and performance improvement of extremum seeking control with sliding mode publication-title: Int. J. Control doi: 10.1080/0020717031000099100 – volume: 148 start-page: 650 year: 2017 ident: 2023080621440340200_c39 article-title: Reactive control of a two-body point absorber using reinforcement learning publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2017.08.017 – start-page: 2394 year: 2001 ident: 2023080621440340200_c51 article-title: Solving smooth and nonsmooth multivariable extremum seeking problems by the methods of nonlinear programming – start-page: 416 year: 2000 ident: 2023080621440340200_c10 article-title: Adaptive control of combustion instability using extremum-seeking – volume: 115 start-page: 5849 year: 2018 ident: 2023080621440340200_c38 article-title: Efficient collective swimming by harnessing vortices through deep reinforcement learning publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1800923115 – volume: 1 start-page: 3 issue: 1 year: 1979 ident: 2023080621440340200_c1 article-title: Submerged cylinder wave energy device: Theory and experiment publication-title: Appl. Ocean Res. doi: 10.1016/0141-1187(79)90003-8 – volume: 248 start-page: 567 year: 2019 ident: 2023080621440340200_c18 article-title: Sliding mode extremum seeking control based on improved invasive weed optimization for MPPT in wind energy conversion system publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.04.073 – volume: 41 start-page: 1567 issue: 9 year: 2005 ident: 2023080621440340200_c54 article-title: Extremum-seeking control of state-constrained nonlinear systems publication-title: Automatica doi: 10.1016/j.automatica.2005.03.030 – ident: 2023080621440340200_c61 article-title: Frequency domain techniques for numerical and experimental modelling of wave energy converters – year: 2014 ident: 2023080621440340200_c66 – start-page: 1 year: 2016 ident: 2023080621440340200_c17 article-title: Sliding mode extremum seeking control for maximum power point tracking in wind system – volume: 104 start-page: 370 year: 2015 ident: 2023080621440340200_c71 article-title: Experimental and numerical comparisons of self-reacting point absorber wave energy converters in regular waves publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2015.05.027 – volume: 67 start-page: 050801 year: 2015 ident: 2023080621440340200_c36 article-title: Closed-loop turbulence control: Progress and challenges publication-title: Appl. Mech. Rev. doi: 10.1115/1.4031175 – volume: 65 start-page: 2507 issue: 3 year: 2017 ident: 2023080621440340200_c21 article-title: Extremum-seeking control with adaptive excitation: Application to a photovoltaic system publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/tie.2017.2745448 – year: 1962 ident: 2023080621440340200_c64 article-title: The impulse response function and ship motions – volume: 2 start-page: 36 year: 2018 ident: 2023080621440340200_c43 article-title: A model free control based on machine learning for energy converters in an array publication-title: Big Data Cognit. Comput. doi: 10.3390/bdcc2040036 – ident: 2023080621440340200_c59 article-title: Extremum control system: An area for adaptive control? |
SSID | ssj0003926 |
Score | 2.44348 |
Snippet | In this paper, we systematically investigate the feasibility of different extremum-seeking (ES) control and optimization schemes to improve the conversion... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Adaptive control Algorithms Computational fluid dynamics Controllers Convergence Converters Energy conversion efficiency Exact solutions Explicit knowledge Mathematical models Nonlinear dynamics Optimization Parameters Perturbation Sea states Simulation Sliding mode control Wave excitation Wave power |
Title | An adaptive and energy-maximizing control optimization of wave energy converters using an extremum-seeking approach |
URI | http://dx.doi.org/10.1063/5.0028500 https://www.proquest.com/docview/2458207200 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7WLaIvXqpia5VBfRCW0WwymSSPi60WaUWwhb6FzCUQbJKySbD0H_ivPXPJxW6F6ktYZmcnS86XM985850ZhN76MEcwqt-0RHFCORMkVoISulQ8DvSeUr6uRj7-yg5P6Zez8Gw2-zVRLXUtfy-ubqwr-R-rQhvYVVfJ_oNlh0GhAT6DfeEKFobrrWy8qhaZzC6M-kcnwJUp5CNldlmUxZUtp7VK9Bo6la7kUvPDn_rQIdvdCs-1srNZdI2tWVyAy16rsitJo9QP0-b2Hp-SWaMeFUYLkp93hbS7PiUJnaQXvmVrXV_oVniOulEZtJ_llaavlsfq05LqtmjG3zleeyBrAHE9WfsXwoz1Wctoq6qY5i0gSF0OeQvrasHZEOA7tkm5tjghEbPnsPT-ecx_dn2NyobfB6IFxjLpsTj0vHFy6xf0r815gxLRrMGzIA1T99M7aMuHiMOfo63V_vHR92FaByLJrIDV_u1-myoWfBju-ye5GSOWe0BnrLJiQl5OHqEHLurAKwuhx2imqm300EUg2Pn3ZhvddSZ9gppVhXtsYcAW3sAWdtjCU2zhOscaW647HrGFDbZgKHwdW7jH1lN0-ung5OMhcQd0EBGEcUsohfA7SlS-9PI41JGrBz6BiVBIKkKqGAX-mEgWq0QFkZRZQpeUQ4wiMoiWci94huZVXannCEehChjP4oBlwIhlwqETOAsldQqDU38HveufbNo_S32Iynm6YcEd9HroemG3bLmp015vntS90U3q60VkL_L1128Gk_19kN3b3OkFuj_Cfw_N23WnXgKRbfkrB7HftJyfQQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+and+energy-maximizing+control+optimization+of+wave+energy+converters+using+an+extremum-seeking+approach&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Parrinello%2C+Luca&rft.au=Dafnakis%2C+Panagiotis&rft.au=Pasta%2C+Edoardo&rft.au=Bracco%2C+Giovanni&rft.date=2020-11-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=32&rft.issue=11&rft_id=info:doi/10.1063%2F5.0028500&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0028500 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |