Two-layer adaptive surrogate-assisted evolutionary algorithm for high-dimensional computationally expensive problems

Surrogate-assisted evolutionary algorithms (SAEAs) have recently shown excellent ability in solving computationally expensive optimization problems. However, with the increase of dimensions of research problems, the effectiveness of SAEAs for high-dimensional problems still needs to be improved furt...

Full description

Saved in:
Bibliographic Details
Published inJournal of global optimization Vol. 74; no. 2; pp. 327 - 359
Main Authors Yang, Zan, Qiu, Haobo, Gao, Liang, Jiang, Chen, Zhang, Jinhao
Format Journal Article
LanguageEnglish
Published New York Springer US 15.06.2019
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Surrogate-assisted evolutionary algorithms (SAEAs) have recently shown excellent ability in solving computationally expensive optimization problems. However, with the increase of dimensions of research problems, the effectiveness of SAEAs for high-dimensional problems still needs to be improved further. In this paper, a two-layer adaptive surrogate-assisted evolutionary algorithm is proposed, in which three different search strategies are adaptively executed during the iteration according to the feedback information which is proposed to measure the status of the algorithm approaching the optimal value. In the proposed method, the global GP model is used to pre-screen the offspring produced by the DE/current-to-best/1 strategy for fast convergence speed, and the DE/current-to-randbest/1 strategy is proposed to guide the global GP model to locate promising regions when the feedback information reaches a presetting threshold. Moreover, a local search strategy (DE/best/1) is used to guide the local GP model which is built by using individuals closest to the current best individual to intensively exploit the promising regions. Furthermore, a dimension reduction technique is used to construct a reasonably accurate GP model for high-dimensional expensive problems. Empirical studies on benchmark problems with 50 and 100 variables demonstrate that the proposed algorithm is able to find high-quality solutions for high-dimensional problems under a limited computational budget.
AbstractList Surrogate-assisted evolutionary algorithms (SAEAs) have recently shown excellent ability in solving computationally expensive optimization problems. However, with the increase of dimensions of research problems, the effectiveness of SAEAs for high-dimensional problems still needs to be improved further. In this paper, a two-layer adaptive surrogate-assisted evolutionary algorithm is proposed, in which three different search strategies are adaptively executed during the iteration according to the feedback information which is proposed to measure the status of the algorithm approaching the optimal value. In the proposed method, the global GP model is used to pre-screen the offspring produced by the DE/current-to-best/1 strategy for fast convergence speed, and the DE/current-to-randbest/1 strategy is proposed to guide the global GP model to locate promising regions when the feedback information reaches a presetting threshold. Moreover, a local search strategy (DE/best/1) is used to guide the local GP model which is built by using individuals closest to the current best individual to intensively exploit the promising regions. Furthermore, a dimension reduction technique is used to construct a reasonably accurate GP model for high-dimensional expensive problems. Empirical studies on benchmark problems with 50 and 100 variables demonstrate that the proposed algorithm is able to find high-quality solutions for high-dimensional problems under a limited computational budget.
Audience Academic
Author Zhang, Jinhao
Gao, Liang
Jiang, Chen
Yang, Zan
Qiu, Haobo
Author_xml – sequence: 1
  givenname: Zan
  surname: Yang
  fullname: Yang, Zan
  organization: The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology
– sequence: 2
  givenname: Haobo
  surname: Qiu
  fullname: Qiu, Haobo
  email: hobbyqiu@163.com
  organization: The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology
– sequence: 3
  givenname: Liang
  surname: Gao
  fullname: Gao, Liang
  organization: The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology
– sequence: 4
  givenname: Chen
  surname: Jiang
  fullname: Jiang, Chen
  organization: The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology
– sequence: 5
  givenname: Jinhao
  surname: Zhang
  fullname: Zhang, Jinhao
  organization: The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology
BookMark eNp9kcFu3CAQhlGUSt2kfYGeLPVMMmB7DccoatNKkXpJz4iFsZcIGwdw2n374LhSpB4iJNAw883A_1-Q8ylMSMgXBlcMoLtODIQUFJikJWzLfkZ2rO1qyiXbn5MdSN7SFoB9JBcpPQKAFC3fkfzwJ1CvTxgrbfWc3TNWaYkxDDoj1Sm5lNFW-Bz8kl2YdDxV2g8hunwcqz7E6uiGI7VuxCmteV-ZMM5L1q_V3p8q_DuvudJ4juHgcUyfyIde-4Sf_52X5Pf3bw-3P-j9r7uftzf31NStyLRhVmrWMa4tGrC4N7UBY_aArG37-tBzBLTGNog1t9bs-coZYE3Puk4c6kvydetbBj8tmLJ6DEssr0qKMyGKHFKyUnW1VQ3ao3JTH3LUpiyLozNF596V-5uOiYY3nYQC8A0wMaQUsVdzdGNRRjFQqx1qs0MVO9SrHWqFxH-QcZtIZZrz76P1hqYyZxowvn3jHeoFOtulYA
CitedBy_id crossref_primary_10_1109_TSMC_2021_3102298
crossref_primary_10_1016_j_engappai_2022_104685
crossref_primary_10_1016_j_eswa_2024_126103
crossref_primary_10_1007_s41965_024_00165_w
crossref_primary_10_1016_j_asoc_2020_106812
crossref_primary_10_1007_s40747_021_00484_w
crossref_primary_10_1016_j_asoc_2020_106934
crossref_primary_10_1109_TCYB_2020_2967553
crossref_primary_10_1016_j_asoc_2023_111194
crossref_primary_10_1109_TSMC_2022_3219080
crossref_primary_10_1109_TEVC_2021_3067015
crossref_primary_10_1109_TCYB_2022_3175533
crossref_primary_10_1007_s10898_020_00923_x
crossref_primary_10_1016_j_ress_2020_107169
crossref_primary_10_1007_s00500_023_07845_2
crossref_primary_10_1016_j_swevo_2025_101879
crossref_primary_10_1016_j_asoc_2023_110733
crossref_primary_10_1007_s12065_023_00882_8
crossref_primary_10_1016_j_matdes_2024_113055
crossref_primary_10_1016_j_ins_2022_12_004
crossref_primary_10_1109_TEVC_2021_3113923
crossref_primary_10_1007_s00521_024_09903_8
crossref_primary_10_1007_s12065_023_00862_y
crossref_primary_10_1109_JAS_2022_105425
crossref_primary_10_1109_JAS_2024_124320
crossref_primary_10_1007_s40747_023_01168_3
crossref_primary_10_1016_j_swevo_2024_101629
crossref_primary_10_3390_math13010158
crossref_primary_10_1080_0305215X_2023_2170367
crossref_primary_10_1016_j_asoc_2023_110228
crossref_primary_10_1016_j_asoc_2025_112727
crossref_primary_10_1016_j_asoc_2020_107001
crossref_primary_10_1016_j_swevo_2023_101446
crossref_primary_10_1016_j_swevo_2022_101169
crossref_primary_10_1016_j_swevo_2024_101587
crossref_primary_10_1109_TEVC_2023_3287213
Cites_doi 10.1007/s10898-014-0184-0
10.1109/TCYB.2014.2317488
10.1016/j.cor.2010.09.013
10.1007/s00500-014-1283-z
10.1109/TEVC.2005.851274
10.1016/j.ins.2011.07.049
10.1109/TEVC.2009.2033671
10.1007/s00158-015-1395-9
10.1016/j.swevo.2011.05.001
10.1016/j.ins.2018.04.024
10.1109/TEVC.2017.2675628
10.1109/TEVC.2006.872133
10.1007/s10898-004-0570-0
10.1080/03052150410001704854
10.1016/j.epsr.2008.03.021
10.1109/TEVC.2009.2027359
10.1016/j.ins.2012.09.030
10.1109/TEVC.2002.800884
10.1002/9780470770801
10.1080/0305215X.2013.765000
10.1080/0305215X.2012.687731
10.1023/A:1008306431147
10.2514/1.J051018
10.1109/T-C.1969.222678
10.1080/03052150600848000
10.1007/s10898-012-9892-5
10.1109/TEVC.2009.2014613
10.1023/A:1008202821328
10.2514/1.12994
10.1109/TEVC.2013.2262111
10.1016/j.asoc.2015.06.010
10.1109/TEVC.2013.2248012
10.1109/TCYB.2013.2250955
10.1007/s10898-006-9040-1
10.1007/s10898-007-9256-8
10.2514/2.1999
10.1214/ss/1177012413
10.1007/s00158-013-1029-z
10.1109/JSEN.2014.2354983
10.1109/TEVC.2015.2449293
10.1016/j.jocs.2015.11.004
10.1007/978-3-540-87700-4_78
10.1109/CEC.2015.7256922
10.2514/6.1996-4099
10.1109/CEC.2014.6900351
10.1109/CEC.2007.4425028
10.1007/978-1-4614-8987-0_3
10.1007/978-3-642-32964-7_11
10.1145/1830483.1830571
10.1007/978-3-540-76931-6_23
10.1145/1068009.1068251
10.1145/2463372.2465805
10.1007/978-3-540-28650-9_4
10.1145/315891.316014
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
COPYRIGHT 2019 Springer
Journal of Global Optimization is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: COPYRIGHT 2019 Springer
– notice: Journal of Global Optimization is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10898-019-00759-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 359
ExternalDocumentID A718424790
10_1007_s10898_019_00759_0
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: No. 51721092; No 51675198
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation for Distinguished Young Scholars of China
  grantid: No.51825502
GroupedDBID -52
-57
-5G
-BR
-EM
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29K
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CCPQU
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SBE
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
AAPKM
AARHV
AAYOK
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AI.
AIXLP
AJBLW
AMVHM
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCLPG
T16
TEORI
UZXMN
VFIZW
VH1
ZWQNP
ZY4
AEIIB
PMFND
3V.
