Non-equilibrium superconductivity in quantum-sensing superconducting resonators
Low temperature microwave superconducting resonators (SRs) are attractive candidates for producing quantum-sensitive, arrayable energy or power detectors for astrophysical and other precision measurement applications. Their readout uses a microwave probe signal with quanta of energy well below the t...
Saved in:
Published in | Superconductor science & technology Vol. 26; no. 1; pp. 15004 - 1-10 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.01.2013
Institute of Physics |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Low temperature microwave superconducting resonators (SRs) are attractive candidates for producing quantum-sensitive, arrayable energy or power detectors for astrophysical and other precision measurement applications. Their readout uses a microwave probe signal with quanta of energy well below the threshold for pair-breaking in the superconductor. We have calculated the non-equilibrium quasiparticle and phonon distributions generated by the photons of the probe signal of a resonator operating well below its superconducting transition temperature Tc as the absorbed probe power was changed using the coupled kinetic equations described by Chang and Scalapino. The calculations give insight into a rate equation estimate which suggests that the quasiparticle distributions can be driven far from their thermal equilibrium value for typical readout powers. From the driven quasiparticle distribution functions, the driven quasiparticle number densities and lifetimes were calculated. An effective temperature to describe the driven quasiparticles was defined. The non-equilibrium lifetimes were compared to the distribution-averaged thermal lifetimes at the effective temperature and good agreement was found typically within a few per cent. We used the non-equilibrium quasiparticle distribution to model a representative SR. The complex conductivity and hence the frequency dependence of the experimentally measured forward scattering parameter S21 of the SR as a function of absorbed power were found. The non-equilibrium S21 cannot be accurately modeled by a thermal distribution even at its own elevated temperature, having a higher quality factor in all cases studied, although for low absorbed powers the two effective temperatures are similar. From the non-equilibrium lifetimes and number densities we determined the achievable noise equivalent power (NEP) of the resonator used as a power detector as a function of absorbed microwave power. Simpler expressions to evaluate the effective quasiparticle temperature as a function of absorbed power have also been derived. We conclude that multiple photon absorption from the microwave probe increases the quasiparticle number above the thermal background and ultimately limits the achievable NEP of the resonator at temperatures well below Tc. |
---|---|
AbstractList | Low temperature microwave superconducting resonators (SRs) are attractive candidates for producing quantum-sensitive, arrayable energy or power detectors for astrophysical and other precision measurement applications. Their readout uses a microwave probe signal with quanta of energy well below the threshold for pair-breaking in the superconductor. We have calculated the non-equilibrium quasiparticle and phonon distributions generated by the photons of the probe signal of a resonator operating well below its superconducting transition temperature Tc as the absorbed probe power was changed using the coupled kinetic equations described by Chang and Scalapino. The calculations give insight into a rate equation estimate which suggests that the quasiparticle distributions can be driven far from their thermal equilibrium value for typical readout powers. From the driven quasiparticle distribution functions, the driven quasiparticle number densities and lifetimes were calculated. An effective temperature to describe the driven quasiparticles was defined. The non-equilibrium lifetimes were compared to the distribution-averaged thermal lifetimes at the effective temperature and good agreement was found typically within a few per cent. We used the non-equilibrium quasiparticle distribution to model a representative SR. The complex conductivity and hence the frequency dependence of the experimentally measured forward scattering parameter S21 of the SR as a function of absorbed power were found. The non-equilibrium S21 cannot be accurately modeled by a thermal distribution even at its own elevated temperature, having a higher quality factor in all cases studied, although for low absorbed powers the two effective temperatures are similar. From the non-equilibrium lifetimes and number densities we determined the achievable noise equivalent power (NEP) of the resonator used as a power detector as a function of absorbed microwave power. Simpler expressions to evaluate the effective quasiparticle temperature as a function of absorbed power have also been derived. We conclude that multiple photon absorption from the microwave probe increases the quasiparticle number above the thermal background and ultimately limits the achievable NEP of the resonator at temperatures well below Tc. Low temperature microwave superconducting resonators (SRs) are attractive candidates for producing quantum-sensitive, arrayable energy or power detectors for astrophysical and other precision measurement applications. Their readout uses a microwave probe signal with quanta of energy well below the threshold for pair-breaking in the superconductor. We have calculated the non-equilibrium quasiparticle and phonon distributions generated by the photons of the probe signal of a resonator operating well below its superconducting transition temperature T sub(c) as the absorbed probe power was changed using the coupled kinetic equations described by Chang and Scalapino. The calculations give insight into a rate equation estimate which suggests that the quasiparticle distributions can be driven far from their thermal equilibrium value for typical readout powers. From the driven quasiparticle distribution functions, the driven quasiparticle number densities and lifetimes were calculated. An effective temperature to describe the driven quasiparticles was defined. The non-equilibrium lifetimes were compared to the distribution-averaged thermal lifetimes at the effective temperature and good agreement was found typically within a few per cent. We used the non-equilibrium quasiparticle distribution to model a representative SR. The complex conductivity and hence the frequency dependence of the experimentally measured forward scattering parameter S sub(21) of the SR as a function of absorbed power were found. The non-equilibrium S sub(21) cannot be accurately modeled by a thermal distribution even at its own elevated temperature, having a higher quality factor in all cases studied, although for low absorbed powers the two effective temperatures are similar. From the non-equilibrium lifetimes and number densities we determined the achievable noise equivalent power (NEP) of the resonator used as a power detector as a function of absorbed microwave power. Simpler expressions to evaluate the effective quasiparticle temperature as a function of absorbed power have also been derived. We conclude that multiple photon absorption from the microwave probe increases the quasiparticle number above the thermal background and ultimately limits the achievable NEP of the resonator at temperatures well below T sub(c). |
Author | Withington, S Goldie, D J |
Author_xml | – sequence: 1 givenname: D J surname: Goldie fullname: Goldie, D J email: d.j.goldie@mrao.cam.ac.uk organization: University of Cambridge Detector and Optical Physics Group, Cavendish Laboratory, J J Thomson Avenue, Cambridge CB3 0HE, UK – sequence: 2 givenname: S surname: Withington fullname: Withington, S organization: University of Cambridge Detector and Optical Physics Group, Cavendish Laboratory, J J Thomson Avenue, Cambridge CB3 0HE, UK |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26822052$$DView record in Pascal Francis |
BookMark | eNqFkF1LwzAUhoNMcE5_grAbwZvafDe9lOEXDHej1yFNU8loky5phP17WzoGXnl1OPC87-E812DhvDMA3CH4iKAQOSwZyTCkIsc8RzlEDEJ6AZaIcJRxzsUCLM_MFbiOcQ8hQoLgJdh9eJeZQ7KtrYJN3Tqm3gTtXZ30YH_scFxbtz4k5YbUZdG4aN33X2jcg4neqcGHeAMuG9VGc3uaK_D18vy5ecu2u9f3zdM204SJIaOkULygGJu6rBk3qqphWTGGDK2MqSpBdFOzgjS00TVHaqLqklIItS4rasgKPMy9ffCHZOIgOxu1aVvljE9RIoIYFwUs6YiyGdXBxxhMI_tgOxWOEkE5CZSTHDnJkZhLJGeBY-7-dEJFrdomKKdtPIcxFxhDhkcOzZz1vdz7FNz4-D_dv70hg48 |
CODEN | SUSTEF |
CitedBy_id | crossref_primary_10_1103_PhysRevApplied_19_054087 crossref_primary_10_1126_science_abb2823 crossref_primary_10_1103_PhysRevApplied_17_034057 crossref_primary_10_1038_ncomms4130 crossref_primary_10_1063_5_0002413 crossref_primary_10_1007_s10909_020_02377_7 crossref_primary_10_1103_PhysRevB_93_024514 crossref_primary_10_1002_qute_202200145 crossref_primary_10_1103_PhysRevApplied_8_014039 crossref_primary_10_1103_PhysRevB_106_174506 crossref_primary_10_1209_0295_5075_131_14001 crossref_primary_10_1063_1_4923097 crossref_primary_10_1103_PhysRevB_98_014522 crossref_primary_10_1088_0953_2048_29_4_045011 crossref_primary_10_1088_1367_2630_ab97e8 crossref_primary_10_1116_5_0188992 crossref_primary_10_1088_0953_2048_26_9_095009 crossref_primary_10_1088_0953_2048_27_5_055012 crossref_primary_10_1103_PhysRevLett_112_047004 crossref_primary_10_1063_5_0017378 crossref_primary_10_1063_1_5052419 crossref_primary_10_1088_1361_6668_aac1d4 crossref_primary_10_1063_1_4794808 crossref_primary_10_1088_1361_6668_aa68ab crossref_primary_10_1007_s10909_022_02760_6 crossref_primary_10_1088_0953_2048_28_5_054002 crossref_primary_10_1063_1_4901733 crossref_primary_10_1088_1361_6463_ac782e crossref_primary_10_7566_JPSJ_92_074706 crossref_primary_10_1088_0953_2048_28_4_045012 crossref_primary_10_1103_PhysRevApplied_13_024012 crossref_primary_10_1103_PhysRevB_106_104502 crossref_primary_10_21468_SciPostPhys_6_1_013 |
Cites_doi | 10.1063/1.3517152 10.1038/nature09416 10.1007/BF00654920 10.1146/annurev-conmatphys-020911-125022 10.1117/12.857341 10.1007/s10909-011-0448-8 10.1016/0029-554X(82)90654-1 10.1063/1.1791733 10.1103/PhysRevB.69.094524 10.1117/12.130664 10.1103/PhysRevB.15.2651 10.1088/0957-0233/19/1/015509 10.1007/BF00119193 10.1103/PhysRevLett.87.067004 10.1103/PhysRev.113.982 10.1103/PhysRevB.52.12858 10.1038/nature07136 10.1103/PhysRevB.14.4854 10.1007/BF00116228 10.1063/1.4704151 10.1038/451664a 10.1109/20.133759 10.1051/0004-6361/201014727 10.1117/12.925139 10.1103/PhysRev.111.412 10.1103/PhysRevLett.103.097002 10.1103/PhysRevB.84.024501 10.1038/nature02037 |
