Gearbox vibration monitoring using extended Kalman filters and hypothesis tests

The efficiency of many maintenance programs is heavily dependent on the detection accuracy of the condition monitoring system. Condition indicators that are sensitive to environmental or operational variables of no interest will inevitably reflect irrelevant fluctuations and thus mislead the subsequ...

Full description

Saved in:
Bibliographic Details
Published inJournal of sound and vibration Vol. 325; no. 3; pp. 629 - 648
Main Authors Shao, Yimin, Mechefske, Chris K.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 21.08.2009
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The efficiency of many maintenance programs is heavily dependent on the detection accuracy of the condition monitoring system. Condition indicators that are sensitive to environmental or operational variables of no interest will inevitably reflect irrelevant fluctuations and thus mislead the subsequent analysis. In consideration of this phenomenon, a fully automatic and robust vibration monitoring system for gearboxes is proposed in this study. The primary objective here is on how to exclude the effects of variable load conditions. The proposed technique features a number of appealing advantages, which include extended Kalman filter-based time-varying autoregressive modeling, automatic autoregressive model order selection with the aid of a non-paired two-sample Satterthwaite's t′-test, a highly effective and robust condition indicator (the means of one-sample Kolmogorov–Smirnov goodness-of-fit test), and an automatic alert generating mechanism for incipient gear faults with the aid of a Wilcoxon rank-sum test. Two sets of entire lifetime gearbox vibration monitoring data with distinct variable load conditions were used for experimental validation. The proposed condition indicator was compared with other well-known and/or recently proposed condition indicators. The results demonstrate excellent performance of the proposed technique in four aspects: the effectiveness of identifying the optimum model order, a minimum number of false alerts, constant behavior under variable load conditions, and to some extent an early alert for incipient gear faults. Furthermore, the proposed condition indicator can be directly employed by condition-based maintenance programs as a condition covariate for operational maintenance decision analysis. It provides a quantitative and more efficient means for exchanging condition information with maintenance programs in comparison with the widely used non-parametric time–frequency techniques such as wavelets, which rely on visual inspection.
AbstractList The efficiency of many maintenance programs is heavily dependent on the detection accuracy of the condition monitoring system. Condition indicators that are sensitive to environmental or operational variables of no interest will inevitably reflect irrelevant fluctuations and thus mislead the subsequent analysis. In consideration of this phenomenon, a fully automatic and robust vibration monitoring system for gearboxes is proposed in this study. The primary objective here is on how to exclude the effects of variable load conditions. The proposed technique features a number of appealing advantages, which include extended Kalman filter-based time-varying autoregressive modeling, automatic autoregressive model order selection with the aid of a non-paired two-sample Satterthwaite's t′-test, a highly effective and robust condition indicator (the means of one-sample Kolmogorov–Smirnov goodness-of-fit test), and an automatic alert generating mechanism for incipient gear faults with the aid of a Wilcoxon rank-sum test. Two sets of entire lifetime gearbox vibration monitoring data with distinct variable load conditions were used for experimental validation. The proposed condition indicator was compared with other well-known and/or recently proposed condition indicators. The results demonstrate excellent performance of the proposed technique in four aspects: the effectiveness of identifying the optimum model order, a minimum number of false alerts, constant behavior under variable load conditions, and to some extent an early alert for incipient gear faults. Furthermore, the proposed condition indicator can be directly employed by condition-based maintenance programs as a condition covariate for operational maintenance decision analysis. It provides a quantitative and more efficient means for exchanging condition information with maintenance programs in comparison with the widely used non-parametric time–frequency techniques such as wavelets, which rely on visual inspection.
