Species‐level drivers of avian centrality within seed‐dispersal networks across different levels of organisation

Bird–plant seed‐dispersal networks are structural components of ecosystems. The role of bird species in seed‐dispersal networks (from less [peripheral] to more connected [central]), determines the interaction patterns and their ecosystem services. These roles may be driven by morphological and funct...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of animal ecology Vol. 92; no. 11; pp. 2126 - 2137
Main Authors Moulatlet, Gabriel M., Dáttilo, Wesley, Villalobos, Fabricio
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bird–plant seed‐dispersal networks are structural components of ecosystems. The role of bird species in seed‐dispersal networks (from less [peripheral] to more connected [central]), determines the interaction patterns and their ecosystem services. These roles may be driven by morphological and functional traits as well as evolutionary, geographical and environmental properties acting at different spatial extents. It is still unknown if such drivers are equally important in determining species centrality at different network levels, from individual local networks to the global meta‐network representing interactions across all local networks. Using 308 networks covering five continents and 11 biogeographical regions, we show that at the global meta‐network level species' range size was the most important driver of species centrality, with more central species having larger range sizes, which would facilitate the interaction with a higher number of plants and thus the maintenance of seed‐dispersal interactions. At the local network level, body mass was the only driver with a significant effect, implying that local factors related to resource availability are more important at this level of network organisation than those related to broad spatial factors such as range sizes. This could also be related to the mismatch between species‐level traits, which do not consider intraspecific variation, and the local networks that can depend on such variation. Taken together, our results show that the drivers determining species centrality are relative to the levels of network organisation, suggesting that prediction of species functional roles in seed‐dispersal interactions requires combined local and global approaches. Las redes de dispersión de semillas entre aves y plantas son componentes estructurales de los ecosistemas. El rol de las especies de aves en estas redes de dispersión de semillas (de menos [periféricas] a más conectadas [centrales]), determina los patrones de interacción y sus servicios ecosistémicos. Estos roles pueden ser impulsados por rasgos morfológicos y funcionales, propiedades evolutivas, geográficas y ambientales que actúan en diferentes extensiones espaciales. Todavía se desconoce si dichos impulsores son igualmente importantes para determinar la centralidad de las especies en diferentes niveles de red, desde redes locales individuales hasta la meta‐red global que representa todas las interacciones en las redes locales. Usando 308 redes abarcando cinco continentes y once regiones biogeográficas, mostramos que a nivel de meta‐red global, el tamaño de la distribución geográfica de las especies fue el factor más determinante de la centralidad de las especies, con especies más centrales siendo aquellas que tienen distribuciones más grandes, lo que les facilitaría la interacción con un mayor número de plantas y por lo tanto el mantenimiento de las interacciones de dispersión de semillas. A nivel de las redes locales, la masa corporal fue el único impulsor con un efecto significativo, lo que implica que los factores locales relacionados con la disponibilidad de recursos son más importantes en este nivel de organización que los relacionados con factores espaciales amplios, como el tamaño de las distribuciones. Esto también podría estar relacionado con el desajuste entre los rasgos a nivel de especie, que no consideran la variación intraespecífica, y las redes locales que pueden depender de dicha variación. En conjunto, nuestros resultados muestran que los impulsores que determinan la centralidad de las especies en las redes de interacción son relativos a los niveles de organización de la red, lo que sugiere que la predicción de los roles funcionales de las especies en las interacciones de dispersión de semillas requiere enfoques locales y globales combinados.
AbstractList Bird–plant seed‐dispersal networks are structural components of ecosystems. The role of bird species in seed‐dispersal networks (from less [peripheral] to more connected [central]), determines the interaction patterns and their ecosystem services. These roles may be driven by morphological and functional traits as well as evolutionary, geographical and environmental properties acting at different spatial extents.It is still unknown if such drivers are equally important in determining species centrality at different network levels, from individual local networks to the global meta‐network representing interactions across all local networks.Using 308 networks covering five continents and 11 biogeographical regions, we show that at the global meta‐network level species' range size was the most important driver of species centrality, with more central species having larger range sizes, which would facilitate the interaction with a higher number of plants and thus the maintenance of seed‐dispersal interactions.At the local network level, body mass was the only driver with a significant effect, implying that local factors related to resource availability are more important at this level of network organisation than those related to broad spatial factors such as range sizes. This could also be related to the mismatch between species‐level traits, which do not consider intraspecific variation, and the local networks that can depend on such variation.Taken together, our results show that the drivers determining species centrality are relative to the levels of network organisation, suggesting that prediction of species functional roles in seed‐dispersal interactions requires combined local and global approaches.
Bird-plant seed-dispersal networks are structural components of ecosystems. The role of bird species in seed-dispersal networks (from less [peripheral] to more connected [central]), determines the interaction patterns and their ecosystem services. These roles may be driven by morphological and functional traits as well as evolutionary, geographical and environmental properties acting at different spatial extents. It is still unknown if such drivers are equally important in determining species centrality at different network levels, from individual local networks to the global meta-network representing interactions across all local networks. Using 308 networks covering five continents and 11 biogeographical regions, we show that at the global meta-network level species' range size was the most important driver of species centrality, with more central species having larger range sizes, which would facilitate the interaction with a higher number of plants and thus the maintenance of seed-dispersal interactions. At the local network level, body mass was the only driver with a significant effect, implying that local factors related to resource availability are more important at this level of network organisation than those related to broad spatial factors such as range sizes. This could also be related to the mismatch between species-level traits, which do not consider intraspecific variation, and the local networks that can depend on such variation. Taken together, our results show that the drivers determining species centrality are relative to the levels of network organisation, suggesting that prediction of species functional roles in seed-dispersal interactions requires combined local and global approaches.Bird-plant seed-dispersal networks are structural components of ecosystems. The role of bird species in seed-dispersal networks (from less [peripheral] to more connected [central]), determines the interaction patterns and their ecosystem services. These roles may be driven by morphological and functional traits as well as evolutionary, geographical and environmental properties acting at different spatial extents. It is still unknown if such drivers are equally important in determining species centrality at different network levels, from individual local networks to the global meta-network representing interactions across all local networks. Using 308 networks covering five continents and 11 biogeographical regions, we show that at the global meta-network level species' range size was the most important driver of species centrality, with more central species having larger range sizes, which would facilitate the interaction with a higher number of plants and thus the maintenance of seed-dispersal interactions. At the local network level, body mass was the only driver with a significant effect, implying that local factors related to resource availability are more important at this level of network organisation than those related to broad spatial factors such as range sizes. This could also be related to the mismatch between species-level traits, which do not consider intraspecific variation, and the local networks that can depend on such variation. Taken together, our results show that the drivers determining species centrality are relative to the levels of network organisation, suggesting that prediction of species functional roles in seed-dispersal interactions requires combined local and global approaches.
Bird–plant seed‐dispersal networks are structural components of ecosystems. The role of bird species in seed‐dispersal networks (from less [peripheral] to more connected [central]), determines the interaction patterns and their ecosystem services. These roles may be driven by morphological and functional traits as well as evolutionary, geographical and environmental properties acting at different spatial extents. It is still unknown if such drivers are equally important in determining species centrality at different network levels, from individual local networks to the global meta‐network representing interactions across all local networks. Using 308 networks covering five continents and 11 biogeographical regions, we show that at the global meta‐network level species' range size was the most important driver of species centrality, with more central species having larger range sizes, which would facilitate the interaction with a higher number of plants and thus the maintenance of seed‐dispersal interactions. At the local network level, body mass was the only driver with a significant effect, implying that local factors related to resource availability are more important at this level of network organisation than those related to broad spatial factors such as range sizes. This could also be related to the mismatch between species‐level traits, which do not consider intraspecific variation, and the local networks that can depend on such variation. Taken together, our results show that the drivers determining species centrality are relative to the levels of network organisation, suggesting that prediction of species functional roles in seed‐dispersal interactions requires combined local and global approaches. Las redes de dispersión de semillas entre aves y plantas son componentes estructurales de los ecosistemas. El rol de las especies de aves en estas redes de dispersión de semillas (de menos [periféricas] a más conectadas [centrales]), determina los patrones de interacción y sus servicios ecosistémicos. Estos roles pueden ser impulsados por rasgos morfológicos y funcionales, propiedades evolutivas, geográficas y ambientales que actúan en diferentes extensiones espaciales. Todavía se desconoce si dichos impulsores son igualmente importantes para determinar la centralidad de las especies en diferentes niveles de red, desde redes locales individuales hasta la meta‐red global que representa todas las interacciones en las redes locales. Usando 308 redes abarcando cinco continentes y once regiones biogeográficas, mostramos que a nivel de meta‐red global, el tamaño de la distribución geográfica de las especies fue el factor más determinante de la centralidad de las especies, con especies más centrales siendo aquellas que tienen distribuciones más grandes, lo que les facilitaría la interacción con un mayor número de plantas y por lo tanto el mantenimiento de las interacciones de dispersión de semillas. A nivel de las redes locales, la masa corporal fue el único impulsor con un efecto significativo, lo que implica que los factores locales relacionados con la disponibilidad de recursos son más importantes en este nivel de organización que los relacionados con factores espaciales amplios, como el tamaño de las distribuciones. Esto también podría estar relacionado con el desajuste entre los rasgos a nivel de especie, que no consideran la variación intraespecífica, y las redes locales que pueden depender de dicha variación. En conjunto, nuestros resultados muestran que los impulsores que determinan la centralidad de las especies en las redes de interacción son relativos a los niveles de organización de la red, lo que sugiere que la predicción de los roles funcionales de las especies en las interacciones de dispersión de semillas requiere enfoques locales y globales combinados.
Author Dáttilo, Wesley
Moulatlet, Gabriel M.
Villalobos, Fabricio
Author_xml – sequence: 1
  givenname: Gabriel M.
  orcidid: 0000-0003-2571-1207
  surname: Moulatlet
  fullname: Moulatlet, Gabriel M.
  organization: Red de Biología Evolutiva Instituto de Ecología A.C. Xalapa Mexico
– sequence: 2
  givenname: Wesley
  orcidid: 0000-0002-4758-4379
  surname: Dáttilo
  fullname: Dáttilo, Wesley
  organization: Red de Ecoetología Instituto de Ecología A.C. Xalapa Mexico
– sequence: 3
  givenname: Fabricio
  orcidid: 0000-0002-5230-2217
  surname: Villalobos
  fullname: Villalobos, Fabricio
  organization: Red de Biología Evolutiva Instituto de Ecología A.C. Xalapa Mexico
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37454385$$D View this record in MEDLINE/PubMed
BookMark eNqFkctOJCEYhYnRaHtZz86QzMZNKRRFFSyNGS-JiQt1XaHhx0GroQW6jbt5BJ_RJ5EuLwsTM2xIyHdOwvm20boPHhD6RckhLeeIspZXdcvbQ8qkaNfQ5OtlHU0IqWklOkm20HZK94SQriZsE22xruENE3yC8vUctIP0-u9lgCUM2ES3hJhwsFgtnfJYg89RDS4_4yeX_zqPE4ApvHFpXkg1YA_5KcSHhJWOISVsnLUQSw6PnWNZiHfKu6SyC34XbVg1JNj7uHfQ7emfm5Pz6vLq7OLk-LLSjItcUQEd7yi1AKTTUkIHEmrBmFTW6ClnUgthGVeWaFmzaa0b3SqjmsZIoEazHXTw3juP4XEBKfczlzQMg_IQFqmvZVNT0nLO_o8KJtqGc0oL-vsbeh8W0ZePFEo0nLRE8kLtf1CL6QxMP49upuJz_zl9AY7egXGzCPYLoaRfye1XKvuVyn6UWxL8W0K7PA5aBLnhx9wbqTKqkA
CitedBy_id crossref_primary_10_1111_1365_2656_13986
crossref_primary_10_1111_1365_2656_70013
crossref_primary_10_1111_btp_13347
crossref_primary_10_1002_ece3_70485
crossref_primary_10_7717_peerj_16381
crossref_primary_10_1016_j_fooweb_2024_e00384
crossref_primary_10_1111_ecog_07725
Cites_doi 10.1007/s00442‐020‐04662‐4
10.1111/ele.12236
10.1093/aobpla/plv072
10.1126/science.aau8751
10.1126/science.abf0556
10.1111/1365-2656.13986
10.1073/pnas.1809088115
10.1111/j.1461‐0248.2011.01649.x
10.1111/ele.12140
10.1038/s41586‐020‐2640‐y
10.1890/13‐1584.1
10.1073/pnas.2023170118
10.1098/rspb.2016.1564
10.1890/04‐0922
10.1111/oik.05387
10.1038/nature11631
10.1371/journal.pbio.1001569
10.1111/btp.13109
10.1111/ecog.03396
10.1890/0012‐9658(2000)081[2914:NSICAA]2.0.CO;2
10.1038/s41467‐020‐18779‐w
10.1002/joc.5086
10.1111/1365‐2656.12686
10.1038/s41467‐020‐16313‐6
10.1098/rspb.2015.2444
10.1111/2041‐210X.13153
10.1007/978-3-319-68228-0_7
10.1016/j.patter.2020.100052
10.1016/j.ecocom.2009.03.008
10.1017/S0376892918000334
10.1126/science.1228282
10.1046/j.1461‐0248.2003.00403.x
10.3390/d14110917
10.1038/s41467‐022‐34355‐w
10.1016/j.baae.2022.06.009
10.1111/btp.12290
10.1890/1540‐9295‐13.6.338
10.1371/journal.pone.0220061
10.11606/1807‐0205/2019.59.54
10.1111/ele.13898
10.1111/geb.12193
10.1111/ele.12285
10.1073/pnas.2108731119
10.1038/s41559‐022‐01693‐3
10.1016/j.tree.2005.04.005
10.1093/bioinformatics/btq166
10.1111/1365‐2656.13216
10.1016/j.actao.2011.01.016
10.1111/jbi.13493
10.18637/jss.v033.i02
10.1111/j.1600‐0706.2009.18222.x
10.1093/biolinnean/blac071
10.1016/j.biocon.2013.03.025
10.12688/f1000research.2‐191.v2
10.1098/rspb.2016.1597
10.1111/ele.12612
10.1038/ncomms13965
10.1111/1365‐2745.12690
10.1111/1365‐2656.13274
10.1111/2041‐210X.12401
10.1111/oik.02204
10.1111/jeb.14004
10.1111/geb.13271
10.1111/ecog.00983
10.1111/1365‐2656.13273
10.1073/pnas.0706375104
10.1890/09‐1842.1
10.1111/oik.01613
10.1098/rspb.2010.2383
10.1111/ele.12909
ContentType Journal Article
Copyright 2023 The Authors. Journal of Animal Ecology © 2023 British Ecological Society.
Journal of Animal Ecology © 2023 British Ecological Society
Copyright_xml – notice: 2023 The Authors. Journal of Animal Ecology © 2023 British Ecological Society.
– notice: Journal of Animal Ecology © 2023 British Ecological Society
DBID AAYXX
CITATION
NPM
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7X8
7S9
L.6
DOI 10.1111/1365-2656.13986
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts
MEDLINE - Academic
PubMed
CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Biology
EISSN 1365-2656
EndPage 2137
ExternalDocumentID 37454385
10_1111_1365_2656_13986
Genre Journal Article
GrantInformation_xml – fundername: Consejo Nacional de Ciencia y Tecnología
  grantid: A1-S-34563
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
29J
2AX
2WC
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABAWQ
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABPFR
ABPLY
ABPQH
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACHIC
ACHJO
ACKIV
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACUBG
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFXHP
AFZJQ
AGHNM
AGUYK
AGYGG
AHBTC
AHXOZ
AI.
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
CBGCD
CITATION
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
EYRJQ
F00
F01
F04
F5P
FVMVE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TEORI
TN5
UB1
UPT
VH1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YQT
ZCG
ZY4
ZZTAW
~02
~IA
~KM
~WT
24P
AEUQT
AFPWT
ESX
NPM
WRC
7QG
7SN
7SS
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c358t-18e75711fee07c99e7e9e28339afdcb539c88f35af0c923b2c4c6ada44d9e1dc3
ISSN 0021-8790
1365-2656
IngestDate Fri Jul 11 18:22:13 EDT 2025
Fri Jul 11 02:07:39 EDT 2025
Fri Jul 25 10:59:05 EDT 2025
Wed Feb 19 02:23:52 EST 2025
Thu Apr 24 23:10:12 EDT 2025
Tue Jul 01 03:10:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords range size
macroecology
meta-networks
morphological traits
mutualistic networks
Language English
License 2023 The Authors. Journal of Animal Ecology © 2023 British Ecological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c358t-18e75711fee07c99e7e9e28339afdcb539c88f35af0c923b2c4c6ada44d9e1dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2571-1207
0000-0002-5230-2217
0000-0002-4758-4379
PMID 37454385
PQID 2884506095
PQPubID 37522
PageCount 12
ParticipantIDs proquest_miscellaneous_2942106553
proquest_miscellaneous_2838645511
proquest_journals_2884506095
pubmed_primary_37454385
crossref_primary_10_1111_1365_2656_13986
crossref_citationtrail_10_1111_1365_2656_13986
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle The Journal of animal ecology
PublicationTitleAlternate J Anim Ecol
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
Dormann C. F. (e_1_2_9_21_1) 2011; 1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
Winkler D. W. (e_1_2_9_74_1) 2020
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
Winkler D. W. (e_1_2_9_75_1) 2020
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
Hagen M. (e_1_2_9_29_1) 2012
References_xml – ident: e_1_2_9_36_1
  doi: 10.1007/s00442‐020‐04662‐4
– ident: e_1_2_9_38_1
  doi: 10.1111/ele.12236
– ident: e_1_2_9_51_1
  doi: 10.1093/aobpla/plv072
– ident: e_1_2_9_73_1
  doi: 10.1126/science.aau8751
– start-page: 89
  volume-title: Advances in ecological research
  year: 2012
  ident: e_1_2_9_29_1
– ident: e_1_2_9_9_1
  doi: 10.1126/science.abf0556
– ident: e_1_2_9_46_1
  doi: 10.1111/1365-2656.13986
– ident: e_1_2_9_43_1
  doi: 10.1073/pnas.1809088115
– ident: e_1_2_9_27_1
  doi: 10.1111/j.1461‐0248.2011.01649.x
– ident: e_1_2_9_65_1
  doi: 10.1111/ele.12140
– ident: e_1_2_9_26_1
  doi: 10.1038/s41586‐020‐2640‐y
– ident: e_1_2_9_70_1
  doi: 10.1890/13‐1584.1
– ident: e_1_2_9_10_1
  doi: 10.1073/pnas.2023170118
– ident: e_1_2_9_17_1
  doi: 10.1098/rspb.2016.1564
– ident: e_1_2_9_31_1
  doi: 10.1890/04‐0922
– ident: e_1_2_9_40_1
  doi: 10.1111/oik.05387
– ident: e_1_2_9_32_1
  doi: 10.1038/nature11631
– ident: e_1_2_9_45_1
  doi: 10.1371/journal.pbio.1001569
– ident: e_1_2_9_12_1
  doi: 10.1111/btp.13109
– ident: e_1_2_9_8_1
  doi: 10.1111/ecog.03396
– ident: e_1_2_9_20_1
  doi: 10.1890/0012‐9658(2000)081[2914:NSICAA]2.0.CO;2
– ident: e_1_2_9_39_1
  doi: 10.1038/s41467‐020‐18779‐w
– ident: e_1_2_9_24_1
  doi: 10.1002/joc.5086
– ident: e_1_2_9_63_1
  doi: 10.1111/1365‐2656.12686
– ident: e_1_2_9_64_1
  doi: 10.1038/s41467‐020‐16313‐6
– ident: e_1_2_9_18_1
  doi: 10.1098/rspb.2015.2444
– ident: e_1_2_9_68_1
  doi: 10.1111/2041‐210X.13153
– ident: e_1_2_9_23_1
  doi: 10.1007/978-3-319-68228-0_7
– ident: e_1_2_9_57_1
  doi: 10.1016/j.patter.2020.100052
– ident: e_1_2_9_41_1
  doi: 10.1016/j.ecocom.2009.03.008
– ident: e_1_2_9_7_1
  doi: 10.1017/S0376892918000334
– ident: e_1_2_9_30_1
  doi: 10.1126/science.1228282
– ident: e_1_2_9_34_1
  doi: 10.1046/j.1461‐0248.2003.00403.x
– ident: e_1_2_9_16_1
  doi: 10.3390/d14110917
– volume: 1
  start-page: 1
  issue: 1
  year: 2011
  ident: e_1_2_9_21_1
  article-title: How to be a specialist? Quantifying specialisation in pollination networks
  publication-title: Network Biology
– ident: e_1_2_9_42_1
  doi: 10.1038/s41467‐022‐34355‐w
– ident: e_1_2_9_14_1
  doi: 10.1016/j.baae.2022.06.009
– ident: e_1_2_9_50_1
  doi: 10.1111/btp.12290
– ident: e_1_2_9_67_1
  doi: 10.1890/1540‐9295‐13.6.338
– ident: e_1_2_9_48_1
  doi: 10.1371/journal.pone.0220061
– ident: e_1_2_9_4_1
  doi: 10.11606/1807‐0205/2019.59.54
– ident: e_1_2_9_69_1
  doi: 10.1111/ele.13898
– ident: e_1_2_9_19_1
  doi: 10.1111/geb.12193
– ident: e_1_2_9_5_1
  doi: 10.1111/ele.12285
– ident: e_1_2_9_55_1
  doi: 10.1073/pnas.2108731119
– ident: e_1_2_9_6_1
– ident: e_1_2_9_66_1
  doi: 10.1038/s41559‐022‐01693‐3
– ident: e_1_2_9_76_1
  doi: 10.1016/j.tree.2005.04.005
– ident: e_1_2_9_35_1
  doi: 10.1093/bioinformatics/btq166
– ident: e_1_2_9_15_1
  doi: 10.1111/1365‐2656.13216
– ident: e_1_2_9_25_1
  doi: 10.1016/j.actao.2011.01.016
– ident: e_1_2_9_47_1
  doi: 10.1111/jbi.13493
– ident: e_1_2_9_28_1
  doi: 10.18637/jss.v033.i02
– ident: e_1_2_9_59_1
  doi: 10.1111/j.1600‐0706.2009.18222.x
– ident: e_1_2_9_3_1
  doi: 10.1093/biolinnean/blac071
– ident: e_1_2_9_71_1
  doi: 10.1016/j.biocon.2013.03.025
– ident: e_1_2_9_11_1
  doi: 10.12688/f1000research.2‐191.v2
– ident: e_1_2_9_54_1
  doi: 10.1098/rspb.2016.1597
– ident: e_1_2_9_13_1
  doi: 10.1111/ele.12612
– ident: e_1_2_9_62_1
  doi: 10.1038/ncomms13965
– ident: e_1_2_9_33_1
  doi: 10.1111/1365‐2745.12690
– ident: e_1_2_9_53_1
  doi: 10.1111/1365‐2656.13274
– ident: e_1_2_9_72_1
  doi: 10.1111/2041‐210X.12401
– ident: e_1_2_9_56_1
  doi: 10.1111/oik.02204
– ident: e_1_2_9_52_1
  doi: 10.1111/jeb.14004
– ident: e_1_2_9_58_1
  doi: 10.1111/geb.13271
– ident: e_1_2_9_61_1
  doi: 10.1111/ecog.00983
– ident: e_1_2_9_2_1
  doi: 10.1111/1365‐2656.13273
– ident: e_1_2_9_49_1
  doi: 10.1073/pnas.0706375104
– ident: e_1_2_9_60_1
  doi: 10.1890/09‐1842.1
– volume-title: Thrushes and allies (Turdidae), version 1.0
  year: 2020
  ident: e_1_2_9_75_1
– ident: e_1_2_9_44_1
  doi: 10.1111/oik.01613
– volume-title: Tanagers and allies (Thraupidae), version 1.0
  year: 2020
  ident: e_1_2_9_74_1
– ident: e_1_2_9_37_1
  doi: 10.1098/rspb.2010.2383
– ident: e_1_2_9_22_1
  doi: 10.1111/ele.12909
SSID ssj0007203
Score 2.463186
Snippet Bird–plant seed‐dispersal networks are structural components of ecosystems. The role of bird species in seed‐dispersal networks (from less [peripheral] to more...
Bird-plant seed-dispersal networks are structural components of ecosystems. The role of bird species in seed-dispersal networks (from less [peripheral] to more...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 2126
SubjectTerms animal ecology
Birds
Body mass
body weight
Dispersion
Ecosystem services
ecosystems
geographical distribution
intraspecific variation
Networks
prediction
Resource availability
Seed dispersal
Seeds
Species
Strategic planning
Title Species‐level drivers of avian centrality within seed‐dispersal networks across different levels of organisation
URI https://www.ncbi.nlm.nih.gov/pubmed/37454385
https://www.proquest.com/docview/2884506095
https://www.proquest.com/docview/2838645511
https://www.proquest.com/docview/2942106553
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7jiuCLeHd0lQg-CEOHSZP08ii64yK7K8gMDr6UJk1hpLay7Qj65E_wn_if_CWek_QyIzuL-lJCexpCzpfk3HIOIc8AB0oKoT2uMu6JOEg92POEF85yOHxSLo3Ei8KnZ8HxUrxZydVo9HMramnTqKn-duG9kv_hKrwDvuIt2X_gbN8pvIA28BeewGF4_hWPbfF4WOddwEKBEUCT7NzGWlgP_xdcv20AJsrbaHZdl5Mazqz-r2yN2cJr4FXpYsLrSWoPz756SjOxPdsuXRmoemDoxwFvW9It0HyCltE7ZvvTCquFFc4B8jpVoKcXgz32lfXas6ZZO3_Qe1N3bmcsCYb1kYpKubjAOf6sXRBZZ7XweXt9b4910lnbhjgmd82AwVbtaolOjdudXUiey0Tebd-xvw1TtrMZ-8HWwe4zl15mz6HRdz4Fofii9Nxnb5P58uQkWRytFlfIVR_0EqvDvxvylaFP28UUubG3uaQwdOyP7nfFoD26jZVxFjfJjZZ99IVD2i0yMuVtcs2VK_0KrQ-Vbd0hTYu8X99_WGTQFnO0yqnFHB0wRx3mKGIO6Hu00Q5t1KGN9mijDm3Y2Tba7pLl_Gjx8thr63d4msuo8VhkQhkylhszC3Ucm9DEBsRZHqd5ppXksY6inMs0n2nQM5SvhQ7SLBUiiw3LNL9HDsqqNA8IBSk7EEqFERAL5s9UnocmxOSFoZnJPBqTaTediW6T22ONlSLplFyc_wTnP7HzPybP-x8-u7wu-0kPO_4k7eKvEz-KBObmjOWYPO0_w9aM_ra0NNUGaXgUCFBJ2CU0sfAZqAGSj8l9x_t-PDwUUvBIPrx8AI_I9WGFHZKD5nxjHoOk3KgnFp2_AbQNwMA
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Species%E2%80%90level+drivers+of+avian+centrality+within+seed%E2%80%90dispersal+networks+across+different+levels+of+organisation&rft.jtitle=The+Journal+of+animal+ecology&rft.au=Moulatlet%2C+Gabriel+M&rft.au=D%C3%A1ttilo%2C+Wesley&rft.au=Villalobos%2C+Fabricio&rft.date=2023-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0021-8790&rft.eissn=1365-2656&rft.volume=92&rft.issue=11&rft.spage=2126&rft.epage=2137&rft_id=info:doi/10.1111%2F1365-2656.13986&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8790&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8790&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8790&client=summon