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-41d9a1712adec0de6c3c0cc60e155f3bf2e0edcd4ee32ddc62c358c014f1778b3
IEDL.DBID U2A
ISSN 0925-5001
IngestDate Sat Aug 16 09:21:13 EDT 2025
Tue Jun 10 20:37:42 EDT 2025
Tue Jul 01 00:53:00 EDT 2025
Thu Apr 24 22:53:51 EDT 2025
Fri Feb 21 02:42:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Differential evolution
Dimension reduction technique
Surrogate-assisted evolutionary algorithms
Computationally expensive problems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-41d9a1712adec0de6c3c0cc60e155f3bf2e0edcd4ee32ddc62c358c014f1778b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2188500991
PQPubID 29930
PageCount 33
ParticipantIDs proquest_journals_2188500991
gale_infotracacademiconefile_A718424790
crossref_primary_10_1007_s10898_019_00759_0
crossref_citationtrail_10_1007_s10898_019_00759_0
springer_journals_10_1007_s10898_019_00759_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190615
PublicationDateYYYYMMDD 2019-06-15
PublicationDate_xml – month: 6
  year: 2019
  text: 20190615
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2019
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Nguyen, Zhang, Johnston, Tan (CR3) 2015; 45
Awad, Ali, Mallipeddi, Suganthan (CR42) 2018; 451
Jin (CR25) 2011; 1
Regis, Shoemaker (CR63) 2007; 37
Parno, Fowler, Hemker (CR24) 2009
Mallipeddi, Lee (CR44) 2015; 34
Gong, Zhou, Cai (CR28) 2015; 19
Van Der Maaten, Postma, Van den Herik (CR51) 2009; 10
CR33
CR31
CR30
Liu, Zhang, Gielen (CR27) 2014; 18
Sun, Jin, Zeng, Yu (CR36) 2015; 19
CR70
Brest, Greiner, Boskovic, Mernik, Zumer (CR62) 2006; 10
Ahmed, Qin (CR19) 2012; 50
Gaspar-Cunha, Vieira (CR10) 2005; 6
Regis (CR66) 2011; 38
Tenne, Armfield (CR34) 2009; 13
Zhang, Liu, Tsang, Virginas (CR18) 2010; 14
Regis, Shoemaker (CR67) 2013; 45
CR9
CR49
Ratle (CR20) 2001; 15
CR48
Sacks, Welch, Mitchell, Wynn (CR50) 1989; 4
Storn, Price (CR54) 1997; 11
CR45
Regis (CR38) 2014; 46
CR43
Liu, Koziel, Zhang (CR40) 2016; 12
CR41
El-Ela, Fetouh, Bishr, Saleh (CR1) 2008; 78
Forrester, Sobester, Keane (CR46) 2008
Herrera, Guglielmetti, Xiao, Coelho (CR13) 2014; 49
Zhang, Sanderson (CR55) 2009; 13
Jones, Schonlau, Welch (CR2) 1998; 13
CR17
CR15
CR14
CR58
Yoon, Kim (CR4) 2013; 43
CR57
CR12
Viana, Haftka, Watson (CR47) 2013; 56
Lim, Jin, Ong, Sendhoff (CR7) 2010; 14
Jin (CR8) 2005; 9
Müller, Shoemaker (CR35) 2014; 60
Price, Storn, Lampinen (CR56) 2005
Sun, Jin, Cheng, Ding, Zeng (CR71) 2017; 21
Holmström (CR65) 2008; 41
Vesanto, Himberg, Alhoniemi, Parhankangas (CR53) 2000
Jin, Olhofer, Sendhoff (CR21) 2002; 6
Sun, Zeng, Pan, Xue, Jin (CR32) 2013; 221
Knowles (CR16) 2006; 10
Bouhlel, Bartoli, Otsmane, Morlier (CR37) 2016; 53
CR26
Lian, Liou (CR11) 2005; 43
CR69
He, Prempain, Wu (CR6) 2004; 36
CR68
Ong, Nair, Keane (CR29) 2003; 41
CR22
Regis (CR39) 2014; 18
Karakasis, Giannakoglou (CR23) 2006; 38
CR61
CR60
Regis, Shoemaker (CR64) 2005; 31
Wu, Lin (CR5) 2015; 15
Sammon (CR52) 1969; 100
Gong, Fialho, Cai, Li (CR59) 2011; 181
W Gong (759_CR28) 2015; 19
DR Jones (759_CR2) 1998; 13
Y Tenne (759_CR34) 2009; 13
Y Jin (759_CR25) 2011; 1
759_CR70
Q Zhang (759_CR18) 2010; 14
J Brest (759_CR62) 2006; 10
D Lim (759_CR7) 2010; 14
A Gaspar-Cunha (759_CR10) 2005; 6
R Mallipeddi (759_CR44) 2015; 34
FA Viana (759_CR47) 2013; 56
Y Yoon (759_CR4) 2013; 43
JW Sammon (759_CR52) 1969; 100
L Maaten Van Der (759_CR51) 2009; 10
B Liu (759_CR27) 2014; 18
759_CR31
J Vesanto (759_CR53) 2000
Y Jin (759_CR21) 2002; 6
759_CR30
RG Regis (759_CR67) 2013; 45
759_CR33
Y Jin (759_CR8) 2005; 9
759_CR60
R Storn (759_CR54) 1997; 11
759_CR61
759_CR9
J Zhang (759_CR55) 2009; 13
C Sun (759_CR71) 2017; 21
Y Lian (759_CR11) 2005; 43
RG Regis (759_CR66) 2011; 38
759_CR22
J Müller (759_CR35) 2014; 60
759_CR68
W Gong (759_CR59) 2011; 181
759_CR26
MA Bouhlel (759_CR37) 2016; 53
759_CR69
T-Y Wu (759_CR5) 2015; 15
RG Regis (759_CR39) 2014; 18
RG Regis (759_CR38) 2014; 46
K Holmström (759_CR65) 2008; 41
NH Awad (759_CR42) 2018; 451
RG Regis (759_CR64) 2005; 31
C Sun (759_CR32) 2013; 221
759_CR17
S He (759_CR6) 2004; 36
J Sacks (759_CR50) 1989; 4
AA El-Ela (759_CR1) 2008; 78
M Karakasis (759_CR23) 2006; 38
B Liu (759_CR40) 2016; 12
RG Regis (759_CR63) 2007; 37
YS Ong (759_CR29) 2003; 41
J Knowles (759_CR16) 2006; 10
759_CR57
759_CR12
M Herrera (759_CR13) 2014; 49
M Ahmed (759_CR19) 2012; 50
759_CR15
S Nguyen (759_CR3) 2015; 45
759_CR14
759_CR58
A Ratle (759_CR20) 2001; 15
MD Parno (759_CR24) 2009
KV Price (759_CR56) 2005
759_CR49
C Sun (759_CR36) 2015; 19
A Forrester (759_CR46) 2008
759_CR41
759_CR43
759_CR45
759_CR48
References_xml – ident: CR45
– ident: CR70
– ident: CR22
– volume: 60
  start-page: 123
  issue: 2
  year: 2014
  end-page: 144
  ident: CR35
  article-title: Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-014-0184-0
– volume: 45
  start-page: 1
  issue: 1
  year: 2015
  end-page: 14
  ident: CR3
  article-title: Automatic programming via iterated local search for dynamic job shop scheduling
  publication-title: IEEE Trans. Cybernet.
  doi: 10.1109/TCYB.2014.2317488
– ident: CR49
– ident: CR68
– volume: 38
  start-page: 837
  issue: 5
  year: 2011
  end-page: 853
  ident: CR66
  article-title: Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2010.09.013
– ident: CR12
– volume: 19
  start-page: 1461
  issue: 6
  year: 2015
  end-page: 1475
  ident: CR36
  article-title: A two-layer surrogate-assisted particle swarm optimization algorithm
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-014-1283-z
– volume: 10
  start-page: 50
  issue: 1
  year: 2006
  end-page: 66
  ident: CR16
  article-title: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.851274
– volume: 10
  start-page: 66
  year: 2009
  end-page: 71
  ident: CR51
  article-title: Dimensionality reduction: a comparative
  publication-title: J. Mach. Learn. Res.
– ident: CR61
– volume: 181
  start-page: 5364
  issue: 24
  year: 2011
  end-page: 5386
  ident: CR59
  article-title: Adaptive strategy selection in differential evolution for numerical optimization: an empirical study
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.07.049
– ident: CR58
– volume: 9
  start-page: 3
  issue: 1
  year: 2005
  end-page: 12
  ident: CR8
  article-title: A comprehensive survey of fitness approximation in evolutionary computation
  publication-title: Soft Comput. A Fusion Found. Methodol. Appl.
– volume: 14
  start-page: 456
  issue: 3
  year: 2010
  end-page: 474
  ident: CR18
  article-title: Expensive multiobjective optimization by MOEA/D with Gaussian process model
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2033671
– volume: 53
  start-page: 935
  issue: 5
  year: 2016
  end-page: 952
  ident: CR37
  article-title: Improving kriging surrogates of high-dimensional design models by Partial Least Squares dimension reduction
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-015-1395-9
– volume: 1
  start-page: 61
  issue: 2
  year: 2011
  end-page: 70
  ident: CR25
  article-title: Surrogate-assisted evolutionary computation: recent advances and future challenges
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2011.05.001
– volume: 13
  start-page: 781
  issue: 8
  year: 2009
  end-page: 793
  ident: CR34
  article-title: A framework for memetic optimization using variable global and local surrogate models
  publication-title: Soft Comput. A Fusion Found. Methodol. Appl.
– volume: 451
  start-page: 326
  year: 2018
  end-page: 347
  ident: CR42
  article-title: An improved differential evolution algorithm using efficient adapted surrogate model for numerical optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.04.024
– volume: 21
  start-page: 644
  issue: 4
  year: 2017
  end-page: 660
  ident: CR71
  article-title: Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2675628
– year: 2009
  ident: CR24
  publication-title: Framework for particle swarm optimization with surrogate functions
– ident: CR15
– volume: 10
  start-page: 646
  issue: 6
  year: 2006
  end-page: 657
  ident: CR62
  article-title: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2006.872133
– volume: 31
  start-page: 153
  issue: 1
  year: 2005
  end-page: 171
  ident: CR64
  article-title: Constrained global optimization of expensive black box functions using radial basis functions
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-004-0570-0
– volume: 36
  start-page: 585
  issue: 5
  year: 2004
  end-page: 605
  ident: CR6
  article-title: An improved particle swarm optimizer for mechanical design optimization problems
  publication-title: Eng. Optim.
