Construction of Functional Polynomials for Solutions of Integrodifferential Equations

The integrodifferential equations of mathematical physics are objects of research, and construction of interpolating polynomials to obtain approximate solutions of such equations is the subject of investigation. This paper lays out a technique for constructing approximate expressions for functionals...

Full description

Saved in:
Bibliographic Details
Published inRussian physics journal Vol. 63; no. 5; pp. 852 - 859
Main Author Litvinov, V. A.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1064-8887
1573-9228
DOI10.1007/s11182-020-02108-1

Cover

Loading…
Abstract The integrodifferential equations of mathematical physics are objects of research, and construction of interpolating polynomials to obtain approximate solutions of such equations is the subject of investigation. This paper lays out a technique for constructing approximate expressions for functionals on solutions of integrodifferential equations which are an analog of the Hermite polynomial used to interpolate functions. In the example of the diffusion equation, it is shown that the use of such basis solutions allows a substantial increase in the accuracy of the approximate representation of the functionals in comparison to the first approximation of perturbation theory with practically the same computational costs.
AbstractList The integrodifferential equations of mathematical physics are objects of research, and construction of interpolating polynomials to obtain approximate solutions of such equations is the subject of investigation. This paper lays out a technique for constructing approximate expressions for functionals on solutions of integrodifferential equations which are an analog of the Hermite polynomial used to interpolate functions. In the example of the diffusion equation, it is shown that the use of such basis solutions allows a substantial increase in the accuracy of the approximate representation of the functionals in comparison to the first approximation of perturbation theory with practically the same computational costs. Keywords: differential equations, integral equations, integration, numerical methods, Hermite polynomials.
The integrodifferential equations of mathematical physics are objects of research, and construction of interpolating polynomials to obtain approximate solutions of such equations is the subject of investigation. This paper lays out a technique for constructing approximate expressions for functionals on solutions of integrodifferential equations which are an analog of the Hermite polynomial used to interpolate functions. In the example of the diffusion equation, it is shown that the use of such basis solutions allows a substantial increase in the accuracy of the approximate representation of the functionals in comparison to the first approximation of perturbation theory with practically the same computational costs.
Audience Academic
Author Litvinov, V. A.
Author_xml – sequence: 1
  givenname: V. A.
  surname: Litvinov
  fullname: Litvinov, V. A.
  email: lva201011@yandex.ru
  organization: Barnaul Law Institute of the Ministry of Internal Affairs of the Russian Federation
BookMark eNp9kEFrwyAYhmV0sLbbH9gpsHM6_YyJPZbSboXCBuvOIlGLJdVWk0P__WwyGOxQRPzQ9_HTZ4JGzjuN0DPBM4Jx9RoJIRxyDDhNgnlO7tCYsIrmcwA-SjUui5xzXj2gSYwHjBNWVmP0vfQutqGrW-td5k227lxfyyb79M3F-aOVTcyMD9mXb7rrUbzmNq7V--CVNUYH7dqUylbnTvaBR3RvEqWfftcp2q1Xu-V7vv142ywX27ymjLc50MJwxRkoVVdaa1nI9CpJoaAABQHNOECpC6nxnALjhDKsQLGqNqpgnE7Ry3DtKfhzp2MrDr4L6elRQMEwwHzOWErNhtReNlpYZ3wbZJ2G0kdbJ4_Gpv1FSTnHlPYADEAdfIxBG3EK9ijDRRAsrrrFoFsk3aLXLUiC-D-otm1vI3WzzW2UDmhMfdxeh79v3KB-ABqGlik
CitedBy_id crossref_primary_10_1007_s11182_022_02627_z
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
COPYRIGHT 2020 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: COPYRIGHT 2020 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
DOI 10.1007/s11182-020-02108-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1573-9228
EndPage 859
ExternalDocumentID A638803355
10_1007_s11182_020_02108_1
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
1N0
1SB
28-
29P
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IGS
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9T
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VCL
VFIZW
VIT
W23
W48
WK8
XU3
YLTOR
Z7R
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
AEIIB
ID FETCH-LOGICAL-c358t-234f8d852ddc7eeea4a006a324322412e58226e4ae0932581350d2d57cfd4583
IEDL.DBID U2A
ISSN 1064-8887
IngestDate Mon Jul 14 10:13:26 EDT 2025
Tue Jun 10 20:27:10 EDT 2025
Thu Apr 24 22:58:25 EDT 2025
Sun Sep 07 06:43:15 EDT 2025
Fri Feb 21 02:37:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords integration
integral equations
numerical methods
Hermite polynomials
differential equations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-234f8d852ddc7eeea4a006a324322412e58226e4ae0932581350d2d57cfd4583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2450229955
PQPubID 2043529
PageCount 8
ParticipantIDs proquest_journals_2450229955
gale_infotracacademiconefile_A638803355
crossref_primary_10_1007_s11182_020_02108_1
crossref_citationtrail_10_1007_s11182_020_02108_1
springer_journals_10_1007_s11182_020_02108_1
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Russian physics journal
PublicationTitleAbbrev Russ Phys J
PublicationYear 2020
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References LitvinovVAUchaikinVVIzv. Vyssh. Uchebn. Zaved. Fiz.1986291296853637
LitvinovVAUchaikinVVIzv. Vyssh. Uchebn. Zaved. Fiz.1986292128
UchaikinVVMethod of Fractional Derivatives [in Russian]2008Ul’yanovskArtishok
SamkoSGKilbasAAMarichevOIIntegrals and Derivatives of Fractional Order and Their Applications [in Russian]1987MinskNauka i Tekhnika0617.26004
VV Uchaikin (2108_CR3) 2008
VA Litvinov (2108_CR1) 1986; 29
SG Samko (2108_CR4) 1987
VA Litvinov (2108_CR2) 1986; 29
References_xml – reference: LitvinovVAUchaikinVVIzv. Vyssh. Uchebn. Zaved. Fiz.1986291296853637
– reference: LitvinovVAUchaikinVVIzv. Vyssh. Uchebn. Zaved. Fiz.1986292128
– reference: SamkoSGKilbasAAMarichevOIIntegrals and Derivatives of Fractional Order and Their Applications [in Russian]1987MinskNauka i Tekhnika0617.26004
– reference: UchaikinVVMethod of Fractional Derivatives [in Russian]2008Ul’yanovskArtishok
– volume: 29
  start-page: 128
  issue: 2
  year: 1986
  ident: 2108_CR1
  publication-title: Izv. Vyssh. Uchebn. Zaved. Fiz.
– volume-title: Integrals and Derivatives of Fractional Order and Their Applications [in Russian]
  year: 1987
  ident: 2108_CR4
– volume-title: Method of Fractional Derivatives [in Russian]
  year: 2008
  ident: 2108_CR3
– volume: 29
  start-page: 96
  issue: 12
  year: 1986
  ident: 2108_CR2
  publication-title: Izv. Vyssh. Uchebn. Zaved. Fiz.
SSID ssj0010067
Score 2.1412737
Snippet The integrodifferential equations of mathematical physics are objects of research, and construction of interpolating polynomials to obtain approximate...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 852
SubjectTerms Condensed Matter Physics
Differential equations
Functions (mathematics)
Hadrons
Heavy Ions
Hermite polynomials
Lasers
Mathematical and Computational Physics
Nuclear Physics
Optical Devices
Optics
Perturbation theory
Photonics
Physics
Physics and Astronomy
Theoretical
Title Construction of Functional Polynomials for Solutions of Integrodifferential Equations
URI https://link.springer.com/article/10.1007/s11182-020-02108-1
https://www.proquest.com/docview/2450229955
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6IXgRP3E6JQfBgxbaNEm7Y9HN-TER3GCeQpukp7Eq3cX_3vfSdsNP8NRDk7S8l5f3e3lfhJzFzPiaycyTOZirHHQSyFzGPAvKCgB07EuD2cijRzmc8LupmNZJYWUT7d64JN1JvUp2QyzsobmDdgrYPuukLcB2x0C-CUuWvgM8gJ2PU3IP7LuoTpX5eY1P6ujrofzNO-qUzmCbbNVokSYVe3fImp3vkg0XtanLPTLBdptNAVha5HQAWqq63KNPxewdU45he1EApnR5_4Xjbl2RiKLpjgJSPqP9t6rqd7lPxoP--Gro1X0SPB2KeOGxkOexiQUzRkfW2pSnQIMUoFKICppZAShAWp5aH9CaiINQ-IYZEencoNv0gLTmxdweEppaDaPCLAcrg2fGj9PIcK4BQwQy0jzokKChltJ1DXFsZTFTq-rHSGEFFFaOwgrmXCznvFYVNP4cfY5MUChesLJO6ywB-D8sVKUSidVrQkBJHdJt-KRquSsV4wJASa-Hry8b3q1e__7do_8NPyabzO0iDDbrkhaw2p4AOllkp6SdXI8envF583LfP3Wb8wMduNt1
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oxOjFtxFF3YOJB12y2-0-OBIDgjziARI8Nbtt9yJhNeBBf70z-4CIj4RzH9vttJ1vOp1vAK4DpizJvMj0YjRXOeok3HMRMzUqKwTQgeUpikbuD7z2iD-O3XEeFDYrXrsXLsn0pF4GuxEWNsncITsFbZ9NKHO0wXkJyo2H525z4T2gIzj1cnrcRAvPz4Nlfu_lm0JaPZZ_-EdTtdPag1Ex4Oy1yUvtfR7V5OcKl-O6f7QPuzkONRrZwjmADT09hK30PaicHcGIEnkW1LJGEhst1H_ZtaHxlEw-KJgZF66BkNdY3KxRvU5KP5EUeVfw_JgYzbeMT3x2DMNWc3jfNvMMDKZ03GBuMofHgQpcppT0tdYhD3FuQwRhDql-pl3EF57mobYQB7qB7biWYsr1ZazIIXsCpWky1adghFpiLSeK0X7hkbKC0FecS0QntudLblfALqQgZM5OTkkyJmLJq0yzJXC2RDpbAtvcLtq8Ztwc_9a-IeEK2rjYswzz-AMcH1FgiYZHvDgO4q8KVAv5i3xHzwTjLsKdep2K7wpxLov__u7ZetWvYLs97PdErzPonsMOS1cHPWmrQgnFri8QA82jy3zJfwEo4_gj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4oROPFtxFF3YOJB11Yut0HR6IgiBIOkOCp2W27FwlgwIP-emf2AYqPxHjuY7vTaeebTucrwLnPlCWZG5puhO4qR5uEay5kpkZjhQDat1xF2cgPHbfZ53cDZ_Ahiz--7Z6FJJOcBmJpGs3KExWVF4lvhItNcn3IZ0E_aBXynMjZc5Cv3T626_NIAm3HccTT5SZ6e16aOPN9L5-M0_IW_SVWGpugxhYE2eCTmydPpZdZWJJvS7yO__m7bdhM8alRSxRqB1b0aBfW4nuicroHfXrgM6OcNcaR0UC7mBwnGt3x8JWSnFGhDYTCxvzEjeq1YlqKcfYeC-4rQ6P-nPCMT_eh16j3rptm-jKDKW3Hn5nM5pGvfIcpJT2tdcADlHOA4MwmSMC0g7jD1TzQFuJDx6_YjqWYcjwZKQrUHkBuNB7pQzACLbGWHUbo1_BQWX7gKc4lopaK60leKUAlmxEhU9ZyejxjKBZ8yyQtgdISsbQEtrmct5kknB2_1r6giRa0oLFnGaR5CTg-osYSNZf4cmzEZQUoZrog0pU-FYw7CIOqVSq-yqZ2Ufzzd4_-Vv0M1rs3DXHf6rSPYYPFykE33YqQw1nXJwiNZuFpqv3vJJ0BFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+Functional+Polynomials+for+Solutions+of+Integrodifferential+Equations&rft.jtitle=Russian+physics+journal&rft.au=Litvinov%2C+V.+A.&rft.date=2020-09-01&rft.issn=1064-8887&rft.eissn=1573-9228&rft.volume=63&rft.issue=5&rft.spage=852&rft.epage=859&rft_id=info:doi/10.1007%2Fs11182-020-02108-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11182_020_02108_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-8887&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-8887&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-8887&client=summon