Fine-scale retrieval of leaf chlorophyll content using a semi-empirically accelerated 3D radiative transfer model
•The forest structural scene is explicitly reconstructed from UAV LiDAR data.•An efficient 3D Semi-LESS model coupled with deep learning for accurately retrieving LCC from UAV imagery.•The 3D Semi-LESS and 1D PROSAIL models are compared for LCC retrieval.•Semi-LESS outperforms PROSAIL in LCC retriev...
Saved in:
Published in | International journal of applied earth observation and geoinformation Vol. 135; p. 104285 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2024
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1569-8432 |
DOI | 10.1016/j.jag.2024.104285 |
Cover
Loading…
Abstract | •The forest structural scene is explicitly reconstructed from UAV LiDAR data.•An efficient 3D Semi-LESS model coupled with deep learning for accurately retrieving LCC from UAV imagery.•The 3D Semi-LESS and 1D PROSAIL models are compared for LCC retrieval.•Semi-LESS outperforms PROSAIL in LCC retrieval accuracy.•Our method holds potential for LCC mapping in orchards and crops.
Leaf chlorophyll content (LCC) retrieval from remote sensing imagery is essential for monitoring vegetation growth and stress in the agroforestry industry. Many remote sensing inversion methods for estimating LCC primarily rely on 1D radiative transfer models (RTMs) that abstract canopies into horizontal layers or simple geometric primitives. Yet, this methodology faces challenges when applied to heterogeneous canopies, particularly in fine-scale mapping where each pixel's reflectance is significantly influenced by its surroundings, e.g. crown shadows. While 3D RTMs hold promise for addressing these challenges by explicitly describing complex canopy structures, their computational demands and the complexity involved in parameterizing detailed 3D structures limit the generation of extensive training datasets, requiring simulations across numerous parameter combinations. In this study, we used a semi-empirically accelerated 3D RTM, termed Semi-LESS, with a 1D residual network to accurately retrieve leaf chlorophyll content (LCC) from UAV images and LiDAR data at a 3-m resolution. We first reconstructed structures of forest plots using UAV LiDAR point cloud, based on which, UAV images with varying leaf and soil optical properties are simulated using the Semi-LESS. Subsequently, a training dataset consisting LCC and its corresponding reflectance was generated from the simulated UAV images by focusing on sunlit pixels. A 1D residual network is trained using the training dataset for LCC estimation. For comparison, we also trained an estimation model using a dataset generated from PROSAIL. The results show that estimation model trained with Semi-LESS surpasses PROSAIL in retrieving LCC from both simulation datasets and field measurements of two forest plots. The RMSE of Semi-LESS was 5.40–6.92 µg/cm2 for simulation datasets and 8.21–9.76 µg/cm2 for field measurements, whereas PROSAIL exhibited lower accuracy with an RMSE of 7.76–9.83 µg/cm2 for simulation datasets and 12.76–13.06 µg/cm2 in field measurements. The results demonstrate that Semi-LESS coupled with deep learning is reliable and has great potential for LCC mapping using UAV images, which is particularly useful for fine-scale applications such as crop and orchard monitoring. This approach also highlights the impact of shadows on LCC retrieval. |
---|---|
AbstractList | •The forest structural scene is explicitly reconstructed from UAV LiDAR data.•An efficient 3D Semi-LESS model coupled with deep learning for accurately retrieving LCC from UAV imagery.•The 3D Semi-LESS and 1D PROSAIL models are compared for LCC retrieval.•Semi-LESS outperforms PROSAIL in LCC retrieval accuracy.•Our method holds potential for LCC mapping in orchards and crops.
Leaf chlorophyll content (LCC) retrieval from remote sensing imagery is essential for monitoring vegetation growth and stress in the agroforestry industry. Many remote sensing inversion methods for estimating LCC primarily rely on 1D radiative transfer models (RTMs) that abstract canopies into horizontal layers or simple geometric primitives. Yet, this methodology faces challenges when applied to heterogeneous canopies, particularly in fine-scale mapping where each pixel's reflectance is significantly influenced by its surroundings, e.g. crown shadows. While 3D RTMs hold promise for addressing these challenges by explicitly describing complex canopy structures, their computational demands and the complexity involved in parameterizing detailed 3D structures limit the generation of extensive training datasets, requiring simulations across numerous parameter combinations. In this study, we used a semi-empirically accelerated 3D RTM, termed Semi-LESS, with a 1D residual network to accurately retrieve leaf chlorophyll content (LCC) from UAV images and LiDAR data at a 3-m resolution. We first reconstructed structures of forest plots using UAV LiDAR point cloud, based on which, UAV images with varying leaf and soil optical properties are simulated using the Semi-LESS. Subsequently, a training dataset consisting LCC and its corresponding reflectance was generated from the simulated UAV images by focusing on sunlit pixels. A 1D residual network is trained using the training dataset for LCC estimation. For comparison, we also trained an estimation model using a dataset generated from PROSAIL. The results show that estimation model trained with Semi-LESS surpasses PROSAIL in retrieving LCC from both simulation datasets and field measurements of two forest plots. The RMSE of Semi-LESS was 5.40–6.92 µg/cm2 for simulation datasets and 8.21–9.76 µg/cm2 for field measurements, whereas PROSAIL exhibited lower accuracy with an RMSE of 7.76–9.83 µg/cm2 for simulation datasets and 12.76–13.06 µg/cm2 in field measurements. The results demonstrate that Semi-LESS coupled with deep learning is reliable and has great potential for LCC mapping using UAV images, which is particularly useful for fine-scale applications such as crop and orchard monitoring. This approach also highlights the impact of shadows on LCC retrieval. Leaf chlorophyll content (LCC) retrieval from remote sensing imagery is essential for monitoring vegetation growth and stress in the agroforestry industry. Many remote sensing inversion methods for estimating LCC primarily rely on 1D radiative transfer models (RTMs) that abstract canopies into horizontal layers or simple geometric primitives. Yet, this methodology faces challenges when applied to heterogeneous canopies, particularly in fine-scale mapping where each pixel's reflectance is significantly influenced by its surroundings, e.g. crown shadows. While 3D RTMs hold promise for addressing these challenges by explicitly describing complex canopy structures, their computational demands and the complexity involved in parameterizing detailed 3D structures limit the generation of extensive training datasets, requiring simulations across numerous parameter combinations. In this study, we used a semi-empirically accelerated 3D RTM, termed Semi-LESS, with a 1D residual network to accurately retrieve leaf chlorophyll content (LCC) from UAV images and LiDAR data at a 3-m resolution. We first reconstructed structures of forest plots using UAV LiDAR point cloud, based on which, UAV images with varying leaf and soil optical properties are simulated using the Semi-LESS. Subsequently, a training dataset consisting LCC and its corresponding reflectance was generated from the simulated UAV images by focusing on sunlit pixels. A 1D residual network is trained using the training dataset for LCC estimation. For comparison, we also trained an estimation model using a dataset generated from PROSAIL. The results show that estimation model trained with Semi-LESS surpasses PROSAIL in retrieving LCC from both simulation datasets and field measurements of two forest plots. The RMSE of Semi-LESS was 5.40–6.92 µg/cm2 for simulation datasets and 8.21–9.76 µg/cm2 for field measurements, whereas PROSAIL exhibited lower accuracy with an RMSE of 7.76–9.83 µg/cm2 for simulation datasets and 12.76–13.06 µg/cm2 in field measurements. The results demonstrate that Semi-LESS coupled with deep learning is reliable and has great potential for LCC mapping using UAV images, which is particularly useful for fine-scale applications such as crop and orchard monitoring. This approach also highlights the impact of shadows on LCC retrieval. |
ArticleNumber | 104285 |
Author | Qi, Jianbo Huang, Huaguo Xu, Haifeng Li, Linyuan Lin, Simei Zhao, Xun Yu, Zhexiu Liu, Shangbo Jiang, Jingyi |
Author_xml | – sequence: 1 givenname: Xun surname: Zhao fullname: Zhao, Xun organization: Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China – sequence: 2 givenname: Jianbo surname: Qi fullname: Qi, Jianbo organization: Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China – sequence: 3 givenname: Jingyi orcidid: 0009-0000-7157-0711 surname: Jiang fullname: Jiang, Jingyi organization: State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, China – sequence: 4 givenname: Shangbo surname: Liu fullname: Liu, Shangbo organization: Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou 510405, China – sequence: 5 givenname: Haifeng surname: Xu fullname: Xu, Haifeng organization: School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China – sequence: 6 givenname: Simei surname: Lin fullname: Lin, Simei organization: State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, China – sequence: 7 givenname: Zhexiu surname: Yu fullname: Yu, Zhexiu organization: State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, China – sequence: 8 givenname: Linyuan surname: Li fullname: Li, Linyuan organization: State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, China – sequence: 9 givenname: Huaguo surname: Huang fullname: Huang, Huaguo organization: State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, China |
BookMark | eNp9kM9u3CAQhzmkUv4-QG68gLfYBmwrpyht2kiRcskdjYdhg8WaDZCV9u1LulWPuTBipO-bmd8lO1vjSozdtmLTilZ_XzYLbDed6GT9y25UZ-yiVXpqRtl35-wy50WIdhj0eMHeH_1KTUYIxBOV5OkAgUfHA4Hj-BZiivu3Ywgc41poLfwj-3XLgWfa-YZ2e598pcORAyIFSlDI8v4HT2A9FH8gXhKs2VHiu2gpXLNvDkKmm3_1ir0-_nx9-N08v_x6erh_brBXY2n6EVGAohHE5AYB2PVaaZTWzUMdJNHJoXdCQz_paaqPkzAgoRJo9az7K_Z00toIi9knv4N0NBG8-duIaWsgFY-BjB4tWjvNHepJTmqcNc4S7eBsq5VStrrakwtTzDmR--9rhfmM3CymRm4-IzenyCtzd2Ko3njwlExGTyuS9Ymw1C38F_QfGx6PzQ |
Cites_doi | 10.1016/j.rse.2024.114152 10.1016/j.isprsjprs.2013.02.019 10.1016/j.isprsjprs.2023.03.020 10.1109/JSTARS.2017.2714423 10.1080/17538947.2018.1495770 10.1016/j.rse.2019.111274 10.1016/j.rse.2017.12.043 10.1016/j.rse.2024.114121 10.1016/j.rse.2013.02.006 10.34133/plantphenomics.0166 10.1016/j.rse.2008.02.012 10.1145/147130.147153 10.1016/j.rse.2019.111614 10.1016/j.rse.2011.02.027 10.1016/j.rse.2022.113301 10.1016/j.compag.2022.107401 10.1016/j.rse.2019.111479 10.1016/j.rse.2015.08.016 10.1016/j.rse.2018.11.036 10.1016/j.rse.2021.112477 10.1016/j.rse.2023.113759 10.1016/j.isprsjprs.2024.02.020 10.1038/s41559-023-02187-6 10.1109/36.921424 10.1080/0143116031000115166 10.1016/j.rse.2024.114264 10.1016/j.rse.2013.01.013 10.1016/0034-4257(84)90057-9 10.1016/j.compag.2024.108959 10.1016/j.rse.2021.112749 10.34133/remotesensing.0017 10.1109/TGRS.2023.3297363 10.1016/j.rse.2019.01.039 10.1016/j.isprsjprs.2019.02.013 10.1016/j.compag.2024.108816 10.1016/j.fecs.2023.100108 10.3390/rs8060501 10.1016/j.rse.2022.113284 10.1109/36.508411 10.1016/j.rse.2021.112618 10.1016/j.rse.2020.112041 10.1016/j.rse.2018.04.023 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.jag.2024.104285 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