ContentType | Journal Article |
Copyright | 2013 IOP Publishing Ltd 2014 INIST-CNRS |
Copyright_xml | – notice: 2013 IOP Publishing Ltd – notice: 2014 INIST-CNRS |
DBID | IQODW AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1088/0953-2048/26/1/015004 |
DatabaseName | Pascal-Francis CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
DocumentTitleAlternate | Non-equilibrium superconductivity in quantum-sensing superconducting resonators |
EISSN | 1361-6668 |
EndPage | 1-10 |
ExternalDocumentID | 10_1088_0953_2048_26_1_015004 26822052 sust444478 |
GroupedDBID | -~X .DC 123 1JI 1WK 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q 9BW AAGCD AAGID AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABJNI ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FEDTE HAK HVGLF IHE IJHAN IOP IZVLO JCGBZ KOT LAP M45 N5L N9A NT- NT. P2P PJBAE Q02 R4D RIN RNS RO9 ROL RPA S3P SY9 TAE TN5 W28 XPP XSW ZMT 02O 1PV 29Q 5ZI AAGCF AAPBV ABFLS ABPTK ABTAH AHGVY AHSEE BBWZM CBCFC CEBXE IQODW KC5 KNG RKQ RW3 T37 ZY4 AAYXX AERVB CITATION 7U5 8FD L7M |
ID | FETCH-LOGICAL-c358t-437a67422ed9d56eabd09b551e4beebb83cfd573f4fcd61ad9d5d94400cc9b4e3 |
IEDL.DBID | IOP |
ISSN | 0953-2048 |
IngestDate | Fri Oct 25 09:51:42 EDT 2024 Thu Sep 26 16:00:32 EDT 2024 Tue Sep 20 22:52:01 EDT 2022 Wed Aug 21 03:33:12 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Frequency dependence Pair breaking Superconducting transitions Precision engineering Phonons Superconductivity Background noise Quasiparticles Kinetic equations Quality factor Microwave resonator Quantum detector Superconducting resonators |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-437a67422ed9d56eabd09b551e4beebb83cfd573f4fcd61ad9d5d94400cc9b4e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1315687094 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | iop_journals_10_1088_0953_2048_26_1_015004 pascalfrancis_primary_26822052 proquest_miscellaneous_1315687094 crossref_primary_10_1088_0953_2048_26_1_015004 |
PublicationCentury | 2000 |
PublicationDate | 2013-01-01 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Superconductor science & technology |
PublicationTitleAbbrev | SUST |
PublicationTitleAlternate | Supercond. Sci. Technol |
PublicationYear | 2013 |
Publisher | IOP Publishing Institute of Physics |
Publisher_xml | – name: IOP Publishing – name: Institute of Physics |
References | 22 23 24 26 27 Vardulakis G (3) 2008; 19 28 29 10 11 12 13 14 15 16 17 18 19 Tinkham M (30) 1996 1 2 4 5 6 7 8 9 Eliashberg G M (25) 1972; 34 20 21 |
References_xml | – ident: 21 doi: 10.1063/1.3517152 – ident: 7 doi: 10.1038/nature09416 – ident: 26 doi: 10.1007/BF00654920 – ident: 2 doi: 10.1146/annurev-conmatphys-020911-125022 – ident: 20 doi: 10.1117/12.857341 – volume: 34 start-page: 668 year: 1972 ident: 25 publication-title: Sov. Phys.—JETP contributor: fullname: Eliashberg G M – ident: 5 doi: 10.1007/s10909-011-0448-8 – ident: 16 doi: 10.1016/0029-554X(82)90654-1 – ident: 10 doi: 10.1063/1.1791733 – ident: 29 doi: 10.1103/PhysRevB.69.094524 – ident: 28 doi: 10.1117/12.130664 – ident: 12 doi: 10.1103/PhysRevB.15.2651 – volume: 19 issn: 0957-0233 year: 2008 ident: 3 publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/19/1/015509 contributor: fullname: Vardulakis G – ident: 24 doi: 10.1007/BF00119193 – ident: 27 doi: 10.1103/PhysRevLett.87.067004 – year: 1996 ident: 30 publication-title: Introduction to Superconductivity contributor: fullname: Tinkham M – ident: 11 doi: 10.1103/PhysRev.113.982 – ident: 14 doi: 10.1103/PhysRevB.52.12858 – ident: 8 doi: 10.1038/nature07136 – ident: 23 doi: 10.1103/PhysRevB.14.4854 – ident: 13 doi: 10.1007/BF00116228 – ident: 6 doi: 10.1063/1.4704151 – ident: 9 doi: 10.1038/451664a – ident: 15 doi: 10.1109/20.133759 – ident: 4 doi: 10.1051/0004-6361/201014727 – ident: 22 doi: 10.1117/12.925139 – ident: 19 doi: 10.1103/PhysRev.111.412 – ident: 18 doi: 10.1103/PhysRevLett.103.097002 – ident: 17 doi: 10.1103/PhysRevB.84.024501 – ident: 1 doi: 10.1038/nature02037 |
