Geometric Phase Curvature Statistics
The probability distribution of the magnitude C of the curvature 2-form, that underlies the quantum geometric phase and the reaction force of geometric magnetism, is calculated for an ensemble of three-parameter Hamiltonians represented by the gaussian unitary ensemble of N × N matrices. The distr...
Saved in:
Published in | Journal of statistical physics Vol. 180; no. 1-6; pp. 297 - 303 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2020
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The probability distribution of the magnitude
C
of the curvature 2-form, that underlies the quantum geometric phase and the reaction force of geometric magnetism, is calculated for an ensemble of three-parameter Hamiltonians represented by the gaussian unitary ensemble of
N
×
N
matrices. The distributions are determined analytically: exactly for
N
= 2 and approximately for
N
≥ 3, and compared with simulations. The distributions decay asymptotically as 1/
C
5/2
; this is a consequence of the codimension of energy-level degeneracies in the ensemble. |
---|---|
AbstractList | The probability distribution of the magnitude
C
of the curvature 2-form, that underlies the quantum geometric phase and the reaction force of geometric magnetism, is calculated for an ensemble of three-parameter Hamiltonians represented by the gaussian unitary ensemble of
N
×
N
matrices. The distributions are determined analytically: exactly for
N
= 2 and approximately for
N
≥ 3, and compared with simulations. The distributions decay asymptotically as 1/
C
5/2
; this is a consequence of the codimension of energy-level degeneracies in the ensemble. The probability distribution of the magnitude C of the curvature 2-form, that underlies the quantum geometric phase and the reaction force of geometric magnetism, is calculated for an ensemble of three-parameter Hamiltonians represented by the gaussian unitary ensemble of N x N matrices. The distributions are determined analytically: exactly for N = 2 and approximately for N [greater than or equal to] 3, and compared with simulations. The distributions decay asymptotically as 1/C.sup.5/2; this is a consequence of the codimension of energy-level degeneracies in the ensemble. The probability distribution of the magnitude C of the curvature 2-form, that underlies the quantum geometric phase and the reaction force of geometric magnetism, is calculated for an ensemble of three-parameter Hamiltonians represented by the gaussian unitary ensemble of N × N matrices. The distributions are determined analytically: exactly for N = 2 and approximately for N ≥ 3, and compared with simulations. The distributions decay asymptotically as 1/C5/2; this is a consequence of the codimension of energy-level degeneracies in the ensemble. |
Audience | Academic |
Author | Shukla, Pragya Berry, M. V. |
Author_xml | – sequence: 1 givenname: M. V. orcidid: 0000-0001-7921-2468 surname: Berry fullname: Berry, M. V. email: asymptotico@bristol.ac.uk organization: H H Wills Physics Laboratory – sequence: 2 givenname: Pragya surname: Shukla fullname: Shukla, Pragya organization: Department of Physics, Indian Institute of Science, Department of Physics, Indian Institute of Science |
BookMark | eNp9kMFKAzEQhoNUsK2-gKeCXlMnySabHEvRKhQU1HNIs0lNaXdrkhV8e6MreJM5DAz_NzN8EzRqu9YhdElgTgDqm0RAcY6BKAy0AsDiBI0JrylWgrARGgNQiqua8DM0SWkHAEoqPkbXK9cdXI7Bzp7eTHKzZR8_TO6jmz1nk0PKwaZzdOrNPrmL3z5Fr3e3L8t7vH5cPSwXa2wZlxkTKSlrDEhhvG_cxhHrqZSSW0XMxm6Y86ZW3FpfO2EqIm3FbWWaRhpQtfBsiq6GvcfYvfcuZb3r-tiWk5pWDJiinLCSmg-prdk7HVrf5WhsqcYdgi1efCjzhWBEUGCcFoAOgI1dStF5fYzhYOKnJqC_9elBny769I8-LQrEBiiVcLt18e-Xf6gv8Ixzdw |
CitedBy_id | crossref_primary_10_1088_1751_8121_ab91d6 crossref_primary_10_1103_PhysRevB_107_014507 crossref_primary_10_1103_PhysRevLett_126_200604 crossref_primary_10_1103_PhysRevLett_132_036604 crossref_primary_10_1103_PhysRevD_109_046013 crossref_primary_10_3390_e25030491 |
Cites_doi | 10.1016/0375-9601(87)90189-7 10.1515/9781400883875 10.1063/1.437734 10.1103/PhysRevLett.51.2167 10.1103/RevModPhys.64.51 10.1103/PhysRevLett.96.117208 10.1209/epl/i1998-00446-x 10.1088/1751-8121/aae5dd 10.1098/rspa.1984.0023 10.1103/PhysRevLett.122.146601 10.1088/0305-4470/10/12/015 10.1103/PhysRevLett.74.4055 10.1007/978-1-84628-723-7 10.1103/PhysRevLett.122.106601 10.1515/9781400881826 10.1016/0029-5582(63)90178-0 10.1088/2040-8986/ab14c4 10.1016/0003-4916(81)90189-5 10.1017/9781316662205 10.1103/PhysRevB.31.3372 10.1103/PhysRevB.90.125153 10.1086/676677 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 COPYRIGHT 2020 Springer Springer Science+Business Media, LLC, part of Springer Nature 2019. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: COPYRIGHT 2020 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10955-019-02400-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Physics |
EISSN | 1572-9613 |
EndPage | 303 |
ExternalDocumentID | A631620352 10_1007_s10955_019_02400_6 |
GroupedDBID | -54 -5F -5G -BR -DZ -EM -Y2 -~C -~X .86 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAGAY AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBEA ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACREN ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADJSZ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYGD AFEXP AFFNX AFGCZ AFGFF AFLOW AFNRJ AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAGR AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IGS IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MQGED N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UPT UTJUX UZXMN VC2 VFIZW VH1 VOH W23 W48 WH7 WK8 XFK XOL YLTOR YQT YYP Z45 Z5O Z7R Z7S Z7U Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8Q Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 AAYZH |
ID | FETCH-LOGICAL-c358t-18823da086affdebe1cf28885c91abcb3efa795ccf7e6a418c45c4add8a0976f3 |
IEDL.DBID | AGYKE |
ISSN | 0022-4715 |
IngestDate | Thu Oct 10 20:29:55 EDT 2024 Tue Nov 12 22:46:36 EST 2024 Thu Sep 12 18:55:33 EDT 2024 Sat Dec 16 12:00:44 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-6 |
Keywords | Degeneracies 2-form Random-matrix Quantum statistics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-18823da086affdebe1cf28885c91abcb3efa795ccf7e6a418c45c4add8a0976f3 |
ORCID | 0000-0001-7921-2468 |
PQID | 2430392513 |
PQPubID | 2043551 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2430392513 gale_infotracacademiconefile_A631620352 crossref_primary_10_1007_s10955_019_02400_6 springer_journals_10_1007_s10955_019_02400_6 |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of statistical physics |
PublicationTitleAbbrev | J Stat Phys |
PublicationYear | 2020 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | PradhanPKumarNGeometric phase for a dimerized disordered continuum: topological shot noiseEurophys. Lett.1998441311361998EL.....44..131P10.1209/epl/i1998-00446-x Von NeumannJWignerEOn the behavior of eigenvalues in adiabatic processesPhys. Z.192930467470 MakhfudzIOn Anderson localization and chiral anomaly in disordered time-reversal invariant Weyl semimetals: nonperturbative berry phase effectsSci. Rep.20188671919 BerryMVQuantal phase factors accompanying adiabatic changesProc. R. Soc. Lond. A198439245571984RSPSA.392...45B73892610.1098/rspa.1984.0023 KudoKWatanabeHKariyadoTHatsugaiYMany-body Chern Number without IntegrationPhys. Rev. Lett.20191221466012019PhRvL.122n6601K10.1103/PhysRevLett.122.146601 MeadCAThe geometric phase in molecular systemsRev. Mod. Phys.19926451851992RvMP...64...51M114449410.1103/RevModPhys.64.51 BerryMVQuantizing a classically ergodic system: Sinai’s billiard and the KKR methodAnn. Phys.19811311632161981AnPhy.131..163B60809010.1016/0003-4916(81)90189-5 BrunoPBerry phase, topology, and degeneracies in quantum nanomagnetsPhys. Rev. Lett.2006961172082006PhRvL..96k7208B10.1103/PhysRevLett.96.117208 NiuQThoulessDJWuY-SQuantized Hall conductance as a topological invariantPhys. Rev. B198531337233771985PhRvB..31.3372N78033910.1103/PhysRevB.31.3372 VanderbiltDBerry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators2018CambridgeCambridge University Press10.1017/9781316662205 BattermanRWRiceCCMinimal model explanationsPhilos. Sci.201481349376323652010.1086/676677 BiancoRRestaRHow disorder affects the Berry-phase anomalous Hall conductivityPhys. Rev. B2014901251532014PhRvB..90l5153B10.1103/PhysRevB.90.125153 ZygelmanBAppearance of gauge potentials in atomic collision physicsPhys. Lett. A19871254764811987PhLA..125..476Z10.1016/0375-9601(87)90189-7 KahnPBPorterCEStatistical fluctuations of energy levels: the unitary ensembleNucl. Phys.19634838540710.1016/0029-5582(63)90178-0 SteenrodNThe Topology of Fibre Bundles1951PrincetonUniversity Press10.1515/9781400883875 SimonBHolonomy, the quantum adiabatic theorem, and Berry’s phasePhys. Rev. Lett.198351216721701983PhRvL..51.2167S72686610.1103/PhysRevLett.51.2167 Goldenfeld, N. D.,1992, Lectures on Phase Transition and the Renormalization Group (Addison-Wesley BerryMVShuklaPGeometry of 3D monochromatic light: local wavevectors, phases, curl forces and superoscillationsJ. Opt.2019210640022019JOpt...21f4002B10.1088/2040-8986/ab14c4 WernerMABrataasAvon OppenFZarándGUniversal scaling theory of the boundary geometric tensor in disordered metalsPhys. Rev. Lett.20191221066012019PhRvL.122j6601W10.1103/PhysRevLett.122.106601 ShapereAWilczekFGeometric Phases in Physics1989SingaporeWorld Scientific0914.00014 HermanGTFundamentals of computerized tomography: image reconstruction from projection2009New YorkSpringer10.1007/978-1-84628-723-7 MeadCATruhlarDGOn the determination of Born-Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nucleiJ. Chem. Phys.197970228422961979JChPh..70.2284M10.1063/1.437734 WalkerPNWilkinsonMUniversal fluctuations of Chern integersPhys. Rev. Lett.199574405540581995PhRvL..74.4055W10.1103/PhysRevLett.74.4055 MilnorJWStasheffJDCharacteristic Classes1974PrincetonUniversity Press10.1515/9781400881826 PorterCEStatistical Theories of Spectra: Fluctuations1965New YorkAdademic Press BerryMVShuklaPGeometric phase curvature for random statesJ. Phys. A2018514751012018JPhA...51U5101B387657910.1088/1751-8121/aae5dd BerryMVFocusing and twinkling: critical exponents from catastrophes in non-Gaussian random short wavesJ. Phys. A197710206120811977JPhA...10.2061B48938910.1088/0305-4470/10/12/015 Berry, M.V.: Spectral twinkling in Proc International School of Physics Enrico Fermi eds. G. Casati, I. G., U. Smilansky (IOS Press, Amsterdam, Varenna), Vol. CLXIII, pp. 45–63 (2000) GradhandMFedorovDVPientkaFZahnPMertigIGyörffyBLFirst-principle calculations of the Berry curvature of Bloch states for charge and spin transport of electronsJ. Phys.: Condens. Matter2012242132022012JPCM...24u3202G CA Mead (2400_CR7) 1992; 64 2400_CR25 M Gradhand (2400_CR9) 2012; 24 R Bianco (2400_CR16) 2014; 90 MV Berry (2400_CR4) 1984; 392 D Vanderbilt (2400_CR8) 2018 P Pradhan (2400_CR12) 1998; 44 B Simon (2400_CR2) 1983; 51 PN Walker (2400_CR18) 1995; 74 RW Batterman (2400_CR10) 2014; 81 2400_CR11 MA Werner (2400_CR14) 2019; 122 A Shapere (2400_CR1) 1989 MV Berry (2400_CR21) 2018; 51 J Von Neumann (2400_CR23) 1929; 30 B Zygelman (2400_CR5) 1987; 125 GT Herman (2400_CR24) 2009 MV Berry (2400_CR26) 1977; 10 I Makhfudz (2400_CR13) 2018; 8 K Kudo (2400_CR17) 2019; 122 PB Kahn (2400_CR29) 1963; 48 JW Milnor (2400_CR19) 1974 N Steenrod (2400_CR3) 1951 CA Mead (2400_CR6) 1979; 70 Q Niu (2400_CR15) 1985; 31 CE Porter (2400_CR27) 1965 P Bruno (2400_CR20) 2006; 96 MV Berry (2400_CR28) 1981; 131 MV Berry (2400_CR22) 2019; 21 |
References_xml | – volume: 125 start-page: 476 year: 1987 ident: 2400_CR5 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(87)90189-7 contributor: fullname: B Zygelman – volume-title: The Topology of Fibre Bundles year: 1951 ident: 2400_CR3 doi: 10.1515/9781400883875 contributor: fullname: N Steenrod – volume: 70 start-page: 2284 year: 1979 ident: 2400_CR6 publication-title: J. Chem. Phys. doi: 10.1063/1.437734 contributor: fullname: CA Mead – volume-title: Statistical Theories of Spectra: Fluctuations year: 1965 ident: 2400_CR27 contributor: fullname: CE Porter – volume: 51 start-page: 2167 year: 1983 ident: 2400_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.51.2167 contributor: fullname: B Simon – ident: 2400_CR11 – volume: 8 start-page: 1 issue: 6719 year: 2018 ident: 2400_CR13 publication-title: Sci. Rep. contributor: fullname: I Makhfudz – volume: 64 start-page: 51 year: 1992 ident: 2400_CR7 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.64.51 contributor: fullname: CA Mead – volume: 96 start-page: 117208 year: 2006 ident: 2400_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.117208 contributor: fullname: P Bruno – volume: 44 start-page: 131 year: 1998 ident: 2400_CR12 publication-title: Europhys. Lett. doi: 10.1209/epl/i1998-00446-x contributor: fullname: P Pradhan – volume: 51 start-page: 475101 year: 2018 ident: 2400_CR21 publication-title: J. Phys. A doi: 10.1088/1751-8121/aae5dd contributor: fullname: MV Berry – volume: 24 start-page: 213202 year: 2012 ident: 2400_CR9 publication-title: J. Phys.: Condens. Matter contributor: fullname: M Gradhand – ident: 2400_CR25 – volume: 392 start-page: 45 year: 1984 ident: 2400_CR4 publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1984.0023 contributor: fullname: MV Berry – volume: 122 start-page: 146601 year: 2019 ident: 2400_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.146601 contributor: fullname: K Kudo – volume-title: Geometric Phases in Physics year: 1989 ident: 2400_CR1 contributor: fullname: A Shapere – volume: 10 start-page: 2061 year: 1977 ident: 2400_CR26 publication-title: J. Phys. A doi: 10.1088/0305-4470/10/12/015 contributor: fullname: MV Berry – volume: 74 start-page: 4055 year: 1995 ident: 2400_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.74.4055 contributor: fullname: PN Walker – volume-title: Fundamentals of computerized tomography: image reconstruction from projection year: 2009 ident: 2400_CR24 doi: 10.1007/978-1-84628-723-7 contributor: fullname: GT Herman – volume: 122 start-page: 106601 year: 2019 ident: 2400_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.106601 contributor: fullname: MA Werner – volume-title: Characteristic Classes year: 1974 ident: 2400_CR19 doi: 10.1515/9781400881826 contributor: fullname: JW Milnor – volume: 48 start-page: 385 year: 1963 ident: 2400_CR29 publication-title: Nucl. Phys. doi: 10.1016/0029-5582(63)90178-0 contributor: fullname: PB Kahn – volume: 30 start-page: 467 year: 1929 ident: 2400_CR23 publication-title: Phys. Z. contributor: fullname: J Von Neumann – volume: 21 start-page: 064002 year: 2019 ident: 2400_CR22 publication-title: J. Opt. doi: 10.1088/2040-8986/ab14c4 contributor: fullname: MV Berry – volume: 131 start-page: 163 year: 1981 ident: 2400_CR28 publication-title: Ann. Phys. doi: 10.1016/0003-4916(81)90189-5 contributor: fullname: MV Berry – volume-title: Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators year: 2018 ident: 2400_CR8 doi: 10.1017/9781316662205 contributor: fullname: D Vanderbilt – volume: 31 start-page: 3372 year: 1985 ident: 2400_CR15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.31.3372 contributor: fullname: Q Niu – volume: 90 start-page: 125153 year: 2014 ident: 2400_CR16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.125153 contributor: fullname: R Bianco – volume: 81 start-page: 349 year: 2014 ident: 2400_CR10 publication-title: Philos. Sci. doi: 10.1086/676677 contributor: fullname: RW Batterman |
SSID | ssj0009895 |
Score | 2.3884873 |
Snippet | The probability distribution of the magnitude
C
of the curvature 2-form, that underlies the quantum geometric phase and the reaction force of geometric... The probability distribution of the magnitude C of the curvature 2-form, that underlies the quantum geometric phase and the reaction force of geometric... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 297 |
SubjectTerms | Curvature Magnetism Mathematical and Computational Physics Physical Chemistry Physics Physics and Astronomy Quantum Physics Statistical Physics and Dynamical Systems Statistics Theoretical |
Title | Geometric Phase Curvature Statistics |
URI | https://link.springer.com/article/10.1007/s10955-019-02400-6 https://www.proquest.com/docview/2430392513 |
Volume | 180 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5REFIXHgVEeVQZKjFAKuLYeYyhokUgKgYqwWTZji0kRItKsvDrOeehAIWhc6xYubPvvovv-wzQj4NQMk081xMsdamHdYpgjLmhSQMiI0NJQRS-nwQ3U3r7xJ4aHnfR7F6fSBaB-hvXLWa2zyx2rSwX1jwt2KiIpxvJ-PnuutHajWJWi4Rj7GUVV-bvt_zIR7-j8tLxaJF1RtvwWHN3ymaT10GeyYH6XJZyXOWDdmCrQqFOUi6bXVjTsw5sFt2g6qMDbQtBSwXnPeiP9fzN3rulnIcXzHnOMLf_cfOFdpph-zAdXT8Ob9zqbgVX-SzKXA-RtZ8KLGiEMSl60lOGYDXMVOwJqaSvjQhjppQJdSCoFynKFMVgGIlLRDDGP4D12XymD8GRYaSNRJiI0JBSYqJYRhJhUoquZoGfduG8tjB_LyU0eCOWbI3A0Qi8MAIPunBmncDt_soWQomKJoBzWaUqngS-FxCr4tqFk9pPvNp4H5xQzMkxgja_Cxe13ZvH_897tNrwY2gTW3kX3WYnsJ4tcn2K8CSTPVyOo6urSa9alj1oTUnyBdlh2lk |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BEaILggIiUCBDJQaIRBw7ccaqohRoK4ZW6mbZji0WWtSm_59zmih8DsyxYuk5vnsXv3sG6KRxopghYRBKlgU0xDpFMsaCxGYxUdxSUjQKj8bxYEqfZmxWNoWtKrV7dSRZROpPzW4pc0KzNHC-XFj0bMOO81d3jvlT0q2tdnnKKo9wDL2sbJX5_R1f0tH3oPzjdLRIOv0D2C_Zot_dLO8hbJl5C3YL1aZetaDpqOLGafkIOg9m8ebux9L-yyvmJr-3dv9b10vj18OOYdq_n_QGQXkHQqAjxvMgRAYcZRILD2lthoiH2hKsWplOQ6m0ioyVScq0tomJJQ25pkxTDFpc3iHTsNEJNOaLuTkFXyXcWIV0DikcpcTyVHGFdCbDJWFxlHlwU0Eh3jdWF6I2NXbACQROFMCJ2INrh5Zw-yBfSi1LOT_O5RylRDeOwpg4t1UP2hWgotwgK0Eo5s4UyVXkwW0Fcv3473nP_jf8CvYGk9FQDB_Hz-fQJK5aLhRibWjky7W5QEqRq8viC_oAAiq-1g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgE4gLjwFiMKCHSRygQNukj-M09oDBtANIcIqSNBESYpu27sKvx-lDGwMOiHOjJrUd-3NjfwGoR34gqHId2-E0tomDeQqnlNqBjn1XhJq4aaPwQ9_vPpG7Z_q80MWfVrsXR5JZT4NhaRomV-NYXy00vkXUFJ1FtuHowgRoFcrEMCOVoNzovPRac-LdMKIFYzg6Ypo3zvz8li_BadlFfzsrTUNQewt4sfis8uTtcpaIS_mxxOv4n6_bhs0cn1qNzKB2YEUNK7CW1onKaQU2DDjNuJ13od5Ro3dzI5e0Bq8YDa3mzPzhnU2UNR-2B0_t1mOza-e3LtjSo2FiO4i5vZhjqsO1jlHHjtQu5slURg4XUnhK8yCiUupA-Zw4oSRUEnSTIb9GbKO9fSgNR0N1AJYIQqUFAkgEjYS4OoxEKBBAxWgE1PfiKpwX4mbjjFyDzWmUjRAYCoGlQmB-Fc6MRpjZecmES543EOBchsOKNXzP8V3D71qFWqE0lm_JKXMJRusI4ZxXhYtCB_PHv897-Lfhp7A-uGmz-9t-7wg2XJOepyVpNSglk5k6RgyTiJPcTD8BxhfkrA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+Phase+Curvature+Statistics&rft.jtitle=Journal+of+statistical+physics&rft.au=Berry%2C+M.+V&rft.au=Shukla%2C+Pragya&rft.date=2020-09-01&rft.pub=Springer&rft.issn=0022-4715&rft.volume=180&rft.issue=1-6&rft.spage=297&rft_id=info:doi/10.1007%2Fs10955-019-02400-6&rft.externalDocID=A631620352 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4715&client=summon |