Fine-scale retrieval of leaf chlorophyll content using a semi-empirically accelerated 3D radiative transfer model

•The forest structural scene is explicitly reconstructed from UAV LiDAR data.•An efficient 3D Semi-LESS model coupled with deep learning for accurately retrieving LCC from UAV imagery.•The 3D Semi-LESS and 1D PROSAIL models are compared for LCC retrieval.•Semi-LESS outperforms PROSAIL in LCC retriev...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied earth observation and geoinformation Vol. 135; p. 104285
Main Authors Zhao, Xun, Qi, Jianbo, Jiang, Jingyi, Liu, Shangbo, Xu, Haifeng, Lin, Simei, Yu, Zhexiu, Li, Linyuan, Huang, Huaguo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2024
Elsevier
Subjects
Online AccessGet full text
ISSN1569-8432
DOI10.1016/j.jag.2024.104285

Cover

Loading…
Abstract •The forest structural scene is explicitly reconstructed from UAV LiDAR data.•An efficient 3D Semi-LESS model coupled with deep learning for accurately retrieving LCC from UAV imagery.•The 3D Semi-LESS and 1D PROSAIL models are compared for LCC retrieval.•Semi-LESS outperforms PROSAIL in LCC retrieval accuracy.•Our method holds potential for LCC mapping in orchards and crops. Leaf chlorophyll content (LCC) retrieval from remote sensing imagery is essential for monitoring vegetation growth and stress in the agroforestry industry. Many remote sensing inversion methods for estimating LCC primarily rely on 1D radiative transfer models (RTMs) that abstract canopies into horizontal layers or simple geometric primitives. Yet, this methodology faces challenges when applied to heterogeneous canopies, particularly in fine-scale mapping where each pixel's reflectance is significantly influenced by its surroundings, e.g. crown shadows. While 3D RTMs hold promise for addressing these challenges by explicitly describing complex canopy structures, their computational demands and the complexity involved in parameterizing detailed 3D structures limit the generation of extensive training datasets, requiring simulations across numerous parameter combinations. In this study, we used a semi-empirically accelerated 3D RTM, termed Semi-LESS, with a 1D residual network to accurately retrieve leaf chlorophyll content (LCC) from UAV images and LiDAR data at a 3-m resolution. We first reconstructed structures of forest plots using UAV LiDAR point cloud, based on which, UAV images with varying leaf and soil optical properties are simulated using the Semi-LESS. Subsequently, a training dataset consisting LCC and its corresponding reflectance was generated from the simulated UAV images by focusing on sunlit pixels. A 1D residual network is trained using the training dataset for LCC estimation. For comparison, we also trained an estimation model using a dataset generated from PROSAIL. The results show that estimation model trained with Semi-LESS surpasses PROSAIL in retrieving LCC from both simulation datasets and field measurements of two forest plots. The RMSE of Semi-LESS was 5.40–6.92 µg/cm2 for simulation datasets and 8.21–9.76 µg/cm2 for field measurements, whereas PROSAIL exhibited lower accuracy with an RMSE of 7.76–9.83 µg/cm2 for simulation datasets and 12.76–13.06 µg/cm2 in field measurements. The results demonstrate that Semi-LESS coupled with deep learning is reliable and has great potential for LCC mapping using UAV images, which is particularly useful for fine-scale applications such as crop and orchard monitoring. This approach also highlights the impact of shadows on LCC retrieval.
AbstractList •The forest structural scene is explicitly reconstructed from UAV LiDAR data.•An efficient 3D Semi-LESS model coupled with deep learning for accurately retrieving LCC from UAV imagery.•The 3D Semi-LESS and 1D PROSAIL models are compared for LCC retrieval.•Semi-LESS outperforms PROSAIL in LCC retrieval accuracy.•Our method holds potential for LCC mapping in orchards and crops. Leaf chlorophyll content (LCC) retrieval from remote sensing imagery is essential for monitoring vegetation growth and stress in the agroforestry industry. Many remote sensing inversion methods for estimating LCC primarily rely on 1D radiative transfer models (RTMs) that abstract canopies into horizontal layers or simple geometric primitives. Yet, this methodology faces challenges when applied to heterogeneous canopies, particularly in fine-scale mapping where each pixel's reflectance is significantly influenced by its surroundings, e.g. crown shadows. While 3D RTMs hold promise for addressing these challenges by explicitly describing complex canopy structures, their computational demands and the complexity involved in parameterizing detailed 3D structures limit the generation of extensive training datasets, requiring simulations across numerous parameter combinations. In this study, we used a semi-empirically accelerated 3D RTM, termed Semi-LESS, with a 1D residual network to accurately retrieve leaf chlorophyll content (LCC) from UAV images and LiDAR data at a 3-m resolution. We first reconstructed structures of forest plots using UAV LiDAR point cloud, based on which, UAV images with varying leaf and soil optical properties are simulated using the Semi-LESS. Subsequently, a training dataset consisting LCC and its corresponding reflectance was generated from the simulated UAV images by focusing on sunlit pixels. A 1D residual network is trained using the training dataset for LCC estimation. For comparison, we also trained an estimation model using a dataset generated from PROSAIL. The results show that estimation model trained with Semi-LESS surpasses PROSAIL in retrieving LCC from both simulation datasets and field measurements of two forest plots. The RMSE of Semi-LESS was 5.40–6.92 µg/cm2 for simulation datasets and 8.21–9.76 µg/cm2 for field measurements, whereas PROSAIL exhibited lower accuracy with an RMSE of 7.76–9.83 µg/cm2 for simulation datasets and 12.76–13.06 µg/cm2 in field measurements. The results demonstrate that Semi-LESS coupled with deep learning is reliable and has great potential for LCC mapping using UAV images, which is particularly useful for fine-scale applications such as crop and orchard monitoring. This approach also highlights the impact of shadows on LCC retrieval.
Leaf chlorophyll content (LCC) retrieval from remote sensing imagery is essential for monitoring vegetation growth and stress in the agroforestry industry. Many remote sensing inversion methods for estimating LCC primarily rely on 1D radiative transfer models (RTMs) that abstract canopies into horizontal layers or simple geometric primitives. Yet, this methodology faces challenges when applied to heterogeneous canopies, particularly in fine-scale mapping where each pixel's reflectance is significantly influenced by its surroundings, e.g. crown shadows. While 3D RTMs hold promise for addressing these challenges by explicitly describing complex canopy structures, their computational demands and the complexity involved in parameterizing detailed 3D structures limit the generation of extensive training datasets, requiring simulations across numerous parameter combinations. In this study, we used a semi-empirically accelerated 3D RTM, termed Semi-LESS, with a 1D residual network to accurately retrieve leaf chlorophyll content (LCC) from UAV images and LiDAR data at a 3-m resolution. We first reconstructed structures of forest plots using UAV LiDAR point cloud, based on which, UAV images with varying leaf and soil optical properties are simulated using the Semi-LESS. Subsequently, a training dataset consisting LCC and its corresponding reflectance was generated from the simulated UAV images by focusing on sunlit pixels. A 1D residual network is trained using the training dataset for LCC estimation. For comparison, we also trained an estimation model using a dataset generated from PROSAIL. The results show that estimation model trained with Semi-LESS surpasses PROSAIL in retrieving LCC from both simulation datasets and field measurements of two forest plots. The RMSE of Semi-LESS was 5.40–6.92 µg/cm2 for simulation datasets and 8.21–9.76 µg/cm2 for field measurements, whereas PROSAIL exhibited lower accuracy with an RMSE of 7.76–9.83 µg/cm2 for simulation datasets and 12.76–13.06 µg/cm2 in field measurements. The results demonstrate that Semi-LESS coupled with deep learning is reliable and has great potential for LCC mapping using UAV images, which is particularly useful for fine-scale applications such as crop and orchard monitoring. This approach also highlights the impact of shadows on LCC retrieval.
ArticleNumber 104285
Author Qi, Jianbo
Huang, Huaguo
Xu, Haifeng
Li, Linyuan
Lin, Simei
Zhao, Xun
Yu, Zhexiu
Liu, Shangbo
Jiang, Jingyi
Author_xml – sequence: 1
  givenname: Xun
  surname: Zhao
  fullname: Zhao, Xun
  organization: Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
– sequence: 2
  givenname: Jianbo
  surname: Qi
  fullname: Qi, Jianbo
  organization: Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
– sequence: 3
  givenname: Jingyi
  orcidid: 0009-0000-7157-0711
  surname: Jiang
  fullname: Jiang, Jingyi
  organization: State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, China
– sequence: 4
  givenname: Shangbo
  surname: Liu
  fullname: Liu, Shangbo
  organization: Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou 510405, China
– sequence: 5
  givenname: Haifeng
  surname: Xu
  fullname: Xu, Haifeng
  organization: School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
– sequence: 6
  givenname: Simei
  surname: Lin
  fullname: Lin, Simei
  organization: State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, China
– sequence: 7
  givenname: Zhexiu
  surname: Yu
  fullname: Yu, Zhexiu
  organization: State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, China
– sequence: 8
  givenname: Linyuan
  surname: Li
  fullname: Li, Linyuan
  organization: State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, China
– sequence: 9
  givenname: Huaguo
  surname: Huang
  fullname: Huang, Huaguo
  organization: State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, China
BookMark eNp9kM9u3CAQhzmkUv4-QG68gLfYBmwrpyht2kiRcskdjYdhg8WaDZCV9u1LulWPuTBipO-bmd8lO1vjSozdtmLTilZ_XzYLbDed6GT9y25UZ-yiVXpqRtl35-wy50WIdhj0eMHeH_1KTUYIxBOV5OkAgUfHA4Hj-BZiivu3Ywgc41poLfwj-3XLgWfa-YZ2e598pcORAyIFSlDI8v4HT2A9FH8gXhKs2VHiu2gpXLNvDkKmm3_1ir0-_nx9-N08v_x6erh_brBXY2n6EVGAohHE5AYB2PVaaZTWzUMdJNHJoXdCQz_paaqPkzAgoRJo9az7K_Z00toIi9knv4N0NBG8-duIaWsgFY-BjB4tWjvNHepJTmqcNc4S7eBsq5VStrrakwtTzDmR--9rhfmM3CymRm4-IzenyCtzd2Ko3njwlExGTyuS9Ymw1C38F_QfGx6PzQ
Cites_doi 10.1016/j.rse.2024.114152
10.1016/j.isprsjprs.2013.02.019
10.1016/j.isprsjprs.2023.03.020
10.1109/JSTARS.2017.2714423
10.1080/17538947.2018.1495770
10.1016/j.rse.2019.111274
10.1016/j.rse.2017.12.043
10.1016/j.rse.2024.114121
10.1016/j.rse.2013.02.006
10.34133/plantphenomics.0166
10.1016/j.rse.2008.02.012
10.1145/147130.147153
10.1016/j.rse.2019.111614
10.1016/j.rse.2011.02.027
10.1016/j.rse.2022.113301
10.1016/j.compag.2022.107401
10.1016/j.rse.2019.111479
10.1016/j.rse.2015.08.016
10.1016/j.rse.2018.11.036
10.1016/j.rse.2021.112477
10.1016/j.rse.2023.113759
10.1016/j.isprsjprs.2024.02.020
10.1038/s41559-023-02187-6
10.1109/36.921424
10.1080/0143116031000115166
10.1016/j.rse.2024.114264
10.1016/j.rse.2013.01.013
10.1016/0034-4257(84)90057-9
10.1016/j.compag.2024.108959
10.1016/j.rse.2021.112749
10.34133/remotesensing.0017
10.1109/TGRS.2023.3297363
10.1016/j.rse.2019.01.039
10.1016/j.isprsjprs.2019.02.013
10.1016/j.compag.2024.108816
10.1016/j.fecs.2023.100108
10.3390/rs8060501
10.1016/j.rse.2022.113284
10.1109/36.508411
10.1016/j.rse.2021.112618
10.1016/j.rse.2020.112041
10.1016/j.rse.2018.04.023
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jag.2024.104285
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
ExternalDocumentID oai_doaj_org_article_68dcdd9b2c694958b6cb4cd7fd16555d
10_1016_j_jag_2024_104285
S1569843224006411
GroupedDBID 29J
4.4
5GY
6I.
AAFTH
AAHBH
AALRI
AAQXK
AAXKI
AAXUO
ABFYP
ABJNI
ABLST
ABQEM
ABQYD
ABWVN
ACLVX
ACRLP
ACRPL
ACSBN
ADBBV
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFXIZ
AGYEJ
AHEUO
AIKHN
AITUG
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
EBS
EFJIC
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
M41
O-L
P-8
P-9
P2P
R2-
RIG
ROL
SES
SPC
SSE
SSJ
~02
AATTM
AAYWO
AAYXX
AGCQF
AGQPQ
AGRNS
AIIUN
APXCP
BNPGV
CITATION
SSH
EFKBS
ID FETCH-LOGICAL-c358t-38cc0a5e8a09f70ac23656c4dfb7cce4cf473f06a39699396f4a7cec50cd6b63
IEDL.DBID AIKHN
ISSN 1569-8432
IngestDate Wed Aug 27 01:25:54 EDT 2025
Sun Jul 06 05:07:34 EDT 2025
Sat Mar 22 15:54:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Retrieval
High-resolution data
Leaf chlorophyll content
3D radiative transfer model
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-38cc0a5e8a09f70ac23656c4dfb7cce4cf473f06a39699396f4a7cec50cd6b63
ORCID 0009-0000-7157-0711
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1569843224006411
ParticipantIDs doaj_primary_oai_doaj_org_article_68dcdd9b2c694958b6cb4cd7fd16555d
crossref_primary_10_1016_j_jag_2024_104285
elsevier_sciencedirect_doi_10_1016_j_jag_2024_104285
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Gao, Qi, Lin, Hu, Huang (b0075) 2023; 118
Jiang, Wang, Cao, Yang, Zhang, Wang (b0115) 2019; 12
He, Qi, Wang, Yan, Huang (b0090) 2024; 311
Croft, Chen, Zhang, Simic (b0050) 2013; 133
Qi, Xie, Yin, Yan, Gastellu-Etchegorry, Li, Zhang, Mu, Norford (b0175) 2019; 221
Zhao, Qi, Xu, Yu, Yuan, Chen, Huang (b0235) 2023; 297
Verhoef (b0195) 1984; 16
Gressin, Mallet, Demantké, David (b0085) 2013; 79
Jacquemoud, Verhoef, Baret, Bacour, Zarco-Tejada, Asner, François, Ustin (b0105) 2009; 113
Houborg, Anderson, Daughtry, Kustas, Rodell (b0095) 2011; 115
Zeng, Hao, Park, Zhu, Huete, Myneni, Knyazikhin, Qi, Nemani, Li, Huang, Gao, Li, Ji, Köhler, Frankenberg, Berry, Chen (b0220) 2023; 7
Xu, He, Zhang, Hao, Li, Xiang, Li, Chen, Yu, Shen, Huang, Guo, Li (b0205) 2023; 10
Bian, Wu, Roujean, Cao, Li, Yin, Du, Xiao, Liu (b0015) 2022; 268
Qi, Xie, Jiang, Huang (b0180) 2022; 283
Croft, Chen, Wang, Mo, Luo, Luo, He, Gonsamo, Arabian, Zhang, Simic-Milas, Noland, He, Homolová, Malenovský, Yi, Beringer, Amiri, Hutley, Arellano, Stahl, Bonal (b0055) 2020; 236
Qi, Jiang, Zhou, Xie, Huang (b0185) 2023; 3
Xu, Liu, Chen, Liu, Shang, Ju, Wu, Huang (b0210) 2019; 224
Cheng, Yang, Qi, Sun, Han, Feng, Jiang, Xu, Li, Yang, Zhao (b0035) 2022; 202
Ferreira, Feret, Grau, Gastellu-Etchegorry, Shimabukuro, de Souza Filho (b0070) 2018; 211
Kira, Linker, Gitelson (b0125) 2015; 38
Lin, Li, Liu, Gao, Zhao, Chen, Qi, Shen, Huang (b0150) 2024; 307
Bhadra, Sagan, Sarkar, Braud, Mockler, Eveland (b0010) 2024; 210
Zhang, Chen, Yang, Xu, Feng, Chen, Qi, Zhang, Zhao, Cheng, Yang (b0225) 2024; 221
Jiang, Weiss, Liu, Rochdi, Baret (b0120) 2020; 237
Zhao, Qi, Yu, Yuan, Huang (b0240) 2024; 6
Widlowski, Mio, Disney, Adams, Andredakis, Atzberger, Brennan, Busetto, Chelle, Ceccherini, Colombo, Côté, Eenmäe, Essery, Gastellu-Etchegorry, Gobron, Grau, Haverd, Homolová, Huang, Hunt, Kobayashi, Koetz, Kuusk, Kuusk, Lang, Lewis, Lovell, Malenovský, Meroni, Morsdorf, Mõttus, Ni-Meister, Pinty, Rautiainen, Schlerf, Somers, Stuckens, Verstraete, Yang, Zhao, Zenone (b0200) 2015; 169
Jiang, Fang (b0110) 2019; 83
Xu, Lu, Zhang, Yang, He, Yao, Cheng, Zhu, Cao, Tian (b0215) 2019; 150
Chen, Leblanc (b0025) 2001; 39
Liu, Atherton, Mottus, Gastellu-Etchegorry, Malenovsky, Raumonen, Akerblom, Makipaa, Porcar-Castell (b0155) 2019; 232
Cheng, Yang, Qi, Han, Sun, Feng, Chen, Zhang, Li, Yang (b0040) 2023; 121
Edelsbrunner, H., Mücke, E.P., 1994. Three-dimensional alpha shapes, in: Proceedings of the 1992 Workshop on Volume Visualization, VVS ’92. Association for Computing Machinery, New York, NY, USA, pp. 75–82. doi: 10.1145/147130.147153.
Feret, François, Asner, Gitelson, Martin, Bidel, Ustin, Le Maire, Jacquemoud (b0065) 2008; 112
Makhloufi, Kallel (b0160) 2023; 61
Cai, Zhang, Zhang, Yu, Liang (b0020) 2024; 306
Bailey (b0005) 2014
Li, Ma, Chen, Croft, Luo, Zheng, Rogers, Liu (b0140) 2021; 264
Li, Mu, Jiang, Chianucci, Hu, Song, Qi, Liu, Zhou, Chen, Huang, Yan (b0145) 2023; 199
Qi, Xie, Guo, Yan (b0170) 2017; 10
Li, Chen, Yu, Zheng, Yao, Cao, Wei, Xiao, Zhu, Cheng (b0130) 2022; 282
Li, Guo, Tao, Su (b0135) 2018; 206
Coops, Tompalski, Goodbody, Queinnec, Luther, Bolton, White, Wulder, van Lier, Hermosilla (b0045) 2021; 260
Huang, Qin, Liu (b0100) 2013; 132
North (b0165) 1996; 34
Chen, Liu, Yang, Jin, Yang, Zhou, Zhang, Han, Meng, Zhai, Feng (b0030) 2024; 219
Zhang, Qi, Wan, Wang, Xie, Wang, Yan (b0230) 2016; 8
Gastellu-Etchegorry, Martin, Gascon (b0080) 2004; 25
Shen, Cao, Coops, Fan, Wu, Liu, Wang, Cao (b0190) 2020; 250
Huang (10.1016/j.jag.2024.104285_b0100) 2013; 132
Xu (10.1016/j.jag.2024.104285_b0215) 2019; 150
Houborg (10.1016/j.jag.2024.104285_b0095) 2011; 115
Li (10.1016/j.jag.2024.104285_b0145) 2023; 199
Qi (10.1016/j.jag.2024.104285_b0175) 2019; 221
Cai (10.1016/j.jag.2024.104285_b0020) 2024; 306
Jacquemoud (10.1016/j.jag.2024.104285_b0105) 2009; 113
Jiang (10.1016/j.jag.2024.104285_b0110) 2019; 83
Xu (10.1016/j.jag.2024.104285_b0210) 2019; 224
Zhao (10.1016/j.jag.2024.104285_b0240) 2024; 6
Lin (10.1016/j.jag.2024.104285_b0150) 2024; 307
Qi (10.1016/j.jag.2024.104285_b0180) 2022; 283
10.1016/j.jag.2024.104285_b0060
Zhao (10.1016/j.jag.2024.104285_b0235) 2023; 297
Bailey (10.1016/j.jag.2024.104285_b0005) 2014
Cheng (10.1016/j.jag.2024.104285_b0035) 2022; 202
Ferreira (10.1016/j.jag.2024.104285_b0070) 2018; 211
Zeng (10.1016/j.jag.2024.104285_b0220) 2023; 7
Cheng (10.1016/j.jag.2024.104285_b0040) 2023; 121
Makhloufi (10.1016/j.jag.2024.104285_b0160) 2023; 61
Chen (10.1016/j.jag.2024.104285_b0025) 2001; 39
Zhang (10.1016/j.jag.2024.104285_b0230) 2016; 8
Bian (10.1016/j.jag.2024.104285_b0015) 2022; 268
Gressin (10.1016/j.jag.2024.104285_b0085) 2013; 79
Croft (10.1016/j.jag.2024.104285_b0050) 2013; 133
Croft (10.1016/j.jag.2024.104285_b0055) 2020; 236
Liu (10.1016/j.jag.2024.104285_b0155) 2019; 232
Li (10.1016/j.jag.2024.104285_b0135) 2018; 206
Gao (10.1016/j.jag.2024.104285_b0075) 2023; 118
Qi (10.1016/j.jag.2024.104285_b0170) 2017; 10
He (10.1016/j.jag.2024.104285_b0090) 2024; 311
Zhang (10.1016/j.jag.2024.104285_b0225) 2024; 221
Qi (10.1016/j.jag.2024.104285_b0185) 2023; 3
Coops (10.1016/j.jag.2024.104285_b0045) 2021; 260
Chen (10.1016/j.jag.2024.104285_b0030) 2024; 219
Jiang (10.1016/j.jag.2024.104285_b0120) 2020; 237
Widlowski (10.1016/j.jag.2024.104285_b0200) 2015; 169
Feret (10.1016/j.jag.2024.104285_b0065) 2008; 112
Kira (10.1016/j.jag.2024.104285_b0125) 2015; 38
Xu (10.1016/j.jag.2024.104285_b0205) 2023; 10
Li (10.1016/j.jag.2024.104285_b0130) 2022; 282
Gastellu-Etchegorry (10.1016/j.jag.2024.104285_b0080) 2004; 25
Jiang (10.1016/j.jag.2024.104285_b0115) 2019; 12
Bhadra (10.1016/j.jag.2024.104285_b0010) 2024; 210
North (10.1016/j.jag.2024.104285_b0165) 1996; 34
Verhoef (10.1016/j.jag.2024.104285_b0195) 1984; 16
Li (10.1016/j.jag.2024.104285_b0140) 2021; 264
Shen (10.1016/j.jag.2024.104285_b0190) 2020; 250
References_xml – volume: 236
  year: 2020
  ident: b0055
  article-title: The global distribution of leaf chlorophyll content
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 166
  year: 2024
  ident: b0240
  article-title: Fine-scale quantification of absorbed photosynthetically active radiation (APAR) in plantation forests with 3D radiative transfer modeling and LiDAR data
  publication-title: Plant Phenomics
– volume: 221
  start-page: 695
  year: 2019
  end-page: 706
  ident: b0175
  article-title: LESS: LargE-Scale remote sensing data and image simulation framework over heterogeneous 3D scenes
  publication-title: Remote Sens. Environ.
– volume: 260
  year: 2021
  ident: b0045
  article-title: Modelling lidar-derived estimates of forest attributes over space and time: A review of approaches and future trends
  publication-title: Remote Sens. Environ.
– volume: 34
  start-page: 946
  year: 1996
  end-page: 956
  ident: b0165
  article-title: Three-dimensional forest light interaction model using a monte carlo method
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 10
  year: 2023
  ident: b0205
  article-title: Retrieving chlorophyll content and equivalent water thickness of moso bamboo (
  publication-title: For. Ecosyst.
– volume: 199
  start-page: 133
  year: 2023
  end-page: 156
  ident: b0145
  article-title: Review of ground and aerial methods for vegetation cover fraction (fCover) and related quantities estimation: definitions, advances, challenges, and future perspectives
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 79
  start-page: 240
  year: 2013
  end-page: 251
  ident: b0085
  article-title: Towards 3D lidar point cloud registration improvement using optimal neighborhood knowledge
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 16
  start-page: 125
  year: 1984
  end-page: 141
  ident: b0195
  article-title: Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model
  publication-title: Remote Sens. Environ.
– volume: 3
  start-page: 0017
  year: 2023
  ident: b0185
  article-title: Fast and accurate simulation of canopy reflectance under wavelength-dependent optical properties using a semi-empirical 3D radiative transfer model
  publication-title: J. Remote Sens.
– volume: 133
  start-page: 128
  year: 2013
  end-page: 140
  ident: b0050
  article-title: Modelling leaf chlorophyll content in broadleaf and needle leaf canopies from ground, CASI, Landsat TM 5 and MERIS reflectance data
  publication-title: Remote Sens. Environ.
– volume: 39
  start-page: 1061
  year: 2001
  end-page: 1071
  ident: b0025
  article-title: Multiple-scattering scheme useful for geometric optical modeling
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 118
  year: 2023
  ident: b0075
  article-title: Estimating plant area density of individual trees from discrete airborne laser scanning data using intensity information and path length distribution
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 25
  start-page: 73
  year: 2004
  end-page: 96
  ident: b0080
  article-title: DART: a 3D model for simulating satellite images and studying surface radiation budget
  publication-title: Int. J. Remote Sens.
– volume: 115
  start-page: 1694
  year: 2011
  end-page: 1705
  ident: b0095
  article-title: Using leaf chlorophyll to parameterize light-use-efficiency within a thermal-based carbon, water and energy exchange model
  publication-title: Remote Sens. Environ.
– year: 2014
  ident: b0005
  article-title: A scalable plant-resolving radiative transfer model based on optimized GPU ray tracing
  publication-title: Agricultural and Forest Meteorology 17
– volume: 210
  start-page: 1
  year: 2024
  end-page: 24
  ident: b0010
  article-title: PROSAIL-net: a transfer learning-based dual stream neural network to estimate leaf chlorophyll and leaf angle of crops from UAV hyperspectral images
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 121
  year: 2023
  ident: b0040
  article-title: Evaluation of the effect of leaf spatial aggregation on chlorophyll content retrieval in open-canopy apple orchards
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 311
  year: 2024
  ident: b0090
  article-title: Estimation of canopy photon recollision probability from airborne laser scanning
  publication-title: Remote Sens. Environ.
– volume: 232
  year: 2019
  ident: b0155
  article-title: Simulating solar-induced chlorophyll fluorescence in a boreal forest stand reconstructed from terrestrial laser scanning measurements
  publication-title: Remote Sens. Environ.
– volume: 150
  start-page: 185
  year: 2019
  end-page: 196
  ident: b0215
  article-title: Inversion of rice canopy chlorophyll content and leaf area index based on coupling of radiative transfer and Bayesian network models
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 10
  start-page: 4834
  year: 2017
  end-page: 4843
  ident: b0170
  article-title: A large-scale emulation system for realistic three-dimensional (3-D) forest simulation
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 268
  year: 2022
  ident: b0015
  article-title: A TIR forest reflectance and transmittance (FRT) model for directional temperatures with structural and thermal stratification
  publication-title: Remote Sens. Environ.
– volume: 61
  start-page: 1
  year: 2023
  end-page: 14
  ident: b0160
  article-title: Inversion of a New designed ANN-based 3-D-RTM Emulator by continuous MCMC technique to monitor crop biophysical properties using sentinel-2 images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 8
  start-page: 501
  year: 2016
  ident: b0230
  article-title: An easy-to-use airborne LiDAR data filtering method based on cloth simulation
  publication-title: Remote Sens. (Basel)
– volume: 112
  start-page: 3030
  year: 2008
  end-page: 3043
  ident: b0065
  article-title: PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments
  publication-title: Remote Sens. Environ.
– volume: 113
  start-page: S56
  year: 2009
  end-page: S66
  ident: b0105
  article-title: PROSPECT+SAIL models: A review of use for vegetation characterization
  publication-title: Remote Sens. Environ. Imaging Spect. Special Issue
– volume: 224
  start-page: 60
  year: 2019
  end-page: 73
  ident: b0210
  article-title: Retrieving leaf chlorophyll content using a matrix-based vegetation index combination approach
  publication-title: Remote Sens. Environ.
– volume: 221
  year: 2024
  ident: b0225
  article-title: Removal of canopy shadows improved retrieval accuracy of individual apple tree crowns LAI and chlorophyll content using UAV multispectral imagery and PROSAIL model
  publication-title: Comput. Electron. Agric.
– reference: Edelsbrunner, H., Mücke, E.P., 1994. Three-dimensional alpha shapes, in: Proceedings of the 1992 Workshop on Volume Visualization, VVS ’92. Association for Computing Machinery, New York, NY, USA, pp. 75–82. doi: 10.1145/147130.147153.
– volume: 306
  year: 2024
  ident: b0020
  article-title: Branch architecture quantification of large-scale coniferous forest plots using UAV-LiDAR data
  publication-title: Remote Sens. Environ.
– volume: 83
  year: 2019
  ident: b0110
  article-title: GSV: a general model for hyperspectral soil reflectance simulation
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 250
  year: 2020
  ident: b0190
  article-title: Quantifying vertical profiles of biochemical traits for forest plantation species using advanced remote sensing approaches
  publication-title: Remote Sens. Environ.
– volume: 206
  start-page: 318
  year: 2018
  end-page: 335
  ident: b0135
  article-title: VBRT: a novel voxel-based radiative transfer model for heterogeneous three-dimensional forest scenes
  publication-title: Remote Sens. Environ.
– volume: 169
  start-page: 418
  year: 2015
  end-page: 437
  ident: b0200
  article-title: The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: Actual canopy scenarios and conformity testing
  publication-title: Remote Sens. Environ.
– volume: 202
  year: 2022
  ident: b0035
  article-title: Estimating canopy-scale chlorophyll content in apple orchards using a 3D radiative transfer model and UAV multispectral imagery
  publication-title: Comput. Electron. Agric.
– volume: 38
  start-page: 251
  year: 2015
  end-page: 260
  ident: b0125
  article-title: Non-destructive estimation of foliar chlorophyll and carotenoid contents: Focus on informative spectral bands
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 283
  year: 2022
  ident: b0180
  article-title: 3D radiative transfer modeling of structurally complex forest canopies through a lightweight boundary-based description of leaf clusters
  publication-title: Remote Sens. Environ.
– volume: 297
  year: 2023
  ident: b0235
  article-title: Evaluating the potential of airborne hyperspectral LiDAR for assessing forest insects and diseases with 3D Radiative Transfer Modeling
  publication-title: Remote Sens. Environ.
– volume: 282
  year: 2022
  ident: b0130
  article-title: Assessing a soil-removed semi-empirical model for estimating leaf chlorophyll content
  publication-title: Remote Sens. Environ.
– volume: 219
  year: 2024
  ident: b0030
  article-title: A novel framework to assess apple leaf nitrogen content: fusion of hyperspectral reflectance and phenology information through deep learning
  publication-title: Comput. Electron. Agric.
– volume: 211
  start-page: 276
  year: 2018
  end-page: 291
  ident: b0070
  article-title: Retrieving structural and chemical properties of individual tree crowns in a highly diverse tropical forest with 3D radiative transfer modeling and imaging spectroscopy
  publication-title: Remote Sens. Environ.
– volume: 264
  year: 2021
  ident: b0140
  article-title: Fine-scale leaf chlorophyll distribution across a deciduous forest through two-step model inversion from Sentinel-2 data
  publication-title: Remote Sens. Environ.
– volume: 237
  year: 2020
  ident: b0120
  article-title: Speeding up 3D radiative transfer simulations: A physically based metamodel of canopy reflectance dependency on wavelength, leaf biochemical composition and soil reflectance
  publication-title: Remote Sens. Environ.
– volume: 132
  start-page: 221
  year: 2013
  end-page: 237
  ident: b0100
  article-title: RAPID: A Radiosity Applicable to Porous IndiviDual Objects for directional reflectance over complex vegetated scenes
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 1013
  year: 2019
  end-page: 1029
  ident: b0115
  article-title: A shadow- eliminated vegetation index (SEVI) for removal of self and cast shadow effects on vegetation in rugged terrains
  publication-title: Int. J. Digital Earth
– volume: 7
  start-page: 1790
  year: 2023
  end-page: 1798
  ident: b0220
  article-title: Structural complexity biases vegetation greenness measures
  publication-title: Nat. Ecol. Evol.
– volume: 307
  year: 2024
  ident: b0150
  article-title: Stratified burn severity assessment by integrating spaceborne spectral and waveform attributes in great xing’an mountain
  publication-title: Remote Sens. Environ.
– volume: 83
  year: 2019
  ident: 10.1016/j.jag.2024.104285_b0110
  article-title: GSV: a general model for hyperspectral soil reflectance simulation
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 307
  year: 2024
  ident: 10.1016/j.jag.2024.104285_b0150
  article-title: Stratified burn severity assessment by integrating spaceborne spectral and waveform attributes in great xing’an mountain
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2024.114152
– volume: 79
  start-page: 240
  year: 2013
  ident: 10.1016/j.jag.2024.104285_b0085
  article-title: Towards 3D lidar point cloud registration improvement using optimal neighborhood knowledge
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.02.019
– volume: 199
  start-page: 133
  year: 2023
  ident: 10.1016/j.jag.2024.104285_b0145
  article-title: Review of ground and aerial methods for vegetation cover fraction (fCover) and related quantities estimation: definitions, advances, challenges, and future perspectives
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2023.03.020
– volume: 10
  start-page: 4834
  year: 2017
  ident: 10.1016/j.jag.2024.104285_b0170
  article-title: A large-scale emulation system for realistic three-dimensional (3-D) forest simulation
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2714423
– volume: 113
  start-page: S56
  year: 2009
  ident: 10.1016/j.jag.2024.104285_b0105
  article-title: PROSPECT+SAIL models: A review of use for vegetation characterization
  publication-title: Remote Sens. Environ. Imaging Spect. Special Issue
– volume: 12
  start-page: 1013
  year: 2019
  ident: 10.1016/j.jag.2024.104285_b0115
  article-title: A shadow- eliminated vegetation index (SEVI) for removal of self and cast shadow effects on vegetation in rugged terrains
  publication-title: Int. J. Digital Earth
  doi: 10.1080/17538947.2018.1495770
– volume: 232
  year: 2019
  ident: 10.1016/j.jag.2024.104285_b0155
  article-title: Simulating solar-induced chlorophyll fluorescence in a boreal forest stand reconstructed from terrestrial laser scanning measurements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111274
– volume: 206
  start-page: 318
  year: 2018
  ident: 10.1016/j.jag.2024.104285_b0135
  article-title: VBRT: a novel voxel-based radiative transfer model for heterogeneous three-dimensional forest scenes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.12.043
– volume: 306
  year: 2024
  ident: 10.1016/j.jag.2024.104285_b0020
  article-title: Branch architecture quantification of large-scale coniferous forest plots using UAV-LiDAR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2024.114121
– volume: 133
  start-page: 128
  year: 2013
  ident: 10.1016/j.jag.2024.104285_b0050
  article-title: Modelling leaf chlorophyll content in broadleaf and needle leaf canopies from ground, CASI, Landsat TM 5 and MERIS reflectance data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.02.006
– volume: 6
  start-page: 166
  year: 2024
  ident: 10.1016/j.jag.2024.104285_b0240
  article-title: Fine-scale quantification of absorbed photosynthetically active radiation (APAR) in plantation forests with 3D radiative transfer modeling and LiDAR data
  publication-title: Plant Phenomics
  doi: 10.34133/plantphenomics.0166
– volume: 112
  start-page: 3030
  year: 2008
  ident: 10.1016/j.jag.2024.104285_b0065
  article-title: PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.02.012
– ident: 10.1016/j.jag.2024.104285_b0060
  doi: 10.1145/147130.147153
– volume: 237
  year: 2020
  ident: 10.1016/j.jag.2024.104285_b0120
  article-title: Speeding up 3D radiative transfer simulations: A physically based metamodel of canopy reflectance dependency on wavelength, leaf biochemical composition and soil reflectance
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111614
– volume: 115
  start-page: 1694
  year: 2011
  ident: 10.1016/j.jag.2024.104285_b0095
  article-title: Using leaf chlorophyll to parameterize light-use-efficiency within a thermal-based carbon, water and energy exchange model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.02.027
– volume: 38
  start-page: 251
  year: 2015
  ident: 10.1016/j.jag.2024.104285_b0125
  article-title: Non-destructive estimation of foliar chlorophyll and carotenoid contents: Focus on informative spectral bands
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 283
  year: 2022
  ident: 10.1016/j.jag.2024.104285_b0180
  article-title: 3D radiative transfer modeling of structurally complex forest canopies through a lightweight boundary-based description of leaf clusters
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113301
– volume: 202
  year: 2022
  ident: 10.1016/j.jag.2024.104285_b0035
  article-title: Estimating canopy-scale chlorophyll content in apple orchards using a 3D radiative transfer model and UAV multispectral imagery
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107401
– volume: 236
  year: 2020
  ident: 10.1016/j.jag.2024.104285_b0055
  article-title: The global distribution of leaf chlorophyll content
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111479
– volume: 169
  start-page: 418
  year: 2015
  ident: 10.1016/j.jag.2024.104285_b0200
  article-title: The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: Actual canopy scenarios and conformity testing
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.08.016
– volume: 121
  year: 2023
  ident: 10.1016/j.jag.2024.104285_b0040
  article-title: Evaluation of the effect of leaf spatial aggregation on chlorophyll content retrieval in open-canopy apple orchards
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 221
  start-page: 695
  year: 2019
  ident: 10.1016/j.jag.2024.104285_b0175
  article-title: LESS: LargE-Scale remote sensing data and image simulation framework over heterogeneous 3D scenes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.036
– volume: 260
  year: 2021
  ident: 10.1016/j.jag.2024.104285_b0045
  article-title: Modelling lidar-derived estimates of forest attributes over space and time: A review of approaches and future trends
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112477
– volume: 297
  year: 2023
  ident: 10.1016/j.jag.2024.104285_b0235
  article-title: Evaluating the potential of airborne hyperspectral LiDAR for assessing forest insects and diseases with 3D Radiative Transfer Modeling
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2023.113759
– volume: 210
  start-page: 1
  year: 2024
  ident: 10.1016/j.jag.2024.104285_b0010
  article-title: PROSAIL-net: a transfer learning-based dual stream neural network to estimate leaf chlorophyll and leaf angle of crops from UAV hyperspectral images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2024.02.020
– volume: 7
  start-page: 1790
  year: 2023
  ident: 10.1016/j.jag.2024.104285_b0220
  article-title: Structural complexity biases vegetation greenness measures
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-023-02187-6
– volume: 39
  start-page: 1061
  year: 2001
  ident: 10.1016/j.jag.2024.104285_b0025
  article-title: Multiple-scattering scheme useful for geometric optical modeling
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.921424
– volume: 25
  start-page: 73
  year: 2004
  ident: 10.1016/j.jag.2024.104285_b0080
  article-title: DART: a 3D model for simulating satellite images and studying surface radiation budget
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116031000115166
– volume: 311
  year: 2024
  ident: 10.1016/j.jag.2024.104285_b0090
  article-title: Estimation of canopy photon recollision probability from airborne laser scanning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2024.114264
– volume: 132
  start-page: 221
  year: 2013
  ident: 10.1016/j.jag.2024.104285_b0100
  article-title: RAPID: A Radiosity Applicable to Porous IndiviDual Objects for directional reflectance over complex vegetated scenes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.01.013
– volume: 16
  start-page: 125
  year: 1984
  ident: 10.1016/j.jag.2024.104285_b0195
  article-title: Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(84)90057-9
– volume: 221
  year: 2024
  ident: 10.1016/j.jag.2024.104285_b0225
  article-title: Removal of canopy shadows improved retrieval accuracy of individual apple tree crowns LAI and chlorophyll content using UAV multispectral imagery and PROSAIL model
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.108959
– volume: 268
  year: 2022
  ident: 10.1016/j.jag.2024.104285_b0015
  article-title: A TIR forest reflectance and transmittance (FRT) model for directional temperatures with structural and thermal stratification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112749
– volume: 3
  start-page: 0017
  year: 2023
  ident: 10.1016/j.jag.2024.104285_b0185
  article-title: Fast and accurate simulation of canopy reflectance under wavelength-dependent optical properties using a semi-empirical 3D radiative transfer model
  publication-title: J. Remote Sens.
  doi: 10.34133/remotesensing.0017
– volume: 61
  start-page: 1
  year: 2023
  ident: 10.1016/j.jag.2024.104285_b0160
  article-title: Inversion of a New designed ANN-based 3-D-RTM Emulator by continuous MCMC technique to monitor crop biophysical properties using sentinel-2 images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2023.3297363
– volume: 224
  start-page: 60
  year: 2019
  ident: 10.1016/j.jag.2024.104285_b0210
  article-title: Retrieving leaf chlorophyll content using a matrix-based vegetation index combination approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.01.039
– volume: 150
  start-page: 185
  year: 2019
  ident: 10.1016/j.jag.2024.104285_b0215
  article-title: Inversion of rice canopy chlorophyll content and leaf area index based on coupling of radiative transfer and Bayesian network models
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.02.013
– volume: 219
  year: 2024
  ident: 10.1016/j.jag.2024.104285_b0030
  article-title: A novel framework to assess apple leaf nitrogen content: fusion of hyperspectral reflectance and phenology information through deep learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.108816
– year: 2014
  ident: 10.1016/j.jag.2024.104285_b0005
  article-title: A scalable plant-resolving radiative transfer model based on optimized GPU ray tracing
– volume: 118
  year: 2023
  ident: 10.1016/j.jag.2024.104285_b0075
  article-title: Estimating plant area density of individual trees from discrete airborne laser scanning data using intensity information and path length distribution
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 10
  year: 2023
  ident: 10.1016/j.jag.2024.104285_b0205
  article-title: Retrieving chlorophyll content and equivalent water thickness of moso bamboo (phyllostachys pubescens) forests under pantana phyllostachysae chao-induced stress from sentinel-2A/B images in a multiple LUTs-based PROSAIL framework
  publication-title: For. Ecosyst.
  doi: 10.1016/j.fecs.2023.100108
– volume: 8
  start-page: 501
  year: 2016
  ident: 10.1016/j.jag.2024.104285_b0230
  article-title: An easy-to-use airborne LiDAR data filtering method based on cloth simulation
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs8060501
– volume: 282
  year: 2022
  ident: 10.1016/j.jag.2024.104285_b0130
  article-title: Assessing a soil-removed semi-empirical model for estimating leaf chlorophyll content
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113284
– volume: 34
  start-page: 946
  year: 1996
  ident: 10.1016/j.jag.2024.104285_b0165
  article-title: Three-dimensional forest light interaction model using a monte carlo method
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.508411
– volume: 264
  year: 2021
  ident: 10.1016/j.jag.2024.104285_b0140
  article-title: Fine-scale leaf chlorophyll distribution across a deciduous forest through two-step model inversion from Sentinel-2 data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112618
– volume: 250
  year: 2020
  ident: 10.1016/j.jag.2024.104285_b0190
  article-title: Quantifying vertical profiles of biochemical traits for forest plantation species using advanced remote sensing approaches
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112041
– volume: 211
  start-page: 276
  year: 2018
  ident: 10.1016/j.jag.2024.104285_b0070
  article-title: Retrieving structural and chemical properties of individual tree crowns in a highly diverse tropical forest with 3D radiative transfer modeling and imaging spectroscopy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.023
SSID ssj0017768
Score 2.415969
Snippet •The forest structural scene is explicitly reconstructed from UAV LiDAR data.•An efficient 3D Semi-LESS model coupled with deep learning for accurately...
Leaf chlorophyll content (LCC) retrieval from remote sensing imagery is essential for monitoring vegetation growth and stress in the agroforestry industry....
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 104285
SubjectTerms 3D radiative transfer model
High-resolution data
Leaf chlorophyll content
Retrieval
SummonAdditionalLinks – databaseName: DOAJ Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYQp3JAkIII0MqHnipZLH77WChRhERPqcRtZY9tCAoJJOHQf9_xPtq9oF56XXnHq5lZzzea8TeEfBEmagWSMwyOkkmbPbPCZlbI6TiPQbpQKrp3P_T0p7y9V_eDUV-lJ6ylB24Vd6FthBhd4KAdgnkbNAQJ0eR4qZVSsZy-GPP6ZKqrHxjTXoJT2jErBe_rmU1n15N_wMSQy1Lf5GWI8iAiNcT9g8A0CDaTA7LfoUT6rf26Q7KTliOyN-AOHJHjm79X1HBp949uPpLXCS5iG9R9outmXhY6E11lukg-U3jEBH2Ful0saGlTx7dp6X1_oJ5u0vOcpeeXeUMbsvhFPQBGpUImEan4TteFx6Acj3TbwN20ps0gnSMym9zMrqesG6zAQCi7ZcICVF4l6yuXTeWBC4R1IGMOBgVLyNKIXGkvnEb84nSW3kACVUHUQYtjsrtcLdMJoTIYq8Bl6TRCg0twqfBnJYgcExGowph87XVbv7T0GXXfV_ZUoyHqYoi6NcSYXBXt_1lYmK-bB-gPdecP9b_8YUxkb7u6AxEtOEBR8_f3Pv0fe5-RD0Vk2-1yTna367f0CTHLNnxu3PM3o7zqcg
  priority: 102
  providerName: Directory of Open Access Journals
Title Fine-scale retrieval of leaf chlorophyll content using a semi-empirically accelerated 3D radiative transfer model
URI https://dx.doi.org/10.1016/j.jag.2024.104285
https://doaj.org/article/68dcdd9b2c694958b6cb4cd7fd16555d
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYCZ2mHIkkb1GkacOhUgLAiUnyMSRrDbdEsTYFsAnkkXQWO7crO0H_fIyUl7tClowiSEu5O98DdfUfIB668rECUDI2jYEJHyzTXkSVwurL0ThiXMrrfbuTsh_hyV93tkauhFyaVVfa6v9PpWVv3K5OempN100y-Y-RhtOC5ClKK1N-7X3Ij9YjsX3z-Ort5SiYo1XXE4X6WDgzJzVzmdW_nGCWWIiU7yzRRecc8ZRT_HSu1Y3mmB-RV7zLSi-6rDsleWB6RlztAgkfk-Pq5Xw239j_s5jX5NcVNbIOMCLTNw7NQsugq0kWwkcJPjNZXSOjFgqaadTxNUyH8nFq6CQ8NCw_rJmOILH5TC4AmKiFLeMo_0TaBGiRdSbfZ9w0tzVN13pDb6fXt1Yz1UxYY8EpvGdcAha2CtoWJqrBQcvTxQPjoFF4sIArFYyEt0hadGSOjsAoCVAV46SQ_JqPlahneEiqc0hWYKIxEnpyDCQlMK4AvMSqBwo3Jx4G29brD0qiHIrP7GhlRJ0bUHSPG5DJR_2ljgsHOC6t2XvdyUEvtwXvjSpAGIz3tJDgBXkV_Lquq8mMiBt7Vf0kVXtX8-90n_3fsHXmRnrpil1My2raP4T26LFt31ovkWQ75_wCt2Ot0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYCZ2g7FEnaoO6TQ6cChBWRosgxTWI4TeKlLpCNII-kq8CxHdkd-u971CN1hyxdqSMl3J3uAd59R8hnXnpZgMgZOkfBhIqWKa4iS-B0ee6d0C7d6N5M5eSH-HZb3O6Rs74XJpVVdra_temNte5WRh03R-uqGn3HzEMrwZsqSClSf-9-QqcSA7J_enk1mT5eJpRl2xGH9Cxt6C83mzKvOzvHLDEX6bIzTxOVd9xTg-K_46V2PM_4gLzsQkZ62n7VIdkLyyPyYgdI8IgcX_ztV0PS7ofdvCIPYyRiGxREoHUzPAs1i64iXQQbKfzEbH2FjF4saKpZx900FcLPqaWbcF-xcL-uGgyRxW9qAdBFJWQJT_k5rROoQbKVdNvEvqGmzVSd12Q2vpidTVg3ZYEBL9SWcQWQ2SIom-lYZhZyjjEeCB9diQcLiKLkMZOWa4nBjJZR2BICFBl46SQ_JoPlahneECpcqQrQUWiJMjkBHRKYVgCfY1YCmRuSLz1vzbrF0jB9kdmdQUGYJAjTCmJIvibuPxImGOxmYVXPTacHRioP3muXg9SY6SknwQnwZfQnsigKPySil535R6vwqOrpd7_9v22fyLPJ7ObaXF9Or96R5-lJW_jyngy29a_wAcOXrfvYqecfQDDtZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine-scale+retrieval+of+leaf+chlorophyll+content+using+a+semi-empirically+accelerated+3D+radiative+transfer+model&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Zhao%2C+Xun&rft.au=Qi%2C+Jianbo&rft.au=Jiang%2C+Jingyi&rft.au=Liu%2C+Shangbo&rft.date=2024-12-01&rft.pub=Elsevier+B.V&rft.issn=1569-8432&rft.volume=135&rft_id=info:doi/10.1016%2Fj.jag.2024.104285&rft.externalDocID=S1569843224006411
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon