Two-layer adaptive surrogate-assisted evolutionary algorithm for high-dimensional computationally expensive problems
Surrogate-assisted evolutionary algorithms (SAEAs) have recently shown excellent ability in solving computationally expensive optimization problems. However, with the increase of dimensions of research problems, the effectiveness of SAEAs for high-dimensional problems still needs to be improved furt...
Saved in:
Published in | Journal of global optimization Vol. 74; no. 2; pp. 327 - 359 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
15.06.2019
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Surrogate-assisted evolutionary algorithms (SAEAs) have recently shown excellent ability in solving computationally expensive optimization problems. However, with the increase of dimensions of research problems, the effectiveness of SAEAs for high-dimensional problems still needs to be improved further. In this paper, a two-layer adaptive surrogate-assisted evolutionary algorithm is proposed, in which three different search strategies are adaptively executed during the iteration according to the feedback information which is proposed to measure the status of the algorithm approaching the optimal value. In the proposed method, the global GP model is used to pre-screen the offspring produced by the DE/current-to-best/1 strategy for fast convergence speed, and the DE/current-to-randbest/1 strategy is proposed to guide the global GP model to locate promising regions when the feedback information reaches a presetting threshold. Moreover, a local search strategy (DE/best/1) is used to guide the local GP model which is built by using individuals closest to the current best individual to intensively exploit the promising regions. Furthermore, a dimension reduction technique is used to construct a reasonably accurate GP model for high-dimensional expensive problems. Empirical studies on benchmark problems with 50 and 100 variables demonstrate that the proposed algorithm is able to find high-quality solutions for high-dimensional problems under a limited computational budget. |
---|---|
AbstractList | Surrogate-assisted evolutionary algorithms (SAEAs) have recently shown excellent ability in solving computationally expensive optimization problems. However, with the increase of dimensions of research problems, the effectiveness of SAEAs for high-dimensional problems still needs to be improved further. In this paper, a two-layer adaptive surrogate-assisted evolutionary algorithm is proposed, in which three different search strategies are adaptively executed during the iteration according to the feedback information which is proposed to measure the status of the algorithm approaching the optimal value. In the proposed method, the global GP model is used to pre-screen the offspring produced by the DE/current-to-best/1 strategy for fast convergence speed, and the DE/current-to-randbest/1 strategy is proposed to guide the global GP model to locate promising regions when the feedback information reaches a presetting threshold. Moreover, a local search strategy (DE/best/1) is used to guide the local GP model which is built by using individuals closest to the current best individual to intensively exploit the promising regions. Furthermore, a dimension reduction technique is used to construct a reasonably accurate GP model for high-dimensional expensive problems. Empirical studies on benchmark problems with 50 and 100 variables demonstrate that the proposed algorithm is able to find high-quality solutions for high-dimensional problems under a limited computational budget. |
Audience | Academic |
Author | Zhang, Jinhao Gao, Liang Jiang, Chen Yang, Zan Qiu, Haobo |
Author_xml | – sequence: 1 givenname: Zan surname: Yang fullname: Yang, Zan organization: The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology – sequence: 2 givenname: Haobo surname: Qiu fullname: Qiu, Haobo email: hobbyqiu@163.com organization: The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology – sequence: 3 givenname: Liang surname: Gao fullname: Gao, Liang organization: The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology – sequence: 4 givenname: Chen surname: Jiang fullname: Jiang, Chen organization: The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology – sequence: 5 givenname: Jinhao surname: Zhang fullname: Zhang, Jinhao organization: The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology |
BookMark | eNp9kcFu3CAQhlGUSt2kfYGeLPVMMmB7DccoatNKkXpJz4iFsZcIGwdw2n374LhSpB4iJNAw883A_1-Q8ylMSMgXBlcMoLtODIQUFJikJWzLfkZ2rO1qyiXbn5MdSN7SFoB9JBcpPQKAFC3fkfzwJ1CvTxgrbfWc3TNWaYkxDDoj1Sm5lNFW-Bz8kl2YdDxV2g8hunwcqz7E6uiGI7VuxCmteV-ZMM5L1q_V3p8q_DuvudJ4juHgcUyfyIde-4Sf_52X5Pf3bw-3P-j9r7uftzf31NStyLRhVmrWMa4tGrC4N7UBY_aArG37-tBzBLTGNog1t9bs-coZYE3Puk4c6kvydetbBj8tmLJ6DEssr0qKMyGKHFKyUnW1VQ3ao3JTH3LUpiyLozNF596V-5uOiYY3nYQC8A0wMaQUsVdzdGNRRjFQqx1qs0MVO9SrHWqFxH-QcZtIZZrz76P1hqYyZxowvn3jHeoFOtulYA |
CitedBy_id | crossref_primary_10_1109_TSMC_2021_3102298 crossref_primary_10_1016_j_engappai_2022_104685 crossref_primary_10_1016_j_eswa_2024_126103 crossref_primary_10_1007_s41965_024_00165_w crossref_primary_10_1016_j_asoc_2020_106812 crossref_primary_10_1007_s40747_021_00484_w crossref_primary_10_1016_j_asoc_2020_106934 crossref_primary_10_1109_TCYB_2020_2967553 crossref_primary_10_1016_j_asoc_2023_111194 crossref_primary_10_1109_TSMC_2022_3219080 crossref_primary_10_1109_TEVC_2021_3067015 crossref_primary_10_1109_TCYB_2022_3175533 crossref_primary_10_1007_s10898_020_00923_x crossref_primary_10_1016_j_ress_2020_107169 crossref_primary_10_1007_s00500_023_07845_2 crossref_primary_10_1016_j_swevo_2025_101879 crossref_primary_10_1016_j_asoc_2023_110733 crossref_primary_10_1007_s12065_023_00882_8 crossref_primary_10_1016_j_matdes_2024_113055 crossref_primary_10_1016_j_ins_2022_12_004 crossref_primary_10_1109_TEVC_2021_3113923 crossref_primary_10_1007_s00521_024_09903_8 crossref_primary_10_1007_s12065_023_00862_y crossref_primary_10_1109_JAS_2022_105425 crossref_primary_10_1109_JAS_2024_124320 crossref_primary_10_1007_s40747_023_01168_3 crossref_primary_10_1016_j_swevo_2024_101629 crossref_primary_10_3390_math13010158 crossref_primary_10_1080_0305215X_2023_2170367 crossref_primary_10_1016_j_asoc_2023_110228 crossref_primary_10_1016_j_asoc_2025_112727 crossref_primary_10_1016_j_asoc_2020_107001 crossref_primary_10_1016_j_swevo_2023_101446 crossref_primary_10_1016_j_swevo_2022_101169 crossref_primary_10_1016_j_swevo_2024_101587 crossref_primary_10_1109_TEVC_2023_3287213 |
Cites_doi | 10.1007/s10898-014-0184-0 10.1109/TCYB.2014.2317488 10.1016/j.cor.2010.09.013 10.1007/s00500-014-1283-z 10.1109/TEVC.2005.851274 10.1016/j.ins.2011.07.049 10.1109/TEVC.2009.2033671 10.1007/s00158-015-1395-9 10.1016/j.swevo.2011.05.001 10.1016/j.ins.2018.04.024 10.1109/TEVC.2017.2675628 10.1109/TEVC.2006.872133 10.1007/s10898-004-0570-0 10.1080/03052150410001704854 10.1016/j.epsr.2008.03.021 10.1109/TEVC.2009.2027359 10.1016/j.ins.2012.09.030 10.1109/TEVC.2002.800884 10.1002/9780470770801 10.1080/0305215X.2013.765000 10.1080/0305215X.2012.687731 10.1023/A:1008306431147 10.2514/1.J051018 10.1109/T-C.1969.222678 10.1080/03052150600848000 10.1007/s10898-012-9892-5 10.1109/TEVC.2009.2014613 10.1023/A:1008202821328 10.2514/1.12994 10.1109/TEVC.2013.2262111 10.1016/j.asoc.2015.06.010 10.1109/TEVC.2013.2248012 10.1109/TCYB.2013.2250955 10.1007/s10898-006-9040-1 10.1007/s10898-007-9256-8 10.2514/2.1999 10.1214/ss/1177012413 10.1007/s00158-013-1029-z 10.1109/JSEN.2014.2354983 10.1109/TEVC.2015.2449293 10.1016/j.jocs.2015.11.004 10.1007/978-3-540-87700-4_78 10.1109/CEC.2015.7256922 10.2514/6.1996-4099 10.1109/CEC.2014.6900351 10.1109/CEC.2007.4425028 10.1007/978-1-4614-8987-0_3 10.1007/978-3-642-32964-7_11 10.1145/1830483.1830571 10.1007/978-3-540-76931-6_23 10.1145/1068009.1068251 10.1145/2463372.2465805 10.1007/978-3-540-28650-9_4 10.1145/315891.316014 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 COPYRIGHT 2019 Springer Journal of Global Optimization is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: COPYRIGHT 2019 Springer – notice: Journal of Global Optimization is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1007/s10898-019-00759-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Sciences (General) Computer Science |
EISSN | 1573-2916 |
EndPage | 359 |
ExternalDocumentID | A718424790 10_1007_s10898_019_00759_0 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: No. 51721092; No 51675198 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation for Distinguished Young Scholars of China grantid: No.51825502 |
GroupedDBID | -52 -57 -5G -BR -EM -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 29K 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CCPQU CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV L6V LAK LLZTM M0C M0N M2O M2P M4Y M7S MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SBE SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8T Z8U Z8W Z92 ZMTXR ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI AAPKM AARHV AAYOK AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACSTC ADHKG AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AI. AIXLP AJBLW AMVHM ATHPR AYFIA BBWZM CAG CITATION COF H13 KOW N2Q NDZJH O9- OVD PHGZM PHGZT R4E RNI RZC RZE RZK S1Z S26 S28 SCLPG T16 TEORI UZXMN VFIZW VH1 ZWQNP ZY4 AEIIB PMFND 3V. 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c358t-41d9a1712adec0de6c3c0cc60e155f3bf2e0edcd4ee32ddc62c358c014f1778b3 |
IEDL.DBID | U2A |
ISSN | 0925-5001 |
IngestDate | Sat Aug 16 09:21:13 EDT 2025 Tue Jun 10 20:37:42 EDT 2025 Tue Jul 01 00:53:00 EDT 2025 Thu Apr 24 22:53:51 EDT 2025 Fri Feb 21 02:42:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Differential evolution Dimension reduction technique Surrogate-assisted evolutionary algorithms Computationally expensive problems |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-41d9a1712adec0de6c3c0cc60e155f3bf2e0edcd4ee32ddc62c358c014f1778b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2188500991 |
PQPubID | 29930 |
PageCount | 33 |
ParticipantIDs | proquest_journals_2188500991 gale_infotracacademiconefile_A718424790 crossref_primary_10_1007_s10898_019_00759_0 crossref_citationtrail_10_1007_s10898_019_00759_0 springer_journals_10_1007_s10898_019_00759_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190615 |
PublicationDateYYYYMMDD | 2019-06-15 |
PublicationDate_xml | – month: 6 year: 2019 text: 20190615 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering |
PublicationTitle | Journal of global optimization |
PublicationTitleAbbrev | J Glob Optim |
PublicationYear | 2019 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Nguyen, Zhang, Johnston, Tan (CR3) 2015; 45 Awad, Ali, Mallipeddi, Suganthan (CR42) 2018; 451 Jin (CR25) 2011; 1 Regis, Shoemaker (CR63) 2007; 37 Parno, Fowler, Hemker (CR24) 2009 Mallipeddi, Lee (CR44) 2015; 34 Gong, Zhou, Cai (CR28) 2015; 19 Van Der Maaten, Postma, Van den Herik (CR51) 2009; 10 CR33 CR31 CR30 Liu, Zhang, Gielen (CR27) 2014; 18 Sun, Jin, Zeng, Yu (CR36) 2015; 19 CR70 Brest, Greiner, Boskovic, Mernik, Zumer (CR62) 2006; 10 Ahmed, Qin (CR19) 2012; 50 Gaspar-Cunha, Vieira (CR10) 2005; 6 Regis (CR66) 2011; 38 Tenne, Armfield (CR34) 2009; 13 Zhang, Liu, Tsang, Virginas (CR18) 2010; 14 Regis, Shoemaker (CR67) 2013; 45 CR9 CR49 Ratle (CR20) 2001; 15 CR48 Sacks, Welch, Mitchell, Wynn (CR50) 1989; 4 Storn, Price (CR54) 1997; 11 CR45 Regis (CR38) 2014; 46 CR43 Liu, Koziel, Zhang (CR40) 2016; 12 CR41 El-Ela, Fetouh, Bishr, Saleh (CR1) 2008; 78 Forrester, Sobester, Keane (CR46) 2008 Herrera, Guglielmetti, Xiao, Coelho (CR13) 2014; 49 Zhang, Sanderson (CR55) 2009; 13 Jones, Schonlau, Welch (CR2) 1998; 13 CR17 CR15 CR14 CR58 Yoon, Kim (CR4) 2013; 43 CR57 CR12 Viana, Haftka, Watson (CR47) 2013; 56 Lim, Jin, Ong, Sendhoff (CR7) 2010; 14 Jin (CR8) 2005; 9 Müller, Shoemaker (CR35) 2014; 60 Price, Storn, Lampinen (CR56) 2005 Sun, Jin, Cheng, Ding, Zeng (CR71) 2017; 21 Holmström (CR65) 2008; 41 Vesanto, Himberg, Alhoniemi, Parhankangas (CR53) 2000 Jin, Olhofer, Sendhoff (CR21) 2002; 6 Sun, Zeng, Pan, Xue, Jin (CR32) 2013; 221 Knowles (CR16) 2006; 10 Bouhlel, Bartoli, Otsmane, Morlier (CR37) 2016; 53 CR26 Lian, Liou (CR11) 2005; 43 CR69 He, Prempain, Wu (CR6) 2004; 36 CR68 Ong, Nair, Keane (CR29) 2003; 41 CR22 Regis (CR39) 2014; 18 Karakasis, Giannakoglou (CR23) 2006; 38 CR61 CR60 Regis, Shoemaker (CR64) 2005; 31 Wu, Lin (CR5) 2015; 15 Sammon (CR52) 1969; 100 Gong, Fialho, Cai, Li (CR59) 2011; 181 W Gong (759_CR28) 2015; 19 DR Jones (759_CR2) 1998; 13 Y Tenne (759_CR34) 2009; 13 Y Jin (759_CR25) 2011; 1 759_CR70 Q Zhang (759_CR18) 2010; 14 J Brest (759_CR62) 2006; 10 D Lim (759_CR7) 2010; 14 A Gaspar-Cunha (759_CR10) 2005; 6 R Mallipeddi (759_CR44) 2015; 34 FA Viana (759_CR47) 2013; 56 Y Yoon (759_CR4) 2013; 43 JW Sammon (759_CR52) 1969; 100 L Maaten Van Der (759_CR51) 2009; 10 B Liu (759_CR27) 2014; 18 759_CR31 J Vesanto (759_CR53) 2000 Y Jin (759_CR21) 2002; 6 759_CR30 RG Regis (759_CR67) 2013; 45 759_CR33 Y Jin (759_CR8) 2005; 9 759_CR60 R Storn (759_CR54) 1997; 11 759_CR61 759_CR9 J Zhang (759_CR55) 2009; 13 C Sun (759_CR71) 2017; 21 Y Lian (759_CR11) 2005; 43 RG Regis (759_CR66) 2011; 38 759_CR22 J Müller (759_CR35) 2014; 60 759_CR68 W Gong (759_CR59) 2011; 181 759_CR26 MA Bouhlel (759_CR37) 2016; 53 759_CR69 T-Y Wu (759_CR5) 2015; 15 RG Regis (759_CR39) 2014; 18 RG Regis (759_CR38) 2014; 46 K Holmström (759_CR65) 2008; 41 NH Awad (759_CR42) 2018; 451 RG Regis (759_CR64) 2005; 31 C Sun (759_CR32) 2013; 221 759_CR17 S He (759_CR6) 2004; 36 J Sacks (759_CR50) 1989; 4 AA El-Ela (759_CR1) 2008; 78 M Karakasis (759_CR23) 2006; 38 B Liu (759_CR40) 2016; 12 RG Regis (759_CR63) 2007; 37 YS Ong (759_CR29) 2003; 41 J Knowles (759_CR16) 2006; 10 759_CR57 759_CR12 M Herrera (759_CR13) 2014; 49 M Ahmed (759_CR19) 2012; 50 759_CR15 S Nguyen (759_CR3) 2015; 45 759_CR14 759_CR58 A Ratle (759_CR20) 2001; 15 MD Parno (759_CR24) 2009 KV Price (759_CR56) 2005 759_CR49 C Sun (759_CR36) 2015; 19 A Forrester (759_CR46) 2008 759_CR41 759_CR43 759_CR45 759_CR48 |
References_xml | – ident: CR45 – ident: CR70 – ident: CR22 – volume: 60 start-page: 123 issue: 2 year: 2014 end-page: 144 ident: CR35 article-title: Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems publication-title: J. Glob. Optim. doi: 10.1007/s10898-014-0184-0 – volume: 45 start-page: 1 issue: 1 year: 2015 end-page: 14 ident: CR3 article-title: Automatic programming via iterated local search for dynamic job shop scheduling publication-title: IEEE Trans. Cybernet. doi: 10.1109/TCYB.2014.2317488 – ident: CR49 – ident: CR68 – volume: 38 start-page: 837 issue: 5 year: 2011 end-page: 853 ident: CR66 article-title: Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2010.09.013 – ident: CR12 – volume: 19 start-page: 1461 issue: 6 year: 2015 end-page: 1475 ident: CR36 article-title: A two-layer surrogate-assisted particle swarm optimization algorithm publication-title: Soft. Comput. doi: 10.1007/s00500-014-1283-z – volume: 10 start-page: 50 issue: 1 year: 2006 end-page: 66 ident: CR16 article-title: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.851274 – volume: 10 start-page: 66 year: 2009 end-page: 71 ident: CR51 article-title: Dimensionality reduction: a comparative publication-title: J. Mach. Learn. Res. – ident: CR61 – volume: 181 start-page: 5364 issue: 24 year: 2011 end-page: 5386 ident: CR59 article-title: Adaptive strategy selection in differential evolution for numerical optimization: an empirical study publication-title: Inf. Sci. doi: 10.1016/j.ins.2011.07.049 – ident: CR58 – volume: 9 start-page: 3 issue: 1 year: 2005 end-page: 12 ident: CR8 article-title: A comprehensive survey of fitness approximation in evolutionary computation publication-title: Soft Comput. A Fusion Found. Methodol. Appl. – volume: 14 start-page: 456 issue: 3 year: 2010 end-page: 474 ident: CR18 article-title: Expensive multiobjective optimization by MOEA/D with Gaussian process model publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2033671 – volume: 53 start-page: 935 issue: 5 year: 2016 end-page: 952 ident: CR37 article-title: Improving kriging surrogates of high-dimensional design models by Partial Least Squares dimension reduction publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-015-1395-9 – volume: 1 start-page: 61 issue: 2 year: 2011 end-page: 70 ident: CR25 article-title: Surrogate-assisted evolutionary computation: recent advances and future challenges publication-title: Swarm Evolut. Comput. doi: 10.1016/j.swevo.2011.05.001 – volume: 13 start-page: 781 issue: 8 year: 2009 end-page: 793 ident: CR34 article-title: A framework for memetic optimization using variable global and local surrogate models publication-title: Soft Comput. A Fusion Found. Methodol. Appl. – volume: 451 start-page: 326 year: 2018 end-page: 347 ident: CR42 article-title: An improved differential evolution algorithm using efficient adapted surrogate model for numerical optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.04.024 – volume: 21 start-page: 644 issue: 4 year: 2017 end-page: 660 ident: CR71 article-title: Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2675628 – year: 2009 ident: CR24 publication-title: Framework for particle swarm optimization with surrogate functions – ident: CR15 – volume: 10 start-page: 646 issue: 6 year: 2006 end-page: 657 ident: CR62 article-title: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2006.872133 – volume: 31 start-page: 153 issue: 1 year: 2005 end-page: 171 ident: CR64 article-title: Constrained global optimization of expensive black box functions using radial basis functions publication-title: J. Glob. Optim. doi: 10.1007/s10898-004-0570-0 – volume: 36 start-page: 585 issue: 5 year: 2004 end-page: 605 ident: CR6 article-title: An improved particle swarm optimizer for mechanical design optimization problems publication-title: Eng. Optim. doi: 10.1080/03052150410001704854 – volume: 78 start-page: 1906 issue: 11 year: 2008 end-page: 1913 ident: CR1 article-title: Power systems operation using particle swarm optimization technique publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2008.03.021 – ident: CR9 – ident: CR57 – ident: CR60 – volume: 14 start-page: 329 issue: 3 year: 2010 end-page: 355 ident: CR7 article-title: Generalizing surrogate-assisted evolutionary computation publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2027359 – volume: 221 start-page: 355 year: 2013 end-page: 370 ident: CR32 article-title: A new fitness estimation strategy for particle swarm optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.09.030 – volume: 6 start-page: 481 issue: 5 year: 2002 end-page: 494 ident: CR21 article-title: A framework for evolutionary optimization with approximate fitness functions publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2002.800884 – year: 2008 ident: CR46 publication-title: Engineering Design via Surrogate Modelling: A Practical Guide doi: 10.1002/9780470770801 – ident: CR26 – volume: 46 start-page: 218 issue: 2 year: 2014 end-page: 243 ident: CR38 article-title: Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points publication-title: Eng. Optim. doi: 10.1080/0305215X.2013.765000 – volume: 45 start-page: 529 issue: 5 year: 2013 end-page: 555 ident: CR67 article-title: Combining radial basis function surrogates and dynamic coordinate search in high-dimensional expensive black-box optimization publication-title: Eng. Optim. doi: 10.1080/0305215X.2012.687731 – volume: 13 start-page: 455 issue: 4 year: 1998 end-page: 492 ident: CR2 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Glob. Optim. doi: 10.1023/A:1008306431147 – volume: 50 start-page: 797 issue: 4 year: 2012 end-page: 810 ident: CR19 article-title: Surrogate-based multi-objective aerothermodynamic design optimization of hypersonic spiked bodies publication-title: AIAA J. doi: 10.2514/1.J051018 – volume: 15 start-page: 37 issue: 01 year: 2001 end-page: 49 ident: CR20 article-title: Kriging as a surrogate fitness landscape in evolutionary optimization publication-title: AI EDAM – volume: 100 start-page: 401 issue: 5 year: 1969 end-page: 409 ident: CR52 article-title: A nonlinear mapping for data structure analysis publication-title: IEEE Trans. Comput. doi: 10.1109/T-C.1969.222678 – volume: 38 start-page: 941 issue: 8 year: 2006 end-page: 957 ident: CR23 article-title: On the use of metamodel-assisted, multi-objective evolutionary algorithms publication-title: Eng. Optim. doi: 10.1080/03052150600848000 – ident: CR43 – volume: 56 start-page: 669 issue: 2 year: 2013 end-page: 689 ident: CR47 article-title: Efficient global optimization algorithm assisted by multiple surrogate techniques publication-title: J. Glob. Optim. doi: 10.1007/s10898-012-9892-5 – volume: 6 start-page: 18 issue: 1 year: 2005 end-page: 36 ident: CR10 article-title: A multi-objective evolutionary algorithm using neural networks to approximate fitness evaluations publication-title: Int. J. Comput. Syst. Signal – ident: CR14 – year: 2000 ident: CR53 publication-title: SOM Toolbox for Matlab 5 – ident: CR30 – volume: 13 start-page: 945 issue: 5 year: 2009 end-page: 958 ident: CR55 article-title: JADE: adaptive differential evolution with optional external archive publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2014613 – volume: 11 start-page: 341 issue: 4 year: 1997 end-page: 359 ident: CR54 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – ident: CR33 – volume: 43 start-page: 1316 issue: 6 year: 2005 end-page: 1325 ident: CR11 article-title: Multiobjective optimization using coupled response surface model and evolutionary algorithm publication-title: AIAA J. doi: 10.2514/1.12994 – volume: 18 start-page: 326 issue: 3 year: 2014 end-page: 347 ident: CR39 article-title: Evolutionary programming for high-dimensional constrained expensive black-box optimization using radial basis functions publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2262111 – volume: 34 start-page: 770 year: 2015 end-page: 787 ident: CR44 article-title: An evolving surrogate model-based differential evolution algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.06.010 – volume: 18 start-page: 180 issue: 2 year: 2014 end-page: 192 ident: CR27 article-title: A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2248012 – ident: CR69 – volume: 43 start-page: 1473 issue: 5 year: 2013 end-page: 1483 ident: CR4 article-title: An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks publication-title: IEEE Trans. Cybernet. doi: 10.1109/TCYB.2013.2250955 – ident: CR48 – volume: 37 start-page: 113 issue: 1 year: 2007 end-page: 135 ident: CR63 article-title: Improved strategies for radial basis function methods for global optimization publication-title: J. Glob. Optim. doi: 10.1007/s10898-006-9040-1 – volume: 41 start-page: 447 issue: 3 year: 2008 end-page: 464 ident: CR65 article-title: An adaptive radial basis algorithm (ARBF) for expensive black-box global optimization publication-title: J. Glob. Optim. doi: 10.1007/s10898-007-9256-8 – year: 2005 ident: CR56 publication-title: Differential Evolution—A Practical Approach to Global Optimization. Natural Computing Series – ident: CR17 – volume: 41 start-page: 687 issue: 4 year: 2003 end-page: 696 ident: CR29 article-title: Evolutionary optimization of computationally expensive problems via surrogate modeling publication-title: AIAA J. doi: 10.2514/2.1999 – ident: CR31 – volume: 4 start-page: 409 year: 1989 end-page: 423 ident: CR50 article-title: Design and analysis of computer experiments publication-title: Stat. Sci. doi: 10.1214/ss/1177012413 – volume: 49 start-page: 979 issue: 6 year: 2014 end-page: 991 ident: CR13 article-title: Metamodel-assisted optimization based on multiple kernel regression for mixed variables publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-013-1029-z – volume: 15 start-page: 928 issue: 2 year: 2015 end-page: 936 ident: CR5 article-title: Low-SAR path discovery by particle swarm optimization algorithm in wireless body area networks publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2014.2354983 – volume: 19 start-page: 746 issue: 5 year: 2015 end-page: 758 ident: CR28 article-title: A multioperator search strategy based on cheap surrogate models for evolutionary optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2449293 – ident: CR41 – volume: 12 start-page: 28 year: 2016 end-page: 37 ident: CR40 article-title: A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2015.11.004 – volume: 13 start-page: 455 issue: 4 year: 1998 ident: 759_CR2 publication-title: J. Glob. Optim. doi: 10.1023/A:1008306431147 – volume: 45 start-page: 1 issue: 1 year: 2015 ident: 759_CR3 publication-title: IEEE Trans. Cybernet. doi: 10.1109/TCYB.2014.2317488 – volume: 451 start-page: 326 year: 2018 ident: 759_CR42 publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.04.024 – volume: 36 start-page: 585 issue: 5 year: 2004 ident: 759_CR6 publication-title: Eng. Optim. doi: 10.1080/03052150410001704854 – ident: 759_CR17 doi: 10.1007/978-3-540-87700-4_78 – volume: 38 start-page: 941 issue: 8 year: 2006 ident: 759_CR23 publication-title: Eng. Optim. doi: 10.1080/03052150600848000 – volume: 43 start-page: 1473 issue: 5 year: 2013 ident: 759_CR4 publication-title: IEEE Trans. Cybernet. doi: 10.1109/TCYB.2013.2250955 – volume: 56 start-page: 669 issue: 2 year: 2013 ident: 759_CR47 publication-title: J. Glob. Optim. doi: 10.1007/s10898-012-9892-5 – volume: 13 start-page: 781 issue: 8 year: 2009 ident: 759_CR34 publication-title: Soft Comput. A Fusion Found. Methodol. Appl. – volume: 1 start-page: 61 issue: 2 year: 2011 ident: 759_CR25 publication-title: Swarm Evolut. Comput. doi: 10.1016/j.swevo.2011.05.001 – ident: 759_CR41 doi: 10.1109/CEC.2015.7256922 – volume: 37 start-page: 113 issue: 1 year: 2007 ident: 759_CR63 publication-title: J. Glob. Optim. doi: 10.1007/s10898-006-9040-1 – volume: 6 start-page: 481 issue: 5 year: 2002 ident: 759_CR21 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2002.800884 – ident: 759_CR45 doi: 10.2514/6.1996-4099 – volume: 18 start-page: 180 issue: 2 year: 2014 ident: 759_CR27 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2248012 – volume: 14 start-page: 329 issue: 3 year: 2010 ident: 759_CR7 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2027359 – ident: 759_CR33 – volume: 181 start-page: 5364 issue: 24 year: 2011 ident: 759_CR59 publication-title: Inf. Sci. doi: 10.1016/j.ins.2011.07.049 – volume: 19 start-page: 746 issue: 5 year: 2015 ident: 759_CR28 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2449293 – volume: 45 start-page: 529 issue: 5 year: 2013 ident: 759_CR67 publication-title: Eng. Optim. doi: 10.1080/0305215X.2012.687731 – volume: 14 start-page: 456 issue: 3 year: 2010 ident: 759_CR18 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2033671 – ident: 759_CR43 doi: 10.1109/CEC.2014.6900351 – volume: 60 start-page: 123 issue: 2 year: 2014 ident: 759_CR35 publication-title: J. Glob. Optim. doi: 10.1007/s10898-014-0184-0 – volume: 10 start-page: 50 issue: 1 year: 2006 ident: 759_CR16 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.851274 – volume: 21 start-page: 644 issue: 4 year: 2017 ident: 759_CR71 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2675628 – ident: 759_CR60 – volume: 19 start-page: 1461 issue: 6 year: 2015 ident: 759_CR36 publication-title: Soft. Comput. doi: 10.1007/s00500-014-1283-z – volume-title: Framework for particle swarm optimization with surrogate functions year: 2009 ident: 759_CR24 – volume: 38 start-page: 837 issue: 5 year: 2011 ident: 759_CR66 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2010.09.013 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 759_CR54 publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 13 start-page: 945 issue: 5 year: 2009 ident: 759_CR55 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2014613 – ident: 759_CR57 – volume: 78 start-page: 1906 issue: 11 year: 2008 ident: 759_CR1 publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2008.03.021 – volume: 10 start-page: 646 issue: 6 year: 2006 ident: 759_CR62 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2006.872133 – volume: 4 start-page: 409 year: 1989 ident: 759_CR50 publication-title: Stat. Sci. doi: 10.1214/ss/1177012413 – ident: 759_CR31 doi: 10.1109/CEC.2007.4425028 – volume: 49 start-page: 979 issue: 6 year: 2014 ident: 759_CR13 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-013-1029-z – volume: 43 start-page: 1316 issue: 6 year: 2005 ident: 759_CR11 publication-title: AIAA J. doi: 10.2514/1.12994 – ident: 759_CR49 – volume: 10 start-page: 66 year: 2009 ident: 759_CR51 publication-title: J. Mach. Learn. Res. – volume: 9 start-page: 3 issue: 1 year: 2005 ident: 759_CR8 publication-title: Soft Comput. A Fusion Found. Methodol. Appl. – ident: 759_CR70 doi: 10.1007/978-1-4614-8987-0_3 – ident: 759_CR26 doi: 10.1007/978-3-642-32964-7_11 – volume: 31 start-page: 153 issue: 1 year: 2005 ident: 759_CR64 publication-title: J. Glob. Optim. doi: 10.1007/s10898-004-0570-0 – ident: 759_CR22 – volume: 12 start-page: 28 year: 2016 ident: 759_CR40 publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2015.11.004 – ident: 759_CR12 doi: 10.1145/1830483.1830571 – ident: 759_CR14 doi: 10.1007/978-3-540-76931-6_23 – volume-title: Engineering Design via Surrogate Modelling: A Practical Guide year: 2008 ident: 759_CR46 doi: 10.1002/9780470770801 – ident: 759_CR68 – ident: 759_CR58 doi: 10.1145/1068009.1068251 – volume: 15 start-page: 37 issue: 01 year: 2001 ident: 759_CR20 publication-title: AI EDAM – volume: 41 start-page: 687 issue: 4 year: 2003 ident: 759_CR29 publication-title: AIAA J. doi: 10.2514/2.1999 – volume-title: SOM Toolbox for Matlab 5 year: 2000 ident: 759_CR53 – ident: 759_CR15 doi: 10.1145/2463372.2465805 – volume: 221 start-page: 355 year: 2013 ident: 759_CR32 publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.09.030 – volume: 46 start-page: 218 issue: 2 year: 2014 ident: 759_CR38 publication-title: Eng. Optim. doi: 10.1080/0305215X.2013.765000 – ident: 759_CR48 doi: 10.1007/978-3-540-28650-9_4 – volume: 100 start-page: 401 issue: 5 year: 1969 ident: 759_CR52 publication-title: IEEE Trans. Comput. doi: 10.1109/T-C.1969.222678 – volume: 15 start-page: 928 issue: 2 year: 2015 ident: 759_CR5 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2014.2354983 – ident: 759_CR9 – volume-title: Differential Evolution—A Practical Approach to Global Optimization. Natural Computing Series year: 2005 ident: 759_CR56 – ident: 759_CR61 – volume: 50 start-page: 797 issue: 4 year: 2012 ident: 759_CR19 publication-title: AIAA J. doi: 10.2514/1.J051018 – volume: 6 start-page: 18 issue: 1 year: 2005 ident: 759_CR10 publication-title: Int. J. Comput. Syst. Signal – volume: 18 start-page: 326 issue: 3 year: 2014 ident: 759_CR39 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2262111 – volume: 41 start-page: 447 issue: 3 year: 2008 ident: 759_CR65 publication-title: J. Glob. Optim. doi: 10.1007/s10898-007-9256-8 – ident: 759_CR69 – volume: 53 start-page: 935 issue: 5 year: 2016 ident: 759_CR37 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-015-1395-9 – volume: 34 start-page: 770 year: 2015 ident: 759_CR44 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.06.010 – ident: 759_CR30 doi: 10.1145/315891.316014 |
SSID | ssj0009852 |
Score | 2.4081469 |
Snippet | Surrogate-assisted evolutionary algorithms (SAEAs) have recently shown excellent ability in solving computationally expensive optimization problems. However,... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 327 |
SubjectTerms | Adaptive algorithms Algorithms Analysis Computer Science Evolutionary algorithms Feedback Genetic algorithms Goal programming Iterative methods Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Real Functions Search methods Strategy |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9gKHqg8QWwryoRJFYGE7TuI9VQW1qiq1QqiVerMcj00P293tJgX13zOT9bI8RC-5xHYeM54Zjz3fx9h-iiVqQgIhAUbC6JiETcaKwksDQaOD7tH1zy-q0ytzdl1e54Rbm49VLm1ib6hhGihH_hFdkS0pnlGHsztBrFG0u5opNJ6wdTTB1g7Y-qfjiy9fV7C7tufckSNdCuytctlMLp6zVF5GRTzoN_H6h2v620D_s1PaO6CTTbaRI0d-tBD1FluLk2327Dc8wW22lWdqyw8ynPS7HdZd_piKscfQmnvwMzJvvL2fz6eUQBMYO5OggcfvWQn9_IH78Tf89u7mlmNMywnSWADRACwgPHjoqSByGnH8wIkmoD8HzzM_TfucXZ0cX34-FZlrQYSitJ0wCkZe1Up7iEFCrEIRZAiVjBhwpKJJOsoIAUyMhQYIlaZ-ARdYSdW1bYoXbDCZTuJLxqsGClUF3Rhc25UgfVSphlDHQEA7ZRoytfzNLmQgcuLDGLsVhDKJxqFoXC8aJ4fs_a8-swUMx6Ot35L0HM1RHDn4XGqA70doV-4IHbLRph5hy72lgF2evK1bqdqQfVgKfXX7_8_dfXy0V-yp7tWtEqrcY4Nufh9fY0jTNW-y3v4E_4n1Fg priority: 102 providerName: ProQuest |
Title | Two-layer adaptive surrogate-assisted evolutionary algorithm for high-dimensional computationally expensive problems |
URI | https://link.springer.com/article/10.1007/s10898-019-00759-0 https://www.proquest.com/docview/2188500991 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD5i2ws8DFZAdIzKD0iAwJLtxEn62KJ2E2gVQqs0nizHl4FU2inJQPv3HKfOuhtIvMSKcuxYOldfzncAXnsnURK8pczaIU2F87TwaUETzVJrBDroFl3_eJYdzdNPp_I0JoXV3W337kiytdTXkt2KkA4Wkm7Qz-FzC3Ykrt3DRa65GG2gdou2zg4bCkklWuGYKnP_GDfc0W2jfOd0tHU60yewG6NFMlqzdw8euGUPHneVGEhUzB48ugYriG_HV1isdQ_2IlVN3kaM6XdPoTn5vaILjfE20VafB5tH6ouqWoVdNYoBdeC-Je5XlExdXRK9OFtVP5rvPwkGuiTgHFMbagOscT2IaWcV9xYXlyTUDmgvx5NYtKZ-BvPp5OTjEY0FGKhJZNHQlNuh5jkX2jrDrMtMYpgxGXMYhfik9MIxZ41NnUuEtSYToZ_BVZfneV6UyXPYXq6W7gWQrLQJz4woU1zwScu04z63JncmoO9I3wfe8UGZiE4eimQs1AZXOfBOIe9UyzvF-vD-qs_5Gpvjn9RvAntVUFwc2eiYf4DzCxBYaoReOhVpPkTKg04CVNToWmEoVMgQT_M-fOikYvP57__d_z_yl_BQtPKZUS4PYLupLtwrjHuacgBbxfRwADuj6Xg8C-3ht88TbMeT2Zevg1YJ_gA_FgEq |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiBZQFwr4AAIEVm3HeewBoQpYtvRx2kq9Gcd2ymHZXTYp1f6p_sbOZB2Wh-itl1xiO1ZmMt_Y8XwfwPMqpOgJlefC-z7XKlS8qHTBEyu0dwoBumXXPzzKhsf6y0l6sgYXXS0MHavsYmIbqP3U0R75DkJRkVI-I9_PfnBSjaK_q52ExtIt9sPiHJds9bu9j2jfF0oNPo0-DHlUFeAuSYuGa-n7VuZSWR-c8CFziRPOZSIgtFZJWakggndeh5Ao712mqJ_DpUQl87woExz3BtzUCSI5VaYPPq9IfotW4Uf0VcpxrjIW6cRSvYKK2ahkCFEar38A4d9w8M9_2RbuBvfgbsxT2e7SsTZgLUw24c5v7IWbsBHjQs1eRfLq1_ehGZ1P-dhiIs-stzMKpqw-m8-ntF3HMVMnt_Is_Iwub-cLZsen-Kabb98ZZtCMCJS5J9GBJWEIc63wRNy0HC8YiRK0p-5ZVMOpH8DxtdjgIaxPppOwBSwrfSIzp0qNK8nUCxtklXuXB0e0PmnVA9m9ZuMi7Tmpb4zNirCZTGPQNKY1jRE9ePOrz2xJ-nFl65dkPUMRAUd2NhY24PyIW8vsIvxrpfM-ttzuDGxiqKjNyrF78LYz-ur2_5_76OrRnsGt4ejwwBzsHe0_htuqdb2My3Qb1pv5WXiCyVRTPm09mMHX6_5kLgGNdDJ3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQLSACBTwAQQIrNreZw4IFdqopRBVqJV6M14_4BCSkN1S5a_x65jZeAkP0Vsve1nbu_KM52F7vg_gcfAZakJwXDg34KnygZchLXliROqsQgfdout_GOX7J-m70-x0DX50tTB0rbKzia2hdlNLe-Tb6IrKjOIZuR3itYij3eHr2TdODFJ00trRaSxV5NAvzjF9q18d7KKsnyg13Dt-u88jwwC3SVY2PJVuYGQhlXHeCudzm1hhbS48utmQVEF54Z11qfeJcs7mivpZTCuCLIqySnDcK7BeUFbUg_U3e6OjjyvI37Ll-xEDlXH8cxlLdmLhXkmlbVRAhD4bn3-4xb-dwz-ntK3zG96EGzFqZTtLNduANT_ZhOu_YRluwka0EjV7FqGsn9-C5vh8yscGw3pmnJmRaWX12Xw-pc07jnE7KZlj_ntcAGa-YGb8Gee6-fKVYTzNCE6ZO6IgWMKHMNvSUMQtzPGCEUVBewefRW6c-jacXIoU7kBvMp34u8DyyiUyt6pKMa_MnDBehsLZwlsC-clCH2Q3zdpGEHTi4hjrFXwziUajaHQrGi368OJXn9kSAuTC1k9JeprsA45sTSxzwP8jpC29g8FAqtJigC23OgHraDhqvVLzPrzshL56_f_v3rt4tEdwFZeLfn8wOrwP11SreTmX2Rb0mvmZf4CRVVM9jCrM4NNlr5qf0Bw4CQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-layer+adaptive+surrogate-assisted+evolutionary+algorithm+for+high-dimensional+computationally+expensive+problems&rft.jtitle=Journal+of+global+optimization&rft.au=Yang%2C+Zan&rft.au=Qiu%2C+Haobo&rft.au=Gao%2C+Liang&rft.au=Jiang%2C+Chen&rft.date=2019-06-15&rft.pub=Springer+US&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=74&rft.issue=2&rft.spage=327&rft.epage=359&rft_id=info:doi/10.1007%2Fs10898-019-00759-0&rft.externalDocID=10_1007_s10898_019_00759_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon |