An analysis of a multi-level projected steepest descent iteration for nonlinear inverse problems in Banach spaces subject to stability constraints

We consider nonlinear inverse problems described by operator equations in Banach spaces. Assuming conditional stability of the inverse problem, that is, assuming that stability holds on a compact, convex subset of the domain of the operator, we introduce a novel nonlinear projected steepest descent...

Full description

Saved in:
Bibliographic Details
Published inNumerische Mathematik Vol. 129; no. 1; pp. 127 - 148
Main Authors de Hoop, Maarten V., Qiu, Lingyun, Scherzer, Otmar
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider nonlinear inverse problems described by operator equations in Banach spaces. Assuming conditional stability of the inverse problem, that is, assuming that stability holds on a compact, convex subset of the domain of the operator, we introduce a novel nonlinear projected steepest descent iteration and analyze its convergence to an approximate solution given limited accuracy data. We proceed with developing a multi-level algorithm based on a nested family of compact, convex subsets on which stability holds and the stability constants are ordered. Growth of the stability constants is coupled to the increase in accuracy of approximation between neighboring levels to ensure that the algorithm can continue from level to level until the iterate satisfies a desired discrepancy criterion, after a finite number of steps.
AbstractList We consider nonlinear inverse problems described by operator equations in Banach spaces. Assuming conditional stability of the inverse problem, that is, assuming that stability holds on a compact, convex subset of the domain of the operator, we introduce a novel nonlinear projected steepest descent iteration and analyze its convergence to an approximate solution given limited accuracy data. We proceed with developing a multi-level algorithm based on a nested family of compact, convex subsets on which stability holds and the stability constants are ordered. Growth of the stability constants is coupled to the increase in accuracy of approximation between neighboring levels to ensure that the algorithm can continue from level to level until the iterate satisfies a desired discrepancy criterion, after a finite number of steps.
Author Scherzer, Otmar
de Hoop, Maarten V.
Qiu, Lingyun
Author_xml – sequence: 1
  givenname: Maarten V.
  surname: de Hoop
  fullname: de Hoop, Maarten V.
  organization: Center for Computational and Applied Mathemematics, Purdue University
– sequence: 2
  givenname: Lingyun
  surname: Qiu
  fullname: Qiu, Lingyun
  email: qiu.lingyun@ima.umn.edu, qiu.lingyun@gmail.com
  organization: Institute for Mathematics and its Applications, University of Minnesota
– sequence: 3
  givenname: Otmar
  surname: Scherzer
  fullname: Scherzer, Otmar
  organization: Computational Science Center, University of Vienna
BookMark eNp9kM1KAzEQx4NUsFUfwFteYDXZzX4da_ELCl4UvIVsdlZT0qRk0tK-hk9s1nry0NMMA7__zPxmZOK8A0JuOLvljNV3yFjOeca4yFiVt9n-jExZK8qsyEU5ST1Lw7JtPy7IDHHFGK8rwafke-6ocsoe0CD1A1V0vbXRZBZ2YOkm-BXoCD3FCLABjLQH1OAiNRGCisY7OvhA0zXWOFCBGreDgDCinYU1pgG9Txv0F8WN0oAUt90YSqNPqaoz1sQD1d5hDMq4iFfkfFAW4fqvXpL3x4e3xXO2fH16WcyXmS7KJma878qGl3roi7bNe1HwRnd1q9Jboin7gnVsyAfV6F7kuhIt1FBAKXqtKgbQNcUl4cdcHTxigEFuglmrcJCcyVGqPEqVSaocpcp9Yup_jDbxV8N4vD1J5kcS0xb3CUGu_DYk83gC-gE3DZMq
CitedBy_id crossref_primary_10_1080_01630563_2017_1414061
crossref_primary_10_1190_geo2020_0305_1
crossref_primary_10_1080_03605302_2015_1007379
crossref_primary_10_1088_1361_6420_ac349c
crossref_primary_10_1088_1361_6420_aa907e
crossref_primary_10_1007_s10596_019_09897_6
crossref_primary_10_1080_00036811_2023_2192236
crossref_primary_10_1088_0266_5611_32_10_104008
crossref_primary_10_1088_1361_6420_ac99fb
crossref_primary_10_1088_1361_6420_aa5bef
crossref_primary_10_1088_1361_6420_ab3507
crossref_primary_10_1088_1361_6420_aca49d
crossref_primary_10_1515_jiip_2021_0065
crossref_primary_10_3233_ASY_171457
crossref_primary_10_1016_j_amc_2023_128519
crossref_primary_10_1137_22M1530720
crossref_primary_10_1515_jiip_2023_0070
crossref_primary_10_1088_0266_5611_32_3_035001
crossref_primary_10_1137_22M1480550
crossref_primary_10_1007_s10957_022_02044_9
crossref_primary_10_1016_j_cam_2021_113744
crossref_primary_10_1088_1361_6420_ac1511
crossref_primary_10_1016_j_jco_2024_101897
crossref_primary_10_1016_j_jco_2022_101711
crossref_primary_10_1515_jiip_2023_0002
crossref_primary_10_1137_15M1012323
crossref_primary_10_1007_s00205_021_01718_4
crossref_primary_10_1016_j_aml_2023_108723
Cites_doi 10.1007/BF01385727
10.1080/01630569208816489
10.1016/0022-247X(91)90144-O
10.1016/j.aam.2004.12.002
10.1088/0266-5611/17/5/313
10.1137/S0036139994267444
10.1023/A:1022631928592
10.1137/120869201
10.1216/JIE-2008-20-2-201
10.1155/S1085337596000024
10.1080/03605302.2011.552930
10.1007/s00041-008-9039-8
10.1007/s002110050379
10.4171/ZAA/679
10.1088/0266-5611/28/4/045001
10.1080/01630560600790835
10.1016/0041-5553(67)90040-7
10.1016/j.jmaa.2012.10.066
10.1007/978-94-009-2121-4
10.1088/0266-5611/26/2/025007
10.1515/9783110255720
10.1515/9783110208276
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2014
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2014
DBID AAYXX
CITATION
DOI 10.1007/s00211-014-0629-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 0945-3245
EndPage 148
ExternalDocumentID 10_1007_s00211_014_0629_x
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
41~
5QI
5VS
67Z
692
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
LO0
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9R
PF0
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XJT
YLTOR
YNT
YQT
Z45
Z5O
Z7R
Z7X
Z83
Z86
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c358t-1db5815cfd3992d4318cb79a641485d30b0f2fa8cd42c649e7e3e54dca60eeb83
IEDL.DBID U2A
ISSN 0029-599X
IngestDate Thu Apr 24 22:57:28 EDT 2025
Tue Jul 01 00:36:48 EDT 2025
Fri Feb 21 02:33:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 47J25
35R30
65J22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-1db5815cfd3992d4318cb79a641485d30b0f2fa8cd42c649e7e3e54dca60eeb83
PageCount 22
ParticipantIDs crossref_primary_10_1007_s00211_014_0629_x
crossref_citationtrail_10_1007_s00211_014_0629_x
springer_journals_10_1007_s00211_014_0629_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Numerische Mathematik
PublicationTitleAbbrev Numer. Math
PublicationYear 2015
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Butnariu, Iusem, Resmerita (CR8) 2000; 7
Scherzer (CR21) 1996; 17
CR18
Teschke, Borries (CR24) 2010; 26
CR10
Neubauer, Scherzer (CR20) 1995; 14
de Hoop, Qiu, Scherzer (CR12) 2012; 28
Xu, Roach (CR25) 1991; 157
Beretta, de Hoop, Qiu (CR5) 2013; 45
Alber, Butnariu (CR1) 1997; 92
Kaltenbacher (CR17) 2008; 20
CR4
Daubechies, Fornasier, Loris (CR11) 2008; 14
Alessandrini, Vessella (CR3) 2005; 35
Chavent, Kunisch (CR9) 1996; 56
Beretta, Francini (CR6) 2011; 36
Kaltenbacher (CR16) 2006; 27
Hanke (CR15) 1991; 60
Scherzer (CR22) 1998; 80
CR23
Mandache (CR19) 2001; 17
Bregman (CR7) 1967; 7
Eicke (CR13) 1992; 13
Gilyazov (CR14) 1977; 13
Alber, Kartsatos, Litsyn (CR2) 1996; 1
YI Alber (629_CR1) 1997; 92
629_CR10
A Neubauer (629_CR20) 1995; 14
SF Gilyazov (629_CR14) 1977; 13
629_CR18
E Beretta (629_CR5) 2013; 45
B Eicke (629_CR13) 1992; 13
N Mandache (629_CR19) 2001; 17
O Scherzer (629_CR22) 1998; 80
629_CR4
ZB Xu (629_CR25) 1991; 157
MV Hoop de (629_CR12) 2012; 28
G Chavent (629_CR9) 1996; 56
E Beretta (629_CR6) 2011; 36
629_CR24
LM Bregman (629_CR7) 1967; 7
629_CR23
G Alessandrini (629_CR3) 2005; 35
I Daubechies (629_CR11) 2008; 14
B Kaltenbacher (629_CR17) 2008; 20
O Scherzer (629_CR21) 1996; 17
YI Alber (629_CR2) 1996; 1
M Hanke (629_CR15) 1991; 60
B Kaltenbacher (629_CR16) 2006; 27
D Butnariu (629_CR8) 2000; 7
References_xml – volume: 60
  start-page: 341
  issue: 3
  year: 1991
  end-page: 373
  ident: CR15
  article-title: Accelerated Landweber iterations for the solution of ill-posed equations
  publication-title: Numer. Math.
  doi: 10.1007/BF01385727
– volume: 13
  start-page: 413
  issue: 5–6
  year: 1992
  end-page: 429
  ident: CR13
  article-title: Iteration methods for convexly constrained ill-posed problems in Hilbert space
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630569208816489
– ident: CR18
– volume: 26
  start-page: 025007
  issue: 2
  year: 2010
  ident: CR24
  article-title: Accelerated projected steepest descent method for nonlinear inverse problems with sparsity constraints
  publication-title: Inverse Probl.
– volume: 7
  start-page: 319
  issue: 2
  year: 2000
  end-page: 334
  ident: CR8
  article-title: Total convexity for powers of the norm in uniformly convex Banach spaces
  publication-title: J. Convex Anal.
– volume: 157
  start-page: 189
  issue: 1
  year: 1991
  end-page: 210
  ident: CR25
  article-title: Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(91)90144-O
– ident: CR4
– ident: CR10
– volume: 35
  start-page: 207
  issue: 2
  year: 2005
  end-page: 241
  ident: CR3
  article-title: Lipschitz stability for the inverse conductivity problem
  publication-title: Adv. Appl. Math.
  doi: 10.1016/j.aam.2004.12.002
– volume: 17
  start-page: 1435
  issue: 5
  year: 2001
  end-page: 1444
  ident: CR19
  article-title: Exponential instability in an inverse problem for the Schrödinger equation
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/17/5/313
– ident: CR23
– volume: 56
  start-page: 542
  issue: 2
  year: 1996
  end-page: 572
  ident: CR9
  article-title: On weakly nonlinear inverse problems
  publication-title: SIAM. J. Appl. Math.
  doi: 10.1137/S0036139994267444
– volume: 92
  start-page: 33
  year: 1997
  end-page: 61
  ident: CR1
  article-title: Convergence of Bregman projection methods for solving consistent convex feasibility problems in reflexive Banach spaces
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1022631928592
– volume: 45
  start-page: 679
  issue: 2
  year: 2013
  end-page: 699
  ident: CR5
  article-title: Lipschitz stability of an inverse boundary value problem for a Schrödinger-type equation
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/120869201
– volume: 13
  start-page: 8
  year: 1977
  end-page: 13
  ident: CR14
  article-title: Iterative solution methods for inconsistent linear equations with nonself-adjoint operator
  publication-title: Moscow Univ. Comput. Math. Cybernet.
– volume: 20
  start-page: 201
  issue: 2
  year: 2008
  end-page: 228
  ident: CR17
  article-title: Convergence rates of a multilevel method for the regularization of nonlinear ill-posed problems
  publication-title: J. Integral Equ. Appl.
  doi: 10.1216/JIE-2008-20-2-201
– volume: 1
  start-page: 45
  issue: 1
  year: 1996
  end-page: 64
  ident: CR2
  article-title: Iterative solution of unstable variational inequalities on approximately given sets
  publication-title: Abstr. Appl. Anal.
  doi: 10.1155/S1085337596000024
– volume: 36
  start-page: 1723
  issue: 10
  year: 2011
  end-page: 1749
  ident: CR6
  article-title: Lipschitz stability for the electrical impedance tomography problem: the complex case
  publication-title: Commun. Partial Differ. Equ.
  doi: 10.1080/03605302.2011.552930
– volume: 14
  start-page: 764
  issue: 5–6
  year: 2008
  end-page: 792
  ident: CR11
  article-title: Accelerated projected gradient method for linear inverse problems with sparsity constraints
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-008-9039-8
– volume: 80
  start-page: 579
  issue: 4
  year: 1998
  end-page: 600
  ident: CR22
  article-title: An iterative multi-level algorithm for solving nonlinear ill-posed problems
  publication-title: Numer. Math.
  doi: 10.1007/s002110050379
– volume: 14
  start-page: 369
  issue: 2
  year: 1995
  end-page: 377
  ident: CR20
  article-title: A convergence rate result for a steepest descent method and a minimal error method for the solution of nonlinear ill-posed problems
  publication-title: Z. Anal. Anwend.
  doi: 10.4171/ZAA/679
– volume: 28
  start-page: 045001
  issue: 4
  year: 2012
  ident: CR12
  article-title: Local analysis of inverse problems: Hölder stability and iterative reconstruction
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/28/4/045001
– volume: 27
  start-page: 637
  issue: 5–6
  year: 2006
  end-page: 665
  ident: CR16
  article-title: Toward global convergence for strongly nonlinear ill-posed problems via a regularizing multilevel approach
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630560600790835
– volume: 7
  start-page: 200
  issue: 3
  year: 1967
  end-page: 217
  ident: CR7
  article-title: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(67)90040-7
– volume: 17
  start-page: 197
  issue: 1–2
  year: 1996
  end-page: 214
  ident: CR21
  article-title: A convergence analysis of a method of steepest descent and a two-step algorithm for nonlinear ill-posed problems
  publication-title: Numer. Funct. Anal. Optim.
– volume: 17
  start-page: 197
  issue: 1–2
  year: 1996
  ident: 629_CR21
  publication-title: Numer. Funct. Anal. Optim.
– volume: 157
  start-page: 189
  issue: 1
  year: 1991
  ident: 629_CR25
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(91)90144-O
– volume: 17
  start-page: 1435
  issue: 5
  year: 2001
  ident: 629_CR19
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/17/5/313
– ident: 629_CR4
  doi: 10.1016/j.jmaa.2012.10.066
– volume: 7
  start-page: 200
  issue: 3
  year: 1967
  ident: 629_CR7
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(67)90040-7
– ident: 629_CR10
  doi: 10.1007/978-94-009-2121-4
– ident: 629_CR24
  doi: 10.1088/0266-5611/26/2/025007
– ident: 629_CR23
  doi: 10.1515/9783110255720
– volume: 1
  start-page: 45
  issue: 1
  year: 1996
  ident: 629_CR2
  publication-title: Abstr. Appl. Anal.
  doi: 10.1155/S1085337596000024
– volume: 28
  start-page: 045001
  issue: 4
  year: 2012
  ident: 629_CR12
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/28/4/045001
– volume: 14
  start-page: 369
  issue: 2
  year: 1995
  ident: 629_CR20
  publication-title: Z. Anal. Anwend.
  doi: 10.4171/ZAA/679
– volume: 13
  start-page: 8
  year: 1977
  ident: 629_CR14
  publication-title: Moscow Univ. Comput. Math. Cybernet.
– volume: 36
  start-page: 1723
  issue: 10
  year: 2011
  ident: 629_CR6
  publication-title: Commun. Partial Differ. Equ.
  doi: 10.1080/03605302.2011.552930
– volume: 60
  start-page: 341
  issue: 3
  year: 1991
  ident: 629_CR15
  publication-title: Numer. Math.
  doi: 10.1007/BF01385727
– volume: 7
  start-page: 319
  issue: 2
  year: 2000
  ident: 629_CR8
  publication-title: J. Convex Anal.
– volume: 20
  start-page: 201
  issue: 2
  year: 2008
  ident: 629_CR17
  publication-title: J. Integral Equ. Appl.
  doi: 10.1216/JIE-2008-20-2-201
– volume: 35
  start-page: 207
  issue: 2
  year: 2005
  ident: 629_CR3
  publication-title: Adv. Appl. Math.
  doi: 10.1016/j.aam.2004.12.002
– volume: 14
  start-page: 764
  issue: 5–6
  year: 2008
  ident: 629_CR11
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-008-9039-8
– ident: 629_CR18
  doi: 10.1515/9783110208276
– volume: 27
  start-page: 637
  issue: 5–6
  year: 2006
  ident: 629_CR16
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630560600790835
– volume: 13
  start-page: 413
  issue: 5–6
  year: 1992
  ident: 629_CR13
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630569208816489
– volume: 56
  start-page: 542
  issue: 2
  year: 1996
  ident: 629_CR9
  publication-title: SIAM. J. Appl. Math.
  doi: 10.1137/S0036139994267444
– volume: 92
  start-page: 33
  year: 1997
  ident: 629_CR1
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1022631928592
– volume: 45
  start-page: 679
  issue: 2
  year: 2013
  ident: 629_CR5
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/120869201
– volume: 80
  start-page: 579
  issue: 4
  year: 1998
  ident: 629_CR22
  publication-title: Numer. Math.
  doi: 10.1007/s002110050379
SSID ssj0017641
Score 2.2626724
Snippet We consider nonlinear inverse problems described by operator equations in Banach spaces. Assuming conditional stability of the inverse problem, that is,...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 127
SubjectTerms Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical Analysis
Numerical and Computational Physics
Simulation
Theoretical
Title An analysis of a multi-level projected steepest descent iteration for nonlinear inverse problems in Banach spaces subject to stability constraints
URI https://link.springer.com/article/10.1007/s00211-014-0629-x
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6yXvTgW1wfyxw8KYE-kj6Oq6yKoicX1lPJE4VlXbZd0L_hL3bSpoUFFbyWaRryNZkvmck3hJwHkeCu1BGVVhnqBO9opqWhNpWpCrKci7oYzONTcjdm9xM-8fe4yzbbvQ1J1it1d9nNuSO39WU0SKKcInFc57h1d3lc42jYhQ7ShIVtXgfP80kbyvypiVVntBoJrR3MzQ7Z8swQhg2Uu2TNzPbIdlt1Afwk3CObj53SarlPvoYzEF5YBN4tCKhTBOnUJQOBP2cxGhBMM0cPALrRb4JGThlRAaStMGsUM8QC3mYuUcOArzRT4gO4wi-oV8DFB1cVKJfSNQrVO7bayHx_gnI805WbqMoDMr4ZPV_fUV9ngaqYZxUNteRZyJXVTqVWI6XIlExzgQPJMq7jQAY2ssKVOYpUwnKTmthwppVIAmNkFh-SHnbTHBFA8sUYM6k2KmU2SBDp0DIteGhNnsa8T4J2wAvlRchd56ZFJ59cY1QgRoXDqPjok4vulXmjwPGX8WWLYuEnY_m79fG_rE_IBrIl3py_nJJetViaM2QklRyQ9eHty8NoUP-J3yxr3as
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iB_XgW3w7B09KoI-kj-MqyvpYTy7sreSJwrK7bCvo3_AXO2nTwoIKXss0DfmSzNfM5BtCLoJIcFfqiEqrDHWCdzTT0lCbylQFWc5FXQxm8Jz0h-xhxEf-HnfZZru3Icl6p-4uuzl35H59GQ2SKKdIHFeQC2RuKg-jXhc6SBMWtnkdPM9HbSjzpyYWndFiJLR2MHdbZMMzQ-g1UG6TJTPZIZtt1QXwi3CHrA86pdVyl3z1JiC8sAhMLQioUwTp2CUDgT9nMRoQTDNDDwC60W-CRk4ZUQGkrTBpFDPEHN4mLlHDgK80U-IDuMYvqFfAzQd3FSjfpWsUqim22sh8f4JyPNOVm6jKPTK8u3256VNfZ4GqmGcVDbXkWciV1U6lViOlyJRMc4EDyTKu40AGNrLClTmKVMJyk5rYcKaVSAJjZBbvk2XspjkggOSLMWZSbVTKbJAg0qFlWvDQmjyN-SEJ2gEvlBchd50bF518co1RgRgVDqPi45Bcdq_MGgWOv4yvWhQLvxjL362P_mV9Tlb7L4On4un--fGYrCFz4s1ZzAlZrubv5hTZSSXP6tn4Dc6-3wo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JSsUwFA2iILpwFmfvwpUS7JB0WD6HhzMufPB2JSMKUh-2gv6GX-xNmxYEFdyWNA05GU5zb84h5CCIBHdWR1RaZagTvKOZlobaVKYqyHIuGjOY27vkYsSuxnzsfU6rLtu9C0m2dxqcSlNZH0-0Pe4vvrmtyf0GMxokUU6RRM4wdxkYB_QoGvRhhDRhYZfjwfN83IU1f6ri-8b0PSrabDbDJbLgWSIMWliXyZQpV8hi58AAfkKukPnbXnW1WiWfgxKEFxmBFwsCmnRB-uwSg8CfuRgNCKyZ4G4AutVyglZaGRECpLBQtuoZ4hWeSpe0YcC7zlT4AE7wC-oRcCHCFQaqN-kqhfoFa20lvz9AOc7prCfqao2MhucPpxfUey5QFfOspqGWPAu5stop1mqkF5mSaS6wI1nGdRzIwEZWOMujSCUsN6mJDWdaiSQwRmbxOpnGZpoNAkjEGGMm1UalzAYJoh5apgUPrcnTmG-SoOvwQnlBcte456KXUm4wKhCjwmFUvG-Sw_6VSavG8Vfhow7Fwk_M6vfSW_8qvU9m78-Gxc3l3fU2mUMSxdtjmR0yXb--mV0kKrXcawbjF20e4z0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+analysis+of+a+multi-level+projected+steepest+descent+iteration+for+nonlinear+inverse+problems+in+Banach+spaces+subject+to+stability+constraints&rft.jtitle=Numerische+Mathematik&rft.au=de+Hoop%2C+Maarten+V.&rft.au=Qiu%2C+Lingyun&rft.au=Scherzer%2C+Otmar&rft.date=2015-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0029-599X&rft.eissn=0945-3245&rft.volume=129&rft.issue=1&rft.spage=127&rft.epage=148&rft_id=info:doi/10.1007%2Fs00211-014-0629-x&rft.externalDocID=10_1007_s00211_014_0629_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-599X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-599X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-599X&client=summon