An analysis of a multi-level projected steepest descent iteration for nonlinear inverse problems in Banach spaces subject to stability constraints
We consider nonlinear inverse problems described by operator equations in Banach spaces. Assuming conditional stability of the inverse problem, that is, assuming that stability holds on a compact, convex subset of the domain of the operator, we introduce a novel nonlinear projected steepest descent...
Saved in:
Published in | Numerische Mathematik Vol. 129; no. 1; pp. 127 - 148 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider nonlinear inverse problems described by operator equations in Banach spaces. Assuming conditional stability of the inverse problem, that is, assuming that stability holds on a compact, convex subset of the domain of the operator, we introduce a novel nonlinear projected steepest descent iteration and analyze its convergence to an approximate solution given limited accuracy data. We proceed with developing a multi-level algorithm based on a nested family of compact, convex subsets on which stability holds and the stability constants are ordered. Growth of the stability constants is coupled to the increase in accuracy of approximation between neighboring levels to ensure that the algorithm can continue from level to level until the iterate satisfies a desired discrepancy criterion, after a finite number of steps. |
---|---|
AbstractList | We consider nonlinear inverse problems described by operator equations in Banach spaces. Assuming conditional stability of the inverse problem, that is, assuming that stability holds on a compact, convex subset of the domain of the operator, we introduce a novel nonlinear projected steepest descent iteration and analyze its convergence to an approximate solution given limited accuracy data. We proceed with developing a multi-level algorithm based on a nested family of compact, convex subsets on which stability holds and the stability constants are ordered. Growth of the stability constants is coupled to the increase in accuracy of approximation between neighboring levels to ensure that the algorithm can continue from level to level until the iterate satisfies a desired discrepancy criterion, after a finite number of steps. |
Author | Scherzer, Otmar de Hoop, Maarten V. Qiu, Lingyun |
Author_xml | – sequence: 1 givenname: Maarten V. surname: de Hoop fullname: de Hoop, Maarten V. organization: Center for Computational and Applied Mathemematics, Purdue University – sequence: 2 givenname: Lingyun surname: Qiu fullname: Qiu, Lingyun email: qiu.lingyun@ima.umn.edu, qiu.lingyun@gmail.com organization: Institute for Mathematics and its Applications, University of Minnesota – sequence: 3 givenname: Otmar surname: Scherzer fullname: Scherzer, Otmar organization: Computational Science Center, University of Vienna |
BookMark | eNp9kM1KAzEQx4NUsFUfwFteYDXZzX4da_ELCl4UvIVsdlZT0qRk0tK-hk9s1nry0NMMA7__zPxmZOK8A0JuOLvljNV3yFjOeca4yFiVt9n-jExZK8qsyEU5ST1Lw7JtPy7IDHHFGK8rwafke-6ocsoe0CD1A1V0vbXRZBZ2YOkm-BXoCD3FCLABjLQH1OAiNRGCisY7OvhA0zXWOFCBGreDgDCinYU1pgG9Txv0F8WN0oAUt90YSqNPqaoz1sQD1d5hDMq4iFfkfFAW4fqvXpL3x4e3xXO2fH16WcyXmS7KJma878qGl3roi7bNe1HwRnd1q9Jboin7gnVsyAfV6F7kuhIt1FBAKXqtKgbQNcUl4cdcHTxigEFuglmrcJCcyVGqPEqVSaocpcp9Yup_jDbxV8N4vD1J5kcS0xb3CUGu_DYk83gC-gE3DZMq |
CitedBy_id | crossref_primary_10_1080_01630563_2017_1414061 crossref_primary_10_1190_geo2020_0305_1 crossref_primary_10_1080_03605302_2015_1007379 crossref_primary_10_1088_1361_6420_ac349c crossref_primary_10_1088_1361_6420_aa907e crossref_primary_10_1007_s10596_019_09897_6 crossref_primary_10_1080_00036811_2023_2192236 crossref_primary_10_1088_0266_5611_32_10_104008 crossref_primary_10_1088_1361_6420_ac99fb crossref_primary_10_1088_1361_6420_aa5bef crossref_primary_10_1088_1361_6420_ab3507 crossref_primary_10_1088_1361_6420_aca49d crossref_primary_10_1515_jiip_2021_0065 crossref_primary_10_3233_ASY_171457 crossref_primary_10_1016_j_amc_2023_128519 crossref_primary_10_1137_22M1530720 crossref_primary_10_1515_jiip_2023_0070 crossref_primary_10_1088_0266_5611_32_3_035001 crossref_primary_10_1137_22M1480550 crossref_primary_10_1007_s10957_022_02044_9 crossref_primary_10_1016_j_cam_2021_113744 crossref_primary_10_1088_1361_6420_ac1511 crossref_primary_10_1016_j_jco_2024_101897 crossref_primary_10_1016_j_jco_2022_101711 crossref_primary_10_1515_jiip_2023_0002 crossref_primary_10_1137_15M1012323 crossref_primary_10_1007_s00205_021_01718_4 crossref_primary_10_1016_j_aml_2023_108723 |
Cites_doi | 10.1007/BF01385727 10.1080/01630569208816489 10.1016/0022-247X(91)90144-O 10.1016/j.aam.2004.12.002 10.1088/0266-5611/17/5/313 10.1137/S0036139994267444 10.1023/A:1022631928592 10.1137/120869201 10.1216/JIE-2008-20-2-201 10.1155/S1085337596000024 10.1080/03605302.2011.552930 10.1007/s00041-008-9039-8 10.1007/s002110050379 10.4171/ZAA/679 10.1088/0266-5611/28/4/045001 10.1080/01630560600790835 10.1016/0041-5553(67)90040-7 10.1016/j.jmaa.2012.10.066 10.1007/978-94-009-2121-4 10.1088/0266-5611/26/2/025007 10.1515/9783110255720 10.1515/9783110208276 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2014 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2014 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00211-014-0629-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 0945-3245 |
EndPage | 148 |
ExternalDocumentID | 10_1007_s00211_014_0629_x |
GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 41~ 5QI 5VS 67Z 692 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KQ8 LAS LLZTM LO0 M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P2P P9R PF0 PKN PT4 PT5 QOK QOS R4E R89 R9I REI RHV RIG RNI RNS ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XJT YLTOR YNT YQT Z45 Z5O Z7R Z7X Z83 Z86 Z88 Z8M Z8R Z8W Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c358t-1db5815cfd3992d4318cb79a641485d30b0f2fa8cd42c649e7e3e54dca60eeb83 |
IEDL.DBID | U2A |
ISSN | 0029-599X |
IngestDate | Thu Apr 24 22:57:28 EDT 2025 Tue Jul 01 00:36:48 EDT 2025 Fri Feb 21 02:33:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 47J25 35R30 65J22 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-1db5815cfd3992d4318cb79a641485d30b0f2fa8cd42c649e7e3e54dca60eeb83 |
PageCount | 22 |
