Geometric Phase Curvature Statistics

The probability distribution of the magnitude C of the curvature 2-form, that underlies the quantum geometric phase and the reaction force of geometric magnetism, is calculated for an ensemble of three-parameter Hamiltonians represented by the gaussian unitary ensemble of N  ×  N matrices. The distr...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical physics Vol. 180; no. 1-6; pp. 297 - 303
Main Authors Berry, M. V., Shukla, Pragya
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The probability distribution of the magnitude C of the curvature 2-form, that underlies the quantum geometric phase and the reaction force of geometric magnetism, is calculated for an ensemble of three-parameter Hamiltonians represented by the gaussian unitary ensemble of N  ×  N matrices. The distributions are determined analytically: exactly for N  = 2 and approximately for N  ≥ 3, and compared with simulations. The distributions decay asymptotically as 1/ C 5/2 ; this is a consequence of the codimension of energy-level degeneracies in the ensemble.
AbstractList The probability distribution of the magnitude C of the curvature 2-form, that underlies the quantum geometric phase and the reaction force of geometric magnetism, is calculated for an ensemble of three-parameter Hamiltonians represented by the gaussian unitary ensemble of N  ×  N matrices. The distributions are determined analytically: exactly for N  = 2 and approximately for N  ≥ 3, and compared with simulations. The distributions decay asymptotically as 1/ C 5/2 ; this is a consequence of the codimension of energy-level degeneracies in the ensemble.
The probability distribution of the magnitude C of the curvature 2-form, that underlies the quantum geometric phase and the reaction force of geometric magnetism, is calculated for an ensemble of three-parameter Hamiltonians represented by the gaussian unitary ensemble of N x N matrices. The distributions are determined analytically: exactly for N = 2 and approximately for N [greater than or equal to] 3, and compared with simulations. The distributions decay asymptotically as 1/C.sup.5/2; this is a consequence of the codimension of energy-level degeneracies in the ensemble.
The probability distribution of the magnitude C of the curvature 2-form, that underlies the quantum geometric phase and the reaction force of geometric magnetism, is calculated for an ensemble of three-parameter Hamiltonians represented by the gaussian unitary ensemble of N × N matrices. The distributions are determined analytically: exactly for N = 2 and approximately for N ≥ 3, and compared with simulations. The distributions decay asymptotically as 1/C5/2; this is a consequence of the codimension of energy-level degeneracies in the ensemble.
Audience Academic
Author Shukla, Pragya
Berry, M. V.
Author_xml – sequence: 1
  givenname: M. V.
  orcidid: 0000-0001-7921-2468
  surname: Berry
  fullname: Berry, M. V.
  email: asymptotico@bristol.ac.uk
  organization: H H Wills Physics Laboratory
– sequence: 2
  givenname: Pragya
  surname: Shukla
  fullname: Shukla, Pragya
  organization: Department of Physics, Indian Institute of Science, Department of Physics, Indian Institute of Science
BookMark eNp9kMFKAzEQhoNUsK2-gKeCXlMnySabHEvRKhQU1HNIs0lNaXdrkhV8e6MreJM5DAz_NzN8EzRqu9YhdElgTgDqm0RAcY6BKAy0AsDiBI0JrylWgrARGgNQiqua8DM0SWkHAEoqPkbXK9cdXI7Bzp7eTHKzZR8_TO6jmz1nk0PKwaZzdOrNPrmL3z5Fr3e3L8t7vH5cPSwXa2wZlxkTKSlrDEhhvG_cxhHrqZSSW0XMxm6Y86ZW3FpfO2EqIm3FbWWaRhpQtfBsiq6GvcfYvfcuZb3r-tiWk5pWDJiinLCSmg-prdk7HVrf5WhsqcYdgi1efCjzhWBEUGCcFoAOgI1dStF5fYzhYOKnJqC_9elBny769I8-LQrEBiiVcLt18e-Xf6gv8Ixzdw
CitedBy_id crossref_primary_10_1088_1751_8121_ab91d6
crossref_primary_10_1103_PhysRevB_107_014507
crossref_primary_10_1103_PhysRevLett_126_200604
crossref_primary_10_1103_PhysRevLett_132_036604
crossref_primary_10_1103_PhysRevD_109_046013
crossref_primary_10_3390_e25030491
Cites_doi 10.1016/0375-9601(87)90189-7
10.1515/9781400883875
10.1063/1.437734
10.1103/PhysRevLett.51.2167
10.1103/RevModPhys.64.51
10.1103/PhysRevLett.96.117208
10.1209/epl/i1998-00446-x
10.1088/1751-8121/aae5dd
10.1098/rspa.1984.0023
10.1103/PhysRevLett.122.146601
10.1088/0305-4470/10/12/015
10.1103/PhysRevLett.74.4055
10.1007/978-1-84628-723-7
10.1103/PhysRevLett.122.106601
10.1515/9781400881826
10.1016/0029-5582(63)90178-0
10.1088/2040-8986/ab14c4
10.1016/0003-4916(81)90189-5
10.1017/9781316662205
10.1103/PhysRevB.31.3372
10.1103/PhysRevB.90.125153
10.1086/676677
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
COPYRIGHT 2020 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2019.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: COPYRIGHT 2020 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2019.
DBID AAYXX
CITATION
DOI 10.1007/s10955-019-02400-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Physics
EISSN 1572-9613
EndPage 303
ExternalDocumentID A631620352
10_1007_s10955_019_02400_6
GroupedDBID -54
-5F
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAGAY
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBEA
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACREN
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADJSZ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYGD
AFEXP
AFFNX
AFGCZ
AFGFF
AFLOW
AFNRJ
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAGR
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IGS
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MQGED
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
WH7
WK8
XFK
XOL
YLTOR
YQT
YYP
Z45
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8Q
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
AAYZH
ID FETCH-LOGICAL-c358t-18823da086affdebe1cf28885c91abcb3efa795ccf7e6a418c45c4add8a0976f3
IEDL.DBID AGYKE
ISSN 0022-4715
IngestDate Thu Oct 10 20:29:55 EDT 2024
Tue Nov 12 22:46:36 EST 2024
Thu Sep 12 18:55:33 EDT 2024
Sat Dec 16 12:00:44 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1-6
Keywords Degeneracies
2-form
Random-matrix
Quantum statistics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-18823da086affdebe1cf28885c91abcb3efa795ccf7e6a418c45c4add8a0976f3
ORCID 0000-0001-7921-2468
PQID 2430392513
PQPubID 2043551
PageCount 7
ParticipantIDs proquest_journals_2430392513
gale_infotracacademiconefile_A631620352
crossref_primary_10_1007_s10955_019_02400_6
springer_journals_10_1007_s10955_019_02400_6
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of statistical physics
PublicationTitleAbbrev J Stat Phys
PublicationYear 2020
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References PradhanPKumarNGeometric phase for a dimerized disordered continuum: topological shot noiseEurophys. Lett.1998441311361998EL.....44..131P10.1209/epl/i1998-00446-x
Von NeumannJWignerEOn the behavior of eigenvalues in adiabatic processesPhys. Z.192930467470
MakhfudzIOn Anderson localization and chiral anomaly in disordered time-reversal invariant Weyl semimetals: nonperturbative berry phase effectsSci. Rep.20188671919
BerryMVQuantal phase factors accompanying adiabatic changesProc. R. Soc. Lond. A198439245571984RSPSA.392...45B73892610.1098/rspa.1984.0023
KudoKWatanabeHKariyadoTHatsugaiYMany-body Chern Number without IntegrationPhys. Rev. Lett.20191221466012019PhRvL.122n6601K10.1103/PhysRevLett.122.146601
MeadCAThe geometric phase in molecular systemsRev. Mod. Phys.19926451851992RvMP...64...51M114449410.1103/RevModPhys.64.51
BerryMVQuantizing a classically ergodic system: Sinai’s billiard and the KKR methodAnn. Phys.19811311632161981AnPhy.131..163B60809010.1016/0003-4916(81)90189-5
BrunoPBerry phase, topology, and degeneracies in quantum nanomagnetsPhys. Rev. Lett.2006961172082006PhRvL..96k7208B10.1103/PhysRevLett.96.117208
NiuQThoulessDJWuY-SQuantized Hall conductance as a topological invariantPhys. Rev. B198531337233771985PhRvB..31.3372N78033910.1103/PhysRevB.31.3372
VanderbiltDBerry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators2018CambridgeCambridge University Press10.1017/9781316662205
BattermanRWRiceCCMinimal model explanationsPhilos. Sci.201481349376323652010.1086/676677
BiancoRRestaRHow disorder affects the Berry-phase anomalous Hall conductivityPhys. Rev. B2014901251532014PhRvB..90l5153B10.1103/PhysRevB.90.125153
ZygelmanBAppearance of gauge potentials in atomic collision physicsPhys. Lett. A19871254764811987PhLA..125..476Z10.1016/0375-9601(87)90189-7
KahnPBPorterCEStatistical fluctuations of energy levels: the unitary ensembleNucl. Phys.19634838540710.1016/0029-5582(63)90178-0
SteenrodNThe Topology of Fibre Bundles1951PrincetonUniversity Press10.1515/9781400883875
SimonBHolonomy, the quantum adiabatic theorem, and Berry’s phasePhys. Rev. Lett.198351216721701983PhRvL..51.2167S72686610.1103/PhysRevLett.51.2167
Goldenfeld, N. D.,1992, Lectures on Phase Transition and the Renormalization Group (Addison-Wesley
BerryMVShuklaPGeometry of 3D monochromatic light: local wavevectors, phases, curl forces and superoscillationsJ. Opt.2019210640022019JOpt...21f4002B10.1088/2040-8986/ab14c4
WernerMABrataasAvon OppenFZarándGUniversal scaling theory of the boundary geometric tensor in disordered metalsPhys. Rev. Lett.20191221066012019PhRvL.122j6601W10.1103/PhysRevLett.122.106601
ShapereAWilczekFGeometric Phases in Physics1989SingaporeWorld Scientific0914.00014
HermanGTFundamentals of computerized tomography: image reconstruction from projection2009New YorkSpringer10.1007/978-1-84628-723-7
MeadCATruhlarDGOn the determination of Born-Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nucleiJ. Chem. Phys.197970228422961979JChPh..70.2284M10.1063/1.437734
WalkerPNWilkinsonMUniversal fluctuations of Chern integersPhys. Rev. Lett.199574405540581995PhRvL..74.4055W10.1103/PhysRevLett.74.4055
MilnorJWStasheffJDCharacteristic Classes1974PrincetonUniversity Press10.1515/9781400881826
PorterCEStatistical Theories of Spectra: Fluctuations1965New YorkAdademic Press
BerryMVShuklaPGeometric phase curvature for random statesJ. Phys. A2018514751012018JPhA...51U5101B387657910.1088/1751-8121/aae5dd
BerryMVFocusing and twinkling: critical exponents from catastrophes in non-Gaussian random short wavesJ. Phys. A197710206120811977JPhA...10.2061B48938910.1088/0305-4470/10/12/015
Berry, M.V.: Spectral twinkling in Proc International School of Physics Enrico Fermi eds. G. Casati, I. G., U. Smilansky (IOS Press, Amsterdam, Varenna), Vol. CLXIII, pp. 45–63 (2000)
GradhandMFedorovDVPientkaFZahnPMertigIGyörffyBLFirst-principle calculations of the Berry curvature of Bloch states for charge and spin transport of electronsJ. Phys.: Condens. Matter2012242132022012JPCM...24u3202G
CA Mead (2400_CR7) 1992; 64
2400_CR25
M Gradhand (2400_CR9) 2012; 24
R Bianco (2400_CR16) 2014; 90
MV Berry (2400_CR4) 1984; 392
D Vanderbilt (2400_CR8) 2018
P Pradhan (2400_CR12) 1998; 44
B Simon (2400_CR2) 1983; 51
PN Walker (2400_CR18) 1995; 74
RW Batterman (2400_CR10) 2014; 81
2400_CR11
MA Werner (2400_CR14) 2019; 122
A Shapere (2400_CR1) 1989
MV Berry (2400_CR21) 2018; 51
J Von Neumann (2400_CR23) 1929; 30
B Zygelman (2400_CR5) 1987; 125
GT Herman (2400_CR24) 2009
MV Berry (2400_CR26) 1977; 10
I Makhfudz (2400_CR13) 2018; 8
K Kudo (2400_CR17) 2019; 122
PB Kahn (2400_CR29) 1963; 48
JW Milnor (2400_CR19) 1974
N Steenrod (2400_CR3) 1951
CA Mead (2400_CR6) 1979; 70
Q Niu (2400_CR15) 1985; 31
CE Porter (2400_CR27) 1965
P Bruno (2400_CR20) 2006; 96
MV Berry (2400_CR28) 1981; 131
MV Berry (2400_CR22) 2019; 21
References_xml – volume: 125
  start-page: 476
  year: 1987
  ident: 2400_CR5
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(87)90189-7
  contributor:
    fullname: B Zygelman
– volume-title: The Topology of Fibre Bundles
  year: 1951
  ident: 2400_CR3
  doi: 10.1515/9781400883875
  contributor:
    fullname: N Steenrod
– volume: 70
  start-page: 2284
  year: 1979
  ident: 2400_CR6
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.437734
  contributor:
    fullname: CA Mead
– volume-title: Statistical Theories of Spectra: Fluctuations
  year: 1965
  ident: 2400_CR27
  contributor:
    fullname: CE Porter
– volume: 51
  start-page: 2167
  year: 1983
  ident: 2400_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.51.2167
  contributor:
    fullname: B Simon
– ident: 2400_CR11
– volume: 8
  start-page: 1
  issue: 6719
  year: 2018
  ident: 2400_CR13
  publication-title: Sci. Rep.
  contributor:
    fullname: I Makhfudz
– volume: 64
  start-page: 51
  year: 1992
  ident: 2400_CR7
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.64.51
  contributor:
    fullname: CA Mead
– volume: 96
  start-page: 117208
  year: 2006
  ident: 2400_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.117208
  contributor:
    fullname: P Bruno
– volume: 44
  start-page: 131
  year: 1998
  ident: 2400_CR12
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i1998-00446-x
  contributor:
    fullname: P Pradhan
– volume: 51
  start-page: 475101
  year: 2018
  ident: 2400_CR21
  publication-title: J. Phys. A
  doi: 10.1088/1751-8121/aae5dd
  contributor:
    fullname: MV Berry
– volume: 24
  start-page: 213202
  year: 2012
  ident: 2400_CR9
  publication-title: J. Phys.: Condens. Matter
  contributor:
    fullname: M Gradhand
– ident: 2400_CR25
– volume: 392
  start-page: 45
  year: 1984
  ident: 2400_CR4
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1984.0023
  contributor:
    fullname: MV Berry
– volume: 122
  start-page: 146601
  year: 2019
  ident: 2400_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.146601
  contributor:
    fullname: K Kudo
– volume-title: Geometric Phases in Physics
  year: 1989
  ident: 2400_CR1
  contributor:
    fullname: A Shapere
– volume: 10
  start-page: 2061
  year: 1977
  ident: 2400_CR26
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/10/12/015
  contributor:
    fullname: MV Berry
– volume: 74
  start-page: 4055
  year: 1995
  ident: 2400_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.74.4055
  contributor:
    fullname: PN Walker
– volume-title: Fundamentals of computerized tomography: image reconstruction from projection
  year: 2009
  ident: 2400_CR24
  doi: 10.1007/978-1-84628-723-7
  contributor:
    fullname: GT Herman
– volume: 122
  start-page: 106601
  year: 2019
  ident: 2400_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.106601
  contributor:
    fullname: MA Werner
– volume-title: Characteristic Classes
  year: 1974
  ident: 2400_CR19
  doi: 10.1515/9781400881826
  contributor:
    fullname: JW Milnor
– volume: 48
  start-page: 385
  year: 1963
  ident: 2400_CR29
  publication-title: Nucl. Phys.
  doi: 10.1016/0029-5582(63)90178-0
  contributor:
    fullname: PB Kahn
– volume: 30
  start-page: 467
  year: 1929
  ident: 2400_CR23
  publication-title: Phys. Z.
  contributor:
    fullname: J Von Neumann
– volume: 21
  start-page: 064002
  year: 2019
  ident: 2400_CR22
  publication-title: J. Opt.
  doi: 10.1088/2040-8986/ab14c4
  contributor:
    fullname: MV Berry
– volume: 131
  start-page: 163
  year: 1981
  ident: 2400_CR28
  publication-title: Ann. Phys.
  doi: 10.1016/0003-4916(81)90189-5
  contributor:
    fullname: MV Berry
– volume-title: Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators
  year: 2018
  ident: 2400_CR8
  doi: 10.1017/9781316662205
  contributor:
    fullname: D Vanderbilt
– volume: 31
  start-page: 3372
  year: 1985
  ident: 2400_CR15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.31.3372
  contributor:
    fullname: Q Niu
– volume: 90
  start-page: 125153
  year: 2014
  ident: 2400_CR16
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.125153
  contributor:
    fullname: R Bianco
– volume: 81
  start-page: 349
  year: 2014
  ident: 2400_CR10
  publication-title: Philos. Sci.
  doi: 10.1086/676677
  contributor:
    fullname: RW Batterman
SSID ssj0009895
Score 2.3884873
Snippet The probability distribution of the magnitude C of the curvature 2-form, that underlies the quantum geometric phase and the reaction force of geometric...
The probability distribution of the magnitude C of the curvature 2-form, that underlies the quantum geometric phase and the reaction force of geometric...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 297
SubjectTerms Curvature
Magnetism
Mathematical and Computational Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Statistics
Theoretical
Title Geometric Phase Curvature Statistics
URI https://link.springer.com/article/10.1007/s10955-019-02400-6
https://www.proquest.com/docview/2430392513
Volume 180
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5REFIXHgVEeVQZKjFAKuLYeYyhokUgKgYqwWTZji0kRItKsvDrOeehAIWhc6xYubPvvovv-wzQj4NQMk081xMsdamHdYpgjLmhSQMiI0NJQRS-nwQ3U3r7xJ4aHnfR7F6fSBaB-hvXLWa2zyx2rSwX1jwt2KiIpxvJ-PnuutHajWJWi4Rj7GUVV-bvt_zIR7-j8tLxaJF1RtvwWHN3ymaT10GeyYH6XJZyXOWDdmCrQqFOUi6bXVjTsw5sFt2g6qMDbQtBSwXnPeiP9fzN3rulnIcXzHnOMLf_cfOFdpph-zAdXT8Ob9zqbgVX-SzKXA-RtZ8KLGiEMSl60lOGYDXMVOwJqaSvjQhjppQJdSCoFynKFMVgGIlLRDDGP4D12XymD8GRYaSNRJiI0JBSYqJYRhJhUoquZoGfduG8tjB_LyU0eCOWbI3A0Qi8MAIPunBmncDt_soWQomKJoBzWaUqngS-FxCr4tqFk9pPvNp4H5xQzMkxgja_Cxe13ZvH_897tNrwY2gTW3kX3WYnsJ4tcn2K8CSTPVyOo6urSa9alj1oTUnyBdlh2lk
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BEaILggIiUCBDJQaIRBw7ccaqohRoK4ZW6mbZji0WWtSm_59zmih8DsyxYuk5vnsXv3sG6KRxopghYRBKlgU0xDpFMsaCxGYxUdxSUjQKj8bxYEqfZmxWNoWtKrV7dSRZROpPzW4pc0KzNHC-XFj0bMOO81d3jvlT0q2tdnnKKo9wDL2sbJX5_R1f0tH3oPzjdLRIOv0D2C_Zot_dLO8hbJl5C3YL1aZetaDpqOLGafkIOg9m8ebux9L-yyvmJr-3dv9b10vj18OOYdq_n_QGQXkHQqAjxvMgRAYcZRILD2lthoiH2hKsWplOQ6m0ioyVScq0tomJJQ25pkxTDFpc3iHTsNEJNOaLuTkFXyXcWIV0DikcpcTyVHGFdCbDJWFxlHlwU0Eh3jdWF6I2NXbACQROFMCJ2INrh5Zw-yBfSi1LOT_O5RylRDeOwpg4t1UP2hWgotwgK0Eo5s4UyVXkwW0Fcv3473nP_jf8CvYGk9FQDB_Hz-fQJK5aLhRibWjky7W5QEqRq8viC_oAAiq-1g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgE4gLjwFiMKCHSRygQNukj-M09oDBtANIcIqSNBESYpu27sKvx-lDGwMOiHOjJrUd-3NjfwGoR34gqHId2-E0tomDeQqnlNqBjn1XhJq4aaPwQ9_vPpG7Z_q80MWfVrsXR5JZT4NhaRomV-NYXy00vkXUFJ1FtuHowgRoFcrEMCOVoNzovPRac-LdMKIFYzg6Ypo3zvz8li_BadlFfzsrTUNQewt4sfis8uTtcpaIS_mxxOv4n6_bhs0cn1qNzKB2YEUNK7CW1onKaQU2DDjNuJ13od5Ro3dzI5e0Bq8YDa3mzPzhnU2UNR-2B0_t1mOza-e3LtjSo2FiO4i5vZhjqsO1jlHHjtQu5slURg4XUnhK8yCiUupA-Zw4oSRUEnSTIb9GbKO9fSgNR0N1AJYIQqUFAkgEjYS4OoxEKBBAxWgE1PfiKpwX4mbjjFyDzWmUjRAYCoGlQmB-Fc6MRpjZecmES543EOBchsOKNXzP8V3D71qFWqE0lm_JKXMJRusI4ZxXhYtCB_PHv897-Lfhp7A-uGmz-9t-7wg2XJOepyVpNSglk5k6RgyTiJPcTD8BxhfkrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+Phase+Curvature+Statistics&rft.jtitle=Journal+of+statistical+physics&rft.au=Berry%2C+M.+V&rft.au=Shukla%2C+Pragya&rft.date=2020-09-01&rft.pub=Springer&rft.issn=0022-4715&rft.volume=180&rft.issue=1-6&rft.spage=297&rft_id=info:doi/10.1007%2Fs10955-019-02400-6&rft.externalDocID=A631620352
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4715&client=summon