  doi: 10.1080/03052150410001704854
– volume: 78
  start-page: 1906
  issue: 11
  year: 2008
  end-page: 1913
  ident: CR1
  article-title: Power systems operation using particle swarm optimization technique
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2008.03.021
– ident: CR9
– ident: CR57
– ident: CR60
– volume: 14
  start-page: 329
  issue: 3
  year: 2010
  end-page: 355
  ident: CR7
  article-title: Generalizing surrogate-assisted evolutionary computation
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2027359
– volume: 221
  start-page: 355
  year: 2013
  end-page: 370
  ident: CR32
  article-title: A new fitness estimation strategy for particle swarm optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.09.030
– volume: 6
  start-page: 481
  issue: 5
  year: 2002
  end-page: 494
  ident: CR21
  article-title: A framework for evolutionary optimization with approximate fitness functions
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2002.800884
– year: 2008
  ident: CR46
  publication-title: Engineering Design via Surrogate Modelling: A Practical Guide
  doi: 10.1002/9780470770801
– ident: CR26
– volume: 46
  start-page: 218
  issue: 2
  year: 2014
  end-page: 243
  ident: CR38
  article-title: Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2013.765000
– volume: 45
  start-page: 529
  issue: 5
  year: 2013
  end-page: 555
  ident: CR67
  article-title: Combining radial basis function surrogates and dynamic coordinate search in high-dimensional expensive black-box optimization
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2012.687731
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  end-page: 492
  ident: CR2
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008306431147
– volume: 50
  start-page: 797
  issue: 4
  year: 2012
  end-page: 810
  ident: CR19
  article-title: Surrogate-based multi-objective aerothermodynamic design optimization of hypersonic spiked bodies
  publication-title: AIAA J.
  doi: 10.2514/1.J051018
– volume: 15
  start-page: 37
  issue: 01
  year: 2001
  end-page: 49
  ident: CR20
  article-title: Kriging as a surrogate fitness landscape in evolutionary optimization
  publication-title: AI EDAM
– volume: 100
  start-page: 401
  issue: 5
  year: 1969
  end-page: 409
  ident: CR52
  article-title: A nonlinear mapping for data structure analysis
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/T-C.1969.222678
– volume: 38
  start-page: 941
  issue: 8
  year: 2006
  end-page: 957
  ident: CR23
  article-title: On the use of metamodel-assisted, multi-objective evolutionary algorithms
  publication-title: Eng. Optim.
  doi: 10.1080/03052150600848000
– ident: CR43
– volume: 56
  start-page: 669
  issue: 2
  year: 2013
  end-page: 689
  ident: CR47
  article-title: Efficient global optimization algorithm assisted by multiple surrogate techniques
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-012-9892-5
– volume: 6
  start-page: 18
  issue: 1
  year: 2005
  end-page: 36
  ident: CR10
  article-title: A multi-objective evolutionary algorithm using neural networks to approximate fitness evaluations
  publication-title: Int. J. Comput. Syst. Signal
– ident: CR14
– year: 2000
  ident: CR53
  publication-title: SOM Toolbox for Matlab 5
– ident: CR30
– volume: 13
  start-page: 945
  issue: 5
  year: 2009
  end-page: 958
  ident: CR55
  article-title: JADE: adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2014613
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  end-page: 359
  ident: CR54
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– ident: CR33
– volume: 43
  start-page: 1316
  issue: 6
  year: 2005
  end-page: 1325
  ident: CR11
  article-title: Multiobjective optimization using coupled response surface model and evolutionary algorithm
  publication-title: AIAA J.
  doi: 10.2514/1.12994
– volume: 18
  start-page: 326
  issue: 3
  year: 2014
  end-page: 347
  ident: CR39
  article-title: Evolutionary programming for high-dimensional constrained expensive black-box optimization using radial basis functions
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2262111
– volume: 34
  start-page: 770
  year: 2015
  end-page: 787
  ident: CR44
  article-title: An evolving surrogate model-based differential evolution algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.06.010
– volume: 18
  start-page: 180
  issue: 2
  year: 2014
  end-page: 192
  ident: CR27
  article-title: A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2248012
– ident: CR69
– volume: 43
  start-page: 1473
  issue: 5
  year: 2013
  end-page: 1483
  ident: CR4
  article-title: An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks
  publication-title: IEEE Trans. Cybernet.
  doi: 10.1109/TCYB.2013.2250955
– ident: CR48
– volume: 37
  start-page: 113
  issue: 1
  year: 2007
  end-page: 135
  ident: CR63
  article-title: Improved strategies for radial basis function methods for global optimization
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-006-9040-1
– volume: 41
  start-page: 447
  issue: 3
  year: 2008
  end-page: 464
  ident: CR65
  article-title: An adaptive radial basis algorithm (ARBF) for expensive black-box global optimization
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-007-9256-8
– year: 2005
  ident: CR56
  publication-title: Differential Evolution—A Practical Approach to Global Optimization. Natural Computing Series
– ident: CR17
– volume: 41
  start-page: 687
  issue: 4
  year: 2003
  end-page: 696
  ident: CR29
  article-title: Evolutionary optimization of computationally expensive problems via surrogate modeling
  publication-title: AIAA J.
  doi: 10.2514/2.1999
– ident: CR31
– volume: 4
  start-page: 409
  year: 1989
  end-page: 423
  ident: CR50
  article-title: Design and analysis of computer experiments
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1177012413
– volume: 49
  start-page: 979
  issue: 6
  year: 2014
  end-page: 991
  ident: CR13
  article-title: Metamodel-assisted optimization based on multiple kernel regression for mixed variables
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-013-1029-z
– volume: 15
  start-page: 928
  issue: 2
  year: 2015
  end-page: 936
  ident: CR5
  article-title: Low-SAR path discovery by particle swarm optimization algorithm in wireless body area networks
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2014.2354983
– volume: 19
  start-page: 746
  issue: 5
  year: 2015
  end-page: 758
  ident: CR28
  article-title: A multioperator search strategy based on cheap surrogate models for evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2449293
– ident: CR41
– volume: 12
  start-page: 28
  year: 2016
  end-page: 37
  ident: CR40
  article-title: A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2015.11.004
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  ident: 759_CR2
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008306431147
– volume: 45
  start-page: 1
  issue: 1
  year: 2015
  ident: 759_CR3
  publication-title: IEEE Trans. Cybernet.
  doi: 10.1109/TCYB.2014.2317488
– volume: 451
  start-page: 326
  year: 2018
  ident: 759_CR42
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.04.024
– volume: 36
  start-page: 585
  issue: 5
  year: 2004
  ident: 759_CR6
  publication-title: Eng. Optim.
  doi: 10.1080/03052150410001704854
– ident: 759_CR17
  doi: 10.1007/978-3-540-87700-4_78
– volume: 38
  start-page: 941
  issue: 8
  year: 2006
  ident: 759_CR23
  publication-title: Eng. Optim.
  doi: 10.1080/03052150600848000
– volume: 43
  start-page: 1473
  issue: 5
  year: 2013
  ident: 759_CR4
  publication-title: IEEE Trans. Cybernet.
  doi: 10.1109/TCYB.2013.2250955
– volume: 56
  start-page: 669
  issue: 2
  year: 2013
  ident: 759_CR47
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-012-9892-5
– volume: 13
  start-page: 781
  issue: 8
  year: 2009
  ident: 759_CR34
  publication-title: Soft Comput. A Fusion Found. Methodol. Appl.
– volume: 1
  start-page: 61
  issue: 2
  year: 2011
  ident: 759_CR25
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2011.05.001
– ident: 759_CR41
  doi: 10.1109/CEC.2015.7256922
– volume: 37
  start-page: 113
  issue: 1
  year: 2007
  ident: 759_CR63
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-006-9040-1
– volume: 6
  start-page: 481
  issue: 5
  year: 2002
  ident: 759_CR21
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2002.800884
– ident: 759_CR45
  doi: 10.2514/6.1996-4099
– volume: 18
  start-page: 180
  issue: 2
  year: 2014
  ident: 759_CR27
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2248012
– volume: 14
  start-page: 329
  issue: 3
  year: 2010
  ident: 759_CR7
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2027359
– ident: 759_CR33
– volume: 181
  start-page: 5364
  issue: 24
  year: 2011
  ident: 759_CR59
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.07.049
– volume: 19
  start-page: 746
  issue: 5
  year: 2015
  ident: 759_CR28
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2449293
– volume: 45
  start-page: 529
  issue: 5
  year: 2013
  ident: 759_CR67
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2012.687731
– volume: 14
  start-page: 456
  issue: 3
  year: 2010
  ident: 759_CR18
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2033671
– ident: 759_CR43
  doi: 10.1109/CEC.2014.6900351
– volume: 60
  start-page: 123
  issue: 2
  year: 2014
  ident: 759_CR35
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-014-0184-0
– volume: 10
  start-page: 50
  issue: 1
  year: 2006
  ident: 759_CR16
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.851274
– volume: 21
  start-page: 644
  issue: 4
  year: 2017
  ident: 759_CR71
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2675628
– ident: 759_CR60
– volume: 19
  start-page: 1461
  issue: 6
  year: 2015
  ident: 759_CR36
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-014-1283-z
– volume-title: Framework for particle swarm optimization with surrogate functions
  year: 2009
  ident: 759_CR24
– volume: 38
  start-page: 837
  issue: 5
  year: 2011
  ident: 759_CR66
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2010.09.013
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 759_CR54
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 13
  start-page: 945
  issue: 5
  year: 2009
  ident: 759_CR55
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2014613
– ident: 759_CR57
– volume: 78
  start-page: 1906
  issue: 11
  year: 2008
  ident: 759_CR1
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2008.03.021
– volume: 10
  start-page: 646
  issue: 6
  year: 2006
  ident: 759_CR62
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2006.872133
– volume: 4
  start-page: 409
  year: 1989
  ident: 759_CR50
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1177012413
– ident: 759_CR31
  doi: 10.1109/CEC.2007.4425028
– volume: 49
  start-page: 979
  issue: 6
  year: 2014
  ident: 759_CR13
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-013-1029-z
– volume: 43
  start-page: 1316
  issue: 6
  year: 2005
  ident: 759_CR11
  publication-title: AIAA J.
  doi: 10.2514/1.12994
– ident: 759_CR49
– volume: 10
  start-page: 66
  year: 2009
  ident: 759_CR51
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 3
  issue: 1
  year: 2005
  ident: 759_CR8
  publication-title: Soft Comput. A Fusion Found. Methodol. Appl.
– ident: 759_CR70
  doi: 10.1007/978-1-4614-8987-0_3
– ident: 759_CR26
  doi: 10.1007/978-3-642-32964-7_11
– volume: 31
  start-page: 153
  issue: 1
  year: 2005
  ident: 759_CR64
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-004-0570-0
– ident: 759_CR22
– volume: 12
  start-page: 28
  year: 2016
  ident: 759_CR40
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2015.11.004
– ident: 759_CR12
  doi: 10.1145/1830483.1830571
– ident: 759_CR14
  doi: 10.1007/978-3-540-76931-6_23
– volume-title: Engineering Design via Surrogate Modelling: A Practical Guide
  year: 2008
  ident: 759_CR46
  doi: 10.1002/9780470770801
– ident: 759_CR68
– ident: 759_CR58
  doi: 10.1145/1068009.1068251
– volume: 15
  start-page: 37
  issue: 01
  year: 2001
  ident: 759_CR20
  publication-title: AI EDAM
– volume: 41
  start-page: 687
  issue: 4
  year: 2003
  ident: 759_CR29
  publication-title: AIAA J.
  doi: 10.2514/2.1999
– volume-title: SOM Toolbox for Matlab 5
  year: 2000
  ident: 759_CR53
– ident: 759_CR15
  doi: 10.1145/2463372.2465805
– volume: 221
  start-page: 355
  year: 2013
  ident: 759_CR32
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.09.030
– volume: 46
  start-page: 218
  issue: 2
  year: 2014
  ident: 759_CR38
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2013.765000
– ident: 759_CR48
  doi: 10.1007/978-3-540-28650-9_4
– volume: 100
  start-page: 401
  issue: 5
  year: 1969
  ident: 759_CR52
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/T-C.1969.222678
– volume: 15
  start-page: 928
  issue: 2
  year: 2015
  ident: 759_CR5
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2014.2354983
– ident: 759_CR9
– volume-title: Differential Evolution—A Practical Approach to Global Optimization. Natural Computing Series
  year: 2005
  ident: 759_CR56
– ident: 759_CR61
– volume: 50
  start-page: 797
  issue: 4
  year: 2012
  ident: 759_CR19
  publication-title: AIAA J.
  doi: 10.2514/1.J051018
– volume: 6
  start-page: 18
  issue: 1
  year: 2005
  ident: 759_CR10
  publication-title: Int. J. Comput. Syst. Signal
– volume: 18
  start-page: 326
  issue: 3
  year: 2014
  ident: 759_CR39
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2262111
– volume: 41
  start-page: 447
  issue: 3
  year: 2008
  ident: 759_CR65
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-007-9256-8
– ident: 759_CR69
– volume: 53
  start-page: 935
  issue: 5
  year: 2016
  ident: 759_CR37
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-015-1395-9
– volume: 34
  start-page: 770
  year: 2015
  ident: 759_CR44
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.06.010
– ident: 759_CR30
  doi: 10.1145/315891.316014
SSID ssj0009852
Score 2.4081469
Snippet Surrogate-assisted evolutionary algorithms (SAEAs) have recently shown excellent ability in solving computationally expensive optimization problems. However,...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 327
SubjectTerms Adaptive algorithms
Algorithms
Analysis
Computer Science
Evolutionary algorithms
Feedback
Genetic algorithms
Goal programming
Iterative methods
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Real Functions
Search methods
Strategy
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9gKHqg8QWwryoRJFYGE7TuI9VQW1qiq1QqiVerMcj00P293tJgX13zOT9bI8RC-5xHYeM54Zjz3fx9h-iiVqQgIhAUbC6JiETcaKwksDQaOD7tH1zy-q0ytzdl1e54Rbm49VLm1ib6hhGihH_hFdkS0pnlGHsztBrFG0u5opNJ6wdTTB1g7Y-qfjiy9fV7C7tufckSNdCuytctlMLp6zVF5GRTzoN_H6h2v620D_s1PaO6CTTbaRI0d-tBD1FluLk2327Dc8wW22lWdqyw8ynPS7HdZd_piKscfQmnvwMzJvvL2fz6eUQBMYO5OggcfvWQn9_IH78Tf89u7mlmNMywnSWADRACwgPHjoqSByGnH8wIkmoD8HzzM_TfucXZ0cX34-FZlrQYSitJ0wCkZe1Up7iEFCrEIRZAiVjBhwpKJJOsoIAUyMhQYIlaZ-ARdYSdW1bYoXbDCZTuJLxqsGClUF3Rhc25UgfVSphlDHQEA7ZRoytfzNLmQgcuLDGLsVhDKJxqFoXC8aJ4fs_a8-swUMx6Ot35L0HM1RHDn4XGqA70doV-4IHbLRph5hy72lgF2evK1bqdqQfVgKfXX7_8_dfXy0V-yp7tWtEqrcY4Nufh9fY0jTNW-y3v4E_4n1Fg
  priority: 102
  providerName: ProQuest
Title Two-layer adaptive surrogate-assisted evolutionary algorithm for high-dimensional computationally expensive problems
URI https://link.springer.com/article/10.1007/s10898-019-00759-0
https://www.proquest.com/docview/2188500991
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD5i2ws8DFZAdIzKD0iAwJLtxEn62KJ2E2gVQqs0nizHl4FU2inJQPv3HKfOuhtIvMSKcuxYOldfzncAXnsnURK8pczaIU2F87TwaUETzVJrBDroFl3_eJYdzdNPp_I0JoXV3W337kiytdTXkt2KkA4Wkm7Qz-FzC3Ykrt3DRa65GG2gdou2zg4bCkklWuGYKnP_GDfc0W2jfOd0tHU60yewG6NFMlqzdw8euGUPHneVGEhUzB48ugYriG_HV1isdQ_2IlVN3kaM6XdPoTn5vaILjfE20VafB5tH6ouqWoVdNYoBdeC-Je5XlExdXRK9OFtVP5rvPwkGuiTgHFMbagOscT2IaWcV9xYXlyTUDmgvx5NYtKZ-BvPp5OTjEY0FGKhJZNHQlNuh5jkX2jrDrMtMYpgxGXMYhfik9MIxZ41NnUuEtSYToZ_BVZfneV6UyXPYXq6W7gWQrLQJz4woU1zwScu04z63JncmoO9I3wfe8UGZiE4eimQs1AZXOfBOIe9UyzvF-vD-qs_5Gpvjn9RvAntVUFwc2eiYf4DzCxBYaoReOhVpPkTKg04CVNToWmEoVMgQT_M-fOikYvP57__d_z_yl_BQtPKZUS4PYLupLtwrjHuacgBbxfRwADuj6Xg8C-3ht88TbMeT2Zevg1YJ_gA_FgEq
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiBZQFwr4AAIEVm3HeewBoQpYtvRx2kq9Gcd2ymHZXTYp1f6p_sbOZB2Wh-itl1xiO1ZmMt_Y8XwfwPMqpOgJlefC-z7XKlS8qHTBEyu0dwoBumXXPzzKhsf6y0l6sgYXXS0MHavsYmIbqP3U0R75DkJRkVI-I9_PfnBSjaK_q52ExtIt9sPiHJds9bu9j2jfF0oNPo0-DHlUFeAuSYuGa-n7VuZSWR-c8CFziRPOZSIgtFZJWakggndeh5Ao712mqJ_DpUQl87woExz3BtzUCSI5VaYPPq9IfotW4Uf0VcpxrjIW6cRSvYKK2ahkCFEar38A4d9w8M9_2RbuBvfgbsxT2e7SsTZgLUw24c5v7IWbsBHjQs1eRfLq1_ehGZ1P-dhiIs-stzMKpqw-m8-ntF3HMVMnt_Is_Iwub-cLZsen-Kabb98ZZtCMCJS5J9GBJWEIc63wRNy0HC8YiRK0p-5ZVMOpH8DxtdjgIaxPppOwBSwrfSIzp0qNK8nUCxtklXuXB0e0PmnVA9m9ZuMi7Tmpb4zNirCZTGPQNKY1jRE9ePOrz2xJ-nFl65dkPUMRAUd2NhY24PyIW8vsIvxrpfM-ttzuDGxiqKjNyrF78LYz-ur2_5_76OrRnsGt4ejwwBzsHe0_htuqdb2My3Qb1pv5WXiCyVRTPm09mMHX6_5kLgGNdDJ3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQLSACBTwAQQIrNreZw4IFdqopRBVqJV6M14_4BCSkN1S5a_x65jZeAkP0Vsve1nbu_KM52F7vg_gcfAZakJwXDg34KnygZchLXliROqsQgfdout_GOX7J-m70-x0DX50tTB0rbKzia2hdlNLe-Tb6IrKjOIZuR3itYij3eHr2TdODFJ00trRaSxV5NAvzjF9q18d7KKsnyg13Dt-u88jwwC3SVY2PJVuYGQhlXHeCudzm1hhbS48utmQVEF54Z11qfeJcs7mivpZTCuCLIqySnDcK7BeUFbUg_U3e6OjjyvI37Ll-xEDlXH8cxlLdmLhXkmlbVRAhD4bn3-4xb-dwz-ntK3zG96EGzFqZTtLNduANT_ZhOu_YRluwka0EjV7FqGsn9-C5vh8yscGw3pmnJmRaWX12Xw-pc07jnE7KZlj_ntcAGa-YGb8Gee6-fKVYTzNCE6ZO6IgWMKHMNvSUMQtzPGCEUVBewefRW6c-jacXIoU7kBvMp34u8DyyiUyt6pKMa_MnDBehsLZwlsC-clCH2Q3zdpGEHTi4hjrFXwziUajaHQrGi368OJXn9kSAuTC1k9JeprsA45sTSxzwP8jpC29g8FAqtJigC23OgHraDhqvVLzPrzshL56_f_v3rt4tEdwFZeLfn8wOrwP11SreTmX2Rb0mvmZf4CRVVM9jCrM4NNlr5qf0Bw4CQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-layer+adaptive+surrogate-assisted+evolutionary+algorithm+for+high-dimensional+computationally+expensive+problems&rft.jtitle=Journal+of+global+optimization&rft.au=Yang%2C+Zan&rft.au=Qiu%2C+Haobo&rft.au=Gao%2C+Liang&rft.au=Jiang%2C+Chen&rft.date=2019-06-15&rft.pub=Springer+US&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=74&rft.issue=2&rft.spage=327&rft.epage=359&rft_id=info:doi/10.1007%2Fs10898-019-00759-0&rft.externalDocID=10_1007_s10898_019_00759_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon