Non-equilibrium superconductivity in quantum-sensing superconducting resonators

Low temperature microwave superconducting resonators (SRs) are attractive candidates for producing quantum-sensitive, arrayable energy or power detectors for astrophysical and other precision measurement applications. Their readout uses a microwave probe signal with quanta of energy well below the t...

Full description

Saved in:
Bibliographic Details
Published inSuperconductor science & technology Vol. 26; no. 1; pp. 15004 - 1-10
Main Authors Goldie, D J, Withington, S
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.01.2013
Institute of Physics
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Low temperature microwave superconducting resonators (SRs) are attractive candidates for producing quantum-sensitive, arrayable energy or power detectors for astrophysical and other precision measurement applications. Their readout uses a microwave probe signal with quanta of energy well below the threshold for pair-breaking in the superconductor. We have calculated the non-equilibrium quasiparticle and phonon distributions generated by the photons of the probe signal of a resonator operating well below its superconducting transition temperature Tc as the absorbed probe power was changed using the coupled kinetic equations described by Chang and Scalapino. The calculations give insight into a rate equation estimate which suggests that the quasiparticle distributions can be driven far from their thermal equilibrium value for typical readout powers. From the driven quasiparticle distribution functions, the driven quasiparticle number densities and lifetimes were calculated. An effective temperature to describe the driven quasiparticles was defined. The non-equilibrium lifetimes were compared to the distribution-averaged thermal lifetimes at the effective temperature and good agreement was found typically within a few per cent. We used the non-equilibrium quasiparticle distribution to model a representative SR. The complex conductivity and hence the frequency dependence of the experimentally measured forward scattering parameter S21 of the SR as a function of absorbed power were found. The non-equilibrium S21 cannot be accurately modeled by a thermal distribution even at its own elevated temperature, having a higher quality factor in all cases studied, although for low absorbed powers the two effective temperatures are similar. From the non-equilibrium lifetimes and number densities we determined the achievable noise equivalent power (NEP) of the resonator used as a power detector as a function of absorbed microwave power. Simpler expressions to evaluate the effective quasiparticle temperature as a function of absorbed power have also been derived. We conclude that multiple photon absorption from the microwave probe increases the quasiparticle number above the thermal background and ultimately limits the achievable NEP of the resonator at temperatures well below Tc.
AbstractList Low temperature microwave superconducting resonators (SRs) are attractive candidates for producing quantum-sensitive, arrayable energy or power detectors for astrophysical and other precision measurement applications. Their readout uses a microwave probe signal with quanta of energy well below the threshold for pair-breaking in the superconductor. We have calculated the non-equilibrium quasiparticle and phonon distributions generated by the photons of the probe signal of a resonator operating well below its superconducting transition temperature Tc as the absorbed probe power was changed using the coupled kinetic equations described by Chang and Scalapino. The calculations give insight into a rate equation estimate which suggests that the quasiparticle distributions can be driven far from their thermal equilibrium value for typical readout powers. From the driven quasiparticle distribution functions, the driven quasiparticle number densities and lifetimes were calculated. An effective temperature to describe the driven quasiparticles was defined. The non-equilibrium lifetimes were compared to the distribution-averaged thermal lifetimes at the effective temperature and good agreement was found typically within a few per cent. We used the non-equilibrium quasiparticle distribution to model a representative SR. The complex conductivity and hence the frequency dependence of the experimentally measured forward scattering parameter S21 of the SR as a function of absorbed power were found. The non-equilibrium S21 cannot be accurately modeled by a thermal distribution even at its own elevated temperature, having a higher quality factor in all cases studied, although for low absorbed powers the two effective temperatures are similar. From the non-equilibrium lifetimes and number densities we determined the achievable noise equivalent power (NEP) of the resonator used as a power detector as a function of absorbed microwave power. Simpler expressions to evaluate the effective quasiparticle temperature as a function of absorbed power have also been derived. We conclude that multiple photon absorption from the microwave probe increases the quasiparticle number above the thermal background and ultimately limits the achievable NEP of the resonator at temperatures well below Tc.
Low temperature microwave superconducting resonators (SRs) are attractive candidates for producing quantum-sensitive, arrayable energy or power detectors for astrophysical and other precision measurement applications. Their readout uses a microwave probe signal with quanta of energy well below the threshold for pair-breaking in the superconductor. We have calculated the non-equilibrium quasiparticle and phonon distributions generated by the photons of the probe signal of a resonator operating well below its superconducting transition temperature T sub(c) as the absorbed probe power was changed using the coupled kinetic equations described by Chang and Scalapino. The calculations give insight into a rate equation estimate which suggests that the quasiparticle distributions can be driven far from their thermal equilibrium value for typical readout powers. From the driven quasiparticle distribution functions, the driven quasiparticle number densities and lifetimes were calculated. An effective temperature to describe the driven quasiparticles was defined. The non-equilibrium lifetimes were compared to the distribution-averaged thermal lifetimes at the effective temperature and good agreement was found typically within a few per cent. We used the non-equilibrium quasiparticle distribution to model a representative SR. The complex conductivity and hence the frequency dependence of the experimentally measured forward scattering parameter S sub(21) of the SR as a function of absorbed power were found. The non-equilibrium S sub(21) cannot be accurately modeled by a thermal distribution even at its own elevated temperature, having a higher quality factor in all cases studied, although for low absorbed powers the two effective temperatures are similar. From the non-equilibrium lifetimes and number densities we determined the achievable noise equivalent power (NEP) of the resonator used as a power detector as a function of absorbed microwave power. Simpler expressions to evaluate the effective quasiparticle temperature as a function of absorbed power have also been derived. We conclude that multiple photon absorption from the microwave probe increases the quasiparticle number above the thermal background and ultimately limits the achievable NEP of the resonator at temperatures well below T sub(c).
Author Withington, S
Goldie, D J
Author_xml – sequence: 1
  givenname: D J
  surname: Goldie
  fullname: Goldie, D J
  email: d.j.goldie@mrao.cam.ac.uk
  organization: University of Cambridge Detector and Optical Physics Group, Cavendish Laboratory, J J Thomson Avenue, Cambridge CB3 0HE, UK
– sequence: 2
  givenname: S
  surname: Withington
  fullname: Withington, S
  organization: University of Cambridge Detector and Optical Physics Group, Cavendish Laboratory, J J Thomson Avenue, Cambridge CB3 0HE, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26822052$$DView record in Pascal Francis
BookMark eNqFkF1LwzAUhoNMcE5_grAbwZvafDe9lOEXDHej1yFNU8loky5phP17WzoGXnl1OPC87-E812DhvDMA3CH4iKAQOSwZyTCkIsc8RzlEDEJ6AZaIcJRxzsUCLM_MFbiOcQ8hQoLgJdh9eJeZQ7KtrYJN3Tqm3gTtXZ30YH_scFxbtz4k5YbUZdG4aN33X2jcg4neqcGHeAMuG9VGc3uaK_D18vy5ecu2u9f3zdM204SJIaOkULygGJu6rBk3qqphWTGGDK2MqSpBdFOzgjS00TVHaqLqklIItS4rasgKPMy9ffCHZOIgOxu1aVvljE9RIoIYFwUs6YiyGdXBxxhMI_tgOxWOEkE5CZSTHDnJkZhLJGeBY-7-dEJFrdomKKdtPIcxFxhDhkcOzZz1vdz7FNz4-D_dv70hg48
CODEN SUSTEF
CitedBy_id crossref_primary_10_1103_PhysRevApplied_19_054087
crossref_primary_10_1126_science_abb2823
crossref_primary_10_1103_PhysRevApplied_17_034057
crossref_primary_10_1038_ncomms4130
crossref_primary_10_1063_5_0002413
crossref_primary_10_1007_s10909_020_02377_7
crossref_primary_10_1103_PhysRevB_93_024514
crossref_primary_10_1002_qute_202200145
crossref_primary_10_1103_PhysRevApplied_8_014039
crossref_primary_10_1103_PhysRevB_106_174506
crossref_primary_10_1209_0295_5075_131_14001
crossref_primary_10_1063_1_4923097
crossref_primary_10_1103_PhysRevB_98_014522
crossref_primary_10_1088_0953_2048_29_4_045011
crossref_primary_10_1088_1367_2630_ab97e8
crossref_primary_10_1116_5_0188992
crossref_primary_10_1088_0953_2048_26_9_095009
crossref_primary_10_1088_0953_2048_27_5_055012
crossref_primary_10_1103_PhysRevLett_112_047004
crossref_primary_10_1063_5_0017378
crossref_primary_10_1063_1_5052419
crossref_primary_10_1088_1361_6668_aac1d4
crossref_primary_10_1063_1_4794808
crossref_primary_10_1088_1361_6668_aa68ab
crossref_primary_10_1007_s10909_022_02760_6
crossref_primary_10_1088_0953_2048_28_5_054002
crossref_primary_10_1063_1_4901733
crossref_primary_10_1088_1361_6463_ac782e
crossref_primary_10_7566_JPSJ_92_074706
crossref_primary_10_1088_0953_2048_28_4_045012
crossref_primary_10_1103_PhysRevApplied_13_024012
crossref_primary_10_1103_PhysRevB_106_104502
crossref_primary_10_21468_SciPostPhys_6_1_013
Cites_doi 10.1063/1.3517152
10.1038/nature09416
10.1007/BF00654920
10.1146/annurev-conmatphys-020911-125022
10.1117/12.857341
10.1007/s10909-011-0448-8
10.1016/0029-554X(82)90654-1
10.1063/1.1791733
10.1103/PhysRevB.69.094524
10.1117/12.130664
10.1103/PhysRevB.15.2651
10.1088/0957-0233/19/1/015509
10.1007/BF00119193
10.1103/PhysRevLett.87.067004
10.1103/PhysRev.113.982
10.1103/PhysRevB.52.12858
10.1038/nature07136
10.1103/PhysRevB.14.4854
10.1007/BF00116228
10.1063/1.4704151
10.1038/451664a
10.1109/20.133759
10.1051/0004-6361/201014727
10.1117/12.925139
10.1103/PhysRev.111.412
10.1103/PhysRevLett.103.097002
10.1103/PhysRevB.84.024501
10.1038/nature02037
ContentType Journal Article
Copyright 2013 IOP Publishing Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2013 IOP Publishing Ltd
– notice: 2014 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1088/0953-2048/26/1/015004
DatabaseName Pascal-Francis
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
DocumentTitleAlternate Non-equilibrium superconductivity in quantum-sensing superconducting resonators
EISSN 1361-6668
EndPage 1-10
ExternalDocumentID 10_1088_0953_2048_26_1_015004
26822052
sust444478
GroupedDBID -~X
.DC
123
1JI
1WK
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
9BW
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FEDTE
HAK
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
Q02
R4D
RIN
RNS
RO9
ROL
RPA
S3P
SY9
TAE
TN5
W28
XPP
XSW
ZMT
02O
1PV
29Q
5ZI
AAGCF
AAPBV
ABFLS
ABPTK
ABTAH
AHGVY
AHSEE
BBWZM
CBCFC
CEBXE
IQODW
KC5
KNG
RKQ
RW3
T37
ZY4
AAYXX
AERVB
CITATION
7U5
8FD
L7M
ID FETCH-LOGICAL-c358t-437a67422ed9d56eabd09b551e4beebb83cfd573f4fcd61ad9d5d94400cc9b4e3
IEDL.DBID IOP
ISSN 0953-2048
IngestDate Fri Oct 25 09:51:42 EDT 2024
Thu Sep 26 16:00:32 EDT 2024
Tue Sep 20 22:52:01 EDT 2022
Wed Aug 21 03:33:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Frequency dependence
Pair breaking
Superconducting transitions
Precision engineering
Phonons
Superconductivity
Background noise
Quasiparticles
Kinetic equations
Quality factor
Microwave resonator
Quantum detector
Superconducting resonators
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-437a67422ed9d56eabd09b551e4beebb83cfd573f4fcd61ad9d5d94400cc9b4e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1315687094
PQPubID 23500
PageCount 10
ParticipantIDs iop_journals_10_1088_0953_2048_26_1_015004
pascalfrancis_primary_26822052
proquest_miscellaneous_1315687094
crossref_primary_10_1088_0953_2048_26_1_015004
PublicationCentury 2000
PublicationDate 2013-01-01
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Superconductor science & technology
PublicationTitleAbbrev SUST
PublicationTitleAlternate Supercond. Sci. Technol
PublicationYear 2013
Publisher IOP Publishing
Institute of Physics
Publisher_xml – name: IOP Publishing
– name: Institute of Physics
References 22
23
24
26
27
Vardulakis G (3) 2008; 19
28
29
10
11
12
13
14
15
16
17
18
19
Tinkham M (30) 1996
1
2
4
5
6
7
8
9
Eliashberg G M (25) 1972; 34
20
21
References_xml – ident: 21
  doi: 10.1063/1.3517152
– ident: 7
  doi: 10.1038/nature09416
– ident: 26
  doi: 10.1007/BF00654920
– ident: 2
  doi: 10.1146/annurev-conmatphys-020911-125022
– ident: 20
  doi: 10.1117/12.857341
– volume: 34
  start-page: 668
  year: 1972
  ident: 25
  publication-title: Sov. Phys.—JETP
  contributor:
    fullname: Eliashberg G M
– ident: 5
  doi: 10.1007/s10909-011-0448-8
– ident: 16
  doi: 10.1016/0029-554X(82)90654-1
– ident: 10
  doi: 10.1063/1.1791733
– ident: 29
  doi: 10.1103/PhysRevB.69.094524
– ident: 28
  doi: 10.1117/12.130664
– ident: 12
  doi: 10.1103/PhysRevB.15.2651
– volume: 19
  issn: 0957-0233
  year: 2008
  ident: 3
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/19/1/015509
  contributor:
    fullname: Vardulakis G
– ident: 24
  doi: 10.1007/BF00119193
– ident: 27
  doi: 10.1103/PhysRevLett.87.067004
– year: 1996
  ident: 30
  publication-title: Introduction to Superconductivity
  contributor:
    fullname: Tinkham M
– ident: 11
  doi: 10.1103/PhysRev.113.982
– ident: 14
  doi: 10.1103/PhysRevB.52.12858
– ident: 8
  doi: 10.1038/nature07136
– ident: 23
  doi: 10.1103/PhysRevB.14.4854
– ident: 13
  doi: 10.1007/BF00116228
– ident: 6
  doi: 10.1063/1.4704151
– ident: 9
  doi: 10.1038/451664a
– ident: 15
  doi: 10.1109/20.133759
– ident: 4
  doi: 10.1051/0004-6361/201014727
– ident: 22
  doi: 10.1117/12.925139
– ident: 19
  doi: 10.1103/PhysRev.111.412
– ident: 18
  doi: 10.1103/PhysRevLett.103.097002
– ident: 17
  doi: 10.1103/PhysRevB.84.024501
– ident: 1
  doi: 10.1038/nature02037
SSID ssj0011832
Score 2.308142
Snippet Low temperature microwave superconducting resonators (SRs) are attractive candidates for producing quantum-sensitive, arrayable energy or power detectors for...
SourceID proquest
crossref
pascalfrancis
iop
SourceType Aggregation Database
Index Database
Publisher
StartPage 15004
SubjectTerms Bolometer; infrared, submillimeter wave, microwave and radiowave receivers and detectors
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Density
Detectors
Exact sciences and technology
Infrared, submillimeter wave, microwave and radiowave instruments, equipment and techniques
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Mathematical models
Microwave probes
Microwaves
Physics
Resonators
Superconducting materials (excluding high-tc compounds)
Superconductivity
Superconductors
Title Non-equilibrium superconductivity in quantum-sensing superconducting resonators
URI https://iopscience.iop.org/article/10.1088/0953-2048/26/1/015004
https://search.proquest.com/docview/1315687094
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7BEGJ7GFBA6wZVkHhCcrskjmc_ThVTQWLjgUl7s-IfQdW0tGual_31u7OTqWVCCPGWSBc7Pjvnu_ju-wA-cSkK5TAswc3WMF6YihnpS6acKdPq2HITOJa-n4vZJf92VVxtVPHPF8vO9I_xMgIFRxV2CXFyQghpLODNZmKSTihkJ0DQZ7mUipK6vl78eDhHoAUb0fbiI30Nz5-a2dqdnuIbUK5k2aC6qshz8chkh33o7CWU_Qhi-sn1uF2bsb37Ddzxf4b4CvY7JzU5jfKv4YmvB_Bi2nPDDWBvA8ZwAM9DGqlt3sDF-aJm_radh0qC9iZp2qVfYchNqLKBpiKZ18lti9PZ3rCGkufrX9tCeL_yFB8QDdBbuDz78nM6Yx1lA7N5IdeM5yelwGg78065QvjSuGNl0Cvz3HhvjMxt5YqTvOKVdSItScopjobEWmW4z9_BTr2o_QEkBq2JFMSMXHHuXaoqdB2xoTRDr6awfAjjfqr0MiJz6HCiLqUm_WnSn86ETnXU3xA-o7519402fxMebc37QxeZkFSbnA3hY78QNCqfjlnK2i9abDfHmBjNoOKH_9LjEexmgWqDfu-8h531qvUf0OFZm1FY0_exa_N_
link.rule.ids 315,786,790,27955,27956,38898,53875
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8B08b2AFs3tI6vTNrTJLdN4rjOI4JVwEbhYUi8WfHXVE2kpWle-Os520lFmdA07S2R_BGf7fNdfPf7AXyhnGW5RrcED1tJaCYtkdwUJNeyiO1AUek5li7G7PSant9kN2twssyFmc4a1d_DxwAUHETYBMTxvkNIIx5vNmH9uO9c9gHtz7Rdhxe4fYcusO_s8mp5l-AWbUDcC9XaPJ7nmlo5odbxK1y8ZFGhyGzguvhDbfuzaLQNph1FCEH53asXsqfunwA8_u8w38JWY6xGR6HOO1gzZQc2j1uOuA68eQRn2IGXPpxUVe_hcjwtibmrJz6joL6Nqnpm5uh6O3RZT1cRTcrorsZprW9J5YLoy1-rhfB9bpyf4OiAPsD16NvP41PSUDcQlWZ8QWg6LBh63YnRuc6YKaQe5BKtM0OlMVLyVFmdDVNLrdIsLlwpnVNUKErlkpp0BzbKaWk-QiRRq3DmGJItpUbHuUUTEhuKE7RuMkW70GunS8wCQofwN-ucCydD4WQoEiZiEWTYha8oc9Hs1epvhQ9W5n7ZRcK4y1FOuvC5XQwChe-uW4rSTGtsN0XfGNVhTj_9S4-H8OrqZCR-nI2_78LrxLNvuD8-e7CxmNdmH22ghTzwS_wBNK_43w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-equilibrium+superconductivity+in+quantum-sensing+superconducting+resonators&rft.jtitle=Superconductor+science+%26+technology&rft.au=Goldie%2C+D+J&rft.au=Withington%2C+S&rft.date=2013-01-01&rft.pub=IOP+Publishing&rft.issn=0953-2048&rft.eissn=1361-6668&rft.volume=26&rft.issue=1&rft_id=info:doi/10.1088%2F0953-2048%2F26%2F1%2F015004&rft.externalDocID=sust444478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-2048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-2048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-2048&client=summon