ParticipantIDs | crossref_primary_10_1007_s00211_014_0629_x crossref_citationtrail_10_1007_s00211_014_0629_x springer_journals_10_1007_s00211_014_0629_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg |
PublicationTitle | Numerische Mathematik |
PublicationTitleAbbrev | Numer. Math |
PublicationYear | 2015 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
References | Butnariu, Iusem, Resmerita (CR8) 2000; 7 Scherzer (CR21) 1996; 17 CR18 Teschke, Borries (CR24) 2010; 26 CR10 Neubauer, Scherzer (CR20) 1995; 14 de Hoop, Qiu, Scherzer (CR12) 2012; 28 Xu, Roach (CR25) 1991; 157 Beretta, de Hoop, Qiu (CR5) 2013; 45 Alber, Butnariu (CR1) 1997; 92 Kaltenbacher (CR17) 2008; 20 CR4 Daubechies, Fornasier, Loris (CR11) 2008; 14 Alessandrini, Vessella (CR3) 2005; 35 Chavent, Kunisch (CR9) 1996; 56 Beretta, Francini (CR6) 2011; 36 Kaltenbacher (CR16) 2006; 27 Hanke (CR15) 1991; 60 Scherzer (CR22) 1998; 80 CR23 Mandache (CR19) 2001; 17 Bregman (CR7) 1967; 7 Eicke (CR13) 1992; 13 Gilyazov (CR14) 1977; 13 Alber, Kartsatos, Litsyn (CR2) 1996; 1 YI Alber (629_CR1) 1997; 92 629_CR10 A Neubauer (629_CR20) 1995; 14 SF Gilyazov (629_CR14) 1977; 13 629_CR18 E Beretta (629_CR5) 2013; 45 B Eicke (629_CR13) 1992; 13 N Mandache (629_CR19) 2001; 17 O Scherzer (629_CR22) 1998; 80 629_CR4 ZB Xu (629_CR25) 1991; 157 MV Hoop de (629_CR12) 2012; 28 G Chavent (629_CR9) 1996; 56 E Beretta (629_CR6) 2011; 36 629_CR24 LM Bregman (629_CR7) 1967; 7 629_CR23 G Alessandrini (629_CR3) 2005; 35 I Daubechies (629_CR11) 2008; 14 B Kaltenbacher (629_CR17) 2008; 20 O Scherzer (629_CR21) 1996; 17 YI Alber (629_CR2) 1996; 1 M Hanke (629_CR15) 1991; 60 B Kaltenbacher (629_CR16) 2006; 27 D Butnariu (629_CR8) 2000; 7 |
References_xml | – volume: 60 start-page: 341 issue: 3 year: 1991 end-page: 373 ident: CR15 article-title: Accelerated Landweber iterations for the solution of ill-posed equations publication-title: Numer. Math. doi: 10.1007/BF01385727 – volume: 13 start-page: 413 issue: 5–6 year: 1992 end-page: 429 ident: CR13 article-title: Iteration methods for convexly constrained ill-posed problems in Hilbert space publication-title: Numer. Funct. Anal. Optim. doi: 10.1080/01630569208816489 – ident: CR18 – volume: 26 start-page: 025007 issue: 2 year: 2010 ident: CR24 article-title: Accelerated projected steepest descent method for nonlinear inverse problems with sparsity constraints publication-title: Inverse Probl. – volume: 7 start-page: 319 issue: 2 year: 2000 end-page: 334 ident: CR8 article-title: Total convexity for powers of the norm in uniformly convex Banach spaces publication-title: J. Convex Anal. – volume: 157 start-page: 189 issue: 1 year: 1991 end-page: 210 ident: CR25 article-title: Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(91)90144-O – ident: CR4 – ident: CR10 – volume: 35 start-page: 207 issue: 2 year: 2005 end-page: 241 ident: CR3 article-title: Lipschitz stability for the inverse conductivity problem publication-title: Adv. Appl. Math. doi: 10.1016/j.aam.2004.12.002 – volume: 17 start-page: 1435 issue: 5 year: 2001 end-page: 1444 ident: CR19 article-title: Exponential instability in an inverse problem for the Schrödinger equation publication-title: Inverse Probl. doi: 10.1088/0266-5611/17/5/313 – ident: CR23 – volume: 56 start-page: 542 issue: 2 year: 1996 end-page: 572 ident: CR9 article-title: On weakly nonlinear inverse problems publication-title: SIAM. J. Appl. Math. doi: 10.1137/S0036139994267444 – volume: 92 start-page: 33 year: 1997 end-page: 61 ident: CR1 article-title: Convergence of Bregman projection methods for solving consistent convex feasibility problems in reflexive Banach spaces publication-title: J. Optim. Theory Appl. doi: 10.1023/A:1022631928592 – volume: 45 start-page: 679 issue: 2 year: 2013 end-page: 699 ident: CR5 article-title: Lipschitz stability of an inverse boundary value problem for a Schrödinger-type equation publication-title: SIAM J. Math. Anal. doi: 10.1137/120869201 – volume: 13 start-page: 8 year: 1977 end-page: 13 ident: CR14 article-title: Iterative solution methods for inconsistent linear equations with nonself-adjoint operator publication-title: Moscow Univ. Comput. Math. Cybernet. – volume: 20 start-page: 201 issue: 2 year: 2008 end-page: 228 ident: CR17 article-title: Convergence rates of a multilevel method for the regularization of nonlinear ill-posed problems publication-title: J. Integral Equ. Appl. doi: 10.1216/JIE-2008-20-2-201 – volume: 1 start-page: 45 issue: 1 year: 1996 end-page: 64 ident: CR2 article-title: Iterative solution of unstable variational inequalities on approximately given sets publication-title: Abstr. Appl. Anal. doi: 10.1155/S1085337596000024 – volume: 36 start-page: 1723 issue: 10 year: 2011 end-page: 1749 ident: CR6 article-title: Lipschitz stability for the electrical impedance tomography problem: the complex case publication-title: Commun. Partial Differ. Equ. doi: 10.1080/03605302.2011.552930 – volume: 14 start-page: 764 issue: 5–6 year: 2008 end-page: 792 ident: CR11 article-title: Accelerated projected gradient method for linear inverse problems with sparsity constraints publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-008-9039-8 – volume: 80 start-page: 579 issue: 4 year: 1998 end-page: 600 ident: CR22 article-title: An iterative multi-level algorithm for solving nonlinear ill-posed problems publication-title: Numer. Math. doi: 10.1007/s002110050379 – volume: 14 start-page: 369 issue: 2 year: 1995 end-page: 377 ident: CR20 article-title: A convergence rate result for a steepest descent method and a minimal error method for the solution of nonlinear ill-posed problems publication-title: Z. Anal. Anwend. doi: 10.4171/ZAA/679 – volume: 28 start-page: 045001 issue: 4 year: 2012 ident: CR12 article-title: Local analysis of inverse problems: Hölder stability and iterative reconstruction publication-title: Inverse Probl. doi: 10.1088/0266-5611/28/4/045001 – volume: 27 start-page: 637 issue: 5–6 year: 2006 end-page: 665 ident: CR16 article-title: Toward global convergence for strongly nonlinear ill-posed problems via a regularizing multilevel approach publication-title: Numer. Funct. Anal. Optim. doi: 10.1080/01630560600790835 – volume: 7 start-page: 200 issue: 3 year: 1967 end-page: 217 ident: CR7 article-title: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(67)90040-7 – volume: 17 start-page: 197 issue: 1–2 year: 1996 end-page: 214 ident: CR21 article-title: A convergence analysis of a method of steepest descent and a two-step algorithm for nonlinear ill-posed problems publication-title: Numer. Funct. Anal. Optim. – volume: 17 start-page: 197 issue: 1–2 year: 1996 ident: 629_CR21 publication-title: Numer. Funct. Anal. Optim. – volume: 157 start-page: 189 issue: 1 year: 1991 ident: 629_CR25 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(91)90144-O – volume: 17 start-page: 1435 issue: 5 year: 2001 ident: 629_CR19 publication-title: Inverse Probl. doi: 10.1088/0266-5611/17/5/313 – ident: 629_CR4 doi: 10.1016/j.jmaa.2012.10.066 – volume: 7 start-page: 200 issue: 3 year: 1967 ident: 629_CR7 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(67)90040-7 – ident: 629_CR10 doi: 10.1007/978-94-009-2121-4 – ident: 629_CR24 doi: 10.1088/0266-5611/26/2/025007 – ident: 629_CR23 doi: 10.1515/9783110255720 – volume: 1 start-page: 45 issue: 1 year: 1996 ident: 629_CR2 publication-title: Abstr. Appl. Anal. doi: 10.1155/S1085337596000024 – volume: 28 start-page: 045001 issue: 4 year: 2012 ident: 629_CR12 publication-title: Inverse Probl. doi: 10.1088/0266-5611/28/4/045001 – volume: 14 start-page: 369 issue: 2 year: 1995 ident: 629_CR20 publication-title: Z. Anal. Anwend. doi: 10.4171/ZAA/679 – volume: 13 start-page: 8 year: 1977 ident: 629_CR14 publication-title: Moscow Univ. Comput. Math. Cybernet. – volume: 36 start-page: 1723 issue: 10 year: 2011 ident: 629_CR6 publication-title: Commun. Partial Differ. Equ. doi: 10.1080/03605302.2011.552930 – volume: 60 start-page: 341 issue: 3 year: 1991 ident: 629_CR15 publication-title: Numer. Math. doi: 10.1007/BF01385727 – volume: 7 start-page: 319 issue: 2 year: 2000 ident: 629_CR8 publication-title: J. Convex Anal. – volume: 20 start-page: 201 issue: 2 year: 2008 ident: 629_CR17 publication-title: J. Integral Equ. Appl. doi: 10.1216/JIE-2008-20-2-201 – volume: 35 start-page: 207 issue: 2 year: 2005 ident: 629_CR3 publication-title: Adv. Appl. Math. doi: 10.1016/j.aam.2004.12.002 – volume: 14 start-page: 764 issue: 5–6 year: 2008 ident: 629_CR11 publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-008-9039-8 – ident: 629_CR18 doi: 10.1515/9783110208276 – volume: 27 start-page: 637 issue: 5–6 year: 2006 ident: 629_CR16 publication-title: Numer. Funct. Anal. Optim. doi: 10.1080/01630560600790835 – volume: 13 start-page: 413 issue: 5–6 year: 1992 ident: 629_CR13 publication-title: Numer. Funct. Anal. Optim. doi: 10.1080/01630569208816489 – volume: 56 start-page: 542 issue: 2 year: 1996 ident: 629_CR9 publication-title: SIAM. J. Appl. Math. doi: 10.1137/S0036139994267444 – volume: 92 start-page: 33 year: 1997 ident: 629_CR1 publication-title: J. Optim. Theory Appl. doi: 10.1023/A:1022631928592 – volume: 45 start-page: 679 issue: 2 year: 2013 ident: 629_CR5 publication-title: SIAM J. Math. Anal. doi: 10.1137/120869201 – volume: 80 start-page: 579 issue: 4 year: 1998 ident: 629_CR22 publication-title: Numer. Math. doi: 10.1007/s002110050379 |
SSID | ssj0017641 |
Score | 2.2626724 |
Snippet | We consider nonlinear inverse problems described by operator equations in Banach spaces. Assuming conditional stability of the inverse problem, that is,... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 127 |
SubjectTerms | Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical Analysis Numerical and Computational Physics Simulation Theoretical |
Title | An analysis of a multi-level projected steepest descent iteration for nonlinear inverse problems in Banach spaces subject to stability constraints |
URI | https://link.springer.com/article/10.1007/s00211-014-0629-x |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6yXvTgW1wfyxw8KYE-kj6Oq6yKoicX1lPJE4VlXbZd0L_hL3bSpoUFFbyWaRryNZkvmck3hJwHkeCu1BGVVhnqBO9opqWhNpWpCrKci7oYzONTcjdm9xM-8fe4yzbbvQ1J1it1d9nNuSO39WU0SKKcInFc57h1d3lc42jYhQ7ShIVtXgfP80kbyvypiVVntBoJrR3MzQ7Z8swQhg2Uu2TNzPbIdlt1Afwk3CObj53SarlPvoYzEF5YBN4tCKhTBOnUJQOBP2cxGhBMM0cPALrRb4JGThlRAaStMGsUM8QC3mYuUcOArzRT4gO4wi-oV8DFB1cVKJfSNQrVO7bayHx_gnI805WbqMoDMr4ZPV_fUV9ngaqYZxUNteRZyJXVTqVWI6XIlExzgQPJMq7jQAY2ssKVOYpUwnKTmthwppVIAmNkFh-SHnbTHBFA8sUYM6k2KmU2SBDp0DIteGhNnsa8T4J2wAvlRchd56ZFJ59cY1QgRoXDqPjok4vulXmjwPGX8WWLYuEnY_m79fG_rE_IBrIl3py_nJJetViaM2QklRyQ9eHty8NoUP-J3yxr3as |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iB_XgW3w7B09KoI-kj-MqyvpYTy7sreSJwrK7bCvo3_AXO2nTwoIKXss0DfmSzNfM5BtCLoJIcFfqiEqrDHWCdzTT0lCbylQFWc5FXQxm8Jz0h-xhxEf-HnfZZru3Icl6p-4uuzl35H59GQ2SKKdIHFeQC2RuKg-jXhc6SBMWtnkdPM9HbSjzpyYWndFiJLR2MHdbZMMzQ-g1UG6TJTPZIZtt1QXwi3CHrA86pdVyl3z1JiC8sAhMLQioUwTp2CUDgT9nMRoQTDNDDwC60W-CRk4ZUQGkrTBpFDPEHN4mLlHDgK80U-IDuMYvqFfAzQd3FSjfpWsUqim22sh8f4JyPNOVm6jKPTK8u3256VNfZ4GqmGcVDbXkWciV1U6lViOlyJRMc4EDyTKu40AGNrLClTmKVMJyk5rYcKaVSAJjZBbvk2XspjkggOSLMWZSbVTKbJAg0qFlWvDQmjyN-SEJ2gEvlBchd50bF518co1RgRgVDqPi45Bcdq_MGgWOv4yvWhQLvxjL362P_mV9Tlb7L4On4un--fGYrCFz4s1ZzAlZrubv5hTZSSXP6tn4Dc6-3wo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JSsUwFA2iILpwFmfvwpUS7JB0WD6HhzMufPB2JSMKUh-2gv6GX-xNmxYEFdyWNA05GU5zb84h5CCIBHdWR1RaZagTvKOZlobaVKYqyHIuGjOY27vkYsSuxnzsfU6rLtu9C0m2dxqcSlNZH0-0Pe4vvrmtyf0GMxokUU6RRM4wdxkYB_QoGvRhhDRhYZfjwfN83IU1f6ri-8b0PSrabDbDJbLgWSIMWliXyZQpV8hi58AAfkKukPnbXnW1WiWfgxKEFxmBFwsCmnRB-uwSg8CfuRgNCKyZ4G4AutVyglZaGRECpLBQtuoZ4hWeSpe0YcC7zlT4AE7wC-oRcCHCFQaqN-kqhfoFa20lvz9AOc7prCfqao2MhucPpxfUey5QFfOspqGWPAu5stop1mqkF5mSaS6wI1nGdRzIwEZWOMujSCUsN6mJDWdaiSQwRmbxOpnGZpoNAkjEGGMm1UalzAYJoh5apgUPrcnTmG-SoOvwQnlBcte456KXUm4wKhCjwmFUvG-Sw_6VSavG8Vfhow7Fwk_M6vfSW_8qvU9m78-Gxc3l3fU2mUMSxdtjmR0yXb--mV0kKrXcawbjF20e4z0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+analysis+of+a+multi-level+projected+steepest+descent+iteration+for+nonlinear+inverse+problems+in+Banach+spaces+subject+to+stability+constraints&rft.jtitle=Numerische+Mathematik&rft.au=de+Hoop%2C+Maarten+V.&rft.au=Qiu%2C+Lingyun&rft.au=Scherzer%2C+Otmar&rft.date=2015-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0029-599X&rft.eissn=0945-3245&rft.volume=129&rft.issue=1&rft.spage=127&rft.epage=148&rft_id=info:doi/10.1007%2Fs00211-014-0629-x&rft.externalDocID=10_1007_s00211_014_0629_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-599X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-599X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-599X&client=summon |