Novel flat plate pulsating heat pipe with ultra sharp grooves

•Diffusion bonding was applied for the fabrication of flat plate PHPs.•Ultra-sharp grooves in the evaporator improved the heat transfer capacity of a PHP.•The proposed PHPs perform effectively for heat fluxes up to 1200 W (20.9 W/cm2).•The gravity influence becomes negligible for powers beyond 600 W...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 211; p. 118509
Main Authors Krambeck, Larissa, Domiciano, Kelvin G., Betancur-Arboleda, Luis A., Mantelli, Marcia B.H.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 05.07.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Diffusion bonding was applied for the fabrication of flat plate PHPs.•Ultra-sharp grooves in the evaporator improved the heat transfer capacity of a PHP.•The proposed PHPs perform effectively for heat fluxes up to 1200 W (20.9 W/cm2).•The gravity influence becomes negligible for powers beyond 600 W (10.4 W/ cm2).•The PHPs appear to be a good alternative for temperature control of electronics. Pulsating heat pipe (PHP) is a very efficient solution for electronics cooling. Several strategies can be applied to improve the thermal performance of PHPs. In this context, the heat transfer enhancement of a flat plate pulsating heat pipe with a channel modification in the evaporator region, resulting in ultra sharp lateral grooves, was investigated experimentally. Chamfers were machined in the lateral walls of thirteen semi-circular cross section U-turn channels, drilled in flat copper plates. To form the sharp-grooved circular channels, two plates were faced against each other and diffusion bonded, resulting in a monolithic piece with high quality channels. The ultra sharp grooves had an angle of 29.1 ± 2.9°. The lateral grooves work as artificial nucleation sites, helping in the bubble formation, and act as a capillary medium, spreading the liquid over the evaporator region, delaying the dry-out. Therefore, the device could be less dependent on gravity, enabling it to be considered for applications in microgravity environments. To ascertain the efficiency of the proposed device, its performance was compared with another similar PHP with the same external geometry and with round ordinary cross-section channels of the same 2.5 mm channel diameter. Distilled water was selected as the working fluid, which, as predicted by literature models, worked at confinement conditions. As usual, the thermal behaviors of PHPs were characterized by their temperatures and pressures, depending on the operation conditions. The best filling ratio for each PHP was experimentally determined, considering heat loads from 20 up to 350 W (from 0.35 up to 6.1 W/cm2). The influence of the ultra sharp grooves on the thermal performance of the PHP was investigated for a large range of power inputs, reaching up to 1200 W (20.9 W/cm2), for the best filling ratio. The gravity influence in the PHP operation was evaluated by tests in three orientations: gravity-assisted, horizontal and against-gravity. Both cross-section profile PHPs performed effectively well for heat fluxes up to 20.9 W/ cm2, even in the against-gravity position, showing that the devices are suitable for temperature control of electronics, including those with high heat fluxes. Besides, the gravity effect could be neglected for heat powers beyond 600 W (10.4 W/ cm2), which make them adequate for microgravity applications. The presence of ultra sharp grooves in the evaporator section of the PHP reduced by 2.1 °C the average evaporator temperature, decreased the temperature variations among sections and improved the thermal performance by 12% in the horizontal and gravity-assisted orientation.
AbstractList Pulsating heat pipe (PHP) is a very efficient solution for electronics cooling. Several strategies can be applied to improve the thermal performance of PHPs. In this context, the heat transfer enhancement of a flat plate pulsating heat pipe with a channel modification in the evaporator region, resulting in ultra sharp lateral grooves, was investigated experimentally. Chamfers were machined in the lateral walls of thirteen semi-circular cross section U-turn channels, drilled in flat copper plates. To form the sharp-grooved circular channels, two plates were faced against each other and diffusion bonded, resulting in a monolithic piece with high quality channels. The ultra sharp grooves had an angle of 29.1 ± 2.9°. The lateral grooves work as artificial nucleation sites, helping in the bubble formation, and act as a capillary medium, spreading the liquid over the evaporator region, delaying the dry-out. Therefore, the device could be less dependent on gravity, enabling it to be considered for applications in microgravity environments. To ascertain the efficiency of the proposed device, its performance was compared with another similar PHP with the same external geometry and with round ordinary cross-section channels of the same 2.5 mm channel diameter. Distilled water was selected as the working fluid, which, as predicted by literature models, worked at confinement conditions. As usual, the thermal behaviors of PHPs were characterized by their temperatures and pressures, depending on the operation conditions. The best filling ratio for each PHP was experimentally determined, considering heat loads from 20 up to 350 W (from 0.35 up to 6.1 W/cm2). The influence of the ultra sharp grooves on the thermal performance of the PHP was investigated for a large range of power inputs, reaching up to 1200 W (20.9 W/cm2), for the best filling ratio. The gravity influence in the PHP operation was evaluated by tests in three orientations: gravity-assisted, horizontal and against-gravity. Both cross-section profile PHPs performed effectively well for heat fluxes up to 20.9 W/ cm2, even in the against-gravity position, showing that the devices are suitable for temperature control of electronics, including those with high heat fluxes. Besides, the gravity effect could be neglected for heat powers beyond 600 W (10.4 W/ cm2), which make them adequate for microgravity applications. The presence of ultra sharp grooves in the evaporator section of the PHP reduced by 2.1 °C the average evaporator temperature, decreased the temperature variations among sections and improved the thermal performance by 12% in the horizontal and gravity-assisted orientation.
•Diffusion bonding was applied for the fabrication of flat plate PHPs.•Ultra-sharp grooves in the evaporator improved the heat transfer capacity of a PHP.•The proposed PHPs perform effectively for heat fluxes up to 1200 W (20.9 W/cm2).•The gravity influence becomes negligible for powers beyond 600 W (10.4 W/ cm2).•The PHPs appear to be a good alternative for temperature control of electronics. Pulsating heat pipe (PHP) is a very efficient solution for electronics cooling. Several strategies can be applied to improve the thermal performance of PHPs. In this context, the heat transfer enhancement of a flat plate pulsating heat pipe with a channel modification in the evaporator region, resulting in ultra sharp lateral grooves, was investigated experimentally. Chamfers were machined in the lateral walls of thirteen semi-circular cross section U-turn channels, drilled in flat copper plates. To form the sharp-grooved circular channels, two plates were faced against each other and diffusion bonded, resulting in a monolithic piece with high quality channels. The ultra sharp grooves had an angle of 29.1 ± 2.9°. The lateral grooves work as artificial nucleation sites, helping in the bubble formation, and act as a capillary medium, spreading the liquid over the evaporator region, delaying the dry-out. Therefore, the device could be less dependent on gravity, enabling it to be considered for applications in microgravity environments. To ascertain the efficiency of the proposed device, its performance was compared with another similar PHP with the same external geometry and with round ordinary cross-section channels of the same 2.5 mm channel diameter. Distilled water was selected as the working fluid, which, as predicted by literature models, worked at confinement conditions. As usual, the thermal behaviors of PHPs were characterized by their temperatures and pressures, depending on the operation conditions. The best filling ratio for each PHP was experimentally determined, considering heat loads from 20 up to 350 W (from 0.35 up to 6.1 W/cm2). The influence of the ultra sharp grooves on the thermal performance of the PHP was investigated for a large range of power inputs, reaching up to 1200 W (20.9 W/cm2), for the best filling ratio. The gravity influence in the PHP operation was evaluated by tests in three orientations: gravity-assisted, horizontal and against-gravity. Both cross-section profile PHPs performed effectively well for heat fluxes up to 20.9 W/ cm2, even in the against-gravity position, showing that the devices are suitable for temperature control of electronics, including those with high heat fluxes. Besides, the gravity effect could be neglected for heat powers beyond 600 W (10.4 W/ cm2), which make them adequate for microgravity applications. The presence of ultra sharp grooves in the evaporator section of the PHP reduced by 2.1 °C the average evaporator temperature, decreased the temperature variations among sections and improved the thermal performance by 12% in the horizontal and gravity-assisted orientation.
ArticleNumber 118509
Author Mantelli, Marcia B.H.
Krambeck, Larissa
Betancur-Arboleda, Luis A.
Domiciano, Kelvin G.
Author_xml – sequence: 1
  givenname: Larissa
  surname: Krambeck
  fullname: Krambeck, Larissa
  email: larissa.krambeck@labtucal.ufsc.br
  organization: Heat Pipe Laboratory, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianopolis, Brazil
– sequence: 2
  givenname: Kelvin G.
  surname: Domiciano
  fullname: Domiciano, Kelvin G.
  organization: Heat Pipe Laboratory, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianopolis, Brazil
– sequence: 3
  givenname: Luis A.
  surname: Betancur-Arboleda
  fullname: Betancur-Arboleda, Luis A.
  organization: Design and Materials Research Group (DIMAT), Electromechanical Engineering, Faculty of Natural Sciences and Engineering, Unidades Tecnológicas de Santander (UTS), Bucaramanga, Colombia
– sequence: 4
  givenname: Marcia B.H.
  surname: Mantelli
  fullname: Mantelli, Marcia B.H.
  organization: Heat Pipe Laboratory, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianopolis, Brazil
BookMark eNqNkM1OwzAQhC1UJNrCO1iCa4LXjn8iwQFVFJAquMDZcl27SZQmwU6KeHtShQs3Lrur1cys9lugWdM2DqEbICkQELdVarqu7gsXDqZ2zT6lhNIUQHGSn6E5KMkSLoiYjTPjeZIxgAu0iLEiBKiS2Rzdv7ZHV2Nfmx53Y3G4G-po-rLZ48KdlmXn8FfZF3io-2BwLEzo8D60oy9eonNv6uiufvsSfawf31fPyebt6WX1sEks46pPGAdDrFFKWZBZlkHOPAe6FUp6agSnRBIBklpBvdlSCcobJijfGe5tLhRbousptwvt5-Bir6t2CM14UlMhKVOQ5zCq7iaVDW2MwXndhfJgwrcGok_AdKX_AtMnYHoCNtrXk92NnxxLF3S0pWus25XB2V7v2vJ_QT_2EX0o
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2023_124327
crossref_primary_10_3390_en16196988
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125134
crossref_primary_10_1080_15435075_2024_2319229
crossref_primary_10_1016_j_applthermaleng_2023_120156
crossref_primary_10_1088_1361_6439_acf13b
crossref_primary_10_1007_s42757_024_0187_0
crossref_primary_10_1063_5_0147852
crossref_primary_10_1016_j_ijheatmasstransfer_2023_123968
crossref_primary_10_2514_1_T6826
Cites_doi 10.1063/1.4892721
10.1016/j.ijthermalsci.2013.07.025
10.1007/s00231-020-02998-4
10.1016/S1290-0729(03)00100-5
10.1115/1.4026815
10.1080/08916150490246546
10.1016/j.expthermflusci.2012.03.006
10.1016/j.ijheatmasstransfer.2014.06.029
10.1016/j.ijheatmasstransfer.2019.03.065
10.3390/en13071736
10.2514/6.2013-3303
10.1007/978-1-4939-2504-9
10.1109/EPTC.2012.6507067
10.1016/j.applthermaleng.2021.117200
10.1016/j.applthermaleng.2021.117266
10.1016/j.applthermaleng.2016.03.163
10.1016/j.applthermaleng.2016.09.017
10.1016/j.applthermaleng.2018.01.027
10.1016/S1359-4311(03)00168-6
10.1016/j.ijheatmasstransfer.2018.06.092
10.1108/HFF-09-2020-0566
10.1016/j.ijheatmasstransfer.2018.04.054
10.2514/1.T3747
10.1007/s10404-021-02504-0
10.1115/IMECE2006-13737
10.1016/j.ijheatmasstransfer.2016.11.036
10.1016/j.ijheatmasstransfer.2019.03.121
10.1016/j.ijheatmasstransfer.2012.05.068
10.1007/s40430-020-02555-4
10.1016/j.applthermaleng.2019.114534
10.1016/j.applthermaleng.2017.05.191
10.1016/j.applthermaleng.2017.02.106
10.1007/s00231-017-2082-8
10.1016/j.ijheatmasstransfer.2017.12.107
10.1016/j.ijthermalsci.2008.05.017
10.1016/j.est.2021.103511
10.1080/10893950290098340
10.1088/1757-899X/1139/1/012001
10.2514/1.T3768
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Jul 5, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 5, 2022
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.applthermaleng.2022.118509
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5606
ExternalDocumentID 10_1016_j_applthermaleng_2022_118509
S135943112200463X
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FGOYB
HZ~
R2-
RIG
SEW
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c358t-351a0ca888c17444193f512b687f2a6520706172c62fab2718fa3625da5fc9683
IEDL.DBID .~1
ISSN 1359-4311
IngestDate Fri Sep 13 03:03:45 EDT 2024
Thu Sep 12 19:25:56 EDT 2024
Fri Feb 23 02:35:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Grooves
Pulsating heat pipe
Channel profile
Thermal performance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-351a0ca888c17444193f512b687f2a6520706172c62fab2718fa3625da5fc9683
PQID 2672381991
PQPubID 2045278
ParticipantIDs proquest_journals_2672381991
crossref_primary_10_1016_j_applthermaleng_2022_118509
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2022_118509
PublicationCentury 2000
PublicationDate 2022-07-05
PublicationDateYYYYMMDD 2022-07-05
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-05
  day: 05
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Applied thermal engineering
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Patel, Gaurav, Mehta (b0045) 2017; 110
Khandekar, Schneider, Schäfer, Kulenovic (b0105) 2003; 6
Wang, Ma, Zhu, Dong, Yue (b0170) 2016; 102
H. Ma, Oscillating Heat Pipes, New York, NY, 2015. https://doi.org/10.1007/0781493925049.
Hua, Wang, Gao, Zheng, Han, Chen (b0140) 2017; 126
Mameli, Marengo, Khandekar (b0035) 2014; 75
Yoon, Kim (b0220) 2018; 127
Khandekar, Groll (b0210) 2004; 43
S. Khandekar, M. Groll, On the Definition of Pulsating Heat Pipes: An overview, in: Proc. 5th Minsk Int. Semin. (Heat Pipes, Heat Pumps Refrig.) 3 (2003) 12.
Y. Miyazaki, H. Kawai, H. Ogawa, N. Iwata, S. Fukuda, Thermal control system of a satellite with oscillating heat pipes, in: 43rd Int. Conf. Environ. Syst. 1–6, 2013. https://doi.org/10.2514/6.2013-3303.
Kelly, Hayashi, Kim (b0115) 2018; 121
Karimi, Culham (b0030) 2004; 2004
Nazar, Bhatti, Michaelides (b0075) 2022; 26
Suman, Savino (b0190) 2011; 25
Betancur-Arboleda, Hulse, Melian, Mantelli (b0155) 2020; 42
Zhang, Xu, Zhou (b0230) 2004; 17
Laun, Lu, Ma (b0010) 2015; 7
Zhang, He, Jiang, Shen, Zhou (b0135) 2021; 57
Bhatti, Arain, Zeeshan, Ellahi, Doranehgard (b0085) 2022; 45
Lim, Kim (b0120) 2019; 137
Kolková, Malcho (b0225) 2014; 1608
Lakshminarayanan, Sriraam (b0240) 2014
N. Kammuang-Lue, P. Sakulchangsatjatai, P. Terdtoon, Effect of working fluids on thermal characteristic of a closed-loop pulsating heat pipe heat exchanger: A case of three heat dissipating devices, in: Proc. 2012 IEEE 14th Electron. Packag. Technol. Conf. EPTC 2012, 2012, 142–147. https://doi.org/10.1109/EPTC.2012.6507067.
Ayel, Slobodeniuk, Bertossi, Romestant, Bertin (b0015) 2021; 197
Carey (b0145) 2008
Yang, Khandekar, Groll (b0160) 2009; 48
Czajkowski, Nowak, Błasiak, Ochman, Pietrowicz (b0060) 2020; 165
W. Qu, Y. Zhou, Y. Li, T. Ma, Experimental study on mini pulsating heat pipes with square and regular triangle capillaries, in: 14th Int. Heat Pipe Conf., Florianopolis, Brazil, 2007.
A. Facin, L. Betancur, M. Mantelli, J.P. Florez, B.H. Coutinho, Influence of channel geometry on diffusion bonded flat plate pulsating heat pipes, in: 19th Int. Heat Pipe Conf. 13th Int. Heat Pipe Symp., Pisa, Italy, June 10-14: 2018.
Betancur, Facin, Paiva, Mantelli, Gonçalves, Nuernberg (b0130) 2021; 1139
A. Yoon, S.J. Kim, The effect of substrate conduction on the thermal performance of a flat plate pulsating heat pipe, in: 10th Int. Conf. Heat Transf. Fluid Mech. Thermodyn., Orlando, Florida, 2014, p. 1411–1416.
Mehta, Mehta, Patel (b0090) 2020; 42
Khandekar, Charoensawan, Groll, Terdtoon (b0150) 2003; 23
Qu, Li, Xu, Wang (b0180) 2017; 53
Zhang, Bhatti, Michaelides (b0080) 2021; 31
Chen, Chou (b0055) 2014; 77
Taft, Williams, Drolen (b0195) 2012; 26
Lim, Kim (b0125) 2021; 196
Cisterna, Vitto, Cardoso, Fronza, Mantelli, Milanez (b0200) 2020; 42
Kim, Kim (b0185) 2018; 133
Chien, Lin, Chen, Yang, Wang (b0095) 2012; 55
Kim, Li, Kim, Kim (b0215) 2017; 126
J.P. Holman, Experimental methods for engineers. 8th ed. New York, USA, 2011. https://doi.org/10.1093/nq/s1-VIII.193.43-b.
Winkler, Rapp, Mahlke, Zunftmeister, Vergez, Wischerhoff, Clade, Bartholomé, Schäfer-Welsen (b0065) 2020; 13
Qian, Fu, Zhang, Chen, Xu (b0050) 2019; 136
Lee, Joo, Kim (b0070) 2018; 124
Q. Cai, C.L. Chen, J.F. Asfia, Heat transfer enhancement of planar pulsating heat pipe device, in: Proc. 2006 ASME Int. Mech. Eng. Congr. Expo. IMECE2006 - Heat Transf., Chicago, IL, United States: American Society of Mechanical Engineers (ASME), 2006, https://doi.org/10.1115/IMECE2006-13737.
Lee, Kim (b0110) 2017; 107
Arab, Soltanieh, Shafii (b0235) 2012; 42
Lakshminarayanan (10.1016/j.applthermaleng.2022.118509_b0240) 2014
10.1016/j.applthermaleng.2022.118509_b0025
Mameli (10.1016/j.applthermaleng.2022.118509_b0035) 2014; 75
Taft (10.1016/j.applthermaleng.2022.118509_b0195) 2012; 26
Yang (10.1016/j.applthermaleng.2022.118509_b0160) 2009; 48
Khandekar (10.1016/j.applthermaleng.2022.118509_b0210) 2004; 43
Chien (10.1016/j.applthermaleng.2022.118509_b0095) 2012; 55
Yoon (10.1016/j.applthermaleng.2022.118509_b0220) 2018; 127
Khandekar (10.1016/j.applthermaleng.2022.118509_b0105) 2003; 6
Nazar (10.1016/j.applthermaleng.2022.118509_b0075) 2022; 26
Lim (10.1016/j.applthermaleng.2022.118509_b0125) 2021; 196
Qian (10.1016/j.applthermaleng.2022.118509_b0050) 2019; 136
Wang (10.1016/j.applthermaleng.2022.118509_b0170) 2016; 102
Cisterna (10.1016/j.applthermaleng.2022.118509_b0200) 2020; 42
Qu (10.1016/j.applthermaleng.2022.118509_b0180) 2017; 53
Hua (10.1016/j.applthermaleng.2022.118509_b0140) 2017; 126
Kim (10.1016/j.applthermaleng.2022.118509_b0185) 2018; 133
Kelly (10.1016/j.applthermaleng.2022.118509_b0115) 2018; 121
Czajkowski (10.1016/j.applthermaleng.2022.118509_b0060) 2020; 165
Kim (10.1016/j.applthermaleng.2022.118509_b0215) 2017; 126
Lim (10.1016/j.applthermaleng.2022.118509_b0120) 2019; 137
Mehta (10.1016/j.applthermaleng.2022.118509_b0090) 2020; 42
10.1016/j.applthermaleng.2022.118509_b0040
Lee (10.1016/j.applthermaleng.2022.118509_b0110) 2017; 107
Zhang (10.1016/j.applthermaleng.2022.118509_b0230) 2004; 17
Ayel (10.1016/j.applthermaleng.2022.118509_b0015) 2021; 197
10.1016/j.applthermaleng.2022.118509_b0165
Suman (10.1016/j.applthermaleng.2022.118509_b0190) 2011; 25
Zhang (10.1016/j.applthermaleng.2022.118509_b0080) 2021; 31
10.1016/j.applthermaleng.2022.118509_b0245
10.1016/j.applthermaleng.2022.118509_b0005
10.1016/j.applthermaleng.2022.118509_b0205
Bhatti (10.1016/j.applthermaleng.2022.118509_b0085) 2022; 45
Laun (10.1016/j.applthermaleng.2022.118509_b0010) 2015; 7
Winkler (10.1016/j.applthermaleng.2022.118509_b0065) 2020; 13
Arab (10.1016/j.applthermaleng.2022.118509_b0235) 2012; 42
Patel (10.1016/j.applthermaleng.2022.118509_b0045) 2017; 110
10.1016/j.applthermaleng.2022.118509_b0175
Khandekar (10.1016/j.applthermaleng.2022.118509_b0150) 2003; 23
Betancur-Arboleda (10.1016/j.applthermaleng.2022.118509_b0155) 2020; 42
Chen (10.1016/j.applthermaleng.2022.118509_b0055) 2014; 77
Zhang (10.1016/j.applthermaleng.2022.118509_b0135) 2021; 57
Lee (10.1016/j.applthermaleng.2022.118509_b0070) 2018; 124
Kolková (10.1016/j.applthermaleng.2022.118509_b0225) 2014; 1608
Karimi (10.1016/j.applthermaleng.2022.118509_b0030) 2004; 2004
Carey (10.1016/j.applthermaleng.2022.118509_b0145) 2008
Betancur (10.1016/j.applthermaleng.2022.118509_b0130) 2021; 1139
10.1016/j.applthermaleng.2022.118509_b0020
10.1016/j.applthermaleng.2022.118509_b0100
References_xml – volume: 17
  start-page: 47
  year: 2004
  end-page: 67
  ident: b0230
  article-title: Experimental study of a pulsating heat pipe using fc-72, ethanol, and water as working fluids
  publication-title: Exp. Heat Transf.
  contributor:
    fullname: Zhou
– volume: 110
  start-page: 1568
  year: 2017
  end-page: 1577
  ident: b0045
  article-title: Influence of working fluids on startup mechanism and thermal performance of a closed loop pulsating heat pipe
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Mehta
– volume: 45
  year: 2022
  ident: b0085
  article-title: Swimming of Gyrotactic Microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium: Application of thermal energy storage
  publication-title: J. Energy Storage
  contributor:
    fullname: Doranehgard
– volume: 136
  start-page: 911
  year: 2019
  end-page: 923
  ident: b0050
  article-title: Experimental investigation of thermal performance of the oscillating heat pipe for the grinding wheel
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Xu
– volume: 48
  start-page: 815
  year: 2009
  end-page: 824
  ident: b0160
  article-title: Performance characteristics of pulsating heat pipes as integral thermal spreaders
  publication-title: Int. J. Therm. Sci.
  contributor:
    fullname: Groll
– volume: 197
  start-page: 117200
  year: 2021
  ident: b0015
  article-title: Flat plate pulsating heat pipes: a review on the thermohydraulic principles, thermal performances and open issues
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Bertin
– volume: 55
  start-page: 5722
  year: 2012
  end-page: 5728
  ident: b0095
  article-title: A novel design of pulsating heat pipe with fewer turns applicable to all orientations
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Wang
– volume: 133
  start-page: 61
  year: 2018
  end-page: 69
  ident: b0185
  article-title: Effect of reentrant cavities on the thermal performance of a pulsating heat pipe
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Kim
– volume: 7
  year: 2015
  ident: b0010
  article-title: An experimental investigation of an oscillating heat pipe heat spreader
  publication-title: J. Therm. Sci. Eng. Appl.
  contributor:
    fullname: Ma
– volume: 53
  start-page: 3383
  year: 2017
  end-page: 3390
  ident: b0180
  article-title: Thermal performance comparison of oscillating heat pipes with and without helical micro-grooves
  publication-title: Heat Mass Transf. Und Stoffuebertragung
  contributor:
    fullname: Wang
– volume: 77
  start-page: 874
  year: 2014
  end-page: 882
  ident: b0055
  article-title: Cooling performance of flat plate heat pipes with different liquid filling ratios
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Chou
– volume: 165
  year: 2020
  ident: b0060
  article-title: Experimental study on a large scale pulsating heat pipe operating at high heat loads, different adiabatic lengths and various filling ratios of acetone, ethanol, and water
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Pietrowicz
– volume: 31
  start-page: 2623
  year: 2021
  end-page: 2639
  ident: b0080
  article-title: Electro-magnetohydrodynamic flow and heat transfer of a third-grade fluid using a Darcy-Brinkman-Forchheimer model
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  contributor:
    fullname: Michaelides
– volume: 126
  start-page: 1063
  year: 2017
  end-page: 1068
  ident: b0215
  article-title: A study on thermal performance of parallel connected pulsating heat pipe
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Kim
– volume: 107
  start-page: 204
  year: 2017
  end-page: 212
  ident: b0110
  article-title: Effect of channel geometry on the operating limit of micro pulsating heat pipes
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Kim
– volume: 43
  start-page: 13
  year: 2004
  end-page: 20
  ident: b0210
  article-title: An insight into thermo-hydrodynamic coupling in closed loop pulsating heat pipes
  publication-title: Int. J. Therm. Sci.
  contributor:
    fullname: Groll
– volume: 1608
  start-page: 128
  year: 2014
  end-page: 131
  ident: b0225
  article-title: Effect of working fluids on thermal performance of closed loop pulsating heat pipe
  publication-title: AIP Conf. Proc.
  contributor:
    fullname: Malcho
– volume: 25
  start-page: 553
  year: 2011
  end-page: 560
  ident: b0190
  article-title: Capillary flow-driven heat transfer enhancement
  publication-title: J. Thermophys. Heat Transf.
  contributor:
    fullname: Savino
– volume: 42
  start-page: 1
  year: 2020
  end-page: 11
  ident: b0200
  article-title: Charging procedures: effects on high temperature sodium thermosyphon performance
  publication-title: J. Brazil. Soc. Mech. Sci. Eng.
  contributor:
    fullname: Milanez
– volume: 124
  start-page: 1172
  year: 2018
  end-page: 1180
  ident: b0070
  article-title: Effects of the number of turns and the inclination angle on the operating limit of micro pulsating heat pipes
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Kim
– volume: 23
  start-page: 2021
  year: 2003
  end-page: 2033
  ident: b0150
  article-title: Closed loop pulsating heat pipes - Part B: Visualization and semi-empirical modeling
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Terdtoon
– start-page: 1
  year: 2014
  end-page: 6
  ident: b0240
  article-title: The effect of temperature on the reliability of electronic components
  publication-title: IEEE Int. Conf. Electron. Comput. Commun. Technol., Bangalore
  contributor:
    fullname: Sriraam
– volume: 6
  start-page: 303
  year: 2003
  end-page: 317
  ident: b0105
  article-title: Thermofluid dynamic study of flat plate closed loop pulsating heat pipes
  publication-title: Microscale Thermophys. Eng.
  contributor:
    fullname: Kulenovic
– volume: 1139
  year: 2021
  ident: b0130
  article-title: Study of diffusion bonded flat plate closed loop pulsating heat pipes with alternating porous media
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  contributor:
    fullname: Nuernberg
– volume: 42
  start-page: 466
  year: 2020
  ident: b0155
  article-title: Diffusion bonded pulsating heat pipes: fabrication study and new channel proposal
  publication-title: J. Brazil. Soc. Mech. Eng.
  contributor:
    fullname: Mantelli
– volume: 57
  start-page: 723
  year: 2021
  end-page: 735
  ident: b0135
  article-title: A review on start-up characteristics of the pulsating heat pipe
  publication-title: Heat Mass Transf. Und Stoffuebertragung
  contributor:
    fullname: Zhou
– volume: 196
  year: 2021
  ident: b0125
  article-title: A channel layout of a micro pulsating heat pipe for an excessively localized heating condition
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Kim
– volume: 42
  year: 2020
  ident: b0090
  article-title: Influence of the channel profile on the thermal resistance of closed-loop flat-plate oscillating heat pipe
  publication-title: J. Brazil. Soc. Mech. Sci. Eng.
  contributor:
    fullname: Patel
– volume: 42
  start-page: 6
  year: 2012
  end-page: 15
  ident: b0235
  article-title: Experimental investigation of extra-long pulsating heat pipe application in solar water heaters
  publication-title: Exp. Therm. Fluid Sci.
  contributor:
    fullname: Shafii
– volume: 127
  start-page: 1004
  year: 2018
  end-page: 1013
  ident: b0220
  article-title: Understanding of the thermo-hydrodynamic coupling in a micro pulsating heat pipe
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Kim
– volume: 2004
  start-page: 52
  year: 2004
  end-page: 59
  ident: b0030
  article-title: Review and assessment of pulsating heat pipe mechanism for high heat flux eletronic cooling
  publication-title: Int. Soc. Conf. Therm. Phenom.
  contributor:
    fullname: Culham
– year: 2008
  ident: b0145
  article-title: Liquid-vapor phase-change phenomena : an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment
  contributor:
    fullname: Carey
– volume: 13
  start-page: 1736
  year: 2020
  ident: b0065
  article-title: Small-sized pulsating heat pipes/oscillating heat pipes with low thermal resistance and high heat transport capability
  publication-title: Energies
  contributor:
    fullname: Schäfer-Welsen
– volume: 26
  start-page: 651
  year: 2012
  end-page: 656
  ident: b0195
  article-title: Review of pulsating heat pipe working fluid selection
  publication-title: J. Thermophys. Heat Transf.
  contributor:
    fullname: Drolen
– volume: 126
  start-page: 1058
  year: 2017
  end-page: 1062
  ident: b0140
  article-title: Experimental research on the start-up characteristics and heat transfer performance of pulsating heat pipes with rectangular channels
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Chen
– volume: 26
  start-page: 1
  year: 2022
  end-page: 12
  ident: b0075
  article-title: Hybrid (Au-TiO2) nanofluid flow over a thin needle with magnetic field and thermal radiation: dual solutions and stability analysis
  publication-title: Microfluid. Nanofluid.
  contributor:
    fullname: Michaelides
– volume: 75
  start-page: 140
  year: 2014
  end-page: 152
  ident: b0035
  article-title: Local heat transfer measurement and thermo-fluid characterization of a pulsating heat pipe
  publication-title: Int. J. Therm. Sci.
  contributor:
    fullname: Khandekar
– volume: 121
  start-page: 97
  year: 2018
  end-page: 106
  ident: b0115
  article-title: Novel radial pulsating heat-pipe for high heat-flux thermal spreading
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Kim
– volume: 102
  start-page: 158
  year: 2016
  end-page: 166
  ident: b0170
  article-title: Numerical and experimental investigation of pulsating heat pipes with corrugated configuration
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Yue
– volume: 137
  start-page: 1232
  year: 2019
  end-page: 1240
  ident: b0120
  article-title: Effect of a channel layout on the thermal performance of a flat plate micro pulsating heat pipe under the local heating condition
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Kim
– volume: 1608
  start-page: 128
  year: 2014
  ident: 10.1016/j.applthermaleng.2022.118509_b0225
  article-title: Effect of working fluids on thermal performance of closed loop pulsating heat pipe
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.4892721
  contributor:
    fullname: Kolková
– volume: 75
  start-page: 140
  year: 2014
  ident: 10.1016/j.applthermaleng.2022.118509_b0035
  article-title: Local heat transfer measurement and thermo-fluid characterization of a pulsating heat pipe
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2013.07.025
  contributor:
    fullname: Mameli
– volume: 57
  start-page: 723
  year: 2021
  ident: 10.1016/j.applthermaleng.2022.118509_b0135
  article-title: A review on start-up characteristics of the pulsating heat pipe
  publication-title: Heat Mass Transf. Und Stoffuebertragung
  doi: 10.1007/s00231-020-02998-4
  contributor:
    fullname: Zhang
– volume: 43
  start-page: 13
  year: 2004
  ident: 10.1016/j.applthermaleng.2022.118509_b0210
  article-title: An insight into thermo-hydrodynamic coupling in closed loop pulsating heat pipes
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/S1290-0729(03)00100-5
  contributor:
    fullname: Khandekar
– volume: 7
  year: 2015
  ident: 10.1016/j.applthermaleng.2022.118509_b0010
  article-title: An experimental investigation of an oscillating heat pipe heat spreader
  publication-title: J. Therm. Sci. Eng. Appl.
  doi: 10.1115/1.4026815
  contributor:
    fullname: Laun
– volume: 17
  start-page: 47
  year: 2004
  ident: 10.1016/j.applthermaleng.2022.118509_b0230
  article-title: Experimental study of a pulsating heat pipe using fc-72, ethanol, and water as working fluids
  publication-title: Exp. Heat Transf.
  doi: 10.1080/08916150490246546
  contributor:
    fullname: Zhang
– volume: 42
  start-page: 6
  year: 2012
  ident: 10.1016/j.applthermaleng.2022.118509_b0235
  article-title: Experimental investigation of extra-long pulsating heat pipe application in solar water heaters
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2012.03.006
  contributor:
    fullname: Arab
– volume: 77
  start-page: 874
  year: 2014
  ident: 10.1016/j.applthermaleng.2022.118509_b0055
  article-title: Cooling performance of flat plate heat pipes with different liquid filling ratios
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.06.029
  contributor:
    fullname: Chen
– volume: 136
  start-page: 911
  year: 2019
  ident: 10.1016/j.applthermaleng.2022.118509_b0050
  article-title: Experimental investigation of thermal performance of the oscillating heat pipe for the grinding wheel
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.03.065
  contributor:
    fullname: Qian
– volume: 13
  start-page: 1736
  issue: 7
  year: 2020
  ident: 10.1016/j.applthermaleng.2022.118509_b0065
  article-title: Small-sized pulsating heat pipes/oscillating heat pipes with low thermal resistance and high heat transport capability
  publication-title: Energies
  doi: 10.3390/en13071736
  contributor:
    fullname: Winkler
– ident: 10.1016/j.applthermaleng.2022.118509_b0005
  doi: 10.2514/6.2013-3303
– start-page: 1
  year: 2014
  ident: 10.1016/j.applthermaleng.2022.118509_b0240
  article-title: The effect of temperature on the reliability of electronic components
  publication-title: IEEE Int. Conf. Electron. Comput. Commun. Technol., Bangalore
  contributor:
    fullname: Lakshminarayanan
– ident: 10.1016/j.applthermaleng.2022.118509_b0025
  doi: 10.1007/978-1-4939-2504-9
– ident: 10.1016/j.applthermaleng.2022.118509_b0040
  doi: 10.1109/EPTC.2012.6507067
– volume: 197
  start-page: 117200
  year: 2021
  ident: 10.1016/j.applthermaleng.2022.118509_b0015
  article-title: Flat plate pulsating heat pipes: a review on the thermohydraulic principles, thermal performances and open issues
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117200
  contributor:
    fullname: Ayel
– volume: 196
  year: 2021
  ident: 10.1016/j.applthermaleng.2022.118509_b0125
  article-title: A channel layout of a micro pulsating heat pipe for an excessively localized heating condition
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117266
  contributor:
    fullname: Lim
– volume: 102
  start-page: 158
  year: 2016
  ident: 10.1016/j.applthermaleng.2022.118509_b0170
  article-title: Numerical and experimental investigation of pulsating heat pipes with corrugated configuration
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.03.163
  contributor:
    fullname: Wang
– volume: 110
  start-page: 1568
  year: 2017
  ident: 10.1016/j.applthermaleng.2022.118509_b0045
  article-title: Influence of working fluids on startup mechanism and thermal performance of a closed loop pulsating heat pipe
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.09.017
  contributor:
    fullname: Patel
– volume: 133
  start-page: 61
  year: 2018
  ident: 10.1016/j.applthermaleng.2022.118509_b0185
  article-title: Effect of reentrant cavities on the thermal performance of a pulsating heat pipe
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.01.027
  contributor:
    fullname: Kim
– ident: 10.1016/j.applthermaleng.2022.118509_b0245
– volume: 23
  start-page: 2021
  year: 2003
  ident: 10.1016/j.applthermaleng.2022.118509_b0150
  article-title: Closed loop pulsating heat pipes - Part B: Visualization and semi-empirical modeling
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(03)00168-6
  contributor:
    fullname: Khandekar
– volume: 127
  start-page: 1004
  year: 2018
  ident: 10.1016/j.applthermaleng.2022.118509_b0220
  article-title: Understanding of the thermo-hydrodynamic coupling in a micro pulsating heat pipe
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.06.092
  contributor:
    fullname: Yoon
– volume: 31
  start-page: 2623
  year: 2021
  ident: 10.1016/j.applthermaleng.2022.118509_b0080
  article-title: Electro-magnetohydrodynamic flow and heat transfer of a third-grade fluid using a Darcy-Brinkman-Forchheimer model
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-09-2020-0566
  contributor:
    fullname: Zhang
– ident: 10.1016/j.applthermaleng.2022.118509_b0100
– volume: 124
  start-page: 1172
  year: 2018
  ident: 10.1016/j.applthermaleng.2022.118509_b0070
  article-title: Effects of the number of turns and the inclination angle on the operating limit of micro pulsating heat pipes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.04.054
  contributor:
    fullname: Lee
– volume: 25
  start-page: 553
  year: 2011
  ident: 10.1016/j.applthermaleng.2022.118509_b0190
  article-title: Capillary flow-driven heat transfer enhancement
  publication-title: J. Thermophys. Heat Transf.
  doi: 10.2514/1.T3747
  contributor:
    fullname: Suman
– volume: 26
  start-page: 1
  year: 2022
  ident: 10.1016/j.applthermaleng.2022.118509_b0075
  article-title: Hybrid (Au-TiO2) nanofluid flow over a thin needle with magnetic field and thermal radiation: dual solutions and stability analysis
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-021-02504-0
  contributor:
    fullname: Nazar
– ident: 10.1016/j.applthermaleng.2022.118509_b0175
  doi: 10.1115/IMECE2006-13737
– volume: 107
  start-page: 204
  year: 2017
  ident: 10.1016/j.applthermaleng.2022.118509_b0110
  article-title: Effect of channel geometry on the operating limit of micro pulsating heat pipes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.11.036
  contributor:
    fullname: Lee
– volume: 137
  start-page: 1232
  year: 2019
  ident: 10.1016/j.applthermaleng.2022.118509_b0120
  article-title: Effect of a channel layout on the thermal performance of a flat plate micro pulsating heat pipe under the local heating condition
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.03.121
  contributor:
    fullname: Lim
– volume: 55
  start-page: 5722
  year: 2012
  ident: 10.1016/j.applthermaleng.2022.118509_b0095
  article-title: A novel design of pulsating heat pipe with fewer turns applicable to all orientations
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2012.05.068
  contributor:
    fullname: Chien
– volume: 42
  year: 2020
  ident: 10.1016/j.applthermaleng.2022.118509_b0090
  article-title: Influence of the channel profile on the thermal resistance of closed-loop flat-plate oscillating heat pipe
  publication-title: J. Brazil. Soc. Mech. Sci. Eng.
  contributor:
    fullname: Mehta
– volume: 42
  start-page: 466
  year: 2020
  ident: 10.1016/j.applthermaleng.2022.118509_b0155
  article-title: Diffusion bonded pulsating heat pipes: fabrication study and new channel proposal
  publication-title: J. Brazil. Soc. Mech. Eng.
  doi: 10.1007/s40430-020-02555-4
  contributor:
    fullname: Betancur-Arboleda
– volume: 165
  year: 2020
  ident: 10.1016/j.applthermaleng.2022.118509_b0060
  article-title: Experimental study on a large scale pulsating heat pipe operating at high heat loads, different adiabatic lengths and various filling ratios of acetone, ethanol, and water
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114534
  contributor:
    fullname: Czajkowski
– volume: 126
  start-page: 1063
  year: 2017
  ident: 10.1016/j.applthermaleng.2022.118509_b0215
  article-title: A study on thermal performance of parallel connected pulsating heat pipe
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.05.191
  contributor:
    fullname: Kim
– volume: 126
  start-page: 1058
  year: 2017
  ident: 10.1016/j.applthermaleng.2022.118509_b0140
  article-title: Experimental research on the start-up characteristics and heat transfer performance of pulsating heat pipes with rectangular channels
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.02.106
  contributor:
    fullname: Hua
– volume: 53
  start-page: 3383
  year: 2017
  ident: 10.1016/j.applthermaleng.2022.118509_b0180
  article-title: Thermal performance comparison of oscillating heat pipes with and without helical micro-grooves
  publication-title: Heat Mass Transf. Und Stoffuebertragung
  doi: 10.1007/s00231-017-2082-8
  contributor:
    fullname: Qu
– year: 2008
  ident: 10.1016/j.applthermaleng.2022.118509_b0145
  contributor:
    fullname: Carey
– volume: 121
  start-page: 97
  year: 2018
  ident: 10.1016/j.applthermaleng.2022.118509_b0115
  article-title: Novel radial pulsating heat-pipe for high heat-flux thermal spreading
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.12.107
  contributor:
    fullname: Kelly
– ident: 10.1016/j.applthermaleng.2022.118509_b0205
– volume: 48
  start-page: 815
  year: 2009
  ident: 10.1016/j.applthermaleng.2022.118509_b0160
  article-title: Performance characteristics of pulsating heat pipes as integral thermal spreaders
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2008.05.017
  contributor:
    fullname: Yang
– volume: 2004
  start-page: 52
  year: 2004
  ident: 10.1016/j.applthermaleng.2022.118509_b0030
  article-title: Review and assessment of pulsating heat pipe mechanism for high heat flux eletronic cooling
  publication-title: Int. Soc. Conf. Therm. Phenom.
  contributor:
    fullname: Karimi
– volume: 45
  year: 2022
  ident: 10.1016/j.applthermaleng.2022.118509_b0085
  article-title: Swimming of Gyrotactic Microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium: Application of thermal energy storage
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.103511
  contributor:
    fullname: Bhatti
– volume: 42
  start-page: 1
  year: 2020
  ident: 10.1016/j.applthermaleng.2022.118509_b0200
  article-title: Charging procedures: effects on high temperature sodium thermosyphon performance
  publication-title: J. Brazil. Soc. Mech. Sci. Eng.
  contributor:
    fullname: Cisterna
– ident: 10.1016/j.applthermaleng.2022.118509_b0020
– volume: 6
  start-page: 303
  year: 2003
  ident: 10.1016/j.applthermaleng.2022.118509_b0105
  article-title: Thermofluid dynamic study of flat plate closed loop pulsating heat pipes
  publication-title: Microscale Thermophys. Eng.
  doi: 10.1080/10893950290098340
  contributor:
    fullname: Khandekar
– ident: 10.1016/j.applthermaleng.2022.118509_b0165
– volume: 1139
  year: 2021
  ident: 10.1016/j.applthermaleng.2022.118509_b0130
  article-title: Study of diffusion bonded flat plate closed loop pulsating heat pipes with alternating porous media
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/1139/1/012001
  contributor:
    fullname: Betancur
– volume: 26
  start-page: 651
  year: 2012
  ident: 10.1016/j.applthermaleng.2022.118509_b0195
  article-title: Review of pulsating heat pipe working fluid selection
  publication-title: J. Thermophys. Heat Transf.
  doi: 10.2514/1.T3768
  contributor:
    fullname: Taft
SSID ssj0012874
Score 2.475519
Snippet •Diffusion bonding was applied for the fabrication of flat plate PHPs.•Ultra-sharp grooves in the evaporator improved the heat transfer capacity of a PHP.•The...
Pulsating heat pipe (PHP) is a very efficient solution for electronics cooling. Several strategies can be applied to improve the thermal performance of PHPs....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 118509
SubjectTerms Chamfering
Channel profile
Channels
Cross-sections
Distilled water
Electronics
Evaporation
Evaporators
Flat plates
Grooves
Heat conductivity
Heat exchangers
Heat flux
Heat pipes
Heat transfer
Horizontal orientation
Metal plates
Microgravity
Microgravity applications
Nucleation
Pulsating heat pipe
Temperature
Temperature control
Thermal energy
Thermal performance
Working fluids
Title Novel flat plate pulsating heat pipe with ultra sharp grooves
URI https://dx.doi.org/10.1016/j.applthermaleng.2022.118509
https://www.proquest.com/docview/2672381991/abstract/
Volume 211
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwHA2iIHoQP3E6JQevdWvapMlBRMQxFXfRwW4hjYlO5la2bkf_dn-_fviFB8FLoaWk5TV57_fal5SQEyjZpRTcBVylMohFGuKQ4oFiQnkVP5owwYnCdz3R7cc3Az5YIpf1XBiMVVbcX3J6wdbVkVaFZisbDlv3YcQVyF_ICpMXDXAGO4gR9OnTt4-YR4jruRemi6sAz14lJ58ZL_xIjHXWq8HfloBbZAw4RHKMJ_4uUz8Iu1ChzibZqMpHelHe4RZZcuNtsv5lUcEdctabLNyI-pHJaQYbR7P5CDM74yeKzEuzYeYovn-l81E-NXT2bKYZfYISeuFmu6TfuXq47AbVTxICG3GZYxLftK0BI2vBXEBxoyIPIp4KmXhmBGcwprFKsYJ5kzKQIm9AtPij4d4qIaM9sjyejN0-oWFsYm-cbKcJ2L4oldZ6x9oWWjKhMLZBeI2Jzsq1MHQdEnvR37HUiKUusWyQ8xpA_e3ZaqDtP7bQrHHX1RibaSaSwm-q8ODfFzgka7hX5HB5kyzn07k7gmojT4-L7nRMVi6ub7u9d9_q1L8
link.rule.ids 315,786,790,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwFHwqrcRyQKyirD5wjdo4sWMfEEIIVLZeAKk3yzE2FJU2atN-P89pwiYOSFxySBQnmsTzZuKxA3CMkl0IzmzAZCqCmKeh71IskJRLJ-MnHSZ-ovBdl3ce4-se69XgvJoL42OVJffPOb1g63JPq0SzlfX7rfswYhLLX0gLkxf1FqARsySM69A4u7rpdD8GE_yS7oXvYjLwJyzC8WfMy48Te6n1pv2fS9AwUoo0IphPKP5eqX5wdlGILtdgtVSQ5Gx-k-tQs8MNWPmyruAmnHRHMzsgbqBzkuHGkmw68LGd4TPx5EuyfmaJ_wRLpoN8rMnkRY8z8owqemYnW_B4efFw3gnK_yQEJmIi92F83TYavaxBf4H6RkYO63jKReKo5oxit_ZCxXDqdEqxGjmNdYs9aeaM5CLahvpwNLQ7QMJYx05b0U4TdH5RKoxxlrYNtqRDrk0TWIWJyubLYagqJ_aqvmOpPJZqjmUTTisA1bfHq5C5_9jCfoW7KrvZRFGeFJZThrv_vsARLHUe7m7V7VX3Zg-W_ZEilsv2oZ6Pp_YAxUeeHpYv1ztBSNd1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+flat+plate+pulsating+heat+pipe+with+ultra+sharp+grooves&rft.jtitle=Applied+thermal+engineering&rft.au=Krambeck%2C+Larissa&rft.au=Domiciano%2C+Kelvin+G&rft.au=Betancur-Arboleda%2C+Luis+A&rft.au=Mantelli%2C+Marcia+BH&rft.date=2022-07-05&rft.pub=Elsevier+BV&rft.issn=1359-4311&rft.eissn=1873-5606&rft.volume=211&rft.spage=1&rft_id=info:doi/10.1016%2Fj.applthermaleng.2022.118509&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon