Gearbox vibration monitoring using extended Kalman filters and hypothesis tests
The efficiency of many maintenance programs is heavily dependent on the detection accuracy of the condition monitoring system. Condition indicators that are sensitive to environmental or operational variables of no interest will inevitably reflect irrelevant fluctuations and thus mislead the subsequ...
Saved in:
Published in | Journal of sound and vibration Vol. 325; no. 3; pp. 629 - 648 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
21.08.2009
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The efficiency of many maintenance programs is heavily dependent on the detection accuracy of the condition monitoring system. Condition indicators that are sensitive to environmental or operational variables of no interest will inevitably reflect irrelevant fluctuations and thus mislead the subsequent analysis. In consideration of this phenomenon, a fully automatic and robust vibration monitoring system for gearboxes is proposed in this study. The primary objective here is on how to exclude the effects of variable load conditions. The proposed technique features a number of appealing advantages, which include extended Kalman filter-based time-varying autoregressive modeling, automatic autoregressive model order selection with the aid of a non-paired two-sample Satterthwaite's
t′-test, a highly effective and robust condition indicator (the means of one-sample Kolmogorov–Smirnov goodness-of-fit test), and an automatic alert generating mechanism for incipient gear faults with the aid of a Wilcoxon rank-sum test. Two sets of entire lifetime gearbox vibration monitoring data with distinct variable load conditions were used for experimental validation. The proposed condition indicator was compared with other well-known and/or recently proposed condition indicators. The results demonstrate excellent performance of the proposed technique in four aspects: the effectiveness of identifying the optimum model order, a minimum number of false alerts, constant behavior under variable load conditions, and to some extent an early alert for incipient gear faults. Furthermore, the proposed condition indicator can be directly employed by condition-based maintenance programs as a condition covariate for operational maintenance decision analysis. It provides a quantitative and more efficient means for exchanging condition information with maintenance programs in comparison with the widely used non-parametric time–frequency techniques such as wavelets, which rely on visual inspection. |
---|---|
AbstractList | The efficiency of many maintenance programs is heavily dependent on the detection accuracy of the condition monitoring system. Condition indicators that are sensitive to environmental or operational variables of no interest will inevitably reflect irrelevant fluctuations and thus mislead the subsequent analysis. In consideration of this phenomenon, a fully automatic and robust vibration monitoring system for gearboxes is proposed in this study. The primary objective here is on how to exclude the effects of variable load conditions. The proposed technique features a number of appealing advantages, which include extended Kalman filter-based time-varying autoregressive modeling, automatic autoregressive model order selection with the aid of a non-paired two-sample Satterthwaite's
t′-test, a highly effective and robust condition indicator (the means of one-sample Kolmogorov–Smirnov goodness-of-fit test), and an automatic alert generating mechanism for incipient gear faults with the aid of a Wilcoxon rank-sum test. Two sets of entire lifetime gearbox vibration monitoring data with distinct variable load conditions were used for experimental validation. The proposed condition indicator was compared with other well-known and/or recently proposed condition indicators. The results demonstrate excellent performance of the proposed technique in four aspects: the effectiveness of identifying the optimum model order, a minimum number of false alerts, constant behavior under variable load conditions, and to some extent an early alert for incipient gear faults. Furthermore, the proposed condition indicator can be directly employed by condition-based maintenance programs as a condition covariate for operational maintenance decision analysis. It provides a quantitative and more efficient means for exchanging condition information with maintenance programs in comparison with the widely used non-parametric time–frequency techniques such as wavelets, which rely on visual inspection. The efficiency of many maintenance programs is heavily dependent on the detection accuracy of the condition monitoring system. Condition indicators that are sensitive to environmental or operational variables of no interest will inevitably reflect irrelevant fluctuations and thus mislead the subsequent analysis. In consideration of this phenomenon, a fully automatic and robust vibration monitoring system for gearboxes is proposed in this study. The primary objective here is on how to exclude the effects of variable load conditions. The proposed technique features a number of appealing advantages, which include extended Kalman filter-based time-varying autoregressive modeling, automatic autoregressive model order selection with the aid of a non-paired two-sample Satterthwaite's @@it@'-test, a highly effective and robust condition indicator (the means of one-sample Kolmogorov-Smirnov goodness-of-fit test), and an automatic alert generating mechanism for incipient gear faults with the aid of a Wilcoxon rank-sum test. Two sets of entire lifetime gearbox vibration monitoring data with distinct variable load conditions were used for experimental validation. The proposed condition indicator was compared with other well-known and/or recently proposed condition indicators. The results demonstrate excellent performance of the proposed technique in four aspects: the effectiveness of identifying the optimum model order, a minimum number of false alerts, constant behavior under variable load conditions, and to some extent an early alert for incipient gear faults. Furthermore, the proposed condition indicator can be directly employed by condition-based maintenance programs as a condition covariate for operational maintenance decision analysis. It provides a quantitative and more efficient means for exchanging condition information with maintenance programs in comparison with the widely used non-parametric time-frequency techniques such as wavelets, which rely on visual inspection. |
Author | Mechefske, Chris K. Shao, Yimin |
Author_xml | – sequence: 1 givenname: Yimin surname: Shao fullname: Shao, Yimin email: ymshao@cqu.edu.cn organization: The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, PR China – sequence: 2 givenname: Chris K. surname: Mechefske fullname: Mechefske, Chris K. email: chrism@me.queensu.ca organization: Department of Mechanical and Materials Engineering, Queen's University, Canada |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21699468$$DView record in Pascal Francis |
BookMark | eNp9kMFO3DAQQC1EJRbaD-gtl_aWdBLbSayeKlSgAolLK_VmjZ1J8Sprb23vCv4ebxf1wIGL5_LejPXO2akPnhj72ELTQtt_WTfrtG86ANUAb6BTJ2zVgpL1KPvxlK0Auq4WPfw-Y-cpraGAgosVu78mjCY8VntnImYXfLUJ3uUQnf9T7dLhpcdMfqKpusVlg76a3ZIppgr9VD08bUN-oORSlSnl9J69m3FJ9OFlXrBfV99_Xt7Ud_fXPy6_3dWWyzHXHDsC0UuUdrTlW7NQkmZlJiXRGDQwcOJ2ADnNphWCBHajIdGjbNXQG8Ev2Ofj3m0Mf3flst64ZGlZ0FPYJc2FGEZQUMBPLyAmi8sc0VuX9Da6DcYn3bW9UqIfC9ceORtDSpHm_0gL-pBYr3VJrA-JNXBdEhdneOVYl_9FzBHd8qb59WhSabR3FHWyjrylyUWyWU_BvWE_A8efmdQ |
CODEN | JSVIAG |
CitedBy_id | crossref_primary_10_1007_s13369_021_05930_y crossref_primary_10_1109_TSMCC_2013_2257752 crossref_primary_10_1016_j_engfailanal_2017_05_036 crossref_primary_10_1109_ACCESS_2017_2774261 crossref_primary_10_1016_j_ymssp_2016_09_028 crossref_primary_10_1002_qre_2428 crossref_primary_10_1016_j_eswa_2022_117297 crossref_primary_10_1109_TIM_2021_3139706 crossref_primary_10_1016_j_jsv_2012_07_045 crossref_primary_10_1109_TIM_2021_3139703 crossref_primary_10_1115_1_4028833 crossref_primary_10_1016_j_ymssp_2015_10_007 crossref_primary_10_4028_www_scientific_net_AMM_121_126_268 crossref_primary_10_1016_j_ymssp_2024_112161 crossref_primary_10_1088_0957_0233_22_2_025102 crossref_primary_10_1016_j_jsv_2017_03_020 crossref_primary_10_1016_j_ymssp_2019_106342 crossref_primary_10_1016_j_ymssp_2020_107605 crossref_primary_10_1016_j_ymssp_2021_108539 crossref_primary_10_1177_1475921713475469 crossref_primary_10_1007_s11771_015_2877_z crossref_primary_10_1016_j_jsv_2014_09_026 crossref_primary_10_16984_saufenbilder_221303 crossref_primary_10_1088_0964_1726_20_7_075021 crossref_primary_10_1177_0954406215597956 crossref_primary_10_1088_1742_6596_305_1_012022 crossref_primary_10_1016_j_engfailanal_2015_01_006 crossref_primary_10_1016_j_measurement_2016_04_036 crossref_primary_10_1051_meca_2020035 crossref_primary_10_3390_app15042135 crossref_primary_10_1016_j_ymssp_2013_04_001 crossref_primary_10_1155_2017_4682409 crossref_primary_10_4028_www_scientific_net_AMM_33_28 crossref_primary_10_1016_j_ymssp_2015_04_004 |
Cites_doi | 10.1016/j.jsv.2005.04.018 10.1177/10775463030098002 10.1115/1.3269317 10.1109/10.668741 10.1057/palgrave.jors.2601261 10.1109/87.911387 10.1177/135065010421800101 10.1088/0964-1726/12/3/316 10.5081/jgps.5.1.62 10.1016/j.ymssp.2004.01.006 10.1006/mssp.1999.1294 10.1006/mssp.2001.1416 10.1088/0967-3334/27/3/002 10.1016/j.ymssp.2004.12.004 10.1006/mssp.1998.0173 10.1016/j.ymssp.2003.10.005 10.1016/S0005-1098(99)00093-X 10.1006/mssp.2000.1395 10.1016/j.ymssp.2004.01.009 10.1098/rspa.1998.0193 10.1115/1.1456905 10.1016/j.ymssp.2004.08.004 |
ContentType | Journal Article |
Copyright | 2009 2009 INIST-CNRS |
Copyright_xml | – notice: 2009 – notice: 2009 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.jsv.2009.03.029 |
DatabaseName | CrossRef Pascal-Francis Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Applied Sciences |
EISSN | 1095-8568 |
EndPage | 648 |
ExternalDocumentID | 21699468 10_1016_j_jsv_2009_03_029 S0022460X09002831 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFSI ABJNI ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADFGL ADIYS ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPGS AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CAG COF CS3 DM4 E.L EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG5 M24 M37 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPG SSQ SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7TB 8FD FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c358t-3a2e0465a5c8c460f495ef9bd95abbab073e3c705dfb144e4a28be46a51976b43 |
IEDL.DBID | .~1 |
ISSN | 0022-460X |