ExternalDocumentID | oai_doaj_org_article_68dcdd9b2c694958b6cb4cd7fd16555d 10_1016_j_jag_2024_104285 S1569843224006411 |
GroupedDBID | 29J 4.4 5GY 6I. AAFTH AAHBH AALRI AAQXK AAXKI AAXUO ABFYP ABJNI ABLST ABQEM ABQYD ABWVN ACLVX ACRLP ACRPL ACSBN ADBBV ADMUD ADNMO ADVLN AEIPS AFJKZ AFXIZ AGYEJ AHEUO AIKHN AITUG AKIFW ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG ATOGT AVWKF AZFZN BKOJK BLECG EBS EFJIC EJD FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY M41 O-L P-8 P-9 P2P R2- RIG ROL SES SPC SSE SSJ ~02 AATTM AAYWO AAYXX AGCQF AGQPQ AGRNS AIIUN APXCP BNPGV CITATION SSH EFKBS |
ID | FETCH-LOGICAL-c358t-38cc0a5e8a09f70ac23656c4dfb7cce4cf473f06a39699396f4a7cec50cd6b63 |
IEDL.DBID | AIKHN |
ISSN | 1569-8432 |
IngestDate | Wed Aug 27 01:25:54 EDT 2025 Sun Jul 06 05:07:34 EDT 2025 Sat Mar 22 15:54:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Retrieval High-resolution data Leaf chlorophyll content 3D radiative transfer model |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-38cc0a5e8a09f70ac23656c4dfb7cce4cf473f06a39699396f4a7cec50cd6b63 |
ORCID | 0009-0000-7157-0711 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1569843224006411 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_68dcdd9b2c694958b6cb4cd7fd16555d crossref_primary_10_1016_j_jag_2024_104285 elsevier_sciencedirect_doi_10_1016_j_jag_2024_104285 |
PublicationCentury | 2000 |
PublicationDate | December 2024 2024-12-00 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationTitle | International journal of applied earth observation and geoinformation |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Gao, Qi, Lin, Hu, Huang (b0075) 2023; 118 Jiang, Wang, Cao, Yang, Zhang, Wang (b0115) 2019; 12 He, Qi, Wang, Yan, Huang (b0090) 2024; 311 Croft, Chen, Zhang, Simic (b0050) 2013; 133 Qi, Xie, Yin, Yan, Gastellu-Etchegorry, Li, Zhang, Mu, Norford (b0175) 2019; 221 Zhao, Qi, Xu, Yu, Yuan, Chen, Huang (b0235) 2023; 297 Verhoef (b0195) 1984; 16 Gressin, Mallet, Demantké, David (b0085) 2013; 79 Jacquemoud, Verhoef, Baret, Bacour, Zarco-Tejada, Asner, François, Ustin (b0105) 2009; 113 Houborg, Anderson, Daughtry, Kustas, Rodell (b0095) 2011; 115 Zeng, Hao, Park, Zhu, Huete, Myneni, Knyazikhin, Qi, Nemani, Li, Huang, Gao, Li, Ji, Köhler, Frankenberg, Berry, Chen (b0220) 2023; 7 Xu, He, Zhang, Hao, Li, Xiang, Li, Chen, Yu, Shen, Huang, Guo, Li (b0205) 2023; 10 Bian, Wu, Roujean, Cao, Li, Yin, Du, Xiao, Liu (b0015) 2022; 268 Qi, Xie, Jiang, Huang (b0180) 2022; 283 Croft, Chen, Wang, Mo, Luo, Luo, He, Gonsamo, Arabian, Zhang, Simic-Milas, Noland, He, Homolová, Malenovský, Yi, Beringer, Amiri, Hutley, Arellano, Stahl, Bonal (b0055) 2020; 236 Qi, Jiang, Zhou, Xie, Huang (b0185) 2023; 3 Xu, Liu, Chen, Liu, Shang, Ju, Wu, Huang (b0210) 2019; 224 Cheng, Yang, Qi, Sun, Han, Feng, Jiang, Xu, Li, Yang, Zhao (b0035) 2022; 202 Ferreira, Feret, Grau, Gastellu-Etchegorry, Shimabukuro, de Souza Filho (b0070) 2018; 211 Kira, Linker, Gitelson (b0125) 2015; 38 Lin, Li, Liu, Gao, Zhao, Chen, Qi, Shen, Huang (b0150) 2024; 307 Bhadra, Sagan, Sarkar, Braud, Mockler, Eveland (b0010) 2024; 210 Zhang, Chen, Yang, Xu, Feng, Chen, Qi, Zhang, Zhao, Cheng, Yang (b0225) 2024; 221 Jiang, Weiss, Liu, Rochdi, Baret (b0120) 2020; 237 Zhao, Qi, Yu, Yuan, Huang (b0240) 2024; 6 Widlowski, Mio, Disney, Adams, Andredakis, Atzberger, Brennan, Busetto, Chelle, Ceccherini, Colombo, Côté, Eenmäe, Essery, Gastellu-Etchegorry, Gobron, Grau, Haverd, Homolová, Huang, Hunt, Kobayashi, Koetz, Kuusk, Kuusk, Lang, Lewis, Lovell, Malenovský, Meroni, Morsdorf, Mõttus, Ni-Meister, Pinty, Rautiainen, Schlerf, Somers, Stuckens, Verstraete, Yang, Zhao, Zenone (b0200) 2015; 169 Jiang, Fang (b0110) 2019; 83 Xu, Lu, Zhang, Yang, He, Yao, Cheng, Zhu, Cao, Tian (b0215) 2019; 150 Chen, Leblanc (b0025) 2001; 39 Liu, Atherton, Mottus, Gastellu-Etchegorry, Malenovsky, Raumonen, Akerblom, Makipaa, Porcar-Castell (b0155) 2019; 232 Cheng, Yang, Qi, Han, Sun, Feng, Chen, Zhang, Li, Yang (b0040) 2023; 121 Edelsbrunner, H., Mücke, E.P., 1994. Three-dimensional alpha shapes, in: Proceedings of the 1992 Workshop on Volume Visualization, VVS ’92. Association for Computing Machinery, New York, NY, USA, pp. 75–82. doi: 10.1145/147130.147153. Feret, François, Asner, Gitelson, Martin, Bidel, Ustin, Le Maire, Jacquemoud (b0065) 2008; 112 Makhloufi, Kallel (b0160) 2023; 61 Cai, Zhang, Zhang, Yu, Liang (b0020) 2024; 306 Bailey (b0005) 2014 Li, Ma, Chen, Croft, Luo, Zheng, Rogers, Liu (b0140) 2021; 264 Li, Mu, Jiang, Chianucci, Hu, Song, Qi, Liu, Zhou, Chen, Huang, Yan (b0145) 2023; 199 Qi, Xie, Guo, Yan (b0170) 2017; 10 Li, Chen, Yu, Zheng, Yao, Cao, Wei, Xiao, Zhu, Cheng (b0130) 2022; 282 Li, Guo, Tao, Su (b0135) 2018; 206 Coops, Tompalski, Goodbody, Queinnec, Luther, Bolton, White, Wulder, van Lier, Hermosilla (b0045) 2021; 260 Huang, Qin, Liu (b0100) 2013; 132 North (b0165) 1996; 34 Chen, Liu, Yang, Jin, Yang, Zhou, Zhang, Han, Meng, Zhai, Feng (b0030) 2024; 219 Zhang, Qi, Wan, Wang, Xie, Wang, Yan (b0230) 2016; 8 Gastellu-Etchegorry, Martin, Gascon (b0080) 2004; 25 Shen, Cao, Coops, Fan, Wu, Liu, Wang, Cao (b0190) 2020; 250 Huang (10.1016/j.jag.2024.104285_b0100) 2013; 132 Xu (10.1016/j.jag.2024.104285_b0215) 2019; 150 Houborg (10.1016/j.jag.2024.104285_b0095) 2011; 115 Li (10.1016/j.jag.2024.104285_b0145) 2023; 199 Qi (10.1016/j.jag.2024.104285_b0175) 2019; 221 Cai (10.1016/j.jag.2024.104285_b0020) 2024; 306 Jacquemoud (10.1016/j.jag.2024.104285_b0105) 2009; 113 Jiang (10.1016/j.jag.2024.104285_b0110) 2019; 83 Xu (10.1016/j.jag.2024.104285_b0210) 2019; 224 Zhao (10.1016/j.jag.2024.104285_b0240) 2024; 6 Lin (10.1016/j.jag.2024.104285_b0150) 2024; 307 Qi (10.1016/j.jag.2024.104285_b0180) 2022; 283 10.1016/j.jag.2024.104285_b0060 Zhao (10.1016/j.jag.2024.104285_b0235) 2023; 297 Bailey (10.1016/j.jag.2024.104285_b0005) 2014 Cheng (10.1016/j.jag.2024.104285_b0035) 2022; 202 Ferreira (10.1016/j.jag.2024.104285_b0070) 2018; 211 Zeng (10.1016/j.jag.2024.104285_b0220) 2023; 7 Cheng (10.1016/j.jag.2024.104285_b0040) 2023; 121 Makhloufi (10.1016/j.jag.2024.104285_b0160) 2023; 61 Chen (10.1016/j.jag.2024.104285_b0025) 2001; 39 Zhang (10.1016/j.jag.2024.104285_b0230) 2016; 8 Bian (10.1016/j.jag.2024.104285_b0015) 2022; 268 Gressin (10.1016/j.jag.2024.104285_b0085) 2013; 79 Croft (10.1016/j.jag.2024.104285_b0050) 2013; 133 Croft (10.1016/j.jag.2024.104285_b0055) 2020; 236 Liu (10.1016/j.jag.2024.104285_b0155) 2019; 232 Li (10.1016/j.jag.2024.104285_b0135) 2018; 206 Gao (10.1016/j.jag.2024.104285_b0075) 2023; 118 Qi (10.1016/j.jag.2024.104285_b0170) 2017; 10 He (10.1016/j.jag.2024.104285_b0090) 2024; 311 Zhang (10.1016/j.jag.2024.104285_b0225) 2024; 221 Qi (10.1016/j.jag.2024.104285_b0185) 2023; 3 Coops (10.1016/j.jag.2024.104285_b0045) 2021; 260 Chen (10.1016/j.jag.2024.104285_b0030) 2024; 219 Jiang (10.1016/j.jag.2024.104285_b0120) 2020; 237 Widlowski (10.1016/j.jag.2024.104285_b0200) 2015; 169 Feret (10.1016/j.jag.2024.104285_b0065) 2008; 112 Kira (10.1016/j.jag.2024.104285_b0125) 2015; 38 Xu (10.1016/j.jag.2024.104285_b0205) 2023; 10 Li (10.1016/j.jag.2024.104285_b0130) 2022; 282 Gastellu-Etchegorry (10.1016/j.jag.2024.104285_b0080) 2004; 25 Jiang (10.1016/j.jag.2024.104285_b0115) 2019; 12 Bhadra (10.1016/j.jag.2024.104285_b0010) 2024; 210 North (10.1016/j.jag.2024.104285_b0165) 1996; 34 Verhoef (10.1016/j.jag.2024.104285_b0195) 1984; 16 Li (10.1016/j.jag.2024.104285_b0140) 2021; 264 Shen (10.1016/j.jag.2024.104285_b0190) 2020; 250 |
References_xml | – volume: 236 year: 2020 ident: b0055 article-title: The global distribution of leaf chlorophyll content publication-title: Remote Sens. Environ. – volume: 6 start-page: 166 year: 2024 ident: b0240 article-title: Fine-scale quantification of absorbed photosynthetically active radiation (APAR) in plantation forests with 3D radiative transfer modeling and LiDAR data publication-title: Plant Phenomics – volume: 221 start-page: 695 year: 2019 end-page: 706 ident: b0175 article-title: LESS: LargE-Scale remote sensing data and image simulation framework over heterogeneous 3D scenes publication-title: Remote Sens. Environ. – volume: 260 year: 2021 ident: b0045 article-title: Modelling lidar-derived estimates of forest attributes over space and time: A review of approaches and future trends publication-title: Remote Sens. Environ. – volume: 34 start-page: 946 year: 1996 end-page: 956 ident: b0165 article-title: Three-dimensional forest light interaction model using a monte carlo method publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 10 year: 2023 ident: b0205 article-title: Retrieving chlorophyll content and equivalent water thickness of moso bamboo ( publication-title: For. Ecosyst. – volume: 199 start-page: 133 year: 2023 end-page: 156 ident: b0145 article-title: Review of ground and aerial methods for vegetation cover fraction (fCover) and related quantities estimation: definitions, advances, challenges, and future perspectives publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 79 start-page: 240 year: 2013 end-page: 251 ident: b0085 article-title: Towards 3D lidar point cloud registration improvement using optimal neighborhood knowledge publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 16 start-page: 125 year: 1984 end-page: 141 ident: b0195 article-title: Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model publication-title: Remote Sens. Environ. – volume: 3 start-page: 0017 year: 2023 ident: b0185 article-title: Fast and accurate simulation of canopy reflectance under wavelength-dependent optical properties using a semi-empirical 3D radiative transfer model publication-title: J. Remote Sens. – volume: 133 start-page: 128 year: 2013 end-page: 140 ident: b0050 article-title: Modelling leaf chlorophyll content in broadleaf and needle leaf canopies from ground, CASI, Landsat TM 5 and MERIS reflectance data publication-title: Remote Sens. Environ. – volume: 39 start-page: 1061 year: 2001 end-page: 1071 ident: b0025 article-title: Multiple-scattering scheme useful for geometric optical modeling publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 118 year: 2023 ident: b0075 article-title: Estimating plant area density of individual trees from discrete airborne laser scanning data using intensity information and path length distribution publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 25 start-page: 73 year: 2004 end-page: 96 ident: b0080 article-title: DART: a 3D model for simulating satellite images and studying surface radiation budget publication-title: Int. J. Remote Sens. – volume: 115 start-page: 1694 year: 2011 end-page: 1705 ident: b0095 article-title: Using leaf chlorophyll to parameterize light-use-efficiency within a thermal-based carbon, water and energy exchange model publication-title: Remote Sens. Environ. – year: 2014 ident: b0005 article-title: A scalable plant-resolving radiative transfer model based on optimized GPU ray tracing publication-title: Agricultural and Forest Meteorology 17 – volume: 210 start-page: 1 year: 2024 end-page: 24 ident: b0010 article-title: PROSAIL-net: a transfer learning-based dual stream neural network to estimate leaf chlorophyll and leaf angle of crops from UAV hyperspectral images publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 121 year: 2023 ident: b0040 article-title: Evaluation of the effect of leaf spatial aggregation on chlorophyll content retrieval in open-canopy apple orchards publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 311 year: 2024 ident: b0090 article-title: Estimation of canopy photon recollision probability from airborne laser scanning publication-title: Remote Sens. Environ. – volume: 232 year: 2019 ident: b0155 article-title: Simulating solar-induced chlorophyll fluorescence in a boreal forest stand reconstructed from terrestrial laser scanning measurements publication-title: Remote Sens. Environ. – volume: 150 start-page: 185 year: 2019 end-page: 196 ident: b0215 article-title: Inversion of rice canopy chlorophyll content and leaf area index based on coupling of radiative transfer and Bayesian network models publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 10 start-page: 4834 year: 2017 end-page: 4843 ident: b0170 article-title: A large-scale emulation system for realistic three-dimensional (3-D) forest simulation publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 268 year: 2022 ident: b0015 article-title: A TIR forest reflectance and transmittance (FRT) model for directional temperatures with structural and thermal stratification publication-title: Remote Sens. Environ. – volume: 61 start-page: 1 year: 2023 end-page: 14 ident: b0160 article-title: Inversion of a New designed ANN-based 3-D-RTM Emulator by continuous MCMC technique to monitor crop biophysical properties using sentinel-2 images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 8 start-page: 501 year: 2016 ident: b0230 article-title: An easy-to-use airborne LiDAR data filtering method based on cloth simulation publication-title: Remote Sens. (Basel) – volume: 112 start-page: 3030 year: 2008 end-page: 3043 ident: b0065 article-title: PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments publication-title: Remote Sens. Environ. – volume: 113 start-page: S56 year: 2009 end-page: S66 ident: b0105 article-title: PROSPECT+SAIL models: A review of use for vegetation characterization publication-title: Remote Sens. Environ. Imaging Spect. Special Issue – volume: 224 start-page: 60 year: 2019 end-page: 73 ident: b0210 article-title: Retrieving leaf chlorophyll content using a matrix-based vegetation index combination approach publication-title: Remote Sens. Environ. – volume: 221 year: 2024 ident: b0225 article-title: Removal of canopy shadows improved retrieval accuracy of individual apple tree crowns LAI and chlorophyll content using UAV multispectral imagery and PROSAIL model publication-title: Comput. Electron. Agric. – reference: Edelsbrunner, H., Mücke, E.P., 1994. Three-dimensional alpha shapes, in: Proceedings of the 1992 Workshop on Volume Visualization, VVS ’92. Association for Computing Machinery, New York, NY, USA, pp. 75–82. doi: 10.1145/147130.147153. – volume: 306 year: 2024 ident: b0020 article-title: Branch architecture quantification of large-scale coniferous forest plots using UAV-LiDAR data publication-title: Remote Sens. Environ. – volume: 83 year: 2019 ident: b0110 article-title: GSV: a general model for hyperspectral soil reflectance simulation publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 250 year: 2020 ident: b0190 article-title: Quantifying vertical profiles of biochemical traits for forest plantation species using advanced remote sensing approaches publication-title: Remote Sens. Environ. – volume: 206 start-page: 318 year: 2018 end-page: 335 ident: b0135 article-title: VBRT: a novel voxel-based radiative transfer model for heterogeneous three-dimensional forest scenes publication-title: Remote Sens. Environ. – volume: 169 start-page: 418 year: 2015 end-page: 437 ident: b0200 article-title: The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: Actual canopy scenarios and conformity testing publication-title: Remote Sens. Environ. – volume: 202 year: 2022 ident: b0035 article-title: Estimating canopy-scale chlorophyll content in apple orchards using a 3D radiative transfer model and UAV multispectral imagery publication-title: Comput. Electron. Agric. – volume: 38 start-page: 251 year: 2015 end-page: 260 ident: b0125 article-title: Non-destructive estimation of foliar chlorophyll and carotenoid contents: Focus on informative spectral bands publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 283 year: 2022 ident: b0180 article-title: 3D radiative transfer modeling of structurally complex forest canopies through a lightweight boundary-based description of leaf clusters publication-title: Remote Sens. Environ. – volume: 297 year: 2023 ident: b0235 article-title: Evaluating the potential of airborne hyperspectral LiDAR for assessing forest insects and diseases with 3D Radiative Transfer Modeling publication-title: Remote Sens. Environ. – volume: 282 year: 2022 ident: b0130 article-title: Assessing a soil-removed semi-empirical model for estimating leaf chlorophyll content publication-title: Remote Sens. Environ. – volume: 219 year: 2024 ident: b0030 article-title: A novel framework to assess apple leaf nitrogen content: fusion of hyperspectral reflectance and phenology information through deep learning publication-title: Comput. Electron. Agric. – volume: 211 start-page: 276 year: 2018 end-page: 291 ident: b0070 article-title: Retrieving structural and chemical properties of individual tree crowns in a highly diverse tropical forest with 3D radiative transfer modeling and imaging spectroscopy publication-title: Remote Sens. Environ. – volume: 264 year: 2021 ident: b0140 article-title: Fine-scale leaf chlorophyll distribution across a deciduous forest through two-step model inversion from Sentinel-2 data publication-title: Remote Sens. Environ. – volume: 237 year: 2020 ident: b0120 article-title: Speeding up 3D radiative transfer simulations: A physically based metamodel of canopy reflectance dependency on wavelength, leaf biochemical composition and soil reflectance publication-title: Remote Sens. Environ. – volume: 132 start-page: 221 year: 2013 end-page: 237 ident: b0100 article-title: RAPID: A Radiosity Applicable to Porous IndiviDual Objects for directional reflectance over complex vegetated scenes publication-title: Remote Sens. Environ. – volume: 12 start-page: 1013 year: 2019 end-page: 1029 ident: b0115 article-title: A shadow- eliminated vegetation index (SEVI) for removal of self and cast shadow effects on vegetation in rugged terrains publication-title: Int. J. Digital Earth – volume: 7 start-page: 1790 year: 2023 end-page: 1798 ident: b0220 article-title: Structural complexity biases vegetation greenness measures publication-title: Nat. Ecol. Evol. – volume: 307 year: 2024 ident: b0150 article-title: Stratified burn severity assessment by integrating spaceborne spectral and waveform attributes in great xing’an mountain publication-title: Remote Sens. Environ. – volume: 83 year: 2019 ident: 10.1016/j.jag.2024.104285_b0110 article-title: GSV: a general model for hyperspectral soil reflectance simulation publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 307 year: 2024 ident: 10.1016/j.jag.2024.104285_b0150 article-title: Stratified burn severity assessment by integrating spaceborne spectral and waveform attributes in great xing’an mountain publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2024.114152 – volume: 79 start-page: 240 year: 2013 ident: 10.1016/j.jag.2024.104285_b0085 article-title: Towards 3D lidar point cloud registration improvement using optimal neighborhood knowledge publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.02.019 – volume: 199 start-page: 133 year: 2023 ident: 10.1016/j.jag.2024.104285_b0145 article-title: Review of ground and aerial methods for vegetation cover fraction (fCover) and related quantities estimation: definitions, advances, challenges, and future perspectives publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2023.03.020 – volume: 10 start-page: 4834 year: 2017 ident: 10.1016/j.jag.2024.104285_b0170 article-title: A large-scale emulation system for realistic three-dimensional (3-D) forest simulation publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2017.2714423 – volume: 113 start-page: S56 year: 2009 ident: 10.1016/j.jag.2024.104285_b0105 article-title: PROSPECT+SAIL models: A review of use for vegetation characterization publication-title: Remote Sens. Environ. Imaging Spect. Special Issue – volume: 12 start-page: 1013 year: 2019 ident: 10.1016/j.jag.2024.104285_b0115 article-title: A shadow- eliminated vegetation index (SEVI) for removal of self and cast shadow effects on vegetation in rugged terrains publication-title: Int. J. Digital Earth doi: 10.1080/17538947.2018.1495770 – volume: 232 year: 2019 ident: 10.1016/j.jag.2024.104285_b0155 article-title: Simulating solar-induced chlorophyll fluorescence in a boreal forest stand reconstructed from terrestrial laser scanning measurements publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111274 – volume: 206 start-page: 318 year: 2018 ident: 10.1016/j.jag.2024.104285_b0135 article-title: VBRT: a novel voxel-based radiative transfer model for heterogeneous three-dimensional forest scenes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.12.043 – volume: 306 year: 2024 ident: 10.1016/j.jag.2024.104285_b0020 article-title: Branch architecture quantification of large-scale coniferous forest plots using UAV-LiDAR data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2024.114121 – volume: 133 start-page: 128 year: 2013 ident: 10.1016/j.jag.2024.104285_b0050 article-title: Modelling leaf chlorophyll content in broadleaf and needle leaf canopies from ground, CASI, Landsat TM 5 and MERIS reflectance data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.02.006 – volume: 6 start-page: 166 year: 2024 ident: 10.1016/j.jag.2024.104285_b0240 article-title: Fine-scale quantification of absorbed photosynthetically active radiation (APAR) in plantation forests with 3D radiative transfer modeling and LiDAR data publication-title: Plant Phenomics doi: 10.34133/plantphenomics.0166 – volume: 112 start-page: 3030 year: 2008 ident: 10.1016/j.jag.2024.104285_b0065 article-title: PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.02.012 – ident: 10.1016/j.jag.2024.104285_b0060 doi: 10.1145/147130.147153 – volume: 237 year: 2020 ident: 10.1016/j.jag.2024.104285_b0120 article-title: Speeding up 3D radiative transfer simulations: A physically based metamodel of canopy reflectance dependency on wavelength, leaf biochemical composition and soil reflectance publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111614 – volume: 115 start-page: 1694 year: 2011 ident: 10.1016/j.jag.2024.104285_b0095 article-title: Using leaf chlorophyll to parameterize light-use-efficiency within a thermal-based carbon, water and energy exchange model publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.02.027 – volume: 38 start-page: 251 year: 2015 ident: 10.1016/j.jag.2024.104285_b0125 article-title: Non-destructive estimation of foliar chlorophyll and carotenoid contents: Focus on informative spectral bands publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 283 year: 2022 ident: 10.1016/j.jag.2024.104285_b0180 article-title: 3D radiative transfer modeling of structurally complex forest canopies through a lightweight boundary-based description of leaf clusters publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113301 – volume: 202 year: 2022 ident: 10.1016/j.jag.2024.104285_b0035 article-title: Estimating canopy-scale chlorophyll content in apple orchards using a 3D radiative transfer model and UAV multispectral imagery publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107401 – volume: 236 year: 2020 ident: 10.1016/j.jag.2024.104285_b0055 article-title: The global distribution of leaf chlorophyll content publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111479 – volume: 169 start-page: 418 year: 2015 ident: 10.1016/j.jag.2024.104285_b0200 article-title: The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: Actual canopy scenarios and conformity testing publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.08.016 – volume: 121 year: 2023 ident: 10.1016/j.jag.2024.104285_b0040 article-title: Evaluation of the effect of leaf spatial aggregation on chlorophyll content retrieval in open-canopy apple orchards publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 221 start-page: 695 year: 2019 ident: 10.1016/j.jag.2024.104285_b0175 article-title: LESS: LargE-Scale remote sensing data and image simulation framework over heterogeneous 3D scenes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.11.036 – volume: 260 year: 2021 ident: 10.1016/j.jag.2024.104285_b0045 article-title: Modelling lidar-derived estimates of forest attributes over space and time: A review of approaches and future trends publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112477 – volume: 297 year: 2023 ident: 10.1016/j.jag.2024.104285_b0235 article-title: Evaluating the potential of airborne hyperspectral LiDAR for assessing forest insects and diseases with 3D Radiative Transfer Modeling publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2023.113759 – volume: 210 start-page: 1 year: 2024 ident: 10.1016/j.jag.2024.104285_b0010 article-title: PROSAIL-net: a transfer learning-based dual stream neural network to estimate leaf chlorophyll and leaf angle of crops from UAV hyperspectral images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2024.02.020 – volume: 7 start-page: 1790 year: 2023 ident: 10.1016/j.jag.2024.104285_b0220 article-title: Structural complexity biases vegetation greenness measures publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-023-02187-6 – volume: 39 start-page: 1061 year: 2001 ident: 10.1016/j.jag.2024.104285_b0025 article-title: Multiple-scattering scheme useful for geometric optical modeling publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.921424 – volume: 25 start-page: 73 year: 2004 ident: 10.1016/j.jag.2024.104285_b0080 article-title: DART: a 3D model for simulating satellite images and studying surface radiation budget publication-title: Int. J. Remote Sens. doi: 10.1080/0143116031000115166 – volume: 311 year: 2024 ident: 10.1016/j.jag.2024.104285_b0090 article-title: Estimation of canopy photon recollision probability from airborne laser scanning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2024.114264 – volume: 132 start-page: 221 year: 2013 ident: 10.1016/j.jag.2024.104285_b0100 article-title: RAPID: A Radiosity Applicable to Porous IndiviDual Objects for directional reflectance over complex vegetated scenes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.01.013 – volume: 16 start-page: 125 year: 1984 ident: 10.1016/j.jag.2024.104285_b0195 article-title: Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(84)90057-9 – volume: 221 year: 2024 ident: 10.1016/j.jag.2024.104285_b0225 article-title: Removal of canopy shadows improved retrieval accuracy of individual apple tree crowns LAI and chlorophyll content using UAV multispectral imagery and PROSAIL model publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2024.108959 – volume: 268 year: 2022 ident: 10.1016/j.jag.2024.104285_b0015 article-title: A TIR forest reflectance and transmittance (FRT) model for directional temperatures with structural and thermal stratification publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112749 – volume: 3 start-page: 0017 year: 2023 ident: 10.1016/j.jag.2024.104285_b0185 article-title: Fast and accurate simulation of canopy reflectance under wavelength-dependent optical properties using a semi-empirical 3D radiative transfer model publication-title: J. Remote Sens. doi: 10.34133/remotesensing.0017 – volume: 61 start-page: 1 year: 2023 ident: 10.1016/j.jag.2024.104285_b0160 article-title: Inversion of a New designed ANN-based 3-D-RTM Emulator by continuous MCMC technique to monitor crop biophysical properties using sentinel-2 images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2023.3297363 – volume: 224 start-page: 60 year: 2019 ident: 10.1016/j.jag.2024.104285_b0210 article-title: Retrieving leaf chlorophyll content using a matrix-based vegetation index combination approach publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.01.039 – volume: 150 start-page: 185 year: 2019 ident: 10.1016/j.jag.2024.104285_b0215 article-title: Inversion of rice canopy chlorophyll content and leaf area index based on coupling of radiative transfer and Bayesian network models publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.02.013 – volume: 219 year: 2024 ident: 10.1016/j.jag.2024.104285_b0030 article-title: A novel framework to assess apple leaf nitrogen content: fusion of hyperspectral reflectance and phenology information through deep learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2024.108816 – year: 2014 ident: 10.1016/j.jag.2024.104285_b0005 article-title: A scalable plant-resolving radiative transfer model based on optimized GPU ray tracing – volume: 118 year: 2023 ident: 10.1016/j.jag.2024.104285_b0075 article-title: Estimating plant area density of individual trees from discrete airborne laser scanning data using intensity information and path length distribution publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 10 year: 2023 ident: 10.1016/j.jag.2024.104285_b0205 article-title: Retrieving chlorophyll content and equivalent water thickness of moso bamboo (phyllostachys pubescens) forests under pantana phyllostachysae chao-induced stress from sentinel-2A/B images in a multiple LUTs-based PROSAIL framework publication-title: For. Ecosyst. doi: 10.1016/j.fecs.2023.100108 – volume: 8 start-page: 501 year: 2016 ident: 10.1016/j.jag.2024.104285_b0230 article-title: An easy-to-use airborne LiDAR data filtering method based on cloth simulation publication-title: Remote Sens. (Basel) doi: 10.3390/rs8060501 – volume: 282 year: 2022 ident: 10.1016/j.jag.2024.104285_b0130 article-title: Assessing a soil-removed semi-empirical model for estimating leaf chlorophyll content publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113284 – volume: 34 start-page: 946 year: 1996 ident: 10.1016/j.jag.2024.104285_b0165 article-title: Three-dimensional forest light interaction model using a monte carlo method publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.508411 – volume: 264 year: 2021 ident: 10.1016/j.jag.2024.104285_b0140 article-title: Fine-scale leaf chlorophyll distribution across a deciduous forest through two-step model inversion from Sentinel-2 data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112618 – volume: 250 year: 2020 ident: 10.1016/j.jag.2024.104285_b0190 article-title: Quantifying vertical profiles of biochemical traits for forest plantation species using advanced remote sensing approaches publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112041 – volume: 211 start-page: 276 year: 2018 ident: 10.1016/j.jag.2024.104285_b0070 article-title: Retrieving structural and chemical properties of individual tree crowns in a highly diverse tropical forest with 3D radiative transfer modeling and imaging spectroscopy publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.04.023 |
SSID | ssj0017768 |
Score | 2.415969 |
Snippet | •The forest structural scene is explicitly reconstructed from UAV LiDAR data.•An efficient 3D Semi-LESS model coupled with deep learning for accurately... Leaf chlorophyll content (LCC) retrieval from remote sensing imagery is essential for monitoring vegetation growth and stress in the agroforestry industry.... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 104285 |
SubjectTerms | 3D radiative transfer model High-resolution data Leaf chlorophyll content Retrieval |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYQp3JAkIII0MqHnipZLH77WChRhERPqcRtZY9tCAoJJOHQf9_xPtq9oF56XXnHq5lZzzea8TeEfBEmagWSMwyOkkmbPbPCZlbI6TiPQbpQKrp3P_T0p7y9V_eDUV-lJ6ylB24Vd6FthBhd4KAdgnkbNAQJ0eR4qZVSsZy-GPP6ZKqrHxjTXoJT2jErBe_rmU1n15N_wMSQy1Lf5GWI8iAiNcT9g8A0CDaTA7LfoUT6rf26Q7KTliOyN-AOHJHjm79X1HBp949uPpLXCS5iG9R9outmXhY6E11lukg-U3jEBH2Ful0saGlTx7dp6X1_oJ5u0vOcpeeXeUMbsvhFPQBGpUImEan4TteFx6Acj3TbwN20ps0gnSMym9zMrqesG6zAQCi7ZcICVF4l6yuXTeWBC4R1IGMOBgVLyNKIXGkvnEb84nSW3kACVUHUQYtjsrtcLdMJoTIYq8Bl6TRCg0twqfBnJYgcExGowph87XVbv7T0GXXfV_ZUoyHqYoi6NcSYXBXt_1lYmK-bB-gPdecP9b_8YUxkb7u6AxEtOEBR8_f3Pv0fe5-RD0Vk2-1yTna367f0CTHLNnxu3PM3o7zqcg priority: 102 providerName: Directory of Open Access Journals |
Title | Fine-scale retrieval of leaf chlorophyll content using a semi-empirically accelerated 3D radiative transfer model |
URI | https://dx.doi.org/10.1016/j.jag.2024.104285 https://doaj.org/article/68dcdd9b2c694958b6cb4cd7fd16555d |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYCZ2mHIkkb1GkacOhUgLAiUnyMSRrDbdEsTYFsAnkkXQWO7crO0H_fIyUl7tClowiSEu5O98DdfUfIB668rECUDI2jYEJHyzTXkSVwurL0ThiXMrrfbuTsh_hyV93tkauhFyaVVfa6v9PpWVv3K5OempN100y-Y-RhtOC5ClKK1N-7X3Ij9YjsX3z-Ort5SiYo1XXE4X6WDgzJzVzmdW_nGCWWIiU7yzRRecc8ZRT_HSu1Y3mmB-RV7zLSi-6rDsleWB6RlztAgkfk-Pq5Xw239j_s5jX5NcVNbIOMCLTNw7NQsugq0kWwkcJPjNZXSOjFgqaadTxNUyH8nFq6CQ8NCw_rJmOILH5TC4AmKiFLeMo_0TaBGiRdSbfZ9w0tzVN13pDb6fXt1Yz1UxYY8EpvGdcAha2CtoWJqrBQcvTxQPjoFF4sIArFYyEt0hadGSOjsAoCVAV46SQ_JqPlahneEiqc0hWYKIxEnpyDCQlMK4AvMSqBwo3Jx4G29brD0qiHIrP7GhlRJ0bUHSPG5DJR_2ljgsHOC6t2XvdyUEvtwXvjSpAGIz3tJDgBXkV_Lquq8mMiBt7Vf0kVXtX8-90n_3fsHXmRnrpil1My2raP4T26LFt31ovkWQ75_wCt2Ot0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYCZ2g7FEnaoO6TQ6cChBWRosgxTWI4TeKlLpCNII-kq8CxHdkd-u971CN1hyxdqSMl3J3uAd59R8hnXnpZgMgZOkfBhIqWKa4iS-B0ee6d0C7d6N5M5eSH-HZb3O6Rs74XJpVVdra_temNte5WRh03R-uqGn3HzEMrwZsqSClSf-9-QqcSA7J_enk1mT5eJpRl2xGH9Cxt6C83mzKvOzvHLDEX6bIzTxOVd9xTg-K_46V2PM_4gLzsQkZ62n7VIdkLyyPyYgdI8IgcX_ztV0PS7ofdvCIPYyRiGxREoHUzPAs1i64iXQQbKfzEbH2FjF4saKpZx900FcLPqaWbcF-xcL-uGgyRxW9qAdBFJWQJT_k5rROoQbKVdNvEvqGmzVSd12Q2vpidTVg3ZYEBL9SWcQWQ2SIom-lYZhZyjjEeCB9diQcLiKLkMZOWa4nBjJZR2BICFBl46SQ_JoPlahneECpcqQrQUWiJMjkBHRKYVgCfY1YCmRuSLz1vzbrF0jB9kdmdQUGYJAjTCmJIvibuPxImGOxmYVXPTacHRioP3muXg9SY6SknwQnwZfQnsigKPySil535R6vwqOrpd7_9v22fyLPJ7ObaXF9Or96R5-lJW_jyngy29a_wAcOXrfvYqecfQDDtZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine-scale+retrieval+of+leaf+chlorophyll+content+using+a+semi-empirically+accelerated+3D+radiative+transfer+model&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Zhao%2C+Xun&rft.au=Qi%2C+Jianbo&rft.au=Jiang%2C+Jingyi&rft.au=Liu%2C+Shangbo&rft.date=2024-12-01&rft.pub=Elsevier+B.V&rft.issn=1569-8432&rft.volume=135&rft_id=info:doi/10.1016%2Fj.jag.2024.104285&rft.externalDocID=S1569843224006411 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |