Objective energy–momentum conserving integration for the constrained dynamics of geometrically exact beams
In this paper the results in [S. Leyendecker, P. Betsch, P. Steinmann, Energy-conserving integration of constrained Hamiltonian systems—a comparison of approaches, Comput. Mech. 33 (2004) 174–185] are extended to geometrically exact beams. The finite element formulation for nonlinear beams in terms...
Saved in:
Published in | Computer methods in applied mechanics and engineering Vol. 195; no. 19; pp. 2313 - 2333 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.04.2006
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0045-7825 1879-2138 |
DOI | 10.1016/j.cma.2005.05.002 |
Cover
Loading…
Abstract | In this paper the results in [S. Leyendecker, P. Betsch, P. Steinmann, Energy-conserving integration of constrained Hamiltonian systems—a comparison of approaches, Comput. Mech. 33 (2004) 174–185] are extended to geometrically exact beams. The finite element formulation for nonlinear beams in terms of directors, providing a framework for the objective description of their dynamics, is considered. Geometrically exact beams are analysed as Hamiltonian systems subject to holonomic constraints with a Hamiltonian being invariant under the action of
SO(3). The reparametrisation of the Hamiltonian in terms of the invariants of
SO(3) is perfectly suited for a temporal discretisation which leads to energy–momentum conserving integration. In this connection the influence of alternative procedures, the Lagrange multiplier method, the Penalty method and the augmented Lagrange method, for the treatment of the constraints is investigated for the example of a beam with concentrated masses. |
---|---|
AbstractList | In this paper the results in [S. Leyendecker, P. Betsch, P. Steinmann, Energy-conserving integration of constrained Hamiltonian systems—a comparison of approaches, Comput. Mech. 33 (2004) 174–185] are extended to geometrically exact beams. The finite element formulation for nonlinear beams in terms of directors, providing a framework for the objective description of their dynamics, is considered. Geometrically exact beams are analysed as Hamiltonian systems subject to holonomic constraints with a Hamiltonian being invariant under the action of
SO(3). The reparametrisation of the Hamiltonian in terms of the invariants of
SO(3) is perfectly suited for a temporal discretisation which leads to energy–momentum conserving integration. In this connection the influence of alternative procedures, the Lagrange multiplier method, the Penalty method and the augmented Lagrange method, for the treatment of the constraints is investigated for the example of a beam with concentrated masses. In this paper the results in [S. Leyendecker, P. Betsch, P. Steinmann, Energy-conserving integration of constrained Hamiltonian systems-a comparison of approaches, Comput. Mech. 33 (2004) 174-185] are extended to geometrically exact beams. The finite element formulation for nonlinear beams in terms of directors, providing a framework for the objective description of their dynamics, is considered. Geometrically exact beams are analysed as Hamiltonian systems subject to holonomic constraints with a Hamiltonian being invariant under the action of SO(3). The reparametrisation of the Hamiltonian in terms of the invariants of SO(3) is perfectly suited for a temporal discretisation which leads to energy-momentum conserving integration. In this connection the influence of alternative procedures, the Lagrange multiplier method, the Penalty method and the augmented Lagrange method, for the treatment of the constraints is investigated for the example of a beam with concentrated masses. |
Author | Steinmann, P. Betsch, P. Leyendecker, S. |
Author_xml | – sequence: 1 givenname: S. surname: Leyendecker fullname: Leyendecker, S. email: slauer@rhrk.uni-kl.de organization: Chair of Applied Mechanics, Department of Mechanical Engineering, P.O. Box 3049, University of Kaiserlautern, 67653 Kaiserslautern, Germany – sequence: 2 givenname: P. surname: Betsch fullname: Betsch, P. email: betsch@imr.mb.uni-siegen.de organization: Chair of Computational Mechanics, Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57068 Siegen, Germany – sequence: 3 givenname: P. surname: Steinmann fullname: Steinmann, P. email: ps@rhrk.uni-kl.de organization: Chair of Applied Mechanics, Department of Mechanical Engineering, P.O. Box 3049, University of Kaiserlautern, 67653 Kaiserslautern, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17577496$$DView record in Pascal Francis |
BookMark | eNp9kc9qGzEQh0VJoY7bB-hNl-a27khrebXkFEL6BwK5tGehlUauzK6USLKJb3mHvmGfpNo4UOghYkCH-X3D6NM5OQsxICEfGawYsM3n3cpMesUBxGou4G_Igsmubzhr5RlZAKxF00ku3pHznHdQj2R8Qca7YYem-ANSDJi2xz9Pv6c4YSj7iZoYMqaDD1vqQ8Ft0sXHQF1MtPzC53ZJ2ge01B6DnrzJNDq6xTqgJG_0OB4pPmpT6IB6yu_JW6fHjB9e7iX5-eXmx_W35vbu6_frq9vGtEKWhltrrEZXX6MHZrkF2XPR1ia4zQBSdoN10DLXD8Igk8NGoBmYbMGKtWuhXZKL09z7FB_2mIuafDY4jjpg3GfFewai7ebgp5egznVbl3QwPqv75Cedjop1ouvW_abm2ClnUsw5ofsXATX7VztV_avZv5oLeGW6_xjjy7PA2dn4Knl5IrE6OnhMKhuPwaD1qf6VstG_Qv8FkUGlYg |
CODEN | CMMECC |
CitedBy_id | crossref_primary_10_1016_j_cma_2019_112811 crossref_primary_10_1002_nme_7436 crossref_primary_10_1590_1679_78252494 crossref_primary_10_1002_zamm_200700173 crossref_primary_10_1002_nme_5217 crossref_primary_10_1115_1_4006252 crossref_primary_10_1016_j_cma_2024_117261 crossref_primary_10_1002_oca_912 crossref_primary_10_1007_s00211_014_0659_4 crossref_primary_10_1016_j_cma_2020_113381 crossref_primary_10_1016_j_compstruc_2007_05_036 crossref_primary_10_1007_s11044_007_9056_4 crossref_primary_10_1016_j_ijsolstr_2023_112255 crossref_primary_10_3233_ASY_191581 crossref_primary_10_1016_j_jcp_2012_12_031 crossref_primary_10_1016_j_ijsolstr_2023_112175 crossref_primary_10_1016_j_cma_2009_01_016 crossref_primary_10_1002_zamm_201600062 crossref_primary_10_1007_s11044_020_09754_w crossref_primary_10_1007_s11071_024_09734_1 crossref_primary_10_1115_1_4031287 crossref_primary_10_1002_nme_2950 crossref_primary_10_1007_s11044_024_09999_9 crossref_primary_10_1016_j_cma_2019_07_013 crossref_primary_10_1007_s00466_021_02111_4 crossref_primary_10_1007_s11071_022_07707_w crossref_primary_10_1002_nme_7603 crossref_primary_10_1016_j_jsv_2016_12_029 crossref_primary_10_1007_s00332_008_9030_1 crossref_primary_10_1590_1679_78257295 crossref_primary_10_1016_j_finel_2014_10_003 crossref_primary_10_1007_s11044_006_9025_3 crossref_primary_10_1115_1_4001388 crossref_primary_10_1016_j_cma_2020_113067 crossref_primary_10_1002_nme_4586 crossref_primary_10_1007_s00466_020_01936_9 crossref_primary_10_1007_s11071_023_08637_x crossref_primary_10_1007_s11071_024_10305_7 |
Cites_doi | 10.4153/CJM-1950-012-1 10.1016/0045-7825(85)90050-7 10.1016/S0045-7825(00)00189-4 10.1016/S0167-2789(99)00054-8 10.1016/S0045-7825(02)00243-8 10.1002/nme.103 10.1016/S0167-2789(97)00051-1 10.1002/nme.487 10.1002/cpa.3160100103 10.1115/1.3171737 10.1007/BF00913408 10.1002/nme.486 10.1007/BF02440162 10.1090/S0025-5718-99-01010-8 10.1007/s00466-003-0516-2 10.1007/s00466-002-0392-1 |
ContentType | Journal Article |
Copyright | 2005 Elsevier B.V. 2006 INIST-CNRS |
Copyright_xml | – notice: 2005 Elsevier B.V. – notice: 2006 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cma.2005.05.002 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1879-2138 |
EndPage | 2333 |
ExternalDocumentID | 17577496 10_1016_j_cma_2005_05_002 S0045782505001696 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADIYS ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K TN5 VH1 VOH WH7 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c358t-2ddcdaef200ab1d2d089253c350f6b0887bdf031f9b5ce18b65ecb1830d54f303 |
IEDL.DBID | .~1 |
ISSN | 0045-7825 |
IngestDate | Fri Sep 05 14:41:58 EDT 2025 Mon Jul 21 09:18:06 EDT 2025 Tue Jul 01 02:00:28 EDT 2025 Thu Apr 24 23:01:28 EDT 2025 Fri Feb 23 02:34:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | Constrained Hamiltonian systems Geometrically exact beams Energy–momentum schemes Invariant Holonomic system Momentum Modeling Penalty method Beam(mechanics) Finite element method Conservation law Added mass Lagrange multiplier Hamiltonian mechanics Hamiltonian system Energy-momentum schemes Non linear effect Hamiltonian |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-2ddcdaef200ab1d2d089253c350f6b0887bdf031f9b5ce18b65ecb1830d54f303 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 29105370 |
PQPubID | 23500 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_29105370 pascalfrancis_primary_17577496 crossref_primary_10_1016_j_cma_2005_05_002 crossref_citationtrail_10_1016_j_cma_2005_05_002 elsevier_sciencedirect_doi_10_1016_j_cma_2005_05_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-04-01 |
PublicationDateYYYYMMDD | 2006-04-01 |
PublicationDate_xml | – month: 04 year: 2006 text: 2006-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computer methods in applied mechanics and engineering |
PublicationYear | 2006 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Romero, Armero (bib4) 2002; 54 Simo (bib3) 1985; 49 Olver (bib14) 1986 Bottasso, Bauchau, Choi (bib20) 2002; 191 Simo, Hughes (bib17) 1986; 53 Antmann (bib2) 1995 Gonzalez (bib7) 1996; 6 Wendlandt, Marsden (bib8) 1997; 106 Leyendecker, Betsch, Steinmann (bib1) 2004; 33 Gonzalez (bib15) 1999; 132 Betsch, Steinmann (bib6) 2003; 31 Gonzalez (bib19) 2000; 190 Seiler (bib13) 1999; 68 Bertsekas (bib11) 1995 J. Simo, N. Tarnow, The discrete energy–momentum method. Conserving algorithms for nonlinear elastodynamics, ZAMP 43. Betsch, Steinmann (bib16) 2001; 50 Dirac (bib12) 1950; 2 Luenberger (bib9) 1973 Betsch, Steinmann (bib5) 2002; 54 Rubin, Ungar (bib10) 1957; 10 Rubin (10.1016/j.cma.2005.05.002_bib10) 1957; 10 Seiler (10.1016/j.cma.2005.05.002_bib13) 1999; 68 Betsch (10.1016/j.cma.2005.05.002_bib16) 2001; 50 Gonzalez (10.1016/j.cma.2005.05.002_bib19) 2000; 190 Leyendecker (10.1016/j.cma.2005.05.002_bib1) 2004; 33 Betsch (10.1016/j.cma.2005.05.002_bib5) 2002; 54 Antmann (10.1016/j.cma.2005.05.002_bib2) 1995 Simo (10.1016/j.cma.2005.05.002_bib3) 1985; 49 Simo (10.1016/j.cma.2005.05.002_bib17) 1986; 53 10.1016/j.cma.2005.05.002_bib18 Bottasso (10.1016/j.cma.2005.05.002_bib20) 2002; 191 Dirac (10.1016/j.cma.2005.05.002_bib12) 1950; 2 Gonzalez (10.1016/j.cma.2005.05.002_bib15) 1999; 132 Betsch (10.1016/j.cma.2005.05.002_bib6) 2003; 31 Luenberger (10.1016/j.cma.2005.05.002_bib9) 1973 Romero (10.1016/j.cma.2005.05.002_bib4) 2002; 54 Wendlandt (10.1016/j.cma.2005.05.002_bib8) 1997; 106 Gonzalez (10.1016/j.cma.2005.05.002_bib7) 1996; 6 Olver (10.1016/j.cma.2005.05.002_bib14) 1986 Bertsekas (10.1016/j.cma.2005.05.002_bib11) 1995 |
References_xml | – volume: 33 start-page: 174 year: 2004 end-page: 185 ident: bib1 article-title: Energy-conserving integration of constrained Hamiltonian systems—a comparison of approaches publication-title: Comput. Mech. – volume: 68 start-page: 661 year: 1999 end-page: 681 ident: bib13 article-title: Numerical integration of constrained Hamiltonian systems using Dirac brackets publication-title: Math. Comput. – volume: 49 start-page: 55 year: 1985 end-page: 70 ident: bib3 article-title: A finite strain beam formulation. The three-dimensional dynamic problem. Part I publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 54 start-page: 1683 year: 2002 end-page: 1716 ident: bib4 article-title: An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy–momentum scheme in dynamics publication-title: Int. J. Numer. Methods Engrg. – reference: J. Simo, N. Tarnow, The discrete energy–momentum method. Conserving algorithms for nonlinear elastodynamics, ZAMP 43. – volume: 106 start-page: 223 year: 1997 end-page: 246 ident: bib8 article-title: Mechanical integrators derived from a discrete variational principle publication-title: Physica D – volume: 31 start-page: 49 year: 2003 end-page: 59 ident: bib6 article-title: Constrained dynamics of geometrically exact beams publication-title: Comput. Mech. – volume: 53 start-page: 51 year: 1986 end-page: 54 ident: bib17 article-title: On the variational foundations of assumed strain methods publication-title: J. Appl. Mech. – year: 1973 ident: bib9 article-title: Introduction to Linear and Nonlinear Programming – volume: 190 start-page: 1763 year: 2000 end-page: 1783 ident: bib19 article-title: Exact energy–momentum conserving algorithms for general models in nonlinear elasticity publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 10 start-page: 65 year: 1957 end-page: 87 ident: bib10 article-title: Motion under a strong constraining force publication-title: Commun. Pure Appl. Math. – volume: 6 start-page: 449 year: 1996 end-page: 467 ident: bib7 article-title: Time integration and discrete Hamiltonian systems publication-title: J. Non-linear Sci. – volume: 50 start-page: 1931 year: 2001 end-page: 1955 ident: bib16 article-title: Conserving properties of a time FE method—Part II: Time-stepping schemes for non-linear elastodynamics publication-title: Int. J. Numer. Methods Engrg. – volume: 191 start-page: 3099 year: 2002 end-page: 3121 ident: bib20 article-title: An energy decaying scheme for nonlinear dynamics of shells publication-title: Comput. Methods Appl. Mech. Engrg. – year: 1986 ident: bib14 article-title: Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics – year: 1995 ident: bib2 article-title: Nonlinear Problems in Elasticity – volume: 54 start-page: 1775 year: 2002 end-page: 1788 ident: bib5 article-title: Frame-indifferent beam finite elements based upon the geometrically exact beam theory publication-title: Int. J. Numer. Methods Engrg. – volume: 2 start-page: 129 year: 1950 end-page: 148 ident: bib12 article-title: On generalized Hamiltonian dynamics publication-title: Can. J. Meth. – volume: 132 start-page: 165 year: 1999 end-page: 174 ident: bib15 article-title: Mechanical systems subject to holonomic constraints: differential-algebraic formulations and conservative integration publication-title: Physica D – year: 1995 ident: bib11 article-title: Nonlinear Programming – year: 1995 ident: 10.1016/j.cma.2005.05.002_bib2 – volume: 2 start-page: 129 year: 1950 ident: 10.1016/j.cma.2005.05.002_bib12 article-title: On generalized Hamiltonian dynamics publication-title: Can. J. Meth. doi: 10.4153/CJM-1950-012-1 – year: 1986 ident: 10.1016/j.cma.2005.05.002_bib14 – volume: 49 start-page: 55 year: 1985 ident: 10.1016/j.cma.2005.05.002_bib3 article-title: A finite strain beam formulation. The three-dimensional dynamic problem. Part I publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(85)90050-7 – volume: 190 start-page: 1763 year: 2000 ident: 10.1016/j.cma.2005.05.002_bib19 article-title: Exact energy–momentum conserving algorithms for general models in nonlinear elasticity publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(00)00189-4 – volume: 132 start-page: 165 year: 1999 ident: 10.1016/j.cma.2005.05.002_bib15 article-title: Mechanical systems subject to holonomic constraints: differential-algebraic formulations and conservative integration publication-title: Physica D doi: 10.1016/S0167-2789(99)00054-8 – volume: 191 start-page: 3099 year: 2002 ident: 10.1016/j.cma.2005.05.002_bib20 article-title: An energy decaying scheme for nonlinear dynamics of shells publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(02)00243-8 – volume: 50 start-page: 1931 year: 2001 ident: 10.1016/j.cma.2005.05.002_bib16 article-title: Conserving properties of a time FE method—Part II: Time-stepping schemes for non-linear elastodynamics publication-title: Int. J. Numer. Methods Engrg. doi: 10.1002/nme.103 – year: 1995 ident: 10.1016/j.cma.2005.05.002_bib11 – volume: 106 start-page: 223 year: 1997 ident: 10.1016/j.cma.2005.05.002_bib8 article-title: Mechanical integrators derived from a discrete variational principle publication-title: Physica D doi: 10.1016/S0167-2789(97)00051-1 – volume: 54 start-page: 1775 year: 2002 ident: 10.1016/j.cma.2005.05.002_bib5 article-title: Frame-indifferent beam finite elements based upon the geometrically exact beam theory publication-title: Int. J. Numer. Methods Engrg. doi: 10.1002/nme.487 – volume: 10 start-page: 65 issue: 1 year: 1957 ident: 10.1016/j.cma.2005.05.002_bib10 article-title: Motion under a strong constraining force publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160100103 – volume: 53 start-page: 51 year: 1986 ident: 10.1016/j.cma.2005.05.002_bib17 article-title: On the variational foundations of assumed strain methods publication-title: J. Appl. Mech. doi: 10.1115/1.3171737 – ident: 10.1016/j.cma.2005.05.002_bib18 doi: 10.1007/BF00913408 – volume: 54 start-page: 1683 year: 2002 ident: 10.1016/j.cma.2005.05.002_bib4 article-title: An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy–momentum scheme in dynamics publication-title: Int. J. Numer. Methods Engrg. doi: 10.1002/nme.486 – year: 1973 ident: 10.1016/j.cma.2005.05.002_bib9 – volume: 6 start-page: 449 year: 1996 ident: 10.1016/j.cma.2005.05.002_bib7 article-title: Time integration and discrete Hamiltonian systems publication-title: J. Non-linear Sci. doi: 10.1007/BF02440162 – volume: 68 start-page: 661 issue: 226 year: 1999 ident: 10.1016/j.cma.2005.05.002_bib13 article-title: Numerical integration of constrained Hamiltonian systems using Dirac brackets publication-title: Math. Comput. doi: 10.1090/S0025-5718-99-01010-8 – volume: 33 start-page: 174 year: 2004 ident: 10.1016/j.cma.2005.05.002_bib1 article-title: Energy-conserving integration of constrained Hamiltonian systems—a comparison of approaches publication-title: Comput. Mech. doi: 10.1007/s00466-003-0516-2 – volume: 31 start-page: 49 year: 2003 ident: 10.1016/j.cma.2005.05.002_bib6 article-title: Constrained dynamics of geometrically exact beams publication-title: Comput. Mech. doi: 10.1007/s00466-002-0392-1 |
SSID | ssj0000812 |
Score | 2.0575204 |
Snippet | In this paper the results in [S. Leyendecker, P. Betsch, P. Steinmann, Energy-conserving integration of constrained Hamiltonian systems—a comparison of... In this paper the results in [S. Leyendecker, P. Betsch, P. Steinmann, Energy-conserving integration of constrained Hamiltonian systems-a comparison of... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2313 |
SubjectTerms | Computational techniques Constrained Hamiltonian systems Energy–momentum schemes Exact sciences and technology Fundamental areas of phenomenology (including applications) Geometrically exact beams Mathematical methods in physics Physics Solid mechanics Structural and continuum mechanics |
Title | Objective energy–momentum conserving integration for the constrained dynamics of geometrically exact beams |
URI | https://dx.doi.org/10.1016/j.cma.2005.05.002 https://www.proquest.com/docview/29105370 |
Volume | 195 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4huICqQoGqy2PrAyekgDdrZ7NHtAJtQdBLkbhFflagfYlkpfaC-A_8w_6SzjgOsKLiUCmn-JV47JnP9vgbgAOtLC6shEpE5kVCB3OJ8rhwVdL7Hg4pLQOl0OVVNrwW5zfyZgkGzV0YcquMur_W6UFbxzfHsTePZ7e3dMdXEBc7mnDCLX2i3RaiR_z5Rw8vbh5o8mrGcCETyt2cbAYfLxOph45e7az8wzZ9mKkSe8zXoS7eaO1gis424GPEkOyk_sxPsOQmm7Ae8SSLs7XchLVXZINbMPqu72rtxly48Pfn8WlM_AvVfMwMOVXf0-YCawgkUGAMES1DhBiSQzAJrN_WMexLNvXsp8MKqsAyMvrN3C9lKqadGpfbcH12-mMwTGKshcR0ZV4lqbXGKuexN5Tu2NTyvJ_KLiZyn2lSRdp6VAC-r6VxnVxn0hmN-oBbKTzawc-wPJlO3BdgudOZUZnqGC-EQviVe-G4IR5-njuuW8CbXi5MJCKnXxgVjcfZXYGCoQCZsqCHpy04fC4yq1k43sssGtEVC0OpQCvxXrH2gphfGupJxMj9rAVfG7kXOAfpYEVN3HReFiliLtnt8Z3_a3kXVuuNHfIH2oPl6n7u9hHqVLodxnIbVk6-XQyv_gI8qADd |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROLSogpYWsdCCDz1VCnizdjZ7RAi0bYFeQOJm-VmB9iWSleil6n_gH_JLmHGcAmrFoVJOiZ3HzGTmsz3-BuCT0Q4HVkJnoggio4W5TAccuGoZQh9NyshIKXRyWgzPxdcLebEAB-1eGEqrTL6_8enRW6cze0mae7PLS9rjK4iLHUM44ZZB8QKWhOz1ybR3fz3keWDMayjDhcyoebu0GZO8bOIe2n00tfKP4PR6pisUWWhqXfzltmMsOnoDKwlEsv3mPd_Cgp-swWoClCz9rtUaLD9iG3wHo-_mqnFvzMcdf3e_b8dEwFDPx8xSVvU1zS6wlkECNcYQ0jKEiPFyrCaB93dNEfuKTQP74fEGdaQZGf1k_kbbmhmvx9V7OD86PDsYZqnYQmZ7sqyz3DnrtA8oDW26Lne8HOSyhxd5KAz5IuMCeoAwMNL6bmkK6a1Bh8CdFAED4TosTqYTvwGs9KawutBdG4TQiL_KIDy3RMTPS89NB3grZWUTEzl9wki1KWdXChVDFTKlooPnHfj8p8usoeF4rrFoVaee2JLCMPFct-0nan54UF8iSB4UHdhp9a7wJ6SVFT3x03mlcgRdaHp88_-evAMvh2cnx-r4y-m3LXjVzPJQctAHWKyv5_4j4p7abEe7vgcgDwJz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Objective+energy-momentum+conserving+integration+for+the+constrained+dynamics+of+geometrically+exact+beams&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=LEYENDECKER%2C+S&rft.au=BETSCH%2C+P&rft.au=STEINMANN%2C+P&rft.date=2006-04-01&rft.pub=Elsevier&rft.issn=0045-7825&rft.volume=195&rft.issue=19-22&rft.spage=2313&rft.epage=2333&rft_id=info:doi/10.1016%2Fj.cma.2005.05.002&rft.externalDBID=n%2Fa&rft.externalDocID=17577496 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |