Objective energy–momentum conserving integration for the constrained dynamics of geometrically exact beams

In this paper the results in [S. Leyendecker, P. Betsch, P. Steinmann, Energy-conserving integration of constrained Hamiltonian systems—a comparison of approaches, Comput. Mech. 33 (2004) 174–185] are extended to geometrically exact beams. The finite element formulation for nonlinear beams in terms...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 195; no. 19; pp. 2313 - 2333
Main Authors Leyendecker, S., Betsch, P., Steinmann, P.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.04.2006
Elsevier
Subjects
Online AccessGet full text
ISSN0045-7825
1879-2138
DOI10.1016/j.cma.2005.05.002

Cover

Loading…
Abstract In this paper the results in [S. Leyendecker, P. Betsch, P. Steinmann, Energy-conserving integration of constrained Hamiltonian systems—a comparison of approaches, Comput. Mech. 33 (2004) 174–185] are extended to geometrically exact beams. The finite element formulation for nonlinear beams in terms of directors, providing a framework for the objective description of their dynamics, is considered. Geometrically exact beams are analysed as Hamiltonian systems subject to holonomic constraints with a Hamiltonian being invariant under the action of SO(3). The reparametrisation of the Hamiltonian in terms of the invariants of SO(3) is perfectly suited for a temporal discretisation which leads to energy–momentum conserving integration. In this connection the influence of alternative procedures, the Lagrange multiplier method, the Penalty method and the augmented Lagrange method, for the treatment of the constraints is investigated for the example of a beam with concentrated masses.
AbstractList In this paper the results in [S. Leyendecker, P. Betsch, P. Steinmann, Energy-conserving integration of constrained Hamiltonian systems—a comparison of approaches, Comput. Mech. 33 (2004) 174–185] are extended to geometrically exact beams. The finite element formulation for nonlinear beams in terms of directors, providing a framework for the objective description of their dynamics, is considered. Geometrically exact beams are analysed as Hamiltonian systems subject to holonomic constraints with a Hamiltonian being invariant under the action of SO(3). The reparametrisation of the Hamiltonian in terms of the invariants of SO(3) is perfectly suited for a temporal discretisation which leads to energy–momentum conserving integration. In this connection the influence of alternative procedures, the Lagrange multiplier method, the Penalty method and the augmented Lagrange method, for the treatment of the constraints is investigated for the example of a beam with concentrated masses.
In this paper the results in [S. Leyendecker, P. Betsch, P. Steinmann, Energy-conserving integration of constrained Hamiltonian systems-a comparison of approaches, Comput. Mech. 33 (2004) 174-185] are extended to geometrically exact beams. The finite element formulation for nonlinear beams in terms of directors, providing a framework for the objective description of their dynamics, is considered. Geometrically exact beams are analysed as Hamiltonian systems subject to holonomic constraints with a Hamiltonian being invariant under the action of SO(3). The reparametrisation of the Hamiltonian in terms of the invariants of SO(3) is perfectly suited for a temporal discretisation which leads to energy-momentum conserving integration. In this connection the influence of alternative procedures, the Lagrange multiplier method, the Penalty method and the augmented Lagrange method, for the treatment of the constraints is investigated for the example of a beam with concentrated masses.
Author Steinmann, P.
Betsch, P.
Leyendecker, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Leyendecker
  fullname: Leyendecker, S.
  email: slauer@rhrk.uni-kl.de
  organization: Chair of Applied Mechanics, Department of Mechanical Engineering, P.O. Box 3049, University of Kaiserlautern, 67653 Kaiserslautern, Germany
– sequence: 2
  givenname: P.
  surname: Betsch
  fullname: Betsch, P.
  email: betsch@imr.mb.uni-siegen.de
  organization: Chair of Computational Mechanics, Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57068 Siegen, Germany
– sequence: 3
  givenname: P.
  surname: Steinmann
  fullname: Steinmann, P.
  email: ps@rhrk.uni-kl.de
  organization: Chair of Applied Mechanics, Department of Mechanical Engineering, P.O. Box 3049, University of Kaiserlautern, 67653 Kaiserslautern, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17577496$$DView record in Pascal Francis
BookMark eNp9kc9qGzEQh0VJoY7bB-hNl-a27khrebXkFEL6BwK5tGehlUauzK6USLKJb3mHvmGfpNo4UOghYkCH-X3D6NM5OQsxICEfGawYsM3n3cpMesUBxGou4G_Igsmubzhr5RlZAKxF00ku3pHznHdQj2R8Qca7YYem-ANSDJi2xz9Pv6c4YSj7iZoYMqaDD1vqQ8Ft0sXHQF1MtPzC53ZJ2ge01B6DnrzJNDq6xTqgJG_0OB4pPmpT6IB6yu_JW6fHjB9e7iX5-eXmx_W35vbu6_frq9vGtEKWhltrrEZXX6MHZrkF2XPR1ia4zQBSdoN10DLXD8Igk8NGoBmYbMGKtWuhXZKL09z7FB_2mIuafDY4jjpg3GfFewai7ebgp5egznVbl3QwPqv75Cedjop1ouvW_abm2ClnUsw5ofsXATX7VztV_avZv5oLeGW6_xjjy7PA2dn4Knl5IrE6OnhMKhuPwaD1qf6VstG_Qv8FkUGlYg
CODEN CMMECC
CitedBy_id crossref_primary_10_1016_j_cma_2019_112811
crossref_primary_10_1002_nme_7436
crossref_primary_10_1590_1679_78252494
crossref_primary_10_1002_zamm_200700173
crossref_primary_10_1002_nme_5217
crossref_primary_10_1115_1_4006252
crossref_primary_10_1016_j_cma_2024_117261
crossref_primary_10_1002_oca_912
crossref_primary_10_1007_s00211_014_0659_4
crossref_primary_10_1016_j_cma_2020_113381
crossref_primary_10_1016_j_compstruc_2007_05_036
crossref_primary_10_1007_s11044_007_9056_4
crossref_primary_10_1016_j_ijsolstr_2023_112255
crossref_primary_10_3233_ASY_191581
crossref_primary_10_1016_j_jcp_2012_12_031
crossref_primary_10_1016_j_ijsolstr_2023_112175
crossref_primary_10_1016_j_cma_2009_01_016
crossref_primary_10_1002_zamm_201600062
crossref_primary_10_1007_s11044_020_09754_w
crossref_primary_10_1007_s11071_024_09734_1
crossref_primary_10_1115_1_4031287
crossref_primary_10_1002_nme_2950
crossref_primary_10_1007_s11044_024_09999_9
crossref_primary_10_1016_j_cma_2019_07_013
crossref_primary_10_1007_s00466_021_02111_4
crossref_primary_10_1007_s11071_022_07707_w
crossref_primary_10_1002_nme_7603
crossref_primary_10_1016_j_jsv_2016_12_029
crossref_primary_10_1007_s00332_008_9030_1
crossref_primary_10_1590_1679_78257295
crossref_primary_10_1016_j_finel_2014_10_003
crossref_primary_10_1007_s11044_006_9025_3
crossref_primary_10_1115_1_4001388
crossref_primary_10_1016_j_cma_2020_113067
crossref_primary_10_1002_nme_4586
crossref_primary_10_1007_s00466_020_01936_9
crossref_primary_10_1007_s11071_023_08637_x
crossref_primary_10_1007_s11071_024_10305_7
Cites_doi 10.4153/CJM-1950-012-1
10.1016/0045-7825(85)90050-7
10.1016/S0045-7825(00)00189-4
10.1016/S0167-2789(99)00054-8
10.1016/S0045-7825(02)00243-8
10.1002/nme.103
10.1016/S0167-2789(97)00051-1
10.1002/nme.487
10.1002/cpa.3160100103
10.1115/1.3171737
10.1007/BF00913408
10.1002/nme.486
10.1007/BF02440162
10.1090/S0025-5718-99-01010-8
10.1007/s00466-003-0516-2
10.1007/s00466-002-0392-1
ContentType Journal Article
Copyright 2005 Elsevier B.V.
2006 INIST-CNRS
Copyright_xml – notice: 2005 Elsevier B.V.
– notice: 2006 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2005.05.002
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1879-2138
EndPage 2333
ExternalDocumentID 17577496
10_1016_j_cma_2005_05_002
S0045782505001696
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
VH1
VOH
WH7
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c358t-2ddcdaef200ab1d2d089253c350f6b0887bdf031f9b5ce18b65ecb1830d54f303
IEDL.DBID .~1
ISSN 0045-7825
IngestDate Fri Sep 05 14:41:58 EDT 2025
Mon Jul 21 09:18:06 EDT 2025
Tue Jul 01 02:00:28 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
Fri Feb 23 02:34:01 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Constrained Hamiltonian systems
Geometrically exact beams
Energy–momentum schemes
Invariant
Holonomic system
Momentum
Modeling
Penalty method
Beam(mechanics)
Finite element method
Conservation law
Added mass
Lagrange multiplier
Hamiltonian mechanics
Hamiltonian system
Energy-momentum schemes
Non linear effect
Hamiltonian
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-2ddcdaef200ab1d2d089253c350f6b0887bdf031f9b5ce18b65ecb1830d54f303
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 29105370
PQPubID 23500
PageCount 21
ParticipantIDs proquest_miscellaneous_29105370
pascalfrancis_primary_17577496
crossref_primary_10_1016_j_cma_2005_05_002
crossref_citationtrail_10_1016_j_cma_2005_05_002
elsevier_sciencedirect_doi_10_1016_j_cma_2005_05_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-04-01
PublicationDateYYYYMMDD 2006-04-01
PublicationDate_xml – month: 04
  year: 2006
  text: 2006-04-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2006
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Romero, Armero (bib4) 2002; 54
Simo (bib3) 1985; 49
Olver (bib14) 1986
Bottasso, Bauchau, Choi (bib20) 2002; 191
Simo, Hughes (bib17) 1986; 53
Antmann (bib2) 1995
Gonzalez (bib7) 1996; 6
Wendlandt, Marsden (bib8) 1997; 106
Leyendecker, Betsch, Steinmann (bib1) 2004; 33
Gonzalez (bib15) 1999; 132
Betsch, Steinmann (bib6) 2003; 31
Gonzalez (bib19) 2000; 190
Seiler (bib13) 1999; 68
Bertsekas (bib11) 1995
J. Simo, N. Tarnow, The discrete energy–momentum method. Conserving algorithms for nonlinear elastodynamics, ZAMP 43.
Betsch, Steinmann (bib16) 2001; 50
Dirac (bib12) 1950; 2
Luenberger (bib9) 1973
Betsch, Steinmann (bib5) 2002; 54
Rubin, Ungar (bib10) 1957; 10
Rubin (10.1016/j.cma.2005.05.002_bib10) 1957; 10
Seiler (10.1016/j.cma.2005.05.002_bib13) 1999; 68
Betsch (10.1016/j.cma.2005.05.002_bib16) 2001; 50
Gonzalez (10.1016/j.cma.2005.05.002_bib19) 2000; 190
Leyendecker (10.1016/j.cma.2005.05.002_bib1) 2004; 33
Betsch (10.1016/j.cma.2005.05.002_bib5) 2002; 54
Antmann (10.1016/j.cma.2005.05.002_bib2) 1995
Simo (10.1016/j.cma.2005.05.002_bib3) 1985; 49
Simo (10.1016/j.cma.2005.05.002_bib17) 1986; 53
10.1016/j.cma.2005.05.002_bib18
Bottasso (10.1016/j.cma.2005.05.002_bib20) 2002; 191
Dirac (10.1016/j.cma.2005.05.002_bib12) 1950; 2
Gonzalez (10.1016/j.cma.2005.05.002_bib15) 1999; 132
Betsch (10.1016/j.cma.2005.05.002_bib6) 2003; 31
Luenberger (10.1016/j.cma.2005.05.002_bib9) 1973
Romero (10.1016/j.cma.2005.05.002_bib4) 2002; 54
Wendlandt (10.1016/j.cma.2005.05.002_bib8) 1997; 106
Gonzalez (10.1016/j.cma.2005.05.002_bib7) 1996; 6
Olver (10.1016/j.cma.2005.05.002_bib14) 1986
Bertsekas (10.1016/j.cma.2005.05.002_bib11) 1995
References_xml – volume: 33
  start-page: 174
  year: 2004
  end-page: 185
  ident: bib1
  article-title: Energy-conserving integration of constrained Hamiltonian systems—a comparison of approaches
  publication-title: Comput. Mech.
– volume: 68
  start-page: 661
  year: 1999
  end-page: 681
  ident: bib13
  article-title: Numerical integration of constrained Hamiltonian systems using Dirac brackets
  publication-title: Math. Comput.
– volume: 49
  start-page: 55
  year: 1985
  end-page: 70
  ident: bib3
  article-title: A finite strain beam formulation. The three-dimensional dynamic problem. Part I
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 54
  start-page: 1683
  year: 2002
  end-page: 1716
  ident: bib4
  article-title: An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy–momentum scheme in dynamics
  publication-title: Int. J. Numer. Methods Engrg.
– reference: J. Simo, N. Tarnow, The discrete energy–momentum method. Conserving algorithms for nonlinear elastodynamics, ZAMP 43.
– volume: 106
  start-page: 223
  year: 1997
  end-page: 246
  ident: bib8
  article-title: Mechanical integrators derived from a discrete variational principle
  publication-title: Physica D
– volume: 31
  start-page: 49
  year: 2003
  end-page: 59
  ident: bib6
  article-title: Constrained dynamics of geometrically exact beams
  publication-title: Comput. Mech.
– volume: 53
  start-page: 51
  year: 1986
  end-page: 54
  ident: bib17
  article-title: On the variational foundations of assumed strain methods
  publication-title: J. Appl. Mech.
– year: 1973
  ident: bib9
  article-title: Introduction to Linear and Nonlinear Programming
– volume: 190
  start-page: 1763
  year: 2000
  end-page: 1783
  ident: bib19
  article-title: Exact energy–momentum conserving algorithms for general models in nonlinear elasticity
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 10
  start-page: 65
  year: 1957
  end-page: 87
  ident: bib10
  article-title: Motion under a strong constraining force
  publication-title: Commun. Pure Appl. Math.
– volume: 6
  start-page: 449
  year: 1996
  end-page: 467
  ident: bib7
  article-title: Time integration and discrete Hamiltonian systems
  publication-title: J. Non-linear Sci.
– volume: 50
  start-page: 1931
  year: 2001
  end-page: 1955
  ident: bib16
  article-title: Conserving properties of a time FE method—Part II: Time-stepping schemes for non-linear elastodynamics
  publication-title: Int. J. Numer. Methods Engrg.
– volume: 191
  start-page: 3099
  year: 2002
  end-page: 3121
  ident: bib20
  article-title: An energy decaying scheme for nonlinear dynamics of shells
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 1986
  ident: bib14
  article-title: Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics
– year: 1995
  ident: bib2
  article-title: Nonlinear Problems in Elasticity
– volume: 54
  start-page: 1775
  year: 2002
  end-page: 1788
  ident: bib5
  article-title: Frame-indifferent beam finite elements based upon the geometrically exact beam theory
  publication-title: Int. J. Numer. Methods Engrg.
– volume: 2
  start-page: 129
  year: 1950
  end-page: 148
  ident: bib12
  article-title: On generalized Hamiltonian dynamics
  publication-title: Can. J. Meth.
– volume: 132
  start-page: 165
  year: 1999
  end-page: 174
  ident: bib15
  article-title: Mechanical systems subject to holonomic constraints: differential-algebraic formulations and conservative integration
  publication-title: Physica D
– year: 1995
  ident: bib11
  article-title: Nonlinear Programming
– year: 1995
  ident: 10.1016/j.cma.2005.05.002_bib2
– volume: 2
  start-page: 129
  year: 1950
  ident: 10.1016/j.cma.2005.05.002_bib12
  article-title: On generalized Hamiltonian dynamics
  publication-title: Can. J. Meth.
  doi: 10.4153/CJM-1950-012-1
– year: 1986
  ident: 10.1016/j.cma.2005.05.002_bib14
– volume: 49
  start-page: 55
  year: 1985
  ident: 10.1016/j.cma.2005.05.002_bib3
  article-title: A finite strain beam formulation. The three-dimensional dynamic problem. Part I
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(85)90050-7
– volume: 190
  start-page: 1763
  year: 2000
  ident: 10.1016/j.cma.2005.05.002_bib19
  article-title: Exact energy–momentum conserving algorithms for general models in nonlinear elasticity
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(00)00189-4
– volume: 132
  start-page: 165
  year: 1999
  ident: 10.1016/j.cma.2005.05.002_bib15
  article-title: Mechanical systems subject to holonomic constraints: differential-algebraic formulations and conservative integration
  publication-title: Physica D
  doi: 10.1016/S0167-2789(99)00054-8
– volume: 191
  start-page: 3099
  year: 2002
  ident: 10.1016/j.cma.2005.05.002_bib20
  article-title: An energy decaying scheme for nonlinear dynamics of shells
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(02)00243-8
– volume: 50
  start-page: 1931
  year: 2001
  ident: 10.1016/j.cma.2005.05.002_bib16
  article-title: Conserving properties of a time FE method—Part II: Time-stepping schemes for non-linear elastodynamics
  publication-title: Int. J. Numer. Methods Engrg.
  doi: 10.1002/nme.103
– year: 1995
  ident: 10.1016/j.cma.2005.05.002_bib11
– volume: 106
  start-page: 223
  year: 1997
  ident: 10.1016/j.cma.2005.05.002_bib8
  article-title: Mechanical integrators derived from a discrete variational principle
  publication-title: Physica D
  doi: 10.1016/S0167-2789(97)00051-1
– volume: 54
  start-page: 1775
  year: 2002
  ident: 10.1016/j.cma.2005.05.002_bib5
  article-title: Frame-indifferent beam finite elements based upon the geometrically exact beam theory
  publication-title: Int. J. Numer. Methods Engrg.
  doi: 10.1002/nme.487
– volume: 10
  start-page: 65
  issue: 1
  year: 1957
  ident: 10.1016/j.cma.2005.05.002_bib10
  article-title: Motion under a strong constraining force
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160100103
– volume: 53
  start-page: 51
  year: 1986
  ident: 10.1016/j.cma.2005.05.002_bib17
  article-title: On the variational foundations of assumed strain methods
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3171737
– ident: 10.1016/j.cma.2005.05.002_bib18
  doi: 10.1007/BF00913408
– volume: 54
  start-page: 1683
  year: 2002
  ident: 10.1016/j.cma.2005.05.002_bib4
  article-title: An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy–momentum scheme in dynamics
  publication-title: Int. J. Numer. Methods Engrg.
  doi: 10.1002/nme.486
– year: 1973
  ident: 10.1016/j.cma.2005.05.002_bib9
– volume: 6
  start-page: 449
  year: 1996
  ident: 10.1016/j.cma.2005.05.002_bib7
  article-title: Time integration and discrete Hamiltonian systems
  publication-title: J. Non-linear Sci.
  doi: 10.1007/BF02440162
– volume: 68
  start-page: 661
  issue: 226
  year: 1999
  ident: 10.1016/j.cma.2005.05.002_bib13
  article-title: Numerical integration of constrained Hamiltonian systems using Dirac brackets
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-99-01010-8
– volume: 33
  start-page: 174
  year: 2004
  ident: 10.1016/j.cma.2005.05.002_bib1
  article-title: Energy-conserving integration of constrained Hamiltonian systems—a comparison of approaches
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-003-0516-2
– volume: 31
  start-page: 49
  year: 2003
  ident: 10.1016/j.cma.2005.05.002_bib6
  article-title: Constrained dynamics of geometrically exact beams
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-002-0392-1
SSID ssj0000812
Score 2.0575204
Snippet In this paper the results in [S. Leyendecker, P. Betsch, P. Steinmann, Energy-conserving integration of constrained Hamiltonian systems—a comparison of...
In this paper the results in [S. Leyendecker, P. Betsch, P. Steinmann, Energy-conserving integration of constrained Hamiltonian systems-a comparison of...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2313
SubjectTerms Computational techniques
Constrained Hamiltonian systems
Energy–momentum schemes
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Geometrically exact beams
Mathematical methods in physics
Physics
Solid mechanics
Structural and continuum mechanics
Title Objective energy–momentum conserving integration for the constrained dynamics of geometrically exact beams
URI https://dx.doi.org/10.1016/j.cma.2005.05.002
https://www.proquest.com/docview/29105370
Volume 195
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4huICqQoGqy2PrAyekgDdrZ7NHtAJtQdBLkbhFflagfYlkpfaC-A_8w_6SzjgOsKLiUCmn-JV47JnP9vgbgAOtLC6shEpE5kVCB3OJ8rhwVdL7Hg4pLQOl0OVVNrwW5zfyZgkGzV0YcquMur_W6UFbxzfHsTePZ7e3dMdXEBc7mnDCLX2i3RaiR_z5Rw8vbh5o8mrGcCETyt2cbAYfLxOph45e7az8wzZ9mKkSe8zXoS7eaO1gis424GPEkOyk_sxPsOQmm7Ae8SSLs7XchLVXZINbMPqu72rtxly48Pfn8WlM_AvVfMwMOVXf0-YCawgkUGAMES1DhBiSQzAJrN_WMexLNvXsp8MKqsAyMvrN3C9lKqadGpfbcH12-mMwTGKshcR0ZV4lqbXGKuexN5Tu2NTyvJ_KLiZyn2lSRdp6VAC-r6VxnVxn0hmN-oBbKTzawc-wPJlO3BdgudOZUZnqGC-EQviVe-G4IR5-njuuW8CbXi5MJCKnXxgVjcfZXYGCoQCZsqCHpy04fC4yq1k43sssGtEVC0OpQCvxXrH2gphfGupJxMj9rAVfG7kXOAfpYEVN3HReFiliLtnt8Z3_a3kXVuuNHfIH2oPl6n7u9hHqVLodxnIbVk6-XQyv_gI8qADd
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROLSogpYWsdCCDz1VCnizdjZ7RAi0bYFeQOJm-VmB9iWSleil6n_gH_JLmHGcAmrFoVJOiZ3HzGTmsz3-BuCT0Q4HVkJnoggio4W5TAccuGoZQh9NyshIKXRyWgzPxdcLebEAB-1eGEqrTL6_8enRW6cze0mae7PLS9rjK4iLHUM44ZZB8QKWhOz1ybR3fz3keWDMayjDhcyoebu0GZO8bOIe2n00tfKP4PR6pisUWWhqXfzltmMsOnoDKwlEsv3mPd_Cgp-swWoClCz9rtUaLD9iG3wHo-_mqnFvzMcdf3e_b8dEwFDPx8xSVvU1zS6wlkECNcYQ0jKEiPFyrCaB93dNEfuKTQP74fEGdaQZGf1k_kbbmhmvx9V7OD86PDsYZqnYQmZ7sqyz3DnrtA8oDW26Lne8HOSyhxd5KAz5IuMCeoAwMNL6bmkK6a1Bh8CdFAED4TosTqYTvwGs9KawutBdG4TQiL_KIDy3RMTPS89NB3grZWUTEzl9wki1KWdXChVDFTKlooPnHfj8p8usoeF4rrFoVaee2JLCMPFct-0nan54UF8iSB4UHdhp9a7wJ6SVFT3x03mlcgRdaHp88_-evAMvh2cnx-r4y-m3LXjVzPJQctAHWKyv5_4j4p7abEe7vgcgDwJz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Objective+energy-momentum+conserving+integration+for+the+constrained+dynamics+of+geometrically+exact+beams&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=LEYENDECKER%2C+S&rft.au=BETSCH%2C+P&rft.au=STEINMANN%2C+P&rft.date=2006-04-01&rft.pub=Elsevier&rft.issn=0045-7825&rft.volume=195&rft.issue=19-22&rft.spage=2313&rft.epage=2333&rft_id=info:doi/10.1016%2Fj.cma.2005.05.002&rft.externalDBID=n%2Fa&rft.externalDocID=17577496
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon