Species‐level drivers of avian centrality within seed‐dispersal networks across different levels of organisation
Bird–plant seed‐dispersal networks are structural components of ecosystems. The role of bird species in seed‐dispersal networks (from less [peripheral] to more connected [central]), determines the interaction patterns and their ecosystem services. These roles may be driven by morphological and funct...
Saved in:
Published in | The Journal of animal ecology Vol. 92; no. 11; pp. 2126 - 2137 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bird–plant seed‐dispersal networks are structural components of ecosystems. The role of bird species in seed‐dispersal networks (from less [peripheral] to more connected [central]), determines the interaction patterns and their ecosystem services. These roles may be driven by morphological and functional traits as well as evolutionary, geographical and environmental properties acting at different spatial extents.
It is still unknown if such drivers are equally important in determining species centrality at different network levels, from individual local networks to the global meta‐network representing interactions across all local networks.
Using 308 networks covering five continents and 11 biogeographical regions, we show that at the global meta‐network level species' range size was the most important driver of species centrality, with more central species having larger range sizes, which would facilitate the interaction with a higher number of plants and thus the maintenance of seed‐dispersal interactions.
At the local network level, body mass was the only driver with a significant effect, implying that local factors related to resource availability are more important at this level of network organisation than those related to broad spatial factors such as range sizes. This could also be related to the mismatch between species‐level traits, which do not consider intraspecific variation, and the local networks that can depend on such variation.
Taken together, our results show that the drivers determining species centrality are relative to the levels of network organisation, suggesting that prediction of species functional roles in seed‐dispersal interactions requires combined local and global approaches.
Las redes de dispersión de semillas entre aves y plantas son componentes estructurales de los ecosistemas. El rol de las especies de aves en estas redes de dispersión de semillas (de menos [periféricas] a más conectadas [centrales]), determina los patrones de interacción y sus servicios ecosistémicos. Estos roles pueden ser impulsados por rasgos morfológicos y funcionales, propiedades evolutivas, geográficas y ambientales que actúan en diferentes extensiones espaciales.
Todavía se desconoce si dichos impulsores son igualmente importantes para determinar la centralidad de las especies en diferentes niveles de red, desde redes locales individuales hasta la meta‐red global que representa todas las interacciones en las redes locales.
Usando 308 redes abarcando cinco continentes y once regiones biogeográficas, mostramos que a nivel de meta‐red global, el tamaño de la distribución geográfica de las especies fue el factor más determinante de la centralidad de las especies, con especies más centrales siendo aquellas que tienen distribuciones más grandes, lo que les facilitaría la interacción con un mayor número de plantas y por lo tanto el mantenimiento de las interacciones de dispersión de semillas.
A nivel de las redes locales, la masa corporal fue el único impulsor con un efecto significativo, lo que implica que los factores locales relacionados con la disponibilidad de recursos son más importantes en este nivel de organización que los relacionados con factores espaciales amplios, como el tamaño de las distribuciones. Esto también podría estar relacionado con el desajuste entre los rasgos a nivel de especie, que no consideran la variación intraespecífica, y las redes locales que pueden depender de dicha variación.
En conjunto, nuestros resultados muestran que los impulsores que determinan la centralidad de las especies en las redes de interacción son relativos a los niveles de organización de la red, lo que sugiere que la predicción de los roles funcionales de las especies en las interacciones de dispersión de semillas requiere enfoques locales y globales combinados. |
---|---|
AbstractList | Bird–plant seed‐dispersal networks are structural components of ecosystems. The role of bird species in seed‐dispersal networks (from less [peripheral] to more connected [central]), determines the interaction patterns and their ecosystem services. These roles may be driven by morphological and functional traits as well as evolutionary, geographical and environmental properties acting at different spatial extents.It is still unknown if such drivers are equally important in determining species centrality at different network levels, from individual local networks to the global meta‐network representing interactions across all local networks.Using 308 networks covering five continents and 11 biogeographical regions, we show that at the global meta‐network level species' range size was the most important driver of species centrality, with more central species having larger range sizes, which would facilitate the interaction with a higher number of plants and thus the maintenance of seed‐dispersal interactions.At the local network level, body mass was the only driver with a significant effect, implying that local factors related to resource availability are more important at this level of network organisation than those related to broad spatial factors such as range sizes. This could also be related to the mismatch between species‐level traits, which do not consider intraspecific variation, and the local networks that can depend on such variation.Taken together, our results show that the drivers determining species centrality are relative to the levels of network organisation, suggesting that prediction of species functional roles in seed‐dispersal interactions requires combined local and global approaches. Bird-plant seed-dispersal networks are structural components of ecosystems. The role of bird species in seed-dispersal networks (from less [peripheral] to more connected [central]), determines the interaction patterns and their ecosystem services. These roles may be driven by morphological and functional traits as well as evolutionary, geographical and environmental properties acting at different spatial extents. It is still unknown if such drivers are equally important in determining species centrality at different network levels, from individual local networks to the global meta-network representing interactions across all local networks. Using 308 networks covering five continents and 11 biogeographical regions, we show that at the global meta-network level species' range size was the most important driver of species centrality, with more central species having larger range sizes, which would facilitate the interaction with a higher number of plants and thus the maintenance of seed-dispersal interactions. At the local network level, body mass was the only driver with a significant effect, implying that local factors related to resource availability are more important at this level of network organisation than those related to broad spatial factors such as range sizes. This could also be related to the mismatch between species-level traits, which do not consider intraspecific variation, and the local networks that can depend on such variation. Taken together, our results show that the drivers determining species centrality are relative to the levels of network organisation, suggesting that prediction of species functional roles in seed-dispersal interactions requires combined local and global approaches.Bird-plant seed-dispersal networks are structural components of ecosystems. The role of bird species in seed-dispersal networks (from less [peripheral] to more connected [central]), determines the interaction patterns and their ecosystem services. These roles may be driven by morphological and functional traits as well as evolutionary, geographical and environmental properties acting at different spatial extents. It is still unknown if such drivers are equally important in determining species centrality at different network levels, from individual local networks to the global meta-network representing interactions across all local networks. Using 308 networks covering five continents and 11 biogeographical regions, we show that at the global meta-network level species' range size was the most important driver of species centrality, with more central species having larger range sizes, which would facilitate the interaction with a higher number of plants and thus the maintenance of seed-dispersal interactions. At the local network level, body mass was the only driver with a significant effect, implying that local factors related to resource availability are more important at this level of network organisation than those related to broad spatial factors such as range sizes. This could also be related to the mismatch between species-level traits, which do not consider intraspecific variation, and the local networks that can depend on such variation. Taken together, our results show that the drivers determining species centrality are relative to the levels of network organisation, suggesting that prediction of species functional roles in seed-dispersal interactions requires combined local and global approaches. Bird–plant seed‐dispersal networks are structural components of ecosystems. The role of bird species in seed‐dispersal networks (from less [peripheral] to more connected [central]), determines the interaction patterns and their ecosystem services. These roles may be driven by morphological and functional traits as well as evolutionary, geographical and environmental properties acting at different spatial extents. It is still unknown if such drivers are equally important in determining species centrality at different network levels, from individual local networks to the global meta‐network representing interactions across all local networks. Using 308 networks covering five continents and 11 biogeographical regions, we show that at the global meta‐network level species' range size was the most important driver of species centrality, with more central species having larger range sizes, which would facilitate the interaction with a higher number of plants and thus the maintenance of seed‐dispersal interactions. At the local network level, body mass was the only driver with a significant effect, implying that local factors related to resource availability are more important at this level of network organisation than those related to broad spatial factors such as range sizes. This could also be related to the mismatch between species‐level traits, which do not consider intraspecific variation, and the local networks that can depend on such variation. Taken together, our results show that the drivers determining species centrality are relative to the levels of network organisation, suggesting that prediction of species functional roles in seed‐dispersal interactions requires combined local and global approaches. Las redes de dispersión de semillas entre aves y plantas son componentes estructurales de los ecosistemas. El rol de las especies de aves en estas redes de dispersión de semillas (de menos [periféricas] a más conectadas [centrales]), determina los patrones de interacción y sus servicios ecosistémicos. Estos roles pueden ser impulsados por rasgos morfológicos y funcionales, propiedades evolutivas, geográficas y ambientales que actúan en diferentes extensiones espaciales. Todavía se desconoce si dichos impulsores son igualmente importantes para determinar la centralidad de las especies en diferentes niveles de red, desde redes locales individuales hasta la meta‐red global que representa todas las interacciones en las redes locales. Usando 308 redes abarcando cinco continentes y once regiones biogeográficas, mostramos que a nivel de meta‐red global, el tamaño de la distribución geográfica de las especies fue el factor más determinante de la centralidad de las especies, con especies más centrales siendo aquellas que tienen distribuciones más grandes, lo que les facilitaría la interacción con un mayor número de plantas y por lo tanto el mantenimiento de las interacciones de dispersión de semillas. A nivel de las redes locales, la masa corporal fue el único impulsor con un efecto significativo, lo que implica que los factores locales relacionados con la disponibilidad de recursos son más importantes en este nivel de organización que los relacionados con factores espaciales amplios, como el tamaño de las distribuciones. Esto también podría estar relacionado con el desajuste entre los rasgos a nivel de especie, que no consideran la variación intraespecífica, y las redes locales que pueden depender de dicha variación. En conjunto, nuestros resultados muestran que los impulsores que determinan la centralidad de las especies en las redes de interacción son relativos a los niveles de organización de la red, lo que sugiere que la predicción de los roles funcionales de las especies en las interacciones de dispersión de semillas requiere enfoques locales y globales combinados. |
Author | Dáttilo, Wesley Moulatlet, Gabriel M. Villalobos, Fabricio |
Author_xml | – sequence: 1 givenname: Gabriel M. orcidid: 0000-0003-2571-1207 surname: Moulatlet fullname: Moulatlet, Gabriel M. organization: Red de Biología Evolutiva Instituto de Ecología A.C. Xalapa Mexico – sequence: 2 givenname: Wesley orcidid: 0000-0002-4758-4379 surname: Dáttilo fullname: Dáttilo, Wesley organization: Red de Ecoetología Instituto de Ecología A.C. Xalapa Mexico – sequence: 3 givenname: Fabricio orcidid: 0000-0002-5230-2217 surname: Villalobos fullname: Villalobos, Fabricio organization: Red de Biología Evolutiva Instituto de Ecología A.C. Xalapa Mexico |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37454385$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctOJCEYhYnRaHtZz86QzMZNKRRFFSyNGS-JiQt1XaHhx0GroQW6jbt5BJ_RJ5EuLwsTM2xIyHdOwvm20boPHhD6RckhLeeIspZXdcvbQ8qkaNfQ5OtlHU0IqWklOkm20HZK94SQriZsE22xruENE3yC8vUctIP0-u9lgCUM2ES3hJhwsFgtnfJYg89RDS4_4yeX_zqPE4ApvHFpXkg1YA_5KcSHhJWOISVsnLUQSw6PnWNZiHfKu6SyC34XbVg1JNj7uHfQ7emfm5Pz6vLq7OLk-LLSjItcUQEd7yi1AKTTUkIHEmrBmFTW6ClnUgthGVeWaFmzaa0b3SqjmsZIoEazHXTw3juP4XEBKfczlzQMg_IQFqmvZVNT0nLO_o8KJtqGc0oL-vsbeh8W0ZePFEo0nLRE8kLtf1CL6QxMP49upuJz_zl9AY7egXGzCPYLoaRfye1XKvuVyn6UWxL8W0K7PA5aBLnhx9wbqTKqkA |
CitedBy_id | crossref_primary_10_1111_1365_2656_13986 crossref_primary_10_1111_1365_2656_70013 crossref_primary_10_1111_btp_13347 crossref_primary_10_1002_ece3_70485 crossref_primary_10_7717_peerj_16381 crossref_primary_10_1016_j_fooweb_2024_e00384 crossref_primary_10_1111_ecog_07725 |
Cites_doi | 10.1007/s00442‐020‐04662‐4 10.1111/ele.12236 10.1093/aobpla/plv072 10.1126/science.aau8751 10.1126/science.abf0556 10.1111/1365-2656.13986 10.1073/pnas.1809088115 10.1111/j.1461‐0248.2011.01649.x 10.1111/ele.12140 10.1038/s41586‐020‐2640‐y 10.1890/13‐1584.1 10.1073/pnas.2023170118 10.1098/rspb.2016.1564 10.1890/04‐0922 10.1111/oik.05387 10.1038/nature11631 10.1371/journal.pbio.1001569 10.1111/btp.13109 10.1111/ecog.03396 10.1890/0012‐9658(2000)081[2914:NSICAA]2.0.CO;2 10.1038/s41467‐020‐18779‐w 10.1002/joc.5086 10.1111/1365‐2656.12686 10.1038/s41467‐020‐16313‐6 10.1098/rspb.2015.2444 10.1111/2041‐210X.13153 10.1007/978-3-319-68228-0_7 10.1016/j.patter.2020.100052 10.1016/j.ecocom.2009.03.008 10.1017/S0376892918000334 10.1126/science.1228282 10.1046/j.1461‐0248.2003.00403.x 10.3390/d14110917 10.1038/s41467‐022‐34355‐w 10.1016/j.baae.2022.06.009 10.1111/btp.12290 10.1890/1540‐9295‐13.6.338 10.1371/journal.pone.0220061 10.11606/1807‐0205/2019.59.54 10.1111/ele.13898 10.1111/geb.12193 10.1111/ele.12285 10.1073/pnas.2108731119 10.1038/s41559‐022‐01693‐3 10.1016/j.tree.2005.04.005 10.1093/bioinformatics/btq166 10.1111/1365‐2656.13216 10.1016/j.actao.2011.01.016 10.1111/jbi.13493 10.18637/jss.v033.i02 10.1111/j.1600‐0706.2009.18222.x 10.1093/biolinnean/blac071 10.1016/j.biocon.2013.03.025 10.12688/f1000research.2‐191.v2 10.1098/rspb.2016.1597 10.1111/ele.12612 10.1038/ncomms13965 10.1111/1365‐2745.12690 10.1111/1365‐2656.13274 10.1111/2041‐210X.12401 10.1111/oik.02204 10.1111/jeb.14004 10.1111/geb.13271 10.1111/ecog.00983 10.1111/1365‐2656.13273 10.1073/pnas.0706375104 10.1890/09‐1842.1 10.1111/oik.01613 10.1098/rspb.2010.2383 10.1111/ele.12909 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Journal of Animal Ecology © 2023 British Ecological Society. Journal of Animal Ecology © 2023 British Ecological Society |
Copyright_xml | – notice: 2023 The Authors. Journal of Animal Ecology © 2023 British Ecological Society. – notice: Journal of Animal Ecology © 2023 British Ecological Society |
DBID | AAYXX CITATION NPM 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/1365-2656.13986 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts MEDLINE - Academic PubMed CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Biology |
EISSN | 1365-2656 |
EndPage | 2137 |
ExternalDocumentID | 37454385 10_1111_1365_2656_13986 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Consejo Nacional de Ciencia y Tecnología grantid: A1-S-34563 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1OC 29J 2AX 2WC 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABAWQ ABBHK ABCQN ABCUV ABEML ABJNI ABPFR ABPLY ABPQH ABPVW ABSQW ABTLG ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACHIC ACHJO ACKIV ACNCT ACPOU ACPRK ACSCC ACSTJ ACUBG ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFXHP AFZJQ AGHNM AGUYK AGYGG AHBTC AHXOZ AI. AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG CBGCD CITATION COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD EYRJQ F00 F01 F04 F5P FVMVE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAS JBMMH JBS JBZCM JEB JENOY JHFFW JKQEH JLEZI JLS JLXEF JPL JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OIG OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ TEORI TN5 UB1 UPT VH1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YQT ZCG ZY4 ZZTAW ~02 ~IA ~KM ~WT 24P AEUQT AFPWT ESX NPM WRC 7QG 7SN 7SS 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c358t-18e75711fee07c99e7e9e28339afdcb539c88f35af0c923b2c4c6ada44d9e1dc3 |
ISSN | 0021-8790 1365-2656 |
IngestDate | Fri Jul 11 18:22:13 EDT 2025 Fri Jul 11 02:07:39 EDT 2025 Fri Jul 25 10:59:05 EDT 2025 Wed Feb 19 02:23:52 EST 2025 Thu Apr 24 23:10:12 EDT 2025 Tue Jul 01 03:10:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | range size macroecology meta-networks morphological traits mutualistic networks |
Language | English |
License | 2023 The Authors. Journal of Animal Ecology © 2023 British Ecological Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c358t-18e75711fee07c99e7e9e28339afdcb539c88f35af0c923b2c4c6ada44d9e1dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2571-1207 0000-0002-5230-2217 0000-0002-4758-4379 |
PMID | 37454385 |
PQID | 2884506095 |
PQPubID | 37522 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2942106553 proquest_miscellaneous_2838645511 proquest_journals_2884506095 pubmed_primary_37454385 crossref_primary_10_1111_1365_2656_13986 crossref_citationtrail_10_1111_1365_2656_13986 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | The Journal of animal ecology |
PublicationTitleAlternate | J Anim Ecol |
PublicationYear | 2023 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 Dormann C. F. (e_1_2_9_21_1) 2011; 1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 Winkler D. W. (e_1_2_9_74_1) 2020 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 Winkler D. W. (e_1_2_9_75_1) 2020 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 Hagen M. (e_1_2_9_29_1) 2012 |
References_xml | – ident: e_1_2_9_36_1 doi: 10.1007/s00442‐020‐04662‐4 – ident: e_1_2_9_38_1 doi: 10.1111/ele.12236 – ident: e_1_2_9_51_1 doi: 10.1093/aobpla/plv072 – ident: e_1_2_9_73_1 doi: 10.1126/science.aau8751 – start-page: 89 volume-title: Advances in ecological research year: 2012 ident: e_1_2_9_29_1 – ident: e_1_2_9_9_1 doi: 10.1126/science.abf0556 – ident: e_1_2_9_46_1 doi: 10.1111/1365-2656.13986 – ident: e_1_2_9_43_1 doi: 10.1073/pnas.1809088115 – ident: e_1_2_9_27_1 doi: 10.1111/j.1461‐0248.2011.01649.x – ident: e_1_2_9_65_1 doi: 10.1111/ele.12140 – ident: e_1_2_9_26_1 doi: 10.1038/s41586‐020‐2640‐y – ident: e_1_2_9_70_1 doi: 10.1890/13‐1584.1 – ident: e_1_2_9_10_1 doi: 10.1073/pnas.2023170118 – ident: e_1_2_9_17_1 doi: 10.1098/rspb.2016.1564 – ident: e_1_2_9_31_1 doi: 10.1890/04‐0922 – ident: e_1_2_9_40_1 doi: 10.1111/oik.05387 – ident: e_1_2_9_32_1 doi: 10.1038/nature11631 – ident: e_1_2_9_45_1 doi: 10.1371/journal.pbio.1001569 – ident: e_1_2_9_12_1 doi: 10.1111/btp.13109 – ident: e_1_2_9_8_1 doi: 10.1111/ecog.03396 – ident: e_1_2_9_20_1 doi: 10.1890/0012‐9658(2000)081[2914:NSICAA]2.0.CO;2 – ident: e_1_2_9_39_1 doi: 10.1038/s41467‐020‐18779‐w – ident: e_1_2_9_24_1 doi: 10.1002/joc.5086 – ident: e_1_2_9_63_1 doi: 10.1111/1365‐2656.12686 – ident: e_1_2_9_64_1 doi: 10.1038/s41467‐020‐16313‐6 – ident: e_1_2_9_18_1 doi: 10.1098/rspb.2015.2444 – ident: e_1_2_9_68_1 doi: 10.1111/2041‐210X.13153 – ident: e_1_2_9_23_1 doi: 10.1007/978-3-319-68228-0_7 – ident: e_1_2_9_57_1 doi: 10.1016/j.patter.2020.100052 – ident: e_1_2_9_41_1 doi: 10.1016/j.ecocom.2009.03.008 – ident: e_1_2_9_7_1 doi: 10.1017/S0376892918000334 – ident: e_1_2_9_30_1 doi: 10.1126/science.1228282 – ident: e_1_2_9_34_1 doi: 10.1046/j.1461‐0248.2003.00403.x – ident: e_1_2_9_16_1 doi: 10.3390/d14110917 – volume: 1 start-page: 1 issue: 1 year: 2011 ident: e_1_2_9_21_1 article-title: How to be a specialist? Quantifying specialisation in pollination networks publication-title: Network Biology – ident: e_1_2_9_42_1 doi: 10.1038/s41467‐022‐34355‐w – ident: e_1_2_9_14_1 doi: 10.1016/j.baae.2022.06.009 – ident: e_1_2_9_50_1 doi: 10.1111/btp.12290 – ident: e_1_2_9_67_1 doi: 10.1890/1540‐9295‐13.6.338 – ident: e_1_2_9_48_1 doi: 10.1371/journal.pone.0220061 – ident: e_1_2_9_4_1 doi: 10.11606/1807‐0205/2019.59.54 – ident: e_1_2_9_69_1 doi: 10.1111/ele.13898 – ident: e_1_2_9_19_1 doi: 10.1111/geb.12193 – ident: e_1_2_9_5_1 doi: 10.1111/ele.12285 – ident: e_1_2_9_55_1 doi: 10.1073/pnas.2108731119 – ident: e_1_2_9_6_1 – ident: e_1_2_9_66_1 doi: 10.1038/s41559‐022‐01693‐3 – ident: e_1_2_9_76_1 doi: 10.1016/j.tree.2005.04.005 – ident: e_1_2_9_35_1 doi: 10.1093/bioinformatics/btq166 – ident: e_1_2_9_15_1 doi: 10.1111/1365‐2656.13216 – ident: e_1_2_9_25_1 doi: 10.1016/j.actao.2011.01.016 – ident: e_1_2_9_47_1 doi: 10.1111/jbi.13493 – ident: e_1_2_9_28_1 doi: 10.18637/jss.v033.i02 – ident: e_1_2_9_59_1 doi: 10.1111/j.1600‐0706.2009.18222.x – ident: e_1_2_9_3_1 doi: 10.1093/biolinnean/blac071 – ident: e_1_2_9_71_1 doi: 10.1016/j.biocon.2013.03.025 – ident: e_1_2_9_11_1 doi: 10.12688/f1000research.2‐191.v2 – ident: e_1_2_9_54_1 doi: 10.1098/rspb.2016.1597 – ident: e_1_2_9_13_1 doi: 10.1111/ele.12612 – ident: e_1_2_9_62_1 doi: 10.1038/ncomms13965 – ident: e_1_2_9_33_1 doi: 10.1111/1365‐2745.12690 – ident: e_1_2_9_53_1 doi: 10.1111/1365‐2656.13274 – ident: e_1_2_9_72_1 doi: 10.1111/2041‐210X.12401 – ident: e_1_2_9_56_1 doi: 10.1111/oik.02204 – ident: e_1_2_9_52_1 doi: 10.1111/jeb.14004 – ident: e_1_2_9_58_1 doi: 10.1111/geb.13271 – ident: e_1_2_9_61_1 doi: 10.1111/ecog.00983 – ident: e_1_2_9_2_1 doi: 10.1111/1365‐2656.13273 – ident: e_1_2_9_49_1 doi: 10.1073/pnas.0706375104 – ident: e_1_2_9_60_1 doi: 10.1890/09‐1842.1 – volume-title: Thrushes and allies (Turdidae), version 1.0 year: 2020 ident: e_1_2_9_75_1 – ident: e_1_2_9_44_1 doi: 10.1111/oik.01613 – volume-title: Tanagers and allies (Thraupidae), version 1.0 year: 2020 ident: e_1_2_9_74_1 – ident: e_1_2_9_37_1 doi: 10.1098/rspb.2010.2383 – ident: e_1_2_9_22_1 doi: 10.1111/ele.12909 |
SSID | ssj0007203 |
Score | 2.463186 |
Snippet | Bird–plant seed‐dispersal networks are structural components of ecosystems. The role of bird species in seed‐dispersal networks (from less [peripheral] to more... Bird-plant seed-dispersal networks are structural components of ecosystems. The role of bird species in seed-dispersal networks (from less [peripheral] to more... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 2126 |
SubjectTerms | animal ecology Birds Body mass body weight Dispersion Ecosystem services ecosystems geographical distribution intraspecific variation Networks prediction Resource availability Seed dispersal Seeds Species Strategic planning |
Title | Species‐level drivers of avian centrality within seed‐dispersal networks across different levels of organisation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37454385 https://www.proquest.com/docview/2884506095 https://www.proquest.com/docview/2838645511 https://www.proquest.com/docview/2942106553 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7jiuCLeHd0lQg-CEOHSZP08ii64yK7K8gMDr6UJk1hpLay7Qj65E_wn_if_CWek_QyIzuL-lJCexpCzpfk3HIOIc8AB0oKoT2uMu6JOEg92POEF85yOHxSLo3Ei8KnZ8HxUrxZydVo9HMramnTqKn-duG9kv_hKrwDvuIt2X_gbN8pvIA28BeewGF4_hWPbfF4WOddwEKBEUCT7NzGWlgP_xdcv20AJsrbaHZdl5Mazqz-r2yN2cJr4FXpYsLrSWoPz756SjOxPdsuXRmoemDoxwFvW9It0HyCltE7ZvvTCquFFc4B8jpVoKcXgz32lfXas6ZZO3_Qe1N3bmcsCYb1kYpKubjAOf6sXRBZZ7XweXt9b4910lnbhjgmd82AwVbtaolOjdudXUiey0Tebd-xvw1TtrMZ-8HWwe4zl15mz6HRdz4Fofii9Nxnb5P58uQkWRytFlfIVR_0EqvDvxvylaFP28UUubG3uaQwdOyP7nfFoD26jZVxFjfJjZZ99IVD2i0yMuVtcs2VK_0KrQ-Vbd0hTYu8X99_WGTQFnO0yqnFHB0wRx3mKGIO6Hu00Q5t1KGN9mijDm3Y2Tba7pLl_Gjx8thr63d4msuo8VhkQhkylhszC3Ucm9DEBsRZHqd5ppXksY6inMs0n2nQM5SvhQ7SLBUiiw3LNL9HDsqqNA8IBSk7EEqFERAL5s9UnocmxOSFoZnJPBqTaTediW6T22ONlSLplFyc_wTnP7HzPybP-x8-u7wu-0kPO_4k7eKvEz-KBObmjOWYPO0_w9aM_ra0NNUGaXgUCFBJ2CU0sfAZqAGSj8l9x_t-PDwUUvBIPrx8AI_I9WGFHZKD5nxjHoOk3KgnFp2_AbQNwMA |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Species%E2%80%90level+drivers+of+avian+centrality+within+seed%E2%80%90dispersal+networks+across+different+levels+of+organisation&rft.jtitle=The+Journal+of+animal+ecology&rft.au=Moulatlet%2C+Gabriel+M&rft.au=D%C3%A1ttilo%2C+Wesley&rft.au=Villalobos%2C+Fabricio&rft.date=2023-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0021-8790&rft.eissn=1365-2656&rft.volume=92&rft.issue=11&rft.spage=2126&rft.epage=2137&rft_id=info:doi/10.1111%2F1365-2656.13986&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8790&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8790&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8790&client=summon |