The efficiency of many maintenance programs is heavily dependent on the detection accuracy of the condition monitoring system. Condition indicators that are sensitive to environmental or operational variables of no interest will inevitably reflect irrelevant fluctuations and thus mislead the subsequent analysis. In consideration of this phenomenon, a fully automatic and robust vibration monitoring system for gearboxes is proposed in this study. The primary objective here is on how to exclude the effects of variable load conditions. The proposed technique features a number of appealing advantages, which include extended Kalman filter-based time-varying autoregressive modeling, automatic autoregressive model order selection with the aid of a non-paired two-sample Satterthwaite's @@it@'-test, a highly effective and robust condition indicator (the means of one-sample Kolmogorov-Smirnov goodness-of-fit test), and an automatic alert generating mechanism for incipient gear faults with the aid of a Wilcoxon rank-sum test. Two sets of entire lifetime gearbox vibration monitoring data with distinct variable load conditions were used for experimental validation. The proposed condition indicator was compared with other well-known and/or recently proposed condition indicators. The results demonstrate excellent performance of the proposed technique in four aspects: the effectiveness of identifying the optimum model order, a minimum number of false alerts, constant behavior under variable load conditions, and to some extent an early alert for incipient gear faults. Furthermore, the proposed condition indicator can be directly employed by condition-based maintenance programs as a condition covariate for operational maintenance decision analysis. It provides a quantitative and more efficient means for exchanging condition information with maintenance programs in comparison with the widely used non-parametric time-frequency techniques such as wavelets, which rely on visual inspection.
Author Mechefske, Chris K.
Shao, Yimin
Author_xml – sequence: 1
  givenname: Yimin
  surname: Shao
  fullname: Shao, Yimin
  email: ymshao@cqu.edu.cn
  organization: The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, PR China
– sequence: 2
  givenname: Chris K.
  surname: Mechefske
  fullname: Mechefske, Chris K.
  email: chrism@me.queensu.ca
  organization: Department of Mechanical and Materials Engineering, Queen's University, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21699468$$DView record in Pascal Francis
BookMark eNp9kMFO3DAQQC1EJRbaD-gtl_aWdBLbSayeKlSgAolLK_VmjZ1J8Sprb23vCv4ebxf1wIGL5_LejPXO2akPnhj72ELTQtt_WTfrtG86ANUAb6BTJ2zVgpL1KPvxlK0Auq4WPfw-Y-cpraGAgosVu78mjCY8VntnImYXfLUJ3uUQnf9T7dLhpcdMfqKpusVlg76a3ZIppgr9VD08bUN-oORSlSnl9J69m3FJ9OFlXrBfV99_Xt7Ud_fXPy6_3dWWyzHXHDsC0UuUdrTlW7NQkmZlJiXRGDQwcOJ2ADnNphWCBHajIdGjbNXQG8Ev2Ofj3m0Mf3flst64ZGlZ0FPYJc2FGEZQUMBPLyAmi8sc0VuX9Da6DcYn3bW9UqIfC9ceORtDSpHm_0gL-pBYr3VJrA-JNXBdEhdneOVYl_9FzBHd8qb59WhSabR3FHWyjrylyUWyWU_BvWE_A8efmdQ
CODEN JSVIAG
CitedBy_id crossref_primary_10_1007_s13369_021_05930_y
crossref_primary_10_1109_TSMCC_2013_2257752
crossref_primary_10_1016_j_engfailanal_2017_05_036
crossref_primary_10_1109_ACCESS_2017_2774261
crossref_primary_10_1016_j_ymssp_2016_09_028
crossref_primary_10_1002_qre_2428
crossref_primary_10_1016_j_eswa_2022_117297
crossref_primary_10_1109_TIM_2021_3139706
crossref_primary_10_1016_j_jsv_2012_07_045
crossref_primary_10_1109_TIM_2021_3139703
crossref_primary_10_1115_1_4028833
crossref_primary_10_1016_j_ymssp_2015_10_007
crossref_primary_10_4028_www_scientific_net_AMM_121_126_268
crossref_primary_10_1016_j_ymssp_2024_112161
crossref_primary_10_1088_0957_0233_22_2_025102
crossref_primary_10_1016_j_jsv_2017_03_020
crossref_primary_10_1016_j_ymssp_2019_106342
crossref_primary_10_1016_j_ymssp_2020_107605
crossref_primary_10_1016_j_ymssp_2021_108539
crossref_primary_10_1177_1475921713475469
crossref_primary_10_1007_s11771_015_2877_z
crossref_primary_10_1016_j_jsv_2014_09_026
crossref_primary_10_16984_saufenbilder_221303
crossref_primary_10_1088_0964_1726_20_7_075021
crossref_primary_10_1177_0954406215597956
crossref_primary_10_1088_1742_6596_305_1_012022
crossref_primary_10_1016_j_engfailanal_2015_01_006
crossref_primary_10_1016_j_measurement_2016_04_036
crossref_primary_10_1051_meca_2020035
crossref_primary_10_3390_app15042135
crossref_primary_10_1016_j_ymssp_2013_04_001
crossref_primary_10_1155_2017_4682409
crossref_primary_10_4028_www_scientific_net_AMM_33_28
crossref_primary_10_1016_j_ymssp_2015_04_004
Cites_doi 10.1016/j.jsv.2005.04.018
10.1177/10775463030098002
10.1115/1.3269317
10.1109/10.668741
10.1057/palgrave.jors.2601261
10.1109/87.911387
10.1177/135065010421800101
10.1088/0964-1726/12/3/316
10.5081/jgps.5.1.62
10.1016/j.ymssp.2004.01.006
10.1006/mssp.1999.1294
10.1006/mssp.2001.1416
10.1088/0967-3334/27/3/002
10.1016/j.ymssp.2004.12.004
10.1006/mssp.1998.0173
10.1016/j.ymssp.2003.10.005
10.1016/S0005-1098(99)00093-X
10.1006/mssp.2000.1395
10.1016/j.ymssp.2004.01.009
10.1098/rspa.1998.0193
10.1115/1.1456905
10.1016/j.ymssp.2004.08.004
ContentType Journal Article
Copyright 2009
2009 INIST-CNRS
Copyright_xml – notice: 2009
– notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.jsv.2009.03.029
DatabaseName CrossRef
Pascal-Francis
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Applied Sciences
EISSN 1095-8568
EndPage 648
ExternalDocumentID 21699468
10_1016_j_jsv_2009_03_029
S0022460X09002831
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFSI
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
E.L
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG5
M24
M37
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPG
SSQ
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c358t-3a2e0465a5c8c460f495ef9bd95abbab073e3c705dfb144e4a28be46a51976b43
IEDL.DBID .~1
ISSN 0022-460X
IngestDate Sun Aug 24 04:09:25 EDT 2025
Mon Jul 21 09:14:03 EDT 2025
Tue Jul 01 03:30:06 EDT 2025
Thu Apr 24 23:05:08 EDT 2025
Fri Feb 23 02:19:22 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Time frequency domain method
Kolmogorov Smirnov test
Goodness of fit test
Kalman filter
Durability
Non parametric estimation
Autoregressive model
Maintenance
Decision analysis
Experimental study
Modeling
Gear
Optimization
Operating conditions
Time varying system
Gear drive
Lifetime
Wavelet transformation
Automatic monitoring
Monitoring
Gear box
Constant load
Dynamic load
Visual control
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-3a2e0465a5c8c460f495ef9bd95abbab073e3c705dfb144e4a28be46a51976b43
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 34478090
PQPubID 23500
PageCount 20
ParticipantIDs proquest_miscellaneous_34478090
pascalfrancis_primary_21699468
crossref_primary_10_1016_j_jsv_2009_03_029
crossref_citationtrail_10_1016_j_jsv_2009_03_029
elsevier_sciencedirect_doi_10_1016_j_jsv_2009_03_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-08-21
PublicationDateYYYYMMDD 2009-08-21
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-08-21
  day: 21
PublicationDecade 2000
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Journal of sound and vibration
PublicationYear 2009
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Applied Research Laboratory, The Pennsylvania State University.
Luo, Osypiw, Irle (bib3) 2003; 9
A.J. Miller, A New Wavelet Basis for the Decomposition of Gear Motion Error Signals and its Application to Gearbox Diagnostics, MS Thesis, The Graduate School of The Pennsylvania State University, 1999.
Kim, Lee (bib24) 2006; 5
C. Sodsri, Time-varying Autoregressive Modelling for Nonstationary Acoustic Signal and its Frequency Analysis, PhD Thesis, The Pennsylvania State University, 2003.
Zhan, Makis, Jardine (bib21) 2006; 20
Huang (bib22) 2001; 9
Ohue, Yoshida, Seki (bib1) 2004; 218
Arnold, Miltner, Witte, Bauer, Braun (bib9) 1998; 45
Lin, Wiseman, Banjevic, Jardine (bib27) 2004; 18
M.J. Moorman, Mathematical analysis of bias in the extended Kalman filter
Mechefske, Wang (bib15) 2001; 15
Basseville, Abdelghani, Benveniste (bib13) 2000; 36
Meltzer, Dien (bib2) 2004; 18
MDTB test-run data CDs: TR#12 and TR#14
Zhan, Makis (bib14) 2006; 290
Vlok, Coetzee, Banjevic, Jardine, Makis (bib17) 2002; 53
Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (bib4) 1998; 454
Wang, Mechefske (bib8) 2006; 20
Peng, Tse, Chu (bib5) 2005; 19
Quek, Tua, Wang (bib6) 2003; 12
Wang (bib20) 2001; 15
Basseville, Nikiforov (bib12) 1993
Mechefske (bib16) 1998; 12
Dalpiaz, Rivola, Rubini (bib19) 2000; 14
McFadden (bib18) 1986; 108
Brighton, UK, December 1991.
Tarvainen, Georgiadis, Ranta-aho, Karjalainen (bib10) 2006; 27
Wang, Wong (bib7) 2002; 124
Wang (10.1016/j.jsv.2009.03.029_bib20) 2001; 15
McFadden (10.1016/j.jsv.2009.03.029_bib18) 1986; 108
Meltzer (10.1016/j.jsv.2009.03.029_bib2) 2004; 18
10.1016/j.jsv.2009.03.029_bib25
Wang (10.1016/j.jsv.2009.03.029_bib8) 2006; 20
10.1016/j.jsv.2009.03.029_bib26
Huang (10.1016/j.jsv.2009.03.029_bib22) 2001; 9
Lin (10.1016/j.jsv.2009.03.029_bib27) 2004; 18
10.1016/j.jsv.2009.03.029_bib23
Wang (10.1016/j.jsv.2009.03.029_bib7) 2002; 124
Tarvainen (10.1016/j.jsv.2009.03.029_bib10) 2006; 27
Ohue (10.1016/j.jsv.2009.03.029_bib1) 2004; 218
Mechefske (10.1016/j.jsv.2009.03.029_bib15) 2001; 15
Zhan (10.1016/j.jsv.2009.03.029_bib21) 2006; 20
Quek (10.1016/j.jsv.2009.03.029_bib6) 2003; 12
Basseville (10.1016/j.jsv.2009.03.029_bib12) 1993
Vlok (10.1016/j.jsv.2009.03.029_bib17) 2002; 53
Dalpiaz (10.1016/j.jsv.2009.03.029_bib19) 2000; 14
Arnold (10.1016/j.jsv.2009.03.029_bib9) 1998; 45
Mechefske (10.1016/j.jsv.2009.03.029_bib16) 1998; 12
Zhan (10.1016/j.jsv.2009.03.029_bib14) 2006; 290
10.1016/j.jsv.2009.03.029_bib11
Peng (10.1016/j.jsv.2009.03.029_bib5) 2005; 19
Luo (10.1016/j.jsv.2009.03.029_bib3) 2003; 9
Huang (10.1016/j.jsv.2009.03.029_bib4) 1998; 454
Kim (10.1016/j.jsv.2009.03.029_bib24) 2006; 5
Basseville (10.1016/j.jsv.2009.03.029_bib13) 2000; 36
References_xml – reference: M.J. Moorman, Mathematical analysis of bias in the extended Kalman filter,
– volume: 15
  start-page: 887
  year: 2001
  end-page: 903
  ident: bib20
  article-title: Early detection of gear tooth cracking using the resonance demodulation technique
  publication-title: Mechanical Systems and Signal Processing
– reference: , Applied Research Laboratory, The Pennsylvania State University.
– year: 1993
  ident: bib12
  article-title: Detection of Abrupt Changes: Theory and Application
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: bib4
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proceeding of the Royal Society of London Series A
– volume: 20
  start-page: 825
  year: 2006
  end-page: 842
  ident: bib8
  article-title: Adaptive modelling of transient vibration signals
  publication-title: Mechanical Systems and Signal Processing
– volume: 12
  start-page: 855
  year: 1998
  end-page: 862
  ident: bib16
  article-title: Objective machinery fault diagnosis using fuzzy logic
  publication-title: Mechanical Systems and Signal Processing
– volume: 18
  start-page: 985
  year: 2004
  end-page: 992
  ident: bib2
  article-title: Fault diagnosis in gears operating under non-stationary rotational speed using polar wavelet amplitude maps
  publication-title: Mechanical Systems and Signal Processing
– volume: 124
  start-page: 172
  year: 2002
  end-page: 179
  ident: bib7
  article-title: Autoregressive model-based gear fault diagnosis
  publication-title: Journal of Vibration and Acoustics
– volume: 290
  start-page: 928
  year: 2006
  end-page: 955
  ident: bib14
  article-title: A robust diagnostic model for gearboxes subject to vibration monitoring
  publication-title: Journal of Sound and Vibration
– volume: 19
  start-page: 974
  year: 2005
  end-page: 988
  ident: bib5
  article-title: A comparison study of improved Hilbert–Huang transform and wavelet transform: application to fault diagnosis for rolling bearing
  publication-title: Mechanical Systems and Signal Processing
– volume: 9
  start-page: 931
  year: 2003
  end-page: 947
  ident: bib3
  article-title: On-line vibration analysis with fast continuous wavelet algorithm for condition monitoring of bearing
  publication-title: Journal of Vibration and Control
– volume: 20
  start-page: 188
  year: 2006
  end-page: 221
  ident: bib21
  article-title: Adaptive state detection of gearboxes under varying load conditions based on parametric modelling
  publication-title: Mechanical Systems and Signal Processing
– reference: A.J. Miller, A New Wavelet Basis for the Decomposition of Gear Motion Error Signals and its Application to Gearbox Diagnostics, MS Thesis, The Graduate School of The Pennsylvania State University, 1999.
– volume: 27
  start-page: 225
  year: 2006
  end-page: 239
  ident: bib10
  article-title: Time-varying analysis of heart rate variability signals with a Kalman smoother algorithm
  publication-title: Physiological Measurement
– volume: 5
  start-page: 62
  year: 2006
  end-page: 69
  ident: bib24
  article-title: Adaptive two-stage EKF for INS-GPS loosely coupled system with unknown fault bias
  publication-title: Journal of Global Positioning
– volume: 45
  start-page: 553
  year: 1998
  end-page: 562
  ident: bib9
  article-title: Adaptive AR modeling of nonstationary time series by means of Kalman filtering
  publication-title: IEEE Transactions on Biomedical Engineering
– reference: C. Sodsri, Time-varying Autoregressive Modelling for Nonstationary Acoustic Signal and its Frequency Analysis, PhD Thesis, The Pennsylvania State University, 2003.
– volume: 218
  start-page: 1
  year: 2004
  end-page: 11
  ident: bib1
  article-title: Application of the wavelet transform to health monitoring and evaluation of dynamic characteristics in gear sets
  publication-title: Proceedings of the I MECH E Part J Journal of Engineering Tribology
– reference: , Brighton, UK, December 1991.
– volume: 12
  start-page: 447
  year: 2003
  end-page: 460
  ident: bib6
  article-title: Detecting anomalies in beams and plate based on the Hilbert–Huang transform of real signals
  publication-title: Smart Materials and Structures
– volume: 18
  start-page: 993
  year: 2004
  end-page: 1007
  ident: bib27
  article-title: An approach to signal processing and condition-based maintenance for gearboxes subject to tooth failure
  publication-title: Mechanical Systems and Signal Processing
– volume: 14
  start-page: 387
  year: 2000
  end-page: 412
  ident: bib19
  article-title: Effectiveness and sensitivity of vibration processing techniques for local fault detection in gears
  publication-title: Mechanical Systems and Signal Processing
– volume: 53
  start-page: 193
  year: 2002
  end-page: 202
  ident: bib17
  article-title: Optimal component replacement decisions using vibration monitoring and the proportional-hazards model
  publication-title: Journal of the Operational Research Society
– volume: 36
  start-page: 101
  year: 2000
  end-page: 109
  ident: bib13
  article-title: Subspace-based fault detection algorithms for vibration monitoring
  publication-title: Automatica
– volume: 108
  start-page: 165
  year: 1986
  end-page: 170
  ident: bib18
  article-title: Detecting fatigue cracks in gears by amplitude and phase modulations of the meshing vibration
  publication-title: ASME Transactions, Journal of Vibration, Acoustics, Stress and Reliability in Design
– reference: MDTB test-run data CDs: TR#12 and TR#14,
– volume: 15
  start-page: 1129
  year: 2001
  end-page: 1140
  ident: bib15
  article-title: Using fuzzy linguistics to select optimum maintenance and condition monitoring strategies
  publication-title: Mechanical Systems and Signal Processing
– volume: 9
  start-page: 357
  year: 2001
  end-page: 367
  ident: bib22
  article-title: Detection of abrupt changes of total least squares models and application in fault detection
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 290
  start-page: 928
  year: 2006
  ident: 10.1016/j.jsv.2009.03.029_bib14
  article-title: A robust diagnostic model for gearboxes subject to vibration monitoring
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2005.04.018
– volume: 9
  start-page: 931
  year: 2003
  ident: 10.1016/j.jsv.2009.03.029_bib3
  article-title: On-line vibration analysis with fast continuous wavelet algorithm for condition monitoring of bearing
  publication-title: Journal of Vibration and Control
  doi: 10.1177/10775463030098002
– volume: 108
  start-page: 165
  year: 1986
  ident: 10.1016/j.jsv.2009.03.029_bib18
  article-title: Detecting fatigue cracks in gears by amplitude and phase modulations of the meshing vibration
  publication-title: ASME Transactions, Journal of Vibration, Acoustics, Stress and Reliability in Design
  doi: 10.1115/1.3269317
– volume: 45
  start-page: 553
  year: 1998
  ident: 10.1016/j.jsv.2009.03.029_bib9
  article-title: Adaptive AR modeling of nonstationary time series by means of Kalman filtering
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/10.668741
– volume: 53
  start-page: 193
  year: 2002
  ident: 10.1016/j.jsv.2009.03.029_bib17
  article-title: Optimal component replacement decisions using vibration monitoring and the proportional-hazards model
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/palgrave.jors.2601261
– year: 1993
  ident: 10.1016/j.jsv.2009.03.029_bib12
– volume: 9
  start-page: 357
  year: 2001
  ident: 10.1016/j.jsv.2009.03.029_bib22
  article-title: Detection of abrupt changes of total least squares models and application in fault detection
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/87.911387
– volume: 218
  start-page: 1
  year: 2004
  ident: 10.1016/j.jsv.2009.03.029_bib1
  article-title: Application of the wavelet transform to health monitoring and evaluation of dynamic characteristics in gear sets
  publication-title: Proceedings of the I MECH E Part J Journal of Engineering Tribology
  doi: 10.1177/135065010421800101
– volume: 12
  start-page: 447
  year: 2003
  ident: 10.1016/j.jsv.2009.03.029_bib6
  article-title: Detecting anomalies in beams and plate based on the Hilbert–Huang transform of real signals
  publication-title: Smart Materials and Structures
  doi: 10.1088/0964-1726/12/3/316
– volume: 5
  start-page: 62
  year: 2006
  ident: 10.1016/j.jsv.2009.03.029_bib24
  article-title: Adaptive two-stage EKF for INS-GPS loosely coupled system with unknown fault bias
  publication-title: Journal of Global Positioning
  doi: 10.5081/jgps.5.1.62
– ident: 10.1016/j.jsv.2009.03.029_bib26
– volume: 19
  start-page: 974
  year: 2005
  ident: 10.1016/j.jsv.2009.03.029_bib5
  article-title: A comparison study of improved Hilbert–Huang transform and wavelet transform: application to fault diagnosis for rolling bearing
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2004.01.006
– volume: 14
  start-page: 387
  year: 2000
  ident: 10.1016/j.jsv.2009.03.029_bib19
  article-title: Effectiveness and sensitivity of vibration processing techniques for local fault detection in gears
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1006/mssp.1999.1294
– volume: 15
  start-page: 887
  year: 2001
  ident: 10.1016/j.jsv.2009.03.029_bib20
  article-title: Early detection of gear tooth cracking using the resonance demodulation technique
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1006/mssp.2001.1416
– volume: 27
  start-page: 225
  year: 2006
  ident: 10.1016/j.jsv.2009.03.029_bib10
  article-title: Time-varying analysis of heart rate variability signals with a Kalman smoother algorithm
  publication-title: Physiological Measurement
  doi: 10.1088/0967-3334/27/3/002
– volume: 20
  start-page: 825
  year: 2006
  ident: 10.1016/j.jsv.2009.03.029_bib8
  article-title: Adaptive modelling of transient vibration signals
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2004.12.004
– volume: 12
  start-page: 855
  year: 1998
  ident: 10.1016/j.jsv.2009.03.029_bib16
  article-title: Objective machinery fault diagnosis using fuzzy logic
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1006/mssp.1998.0173
– volume: 18
  start-page: 993
  year: 2004
  ident: 10.1016/j.jsv.2009.03.029_bib27
  article-title: An approach to signal processing and condition-based maintenance for gearboxes subject to tooth failure
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2003.10.005
– volume: 36
  start-page: 101
  year: 2000
  ident: 10.1016/j.jsv.2009.03.029_bib13
  article-title: Subspace-based fault detection algorithms for vibration monitoring
  publication-title: Automatica
  doi: 10.1016/S0005-1098(99)00093-X
– volume: 15
  start-page: 1129
  year: 2001
  ident: 10.1016/j.jsv.2009.03.029_bib15
  article-title: Using fuzzy linguistics to select optimum maintenance and condition monitoring strategies
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1006/mssp.2000.1395
– ident: 10.1016/j.jsv.2009.03.029_bib11
– volume: 18
  start-page: 985
  year: 2004
  ident: 10.1016/j.jsv.2009.03.029_bib2
  article-title: Fault diagnosis in gears operating under non-stationary rotational speed using polar wavelet amplitude maps
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2004.01.009
– ident: 10.1016/j.jsv.2009.03.029_bib23
– volume: 454
  start-page: 903
  year: 1998
  ident: 10.1016/j.jsv.2009.03.029_bib4
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proceeding of the Royal Society of London Series A
  doi: 10.1098/rspa.1998.0193
– volume: 124
  start-page: 172
  year: 2002
  ident: 10.1016/j.jsv.2009.03.029_bib7
  article-title: Autoregressive model-based gear fault diagnosis
  publication-title: Journal of Vibration and Acoustics
  doi: 10.1115/1.1456905
– volume: 20
  start-page: 188
  year: 2006
  ident: 10.1016/j.jsv.2009.03.029_bib21
  article-title: Adaptive state detection of gearboxes under varying load conditions based on parametric modelling
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2004.08.004
– ident: 10.1016/j.jsv.2009.03.029_bib25
SSID ssj0009434
Score 2.1283443
Snippet The efficiency of many maintenance programs is heavily dependent on the detection accuracy of the condition monitoring system. Condition indicators that are...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 629
SubjectTerms Applied sciences
Drives
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Gears
Industrial metrology. Testing
Measurement and testing methods
Mechanical engineering. Machine design
Physics
Solid mechanics
Structural and continuum mechanics
Title Gearbox vibration monitoring using extended Kalman filters and hypothesis tests
URI https://dx.doi.org/10.1016/j.jsv.2009.03.029
https://www.proquest.com/docview/34478090
Volume 325
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-iCIKInzg_Zh58Erq1S9M1j2OoU1FfFPYWkjTVDe2G3Ya--Ld7l7YTUfbga0lIerm73OXufkfIacATw5TgnmobcFCCwHgabg1PCc24ULEWKT7o395Fvcfwus_7S6Rb1cJgWmWp-wud7rR1-aVZUrM5HgywxhfB0Py-L1zDHVfBHraRyxuf32keiH9WIYbj6Cqy6XK8hvmshKxkDd9ZmX_eTetjlQPF0qLVxS-t7a6ii02yUdqQtFNsc4ss2WybrLpcTpPvkPtL4F49eqczdIWR8PTVSS4-4VFMdH-i1ds3vVEvryqj6QCj5jlVWUKfP8ZYlpUPcgp26CTfJY8X5w_dnlf2TfAM4_HEY6plwe3lipvYwD-n4ATZVOhEcKW10iDVlpm2z5NUgz9lQ9WKtQ0jhUWskQ7ZHlnORpndJ9TX3DALVoriIN1GC2bbTMD20sBPmOU14lcUk6YEFcfeFi-yyh4bSiAyNrsU0mcSiFwjZ_Mp4wJRY9HgsDoG-YMtJGj8RdPqP45svlAriIQIo7hGTqozlCBPGCRRmR1Nc4kIiDGw1MH_Vj4ka0W8CfRPcESWJ29Tewxmy0TXHV_WyUrn6qZ39wXCDu3h
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTtwwcARUiEpV1RYqti3gQ3tBCiRxnI0PHFALXbo8LiDtzdiOU3YF2VW9vC79KX6QmTyoUCsOlbhG8UMz43k_AD5HIrdcSxHorkUDJYpsYFBqBFoaLqTOjCzIoX9wmPZOkh8DMZiBu7YWhtIqG95f8_SKWzdfNhtobk6GQ6rxpWZo4SCU1cCdqMms7Lvba7Tb_NbeN0Tylzje3Tn-2gua0QKB5SKbBlzHDi1DoYXNLG5SoJ3gCmlyKbQx2iDhO267ocgLgyaHS3ScGZekmuo8U5Nw3HcWXiTILmhswsbvP3kl1HCtbVFO12tDqVVS2chfNT0y-UZYqbX_FIavJtojiop6tsZfYqKSfbtv4HWjtLLtGi5vYcaV72C-Sh61fhGOviNIzPiGXZHtTZhmFxWrIJ8ho8z6n6x1trO-Pr_QJSuGFKb3TJc5O7udUB2YH3qGiu_UL8HJs0DzPcyV49ItAwuNsNyhWqQFshNrJHddLvF6RRTm3IkOhC3ElG26mNMwjXPVpquNFAKZpmtKFXKFQO7A-sOSSd3C46mfkxYN6hEdKhQxTy1bfYSyh4PiKJUySbMOrLU4VPiAKSqjSze-9IpaLmZIwx_-7-Q1WOgdH-yr_b3D_kd4WQe7kPlFn2Bu-uvSraDONDWrFY0yOH3uR3EP1ZwqEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gearbox+vibration+monitoring+using+extended+Kalman+filters+and+hypothesis+tests&rft.jtitle=Journal+of+sound+and+vibration&rft.au=Shao%2C+Yimin&rft.au=Mechefske%2C+Chris+K.&rft.date=2009-08-21&rft.issn=0022-460X&rft.volume=325&rft.issue=3&rft.spage=629&rft.epage=648&rft_id=info:doi/10.1016%2Fj.jsv.2009.03.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jsv_2009_03_029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-460X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-460X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-460X&client=summon