IngestDate | Sun Aug 24 04:09:25 EDT 2025 Mon Jul 21 09:14:03 EDT 2025 Tue Jul 01 03:30:06 EDT 2025 Thu Apr 24 23:05:08 EDT 2025 Fri Feb 23 02:19:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Time frequency domain method Kolmogorov Smirnov test Goodness of fit test Kalman filter Durability Non parametric estimation Autoregressive model Maintenance Decision analysis Experimental study Modeling Gear Optimization Operating conditions Time varying system Gear drive Lifetime Wavelet transformation Automatic monitoring Monitoring Gear box Constant load Dynamic load Visual control |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-3a2e0465a5c8c460f495ef9bd95abbab073e3c705dfb144e4a28be46a51976b43 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 34478090 |
PQPubID | 23500 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_34478090 pascalfrancis_primary_21699468 crossref_primary_10_1016_j_jsv_2009_03_029 crossref_citationtrail_10_1016_j_jsv_2009_03_029 elsevier_sciencedirect_doi_10_1016_j_jsv_2009_03_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-08-21 |
PublicationDateYYYYMMDD | 2009-08-21 |
PublicationDate_xml | – month: 08 year: 2009 text: 2009-08-21 day: 21 |
PublicationDecade | 2000 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Journal of sound and vibration |
PublicationYear | 2009 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Applied Research Laboratory, The Pennsylvania State University. Luo, Osypiw, Irle (bib3) 2003; 9 A.J. Miller, A New Wavelet Basis for the Decomposition of Gear Motion Error Signals and its Application to Gearbox Diagnostics, MS Thesis, The Graduate School of The Pennsylvania State University, 1999. Kim, Lee (bib24) 2006; 5 C. Sodsri, Time-varying Autoregressive Modelling for Nonstationary Acoustic Signal and its Frequency Analysis, PhD Thesis, The Pennsylvania State University, 2003. Zhan, Makis, Jardine (bib21) 2006; 20 Huang (bib22) 2001; 9 Ohue, Yoshida, Seki (bib1) 2004; 218 Arnold, Miltner, Witte, Bauer, Braun (bib9) 1998; 45 Lin, Wiseman, Banjevic, Jardine (bib27) 2004; 18 M.J. Moorman, Mathematical analysis of bias in the extended Kalman filter Mechefske, Wang (bib15) 2001; 15 Basseville, Abdelghani, Benveniste (bib13) 2000; 36 Meltzer, Dien (bib2) 2004; 18 MDTB test-run data CDs: TR#12 and TR#14 Zhan, Makis (bib14) 2006; 290 Vlok, Coetzee, Banjevic, Jardine, Makis (bib17) 2002; 53 Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (bib4) 1998; 454 Wang, Mechefske (bib8) 2006; 20 Peng, Tse, Chu (bib5) 2005; 19 Quek, Tua, Wang (bib6) 2003; 12 Wang (bib20) 2001; 15 Basseville, Nikiforov (bib12) 1993 Mechefske (bib16) 1998; 12 Dalpiaz, Rivola, Rubini (bib19) 2000; 14 McFadden (bib18) 1986; 108 Brighton, UK, December 1991. Tarvainen, Georgiadis, Ranta-aho, Karjalainen (bib10) 2006; 27 Wang, Wong (bib7) 2002; 124 Wang (10.1016/j.jsv.2009.03.029_bib20) 2001; 15 McFadden (10.1016/j.jsv.2009.03.029_bib18) 1986; 108 Meltzer (10.1016/j.jsv.2009.03.029_bib2) 2004; 18 10.1016/j.jsv.2009.03.029_bib25 Wang (10.1016/j.jsv.2009.03.029_bib8) 2006; 20 10.1016/j.jsv.2009.03.029_bib26 Huang (10.1016/j.jsv.2009.03.029_bib22) 2001; 9 Lin (10.1016/j.jsv.2009.03.029_bib27) 2004; 18 10.1016/j.jsv.2009.03.029_bib23 Wang (10.1016/j.jsv.2009.03.029_bib7) 2002; 124 Tarvainen (10.1016/j.jsv.2009.03.029_bib10) 2006; 27 Ohue (10.1016/j.jsv.2009.03.029_bib1) 2004; 218 Mechefske (10.1016/j.jsv.2009.03.029_bib15) 2001; 15 Zhan (10.1016/j.jsv.2009.03.029_bib21) 2006; 20 Quek (10.1016/j.jsv.2009.03.029_bib6) 2003; 12 Basseville (10.1016/j.jsv.2009.03.029_bib12) 1993 Vlok (10.1016/j.jsv.2009.03.029_bib17) 2002; 53 Dalpiaz (10.1016/j.jsv.2009.03.029_bib19) 2000; 14 Arnold (10.1016/j.jsv.2009.03.029_bib9) 1998; 45 Mechefske (10.1016/j.jsv.2009.03.029_bib16) 1998; 12 Zhan (10.1016/j.jsv.2009.03.029_bib14) 2006; 290 10.1016/j.jsv.2009.03.029_bib11 Peng (10.1016/j.jsv.2009.03.029_bib5) 2005; 19 Luo (10.1016/j.jsv.2009.03.029_bib3) 2003; 9 Huang (10.1016/j.jsv.2009.03.029_bib4) 1998; 454 Kim (10.1016/j.jsv.2009.03.029_bib24) 2006; 5 Basseville (10.1016/j.jsv.2009.03.029_bib13) 2000; 36 |
References_xml | – reference: M.J. Moorman, Mathematical analysis of bias in the extended Kalman filter, – volume: 15 start-page: 887 year: 2001 end-page: 903 ident: bib20 article-title: Early detection of gear tooth cracking using the resonance demodulation technique publication-title: Mechanical Systems and Signal Processing – reference: , Applied Research Laboratory, The Pennsylvania State University. – year: 1993 ident: bib12 article-title: Detection of Abrupt Changes: Theory and Application – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: bib4 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proceeding of the Royal Society of London Series A – volume: 20 start-page: 825 year: 2006 end-page: 842 ident: bib8 article-title: Adaptive modelling of transient vibration signals publication-title: Mechanical Systems and Signal Processing – volume: 12 start-page: 855 year: 1998 end-page: 862 ident: bib16 article-title: Objective machinery fault diagnosis using fuzzy logic publication-title: Mechanical Systems and Signal Processing – volume: 18 start-page: 985 year: 2004 end-page: 992 ident: bib2 article-title: Fault diagnosis in gears operating under non-stationary rotational speed using polar wavelet amplitude maps publication-title: Mechanical Systems and Signal Processing – volume: 124 start-page: 172 year: 2002 end-page: 179 ident: bib7 article-title: Autoregressive model-based gear fault diagnosis publication-title: Journal of Vibration and Acoustics – volume: 290 start-page: 928 year: 2006 end-page: 955 ident: bib14 article-title: A robust diagnostic model for gearboxes subject to vibration monitoring publication-title: Journal of Sound and Vibration – volume: 19 start-page: 974 year: 2005 end-page: 988 ident: bib5 article-title: A comparison study of improved Hilbert–Huang transform and wavelet transform: application to fault diagnosis for rolling bearing publication-title: Mechanical Systems and Signal Processing – volume: 9 start-page: 931 year: 2003 end-page: 947 ident: bib3 article-title: On-line vibration analysis with fast continuous wavelet algorithm for condition monitoring of bearing publication-title: Journal of Vibration and Control – volume: 20 start-page: 188 year: 2006 end-page: 221 ident: bib21 article-title: Adaptive state detection of gearboxes under varying load conditions based on parametric modelling publication-title: Mechanical Systems and Signal Processing – reference: A.J. Miller, A New Wavelet Basis for the Decomposition of Gear Motion Error Signals and its Application to Gearbox Diagnostics, MS Thesis, The Graduate School of The Pennsylvania State University, 1999. – volume: 27 start-page: 225 year: 2006 end-page: 239 ident: bib10 article-title: Time-varying analysis of heart rate variability signals with a Kalman smoother algorithm publication-title: Physiological Measurement – volume: 5 start-page: 62 year: 2006 end-page: 69 ident: bib24 article-title: Adaptive two-stage EKF for INS-GPS loosely coupled system with unknown fault bias publication-title: Journal of Global Positioning – volume: 45 start-page: 553 year: 1998 end-page: 562 ident: bib9 article-title: Adaptive AR modeling of nonstationary time series by means of Kalman filtering publication-title: IEEE Transactions on Biomedical Engineering – reference: C. Sodsri, Time-varying Autoregressive Modelling for Nonstationary Acoustic Signal and its Frequency Analysis, PhD Thesis, The Pennsylvania State University, 2003. – volume: 218 start-page: 1 year: 2004 end-page: 11 ident: bib1 article-title: Application of the wavelet transform to health monitoring and evaluation of dynamic characteristics in gear sets publication-title: Proceedings of the I MECH E Part J Journal of Engineering Tribology – reference: , Brighton, UK, December 1991. – volume: 12 start-page: 447 year: 2003 end-page: 460 ident: bib6 article-title: Detecting anomalies in beams and plate based on the Hilbert–Huang transform of real signals publication-title: Smart Materials and Structures – volume: 18 start-page: 993 year: 2004 end-page: 1007 ident: bib27 article-title: An approach to signal processing and condition-based maintenance for gearboxes subject to tooth failure publication-title: Mechanical Systems and Signal Processing – volume: 14 start-page: 387 year: 2000 end-page: 412 ident: bib19 article-title: Effectiveness and sensitivity of vibration processing techniques for local fault detection in gears publication-title: Mechanical Systems and Signal Processing – volume: 53 start-page: 193 year: 2002 end-page: 202 ident: bib17 article-title: Optimal component replacement decisions using vibration monitoring and the proportional-hazards model publication-title: Journal of the Operational Research Society – volume: 36 start-page: 101 year: 2000 end-page: 109 ident: bib13 article-title: Subspace-based fault detection algorithms for vibration monitoring publication-title: Automatica – volume: 108 start-page: 165 year: 1986 end-page: 170 ident: bib18 article-title: Detecting fatigue cracks in gears by amplitude and phase modulations of the meshing vibration publication-title: ASME Transactions, Journal of Vibration, Acoustics, Stress and Reliability in Design – reference: MDTB test-run data CDs: TR#12 and TR#14, – volume: 15 start-page: 1129 year: 2001 end-page: 1140 ident: bib15 article-title: Using fuzzy linguistics to select optimum maintenance and condition monitoring strategies publication-title: Mechanical Systems and Signal Processing – volume: 9 start-page: 357 year: 2001 end-page: 367 ident: bib22 article-title: Detection of abrupt changes of total least squares models and application in fault detection publication-title: IEEE Transactions on Control Systems Technology – volume: 290 start-page: 928 year: 2006 ident: 10.1016/j.jsv.2009.03.029_bib14 article-title: A robust diagnostic model for gearboxes subject to vibration monitoring publication-title: Journal of Sound and Vibration doi: 10.1016/j.jsv.2005.04.018 – volume: 9 start-page: 931 year: 2003 ident: 10.1016/j.jsv.2009.03.029_bib3 article-title: On-line vibration analysis with fast continuous wavelet algorithm for condition monitoring of bearing publication-title: Journal of Vibration and Control doi: 10.1177/10775463030098002 – volume: 108 start-page: 165 year: 1986 ident: 10.1016/j.jsv.2009.03.029_bib18 article-title: Detecting fatigue cracks in gears by amplitude and phase modulations of the meshing vibration publication-title: ASME Transactions, Journal of Vibration, Acoustics, Stress and Reliability in Design doi: 10.1115/1.3269317 – volume: 45 start-page: 553 year: 1998 ident: 10.1016/j.jsv.2009.03.029_bib9 article-title: Adaptive AR modeling of nonstationary time series by means of Kalman filtering publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/10.668741 – volume: 53 start-page: 193 year: 2002 ident: 10.1016/j.jsv.2009.03.029_bib17 article-title: Optimal component replacement decisions using vibration monitoring and the proportional-hazards model publication-title: Journal of the Operational Research Society doi: 10.1057/palgrave.jors.2601261 – year: 1993 ident: 10.1016/j.jsv.2009.03.029_bib12 – volume: 9 start-page: 357 year: 2001 ident: 10.1016/j.jsv.2009.03.029_bib22 article-title: Detection of abrupt changes of total least squares models and application in fault detection publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/87.911387 – volume: 218 start-page: 1 year: 2004 ident: 10.1016/j.jsv.2009.03.029_bib1 article-title: Application of the wavelet transform to health monitoring and evaluation of dynamic characteristics in gear sets publication-title: Proceedings of the I MECH E Part J Journal of Engineering Tribology doi: 10.1177/135065010421800101 – volume: 12 start-page: 447 year: 2003 ident: 10.1016/j.jsv.2009.03.029_bib6 article-title: Detecting anomalies in beams and plate based on the Hilbert–Huang transform of real signals publication-title: Smart Materials and Structures doi: 10.1088/0964-1726/12/3/316 – volume: 5 start-page: 62 year: 2006 ident: 10.1016/j.jsv.2009.03.029_bib24 article-title: Adaptive two-stage EKF for INS-GPS loosely coupled system with unknown fault bias publication-title: Journal of Global Positioning doi: 10.5081/jgps.5.1.62 – ident: 10.1016/j.jsv.2009.03.029_bib26 – volume: 19 start-page: 974 year: 2005 ident: 10.1016/j.jsv.2009.03.029_bib5 article-title: A comparison study of improved Hilbert–Huang transform and wavelet transform: application to fault diagnosis for rolling bearing publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2004.01.006 – volume: 14 start-page: 387 year: 2000 ident: 10.1016/j.jsv.2009.03.029_bib19 article-title: Effectiveness and sensitivity of vibration processing techniques for local fault detection in gears publication-title: Mechanical Systems and Signal Processing doi: 10.1006/mssp.1999.1294 – volume: 15 start-page: 887 year: 2001 ident: 10.1016/j.jsv.2009.03.029_bib20 article-title: Early detection of gear tooth cracking using the resonance demodulation technique publication-title: Mechanical Systems and Signal Processing doi: 10.1006/mssp.2001.1416 – volume: 27 start-page: 225 year: 2006 ident: 10.1016/j.jsv.2009.03.029_bib10 article-title: Time-varying analysis of heart rate variability signals with a Kalman smoother algorithm publication-title: Physiological Measurement doi: 10.1088/0967-3334/27/3/002 – volume: 20 start-page: 825 year: 2006 ident: 10.1016/j.jsv.2009.03.029_bib8 article-title: Adaptive modelling of transient vibration signals publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2004.12.004 – volume: 12 start-page: 855 year: 1998 ident: 10.1016/j.jsv.2009.03.029_bib16 article-title: Objective machinery fault diagnosis using fuzzy logic publication-title: Mechanical Systems and Signal Processing doi: 10.1006/mssp.1998.0173 – volume: 18 start-page: 993 year: 2004 ident: 10.1016/j.jsv.2009.03.029_bib27 article-title: An approach to signal processing and condition-based maintenance for gearboxes subject to tooth failure publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2003.10.005 – volume: 36 start-page: 101 year: 2000 ident: 10.1016/j.jsv.2009.03.029_bib13 article-title: Subspace-based fault detection algorithms for vibration monitoring publication-title: Automatica doi: 10.1016/S0005-1098(99)00093-X – volume: 15 start-page: 1129 year: 2001 ident: 10.1016/j.jsv.2009.03.029_bib15 article-title: Using fuzzy linguistics to select optimum maintenance and condition monitoring strategies publication-title: Mechanical Systems and Signal Processing doi: 10.1006/mssp.2000.1395 – ident: 10.1016/j.jsv.2009.03.029_bib11 – volume: 18 start-page: 985 year: 2004 ident: 10.1016/j.jsv.2009.03.029_bib2 article-title: Fault diagnosis in gears operating under non-stationary rotational speed using polar wavelet amplitude maps publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2004.01.009 – ident: 10.1016/j.jsv.2009.03.029_bib23 – volume: 454 start-page: 903 year: 1998 ident: 10.1016/j.jsv.2009.03.029_bib4 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proceeding of the Royal Society of London Series A doi: 10.1098/rspa.1998.0193 – volume: 124 start-page: 172 year: 2002 ident: 10.1016/j.jsv.2009.03.029_bib7 article-title: Autoregressive model-based gear fault diagnosis publication-title: Journal of Vibration and Acoustics doi: 10.1115/1.1456905 – volume: 20 start-page: 188 year: 2006 ident: 10.1016/j.jsv.2009.03.029_bib21 article-title: Adaptive state detection of gearboxes under varying load conditions based on parametric modelling publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2004.08.004 – ident: 10.1016/j.jsv.2009.03.029_bib25 |
SSID | ssj0009434 |
Score | 2.1283443 |
Snippet | The efficiency of many maintenance programs is heavily dependent on the detection accuracy of the condition monitoring system. Condition indicators that are... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 629 |
SubjectTerms | Applied sciences Drives Exact sciences and technology Fundamental areas of phenomenology (including applications) Gears Industrial metrology. Testing Measurement and testing methods Mechanical engineering. Machine design Physics Solid mechanics Structural and continuum mechanics |
Title | Gearbox vibration monitoring using extended Kalman filters and hypothesis tests |
URI | https://dx.doi.org/10.1016/j.jsv.2009.03.029 https://www.proquest.com/docview/34478090 |
Volume | 325 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-iCIKInzg_Zh58Erq1S9M1j2OoU1FfFPYWkjTVDe2G3Ya--Ld7l7YTUfbga0lIerm73OXufkfIacATw5TgnmobcFCCwHgabg1PCc24ULEWKT7o395Fvcfwus_7S6Rb1cJgWmWp-wud7rR1-aVZUrM5HgywxhfB0Py-L1zDHVfBHraRyxuf32keiH9WIYbj6Cqy6XK8hvmshKxkDd9ZmX_eTetjlQPF0qLVxS-t7a6ii02yUdqQtFNsc4ss2WybrLpcTpPvkPtL4F49eqczdIWR8PTVSS4-4VFMdH-i1ds3vVEvryqj6QCj5jlVWUKfP8ZYlpUPcgp26CTfJY8X5w_dnlf2TfAM4_HEY6plwe3lipvYwD-n4ATZVOhEcKW10iDVlpm2z5NUgz9lQ9WKtQ0jhUWskQ7ZHlnORpndJ9TX3DALVoriIN1GC2bbTMD20sBPmOU14lcUk6YEFcfeFi-yyh4bSiAyNrsU0mcSiFwjZ_Mp4wJRY9HgsDoG-YMtJGj8RdPqP45svlAriIQIo7hGTqozlCBPGCRRmR1Nc4kIiDGw1MH_Vj4ka0W8CfRPcESWJ29Tewxmy0TXHV_WyUrn6qZ39wXCDu3h |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTtwwcARUiEpV1RYqti3gQ3tBCiRxnI0PHFALXbo8LiDtzdiOU3YF2VW9vC79KX6QmTyoUCsOlbhG8UMz43k_AD5HIrdcSxHorkUDJYpsYFBqBFoaLqTOjCzIoX9wmPZOkh8DMZiBu7YWhtIqG95f8_SKWzdfNhtobk6GQ6rxpWZo4SCU1cCdqMms7Lvba7Tb_NbeN0Tylzje3Tn-2gua0QKB5SKbBlzHDi1DoYXNLG5SoJ3gCmlyKbQx2iDhO267ocgLgyaHS3ScGZekmuo8U5Nw3HcWXiTILmhswsbvP3kl1HCtbVFO12tDqVVS2chfNT0y-UZYqbX_FIavJtojiop6tsZfYqKSfbtv4HWjtLLtGi5vYcaV72C-Sh61fhGOviNIzPiGXZHtTZhmFxWrIJ8ho8z6n6x1trO-Pr_QJSuGFKb3TJc5O7udUB2YH3qGiu_UL8HJs0DzPcyV49ItAwuNsNyhWqQFshNrJHddLvF6RRTm3IkOhC3ElG26mNMwjXPVpquNFAKZpmtKFXKFQO7A-sOSSd3C46mfkxYN6hEdKhQxTy1bfYSyh4PiKJUySbMOrLU4VPiAKSqjSze-9IpaLmZIwx_-7-Q1WOgdH-yr_b3D_kd4WQe7kPlFn2Bu-uvSraDONDWrFY0yOH3uR3EP1ZwqEA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gearbox+vibration+monitoring+using+extended+Kalman+filters+and+hypothesis+tests&rft.jtitle=Journal+of+sound+and+vibration&rft.au=Shao%2C+Yimin&rft.au=Mechefske%2C+Chris+K.&rft.date=2009-08-21&rft.issn=0022-460X&rft.volume=325&rft.issue=3&rft.spage=629&rft.epage=648&rft_id=info:doi/10.1016%2Fj.jsv.2009.03.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jsv_2009_03_029 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-460X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-460X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-460X&client=summon |