Construction of Functional Polynomials for Solutions of Integrodifferential Equations
The integrodifferential equations of mathematical physics are objects of research, and construction of interpolating polynomials to obtain approximate solutions of such equations is the subject of investigation. This paper lays out a technique for constructing approximate expressions for functionals...
Saved in:
Published in | Russian physics journal Vol. 63; no. 5; pp. 852 - 859 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2020
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1064-8887 1573-9228 |
DOI | 10.1007/s11182-020-02108-1 |
Cover
Loading…
Abstract | The integrodifferential equations of mathematical physics are objects of research, and construction of interpolating polynomials to obtain approximate solutions of such equations is the subject of investigation. This paper lays out a technique for constructing approximate expressions for functionals on solutions of integrodifferential equations which are an analog of the Hermite polynomial used to interpolate functions. In the example of the diffusion equation, it is shown that the use of such basis solutions allows a substantial increase in the accuracy of the approximate representation of the functionals in comparison to the first approximation of perturbation theory with practically the same computational costs. |
---|---|
AbstractList | The integrodifferential equations of mathematical physics are objects of research, and construction of interpolating polynomials to obtain approximate solutions of such equations is the subject of investigation. This paper lays out a technique for constructing approximate expressions for functionals on solutions of integrodifferential equations which are an analog of the Hermite polynomial used to interpolate functions. In the example of the diffusion equation, it is shown that the use of such basis solutions allows a substantial increase in the accuracy of the approximate representation of the functionals in comparison to the first approximation of perturbation theory with practically the same computational costs. Keywords: differential equations, integral equations, integration, numerical methods, Hermite polynomials. The integrodifferential equations of mathematical physics are objects of research, and construction of interpolating polynomials to obtain approximate solutions of such equations is the subject of investigation. This paper lays out a technique for constructing approximate expressions for functionals on solutions of integrodifferential equations which are an analog of the Hermite polynomial used to interpolate functions. In the example of the diffusion equation, it is shown that the use of such basis solutions allows a substantial increase in the accuracy of the approximate representation of the functionals in comparison to the first approximation of perturbation theory with practically the same computational costs. |
Audience | Academic |
Author | Litvinov, V. A. |
Author_xml | – sequence: 1 givenname: V. A. surname: Litvinov fullname: Litvinov, V. A. email: lva201011@yandex.ru organization: Barnaul Law Institute of the Ministry of Internal Affairs of the Russian Federation |
BookMark | eNp9kEFrwyAYhmV0sLbbH9gpsHM6_YyJPZbSboXCBuvOIlGLJdVWk0P__WwyGOxQRPzQ9_HTZ4JGzjuN0DPBM4Jx9RoJIRxyDDhNgnlO7tCYsIrmcwA-SjUui5xzXj2gSYwHjBNWVmP0vfQutqGrW-td5k227lxfyyb79M3F-aOVTcyMD9mXb7rrUbzmNq7V--CVNUYH7dqUylbnTvaBR3RvEqWfftcp2q1Xu-V7vv142ywX27ymjLc50MJwxRkoVVdaa1nI9CpJoaAABQHNOECpC6nxnALjhDKsQLGqNqpgnE7Ry3DtKfhzp2MrDr4L6elRQMEwwHzOWErNhtReNlpYZ3wbZJ2G0kdbJ4_Gpv1FSTnHlPYADEAdfIxBG3EK9ijDRRAsrrrFoFsk3aLXLUiC-D-otm1vI3WzzW2UDmhMfdxeh79v3KB-ABqGlik |
CitedBy_id | crossref_primary_10_1007_s11182_022_02627_z |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 COPYRIGHT 2020 Springer Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: COPYRIGHT 2020 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11182-020-02108-1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1573-9228 |
EndPage | 859 |
ExternalDocumentID | A638803355 10_1007_s11182_020_02108_1 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 1N0 1SB 28- 29P 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IGS IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9T PF0 PT4 PT5 QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VCL VFIZW VIT W23 W48 WK8 XU3 YLTOR Z7R Z7X Z7Z Z83 Z86 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION AEIIB |
ID | FETCH-LOGICAL-c358t-234f8d852ddc7eeea4a006a324322412e58226e4ae0932581350d2d57cfd4583 |
IEDL.DBID | U2A |
ISSN | 1064-8887 |
IngestDate | Mon Jul 14 10:13:26 EDT 2025 Tue Jun 10 20:27:10 EDT 2025 Thu Apr 24 22:58:25 EDT 2025 Sun Sep 07 06:43:15 EDT 2025 Fri Feb 21 02:37:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | integration integral equations numerical methods Hermite polynomials differential equations |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-234f8d852ddc7eeea4a006a324322412e58226e4ae0932581350d2d57cfd4583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2450229955 |
PQPubID | 2043529 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2450229955 gale_infotracacademiconefile_A638803355 crossref_primary_10_1007_s11182_020_02108_1 crossref_citationtrail_10_1007_s11182_020_02108_1 springer_journals_10_1007_s11182_020_02108_1 |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Russian physics journal |
PublicationTitleAbbrev | Russ Phys J |
PublicationYear | 2020 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | LitvinovVAUchaikinVVIzv. Vyssh. Uchebn. Zaved. Fiz.1986291296853637 LitvinovVAUchaikinVVIzv. Vyssh. Uchebn. Zaved. Fiz.1986292128 UchaikinVVMethod of Fractional Derivatives [in Russian]2008Ul’yanovskArtishok SamkoSGKilbasAAMarichevOIIntegrals and Derivatives of Fractional Order and Their Applications [in Russian]1987MinskNauka i Tekhnika0617.26004 VV Uchaikin (2108_CR3) 2008 VA Litvinov (2108_CR1) 1986; 29 SG Samko (2108_CR4) 1987 VA Litvinov (2108_CR2) 1986; 29 |
References_xml | – reference: LitvinovVAUchaikinVVIzv. Vyssh. Uchebn. Zaved. Fiz.1986291296853637 – reference: LitvinovVAUchaikinVVIzv. Vyssh. Uchebn. Zaved. Fiz.1986292128 – reference: SamkoSGKilbasAAMarichevOIIntegrals and Derivatives of Fractional Order and Their Applications [in Russian]1987MinskNauka i Tekhnika0617.26004 – reference: UchaikinVVMethod of Fractional Derivatives [in Russian]2008Ul’yanovskArtishok – volume: 29 start-page: 128 issue: 2 year: 1986 ident: 2108_CR1 publication-title: Izv. Vyssh. Uchebn. Zaved. Fiz. – volume-title: Integrals and Derivatives of Fractional Order and Their Applications [in Russian] year: 1987 ident: 2108_CR4 – volume-title: Method of Fractional Derivatives [in Russian] year: 2008 ident: 2108_CR3 – volume: 29 start-page: 96 issue: 12 year: 1986 ident: 2108_CR2 publication-title: Izv. Vyssh. Uchebn. Zaved. Fiz. |
SSID | ssj0010067 |
Score | 2.1412737 |
Snippet | The integrodifferential equations of mathematical physics are objects of research, and construction of interpolating polynomials to obtain approximate... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 852 |
SubjectTerms | Condensed Matter Physics Differential equations Functions (mathematics) Hadrons Heavy Ions Hermite polynomials Lasers Mathematical and Computational Physics Nuclear Physics Optical Devices Optics Perturbation theory Photonics Physics Physics and Astronomy Theoretical |
Title | Construction of Functional Polynomials for Solutions of Integrodifferential Equations |
URI | https://link.springer.com/article/10.1007/s11182-020-02108-1 https://www.proquest.com/docview/2450229955 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6IXgRP3E6JQfBgxbaNEm7Y9HN-TER3GCeQpukp7Eq3cX_3vfSdsNP8NRDk7S8l5f3e3lfhJzFzPiaycyTOZirHHQSyFzGPAvKCgB07EuD2cijRzmc8LupmNZJYWUT7d64JN1JvUp2QyzsobmDdgrYPuukLcB2x0C-CUuWvgM8gJ2PU3IP7LuoTpX5eY1P6ujrofzNO-qUzmCbbNVokSYVe3fImp3vkg0XtanLPTLBdptNAVha5HQAWqq63KNPxewdU45he1EApnR5_4Xjbl2RiKLpjgJSPqP9t6rqd7lPxoP--Gro1X0SPB2KeOGxkOexiQUzRkfW2pSnQIMUoFKICppZAShAWp5aH9CaiINQ-IYZEencoNv0gLTmxdweEppaDaPCLAcrg2fGj9PIcK4BQwQy0jzokKChltJ1DXFsZTFTq-rHSGEFFFaOwgrmXCznvFYVNP4cfY5MUChesLJO6ywB-D8sVKUSidVrQkBJHdJt-KRquSsV4wJASa-Hry8b3q1e__7do_8NPyabzO0iDDbrkhaw2p4AOllkp6SdXI8envF583LfP3Wb8wMduNt1 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oxOjFtxFF3YOJB12y2-0-OBIDgjziARI8Nbtt9yJhNeBBf70z-4CIj4RzH9vttJ1vOp1vAK4DpizJvMj0YjRXOeok3HMRMzUqKwTQgeUpikbuD7z2iD-O3XEeFDYrXrsXLsn0pF4GuxEWNsncITsFbZ9NKHO0wXkJyo2H525z4T2gIzj1cnrcRAvPz4Nlfu_lm0JaPZZ_-EdTtdPag1Ex4Oy1yUvtfR7V5OcKl-O6f7QPuzkONRrZwjmADT09hK30PaicHcGIEnkW1LJGEhst1H_ZtaHxlEw-KJgZF66BkNdY3KxRvU5KP5EUeVfw_JgYzbeMT3x2DMNWc3jfNvMMDKZ03GBuMofHgQpcppT0tdYhD3FuQwRhDql-pl3EF57mobYQB7qB7biWYsr1ZazIIXsCpWky1adghFpiLSeK0X7hkbKC0FecS0QntudLblfALqQgZM5OTkkyJmLJq0yzJXC2RDpbAtvcLtq8Ztwc_9a-IeEK2rjYswzz-AMcH1FgiYZHvDgO4q8KVAv5i3xHzwTjLsKdep2K7wpxLov__u7ZetWvYLs97PdErzPonsMOS1cHPWmrQgnFri8QA82jy3zJfwEo4_gj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4oROPFtxFF3YOJB11Yut0HR6IgiBIOkOCp2W27FwlgwIP-emf2AYqPxHjuY7vTaeebTucrwLnPlCWZG5puhO4qR5uEay5kpkZjhQDat1xF2cgPHbfZ53cDZ_Ahiz--7Z6FJJOcBmJpGs3KExWVF4lvhItNcn3IZ0E_aBXynMjZc5Cv3T626_NIAm3HccTT5SZ6e16aOPN9L5-M0_IW_SVWGpugxhYE2eCTmydPpZdZWJJvS7yO__m7bdhM8alRSxRqB1b0aBfW4nuicroHfXrgM6OcNcaR0UC7mBwnGt3x8JWSnFGhDYTCxvzEjeq1YlqKcfYeC-4rQ6P-nPCMT_eh16j3rptm-jKDKW3Hn5nM5pGvfIcpJT2tdcADlHOA4MwmSMC0g7jD1TzQFuJDx6_YjqWYcjwZKQrUHkBuNB7pQzACLbGWHUbo1_BQWX7gKc4lopaK60leKUAlmxEhU9ZyejxjKBZ8yyQtgdISsbQEtrmct5kknB2_1r6giRa0oLFnGaR5CTg-osYSNZf4cmzEZQUoZrog0pU-FYw7CIOqVSq-yqZ2Ufzzd4_-Vv0M1rs3DXHf6rSPYYPFykE33YqQw1nXJwiNZuFpqv3vJJ0BFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+Functional+Polynomials+for+Solutions+of+Integrodifferential+Equations&rft.jtitle=Russian+physics+journal&rft.au=Litvinov%2C+V.+A.&rft.date=2020-09-01&rft.issn=1064-8887&rft.eissn=1573-9228&rft.volume=63&rft.issue=5&rft.spage=852&rft.epage=859&rft_id=info:doi/10.1007%2Fs11182-020-02108-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11182_020_02108_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-8887&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-8887&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-8887&client=summon |