SSID | ssj0011832 |
Score | 2.308142 |
Snippet | Low temperature microwave superconducting resonators (SRs) are attractive candidates for producing quantum-sensitive, arrayable energy or power detectors for... |
SourceID | proquest crossref pascalfrancis iop |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 15004 |
SubjectTerms | Bolometer; infrared, submillimeter wave, microwave and radiowave receivers and detectors Condensed matter: electronic structure, electrical, magnetic, and optical properties Density Detectors Exact sciences and technology Infrared, submillimeter wave, microwave and radiowave instruments, equipment and techniques Instruments, apparatus, components and techniques common to several branches of physics and astronomy Mathematical models Microwave probes Microwaves Physics Resonators Superconducting materials (excluding high-tc compounds) Superconductivity Superconductors |
Title | Non-equilibrium superconductivity in quantum-sensing superconducting resonators |
URI | https://iopscience.iop.org/article/10.1088/0953-2048/26/1/015004 https://search.proquest.com/docview/1315687094 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7BEGJ7GFBA6wZVkHhCcrskjmc_ThVTQWLjgUl7s-IfQdW0tGual_31u7OTqWVCCPGWSBc7Pjvnu_ju-wA-cSkK5TAswc3WMF6YihnpS6acKdPq2HITOJa-n4vZJf92VVxtVPHPF8vO9I_xMgIFRxV2CXFyQghpLODNZmKSTihkJ0DQZ7mUipK6vl78eDhHoAUb0fbiI30Nz5-a2dqdnuIbUK5k2aC6qshz8chkh33o7CWU_Qhi-sn1uF2bsb37Ddzxf4b4CvY7JzU5jfKv4YmvB_Bi2nPDDWBvA8ZwAM9DGqlt3sDF-aJm_radh0qC9iZp2qVfYchNqLKBpiKZ18lti9PZ3rCGkufrX9tCeL_yFB8QDdBbuDz78nM6Yx1lA7N5IdeM5yelwGg78065QvjSuGNl0Cvz3HhvjMxt5YqTvOKVdSItScopjobEWmW4z9_BTr2o_QEkBq2JFMSMXHHuXaoqdB2xoTRDr6awfAjjfqr0MiJz6HCiLqUm_WnSn86ETnXU3xA-o7519402fxMebc37QxeZkFSbnA3hY78QNCqfjlnK2i9abDfHmBjNoOKH_9LjEexmgWqDfu-8h531qvUf0OFZm1FY0_exa_N_ |
link.rule.ids | 315,786,790,27955,27956,38898,53875 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8B08b2AFs3tI6vTNrTJLdN4rjOI4JVwEbhYUi8WfHXVE2kpWle-Os520lFmdA07S2R_BGf7fNdfPf7AXyhnGW5RrcED1tJaCYtkdwUJNeyiO1AUek5li7G7PSant9kN2twssyFmc4a1d_DxwAUHETYBMTxvkNIIx5vNmH9uO9c9gHtz7Rdhxe4fYcusO_s8mp5l-AWbUDcC9XaPJ7nmlo5odbxK1y8ZFGhyGzguvhDbfuzaLQNph1FCEH53asXsqfunwA8_u8w38JWY6xGR6HOO1gzZQc2j1uOuA68eQRn2IGXPpxUVe_hcjwtibmrJz6joL6Nqnpm5uh6O3RZT1cRTcrorsZprW9J5YLoy1-rhfB9bpyf4OiAPsD16NvP41PSUDcQlWZ8QWg6LBh63YnRuc6YKaQe5BKtM0OlMVLyVFmdDVNLrdIsLlwpnVNUKErlkpp0BzbKaWk-QiRRq3DmGJItpUbHuUUTEhuKE7RuMkW70GunS8wCQofwN-ucCydD4WQoEiZiEWTYha8oc9Hs1epvhQ9W5n7ZRcK4y1FOuvC5XQwChe-uW4rSTGtsN0XfGNVhTj_9S4-H8OrqZCR-nI2_78LrxLNvuD8-e7CxmNdmH22ghTzwS_wBNK_43w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-equilibrium+superconductivity+in+quantum-sensing+superconducting+resonators&rft.jtitle=Superconductor+science+%26+technology&rft.au=Goldie%2C+D+J&rft.au=Withington%2C+S&rft.date=2013-01-01&rft.pub=IOP+Publishing&rft.issn=0953-2048&rft.eissn=1361-6668&rft.volume=26&rft.issue=1&rft_id=info:doi/10.1088%2F0953-2048%2F26%2F1%2F015004&rft.externalDocID=sust444478 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-2048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-2048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-2048&client=summon |